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Abstract. Given a family of critical points uε : M n → C for the complex Ginzburg–Landau

energies

Eε(u) =
ˆ

M

( |du|2

2
+

(1−|u|2)2

4ε2

)

,

on a manifold M, with natural energy growth Eε(uε) = O(|logε|), it is known that the

vorticity sets {|uε| É 1
2 } converge subsequentially to the support of a stationary, rectifiable

(n − 2)-varifold V in the interior, characterized as the concentrated portion of the limit

limε→0
eε(uε)
Ã|logε| of the normalized energy measures. When n = 2 or the solutions uε are energy-

minimizing, it is known moreover that this varifold V is integral; i.e., the (n − 2)-density

Θ
n−2(|V |, x) of |V | takes values in N at |V |-a.e. x ∈ M. In the present paper, we show that

for a general family of critical points with Eε(uε) = O(|logε|) in dimension n Ê 3, this en-

ergy quantization phenomenon only holds where the density is less than 2: namely, we prove

that the density Θn−2(|V |, x) of the limit varifold takes values in {1}∪[2,∞) at |V |-a.e. x ∈ M,

and show that this is sharp, in the sense that for any n Ê 3 and ¹ ∈ {1}∪ [2,∞), there exists

a family of critical points uε for Eε in the ball B n
1 (0) with concentration varifold V given by

an (n −2)-plane with density ¹.

© Alessandro Pigati and Daniel Stern
c b Licensed under a Creative Commons Attribution License (CC-BY).
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1. INTRODUCTION

1.1. The Ginzburg–Landau equations and the integrality question. A complex valued
map u : M → C on a Riemannian manifold (or Euclidean domain) M is said to satisfy the
Ginzburg–Landau equations with parameter ε> 0 if

(1.1) ε2
∆u = DW (u) =−(1−|u|2)u,

where ∆ = −d∗d and W : R2 → R
2 is the nonlinear potential W (u) = 1

4 (1 − |u|2)2. The
system (1.1) arises as the Euler–Lagrange equations for the energy functional

(1.2) Eε(u) :=
ˆ

M

eε(u) =
ˆ

M

(

1

2
|du|2 +

W (u)

ε2

)

,

which combines the usual Dirichlet energy
´

1
2 |du|2 with a nonlinear term

´ (1−|u|2)2

4ε2 which

penalizes the deviation of the values u from the unit circle S1 ¢C, with increasing severity
as ε→ 0.

While the study of the system (1.1) can be traced back to Ginzburg and Landau’s work
on superconductivity in the 1950s, the subject captured the attention of the geometric
analysis community about thirty years ago, with the publication of the influential mono-
graph [5] by Bethuel–Brezis–Hélein. The investigations of [5, 26], and others of this pe-
riod focused on solutions uε : Ω → R

2 on simply connected planar domains Ω ¢ R
2 ob-

tained by minimizing Eε with prescribed boundary data g : ∂Ω → S1 of nonzero degree
deg(g ,∂Ω) ̸= 0, motivated by the search for a canonical ‘energy-minimizing’ extension
u∗ : Ω → S1 of g , in a setting where no finite-energy extension exists. It was shown that
these maps uε converge as ε→ 0 to a singular harmonic S1-valued extension u∗ : Ω→ S1 of
g , whose singularities minimize a certain interaction energy between points in the plane.
Moreover, these maps have energy Eε(uε) =Ã|deg(g )| log(1/ε)+O(1) as ε→ 0, with the nor-
malized energy measures eε(uε)

Ã log(1/ε) d x converging to a sum of Dirac masses at the |deg(g )|
singular points of u∗. Non-minimizing critical points on two-dimensional domains were
also studied, e.g., in [4] and [10].

Later, attention turned to solutions of (1.1) in dimension n Ê 3, with the work of Rivière
[21], Lin–Rivière [17, 18], Jerrard–Soner [16], Bethuel–Brezis–Orlandi [6], and others. For
solutions uε : Ω ¢ R

n → C of (1.1) in higher dimensional domains, satisfying the natural
energy growth Eε(uε) =O(|logε|), it was shown that the zero sets u−1

ε {0} converge (roughly
speaking) to the support of a generalized minimal submanifold of codimension two. In
particular, following the analysis of [6] (see also [24]), one arrives at the following asymp-
totic description of solutions as ε→ 0.

Theorem 1.1. Given a manifold M n without boundary, of dimension n Ê 3, assume that

we have a sequence of maps uε : M → C (indexed by a sequence ε→ 0) solving (1.1), with
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respect to a smoothly converging sequence of metrics gε → g0, such that

limsup
ε→0

1

|logε|

ˆ

K

(

1

2
|duε|2gε

+
W (uε)

ε2

)

d volgε <∞

for all compact K ¦ M. Then, up to a subsequence, the normalized energy densities

µε :=
eε(uε)

Ã|logε|
volgε , where eε(uε) :=

|duε|2gε

2
+

W (uε)

ε2
,

converge to a Radon measure µ which decomposes as

µ= |V |+ f volg0 ,(1.3)

for a suitable smooth nonnegative function f : M → R and a stationary rectifiable (n −2)-

varifold with density Θ
n−2(|V |, ·) Ê c(n) > 0 on its support. Also, the measures

W (uε)
ε2 volgε

converge to a limit measure satisfying

lim
ε→0

W (uε)

ε2
volgε ÉC (K )|V |(1.4)

for all compact K ¦ M. Finally, spt(|V |) is the limit of the sets {|uε| É ´} in the local Haus-

dorff topology, for any ´ ∈ (0,1).

Remark 1.2. Since the variants of Theorem 1.1 appearing in [6, 24] are not quite stated in

this form, we later include a sketch of the proof for the reader’s convenience. We note also

that the last statement is true even for ´ = 0; in this case, it follows from some arguments

contained in the present paper (see Theorem 4.5 below).

The simple example uε(x) =
√

1−ε2k2
ε e i kεx on the circle M = R/2ÃZ, with kε ∈N satis-

fying kε ∼
√

|logε|, shows that the limit measure µ can be completely diffuse. In [25] (see
also [9]), it was shown however that any closed Riemannian manifold (M , g0) of dimension
Ê 2 admits a family of solutions satisfying the hypotheses of Theorem 1.1 with gε = g0 for
which the energy concentration varifold V is nonzero, and it is expected that many such
families exist.

While results like Theorem 1.1 reveal a strong link between solutions of (1.1) and mini-
mal varieties of codimension two, the result sheds little light on the structure of the limit
varifold. In particular, the weakest notion of minimal variety typically considered in geo-
metric measure theory is not the stationary rectifiable varifold, but the slightly stronger
stationary integral varifold, which satisfies the additional condition that the density of its
weight Θn−2(|V |, x) takes values in N for |V |-almost every x.

For some formally similar (though qualitatively rather different) families of equations
like the Allen–Cahn equations or the self-dual abelian Higgs equations, results analogous
to Theorem 1.1 do indeed give energy concentration along stationary integral varifolds of
codimension one [14] and codimension two [20], respectively. Moreover, the results of [17]
for Eε-minimizing solutions of (1.1) and [10] for general solutions in dimension two reveal
that integrality of the limit varifold holds in these cases. All of these observations naturally
lead us to the following question.
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Question 1.3. When n Ê 3, is the stationary varifold V arising from a family of solutions to

(1.1) as in Theorem 1.1 necessarily integral? In other words, is the energy of uε quantized

along the concentration set?

For an equivalent formulation, consider the set D ¢ (0,∞) of positive real numbers ¹ ∈
(0,∞) for which there exists a family uε : B n

1 (0) → R
2 of solutions to (1.1) in the unit n-

ball whose energy concentrates along an (n −2)-plane P ¢ R
n with (necessarily constant)

density ¹, in the sense that
µε *

∗ ¹H
n−2 P.

By a straightforward blow-up argument, it is easy to check that Theorem 1.3 has a positive
answer if and only if D =N\ {0}.

In the present paper, we answer Theorem 1.3 in the negative, proving instead that

D = {1}∪ [2,∞)«N\ {0}.

In other words, we prove that the density Θ
n−2(|V |, ·) of the energy concentration varifold

V in Theorem 1.1 takes values in {1}∪[2,∞) almost everywhere, and give examples to show
that this cannot be improved in general.

1.2. Quantization and non-quantization results. The bulk of the paper is devoted the
proof of the following theorem, showing that D ¦ {1}∪ [2,∞), and hence that the density
of the limiting energy measure in Theorem 1.1 is indeed quantized where Θ

n−2(|V |, ·) É 2.

Theorem 1.4. In the setting of Theorem 1.1, assume moreover that M = B n
2 (0) and g0 is the

Euclidean metric. If the energy densities concentrate along the plane P = R
n−2 × {0} with

constant multiplicity ¹ ∈ (0,∞), i.e.,

eε(uε)

Ã|logε|
volgε * ¹H

n−2 P ∩B n
2 (0)

in C 0
c (M)∗, then ¹ ∈ {1}∪ [2,∞).

In the general setting of Theorem 1.1, by applying Theorem 1.4 to a family of rescaled
solutions in balls centered at a point where the varifold V has flat tangent cone, we arrive
at the following corollary.

Corollary 1.5. Under the hypotheses of Theorem 1.1, the (n −2)-varifold V has density

Θ
n−2(|V |, x) = lim

r→0

|V |(Br (x))

ωn−2r n−2
∈ {1}∪ [2,∞)

for |V |-a.e. x.

Previously, the best known lower bound for non-minimizing solutions uε in dimension
n Ê 3 was the non-explicit lower bound Θ

n−2(|V |, ·) Ê c(n) > 0, a consequence of the fol-
lowing important result, obtained by different methods in [18] when n = 3, and in [6] for
n Ê 3, which is the key ingredient in the proof of Theorem 1.1. In later works it was sug-
gestively called clearing-out for the vorticity. Here, for simplicity, we state it for the flat
Euclidean metric.
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Theorem 1.6. [18, 6] There exists a constant ¸(n) > 0 such that, if

Eε(uε;Br (x)) É ¸r n−2 log(r /ε),

for a ball Br (x) in the domain with r Ê ε, then |uε(x)| > 1
2 .

By a trivial covering argument, up to changing the constant ¸(n), one then obtains that
|uε| > 1

2 on the entire smaller ball Br /2(x). When uε is a typical two-dimensional vortex
centered at x, then the energy is ∼ r n−2 log(r /ε). Thus, Theorem 1.6 essentially says that, if
the energy is much smaller than the expected one, then indeed there cannot be any vortex
on a smaller ball.

While it is possible to obtain explicit lower bounds for the energy threshold ¸(n) using
the arguments of [6], the resulting bounds are non-sharp. As a simple consequence of
Theorem 1.5, we obtain the following sharp version of Theorem 1.6.

Corollary 1.7. For any ¸<Ã ·ωn−2 there exists ¶(¸,n) > 0 such that, if

Eε(uε;Br (x)) É ¸r n−2 log(r /ε)

and εÉ ¶r , then |uε(x)| > 1
2 .

For otherwise, since by scaling we can assume that x = 0 and r = 1, there would ex-
ist a sequence uε with ε → 0 and energy at most ¸|logε| on B1(0), but with |uε(0)| É 1

2 .
By Theorem 1.1, the point 0 would belong to the support of the energy concentration
varifold V . Since V is stationary, Theorem 1.5 and upper semicontinuity of density give
Θ

n−2(|V |,0) Ê 1, which gives |V |(B1(0)) Ê ωn−2 by the monotonicity formula. However,
this contradicts the fact that

|V |(B1(0)) Éµ(B1(0)) É liminf
ε→0

Eε(uε;B1(0))

Ã|logε|
É

¸

Ã
<ωn−2.

Note that for any ´ < 1 the same argument gives |uε(x)| > ´ provided that we assume
Eε(uε;Br (x)) É ¸r n−2 log(r /ε) for ¸<Ãωn−2 and εÉ ¶(´,¸,n)r .

Remark 1.8. It seems likely that variants of Theorem 1.4 and Corollary 1.7 should hold in

the parabolic setting as well, yielding, e.g., a sharp version of [8, Theorem 1].

Building on these observations, one can also easily obtain sharp lower bounds on the
energy of nontrivial solutions to the Ginzburg–Landau equations in several settings. For
instance, one obtains the following sharp lower bound on the energy of nonconstant entire
solutions, which was already shown in [23] when n = 3 and u is energy-minimizing.

Corollary 1.9. For n Ê 2, any entire solution u : Rn →C of

∆u =−(1−|u|2)u

for which

(1.5) limsup
R→∞

´

BR (0)(
1
2 |du|2 +W (u))

Rn−2 logR
<Ãωn−2

must be a constant map u ≡ e i³ for some ³ ∈ [0,2Ã).
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It is well known [13] that there exist nonconstant solutions for which equality holds. The
proof is a straightforward consequence of the previous corollary: if the strict inequality
(1.5) holds, then the arguments of the preceding paragraph can be employed to show that
|u| Ê 1 everywhere onR

n . Since we also have |u| É 1+C R−2 on BR/2 (by rescaling the bound
(A.2) from the appendix), we obtain |u| ≡ 1. Hence, u is harmonic as a map to R

2, which
together with (1.5) clearly shows that u must be a constant map to S1.

The other main result gives a converse to Theorem 1.4, showing that {1}∪[2,∞) ¦D, the
novel observation here being that [2,∞) \N¦D.

Theorem 1.10. For any ¹ ∈ {1}∪ [2,∞), there exists a family of solutions satisfying the hy-

potheses of Theorem 1.4 (with n Ê 3 and gε = g0), with limit density ¹.

The examples provided by Theorem 1.10 are obtained by scaling down certain entire
solutions in R

3 with helical symmetry, constructed in [11]. In particular, we see that the
conclusion of Theorem 1.4 is sharp in dimension Ê 3, without additional constraints on
the family of solutions.

1.3. Proof ideas. Unlike in the asymptotic analysis of the Allen–Cahn or U (1)-Higgs equa-
tions, where most of the energy concentrates at the O(ε) scale about the zero sets of solu-
tions, the main contribution to the |logε| energy blow-up for solutions of the Ginzburg–
Landau equations as in Theorem 1.1 comes from the annular regions of distance ε1−¶ É
r É ε¶ about the zero set of a solution uε (for ¶ ∈ (0, 1

2 ) small), where uε resembles a har-
monic S1-valued map. In particular, for any ³ ∈ (0,1), interactions between distinct com-
ponents of the zero sets u−1

ε {0} separated by a distance ∼ ε³ influence the leading-order
behavior of the energy, and the key point in the proofs of Theorem 1.4 and Theorem 1.10
is to understand which kinds of interactions are permissible for solutions of (1.1) in higher
dimension.

Given a family of solutions uε in B n
1 (0) with energy concentrating on an (n − 2)-plane

P =R
n−2×{0} as in Theorem 1.4, we show that the limiting multiplicity ¹ ∈ (0,∞) for which

eε(uε)

Ã log(1/ε)
volgε *

∗ ¹H
n−2 P

can be computed via the following preliminary energy identity. After passing to a subse-
quence, for a generic sequence yε ∈ B n−2

1 , the zero set {z ∈ D2
1 : uε(yε, z) = 0} of the so-

lutions uε in the two-dimensional slice {yε}×D2
1 is contained in a collection of m disks

DCε(zε
1), . . . ,DCε(zε

m) of radius O(ε) with centers zε
1, . . . , zε

m . Denoting by »ε
j
∈ Z the local

degree
»ε

j := deg(uε/|uε|,∂DCε(zε
j )) ∈Z,

we then find that (after passing to a subsequence)

(1.6) ¹ = lim
ε→0

(

∑m
j=1(»ε

j )2 +2
∑

1Éi< jÉm»ε
i »

ε
j

|log |zε
i
− zε

j
||

|logε|

)

.

Note that if all of these degrees »ε
j

had the same sign, it would follow from (1.6) that
¹ Ê m, and the conclusion of Theorem 1.4 would follow easily, since ¹ < 2 would imply
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that there is only m = 1 such disk DCε(zε
1), with degree (»ε

1)2 < 2, and therefore ¹ = (»ε
1)2 =

1. The difficulty in proving Theorem 1.4 therefore lies in the case where the degrees »ε
j

have different signs, so that the interaction terms »ε
i
»ε

j

|log |zε
i
−zε

j
||

|logε| subtract from the limiting
density ¹.

After some reductions, in the proof of Theorem 1.4 we may assume that |zε
i
| É ε¶ for

some fixed ¶> 0 for all 1 É i , j É m, and denoting by » the total degree

» :=
∑m

j=1» j ,

we argue that (possibly after precomposing uε with a small translation) the energy density
drop of uε between the scales 1 and ε¶ is given by

Eε(uε;B1(0))− (ε¶)2−nEε(uε;Bε¶(0)) =Ãωn−2|»|2 log(1/ε¶)+o(|logε|).

By the well-known monotonicity formula for solutions of (1.1), it then follows that

Ãωn−2|»|2 log(1/ε¶)+o(|logε|) Ê
ˆ 1

ε¶

2

r n−1

ˆ

Br (0)

W (uε)

ε2
,

and one easily concludes that there exists a sequence rε ∈ [ε¶,1] for which

(1.7)
2

r n−2
ε

ˆ

Brε (0)

W (uε)

ε2
ÉÃωn−2|»|2 +o(1).

Note that in the two-dimensional setting, a simple argument via a Pohozaev identity up-
grades the inequality (1.7) to equality, which forms the basis for the quantization results
in [10].

We then introduce new estimates relating the potential energy
´

Br (0)
W (uε)
ε2 to the degrees

»ε
j
, concluding roughly that

(1.8)
2

r n−2
ε

ˆ

Brε (0)

W (uε)

ε2
Ê

Ãωn−2

2

∑m
j=1|»

ε
j |.

Combining this with (1.7), we deduce in particular that

∑m
j=1|»

ε
j | É 2|»|2 = 2

∣

∣

∣

∑m
j=1»

ε
j

∣

∣

∣

2
.

On the other hand, if ¹ < 2, then the results of [16] imply that » = ±1 or 0, and by the
preceding inequality, it follows that the only possibility is that, for some 1 É i É m, »ε

i
=±1

and »ε
j
= 0 for all j ̸= i ; hence, ¹ = 1 by (1.6). This suffices for the proof of Theorem 1.4,

showing that ¹ < 2 forces the vortex to occur with multiplicity one.
To prove Theorem 1.10, we observe that the families of entire solutions of (1.1) in R

3

constructed in [11], whose zero sets consist of m Ê 2 degree-one helices separated by a
distance ∼ 1p

|logε|
collapsing to the line L = {0}×R, can be blown down by a factor of εÄ for

any fixed Ä ∈ [0,1), to obtain a new family of solutions to (1.1) with parameter ε̃= ε1+Ä. The
zero sets of these blown-down solutions are then separated by a distance ∼ εÄ|logε|−1/2 =
ε̃

Ä
1+Ä |logε|−1/2, and we can use (1.6) to deduce that the limiting energy measure on the line
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L has density

¹(m,Ä) =
∑m

j=11+2
∑

1Éi< jÉm1 ·1 ·
Ä

Ä+1
= m + (m2 −m)

Ä

Ä+1
.

In particular, since
{¹(m,Ä) | Ä ∈ [0,1)} = [m, 1

2 (m2 +m))

and
⋃∞

m=2[m, 1
2 (m2 +m)) = [2,∞), Theorem 1.10 follows.

Note that the solutions constructed in [11] appear to be quite unstable at large scales; in
particular, it should be possible to decrease the energy via a perturbation that spreads the
m components of the zero set farther apart. From a variational perspective, it would be
very interesting to understand whether an additional assumption of stability or bounded

Morse index of solutions allows one to refine the conclusions of Theorem 1.4, perhaps even
giving a positive answer to Theorem 1.3 in this case.
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2. PRELIMINARY ESTIMATES

In this section we prove Theorem 1.1 and, later, we obtain additional information in the
special situation of Theorem 1.4. While the proof of Theorem 1.1 is simply a localization
of some arguments from [6, 7, 18] and [9, 25], we summarize it here as a convenient way
to fix some notation which will be used in the next sections.

2.1. Proof of Theorem 1.1. Since the statement is local, we can assume that M = B n
2 (0),

and prove that the conclusions hold on B n
3/2(0). In the appendix, we recall some funda-

mental estimates from [7], stating them in the case of a general metric. Thus, we are con-
sidering a family of solutions

uε : B n
2 (0) →C

to the complex Ginzburg–Landau equation

(2.1) ε2
∆gεuε =−(1−|uε|2)uε

with
ˆ

B n
2 (0)

(

|duε|2gε

2
+

W (uε)

ε2

)

d volgε ÉC |logε|

for some C > 0 independent of ε.
First of all, from the local bounds stated in the appendix, it follows that

|uε| É 1+Cε2, |duε|2gε
É

1−|uε|2

ε2
+C(2.2)
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on the smaller ball B7/4 = B n
7/4(0), as well as
ˆ

B7/4

(

|d |uε||2gε
+

W (uε)

ε2

)

d volgε ÉC ,(2.3)

where, throughout the paper, C denotes different constants which do not depend on ε, but
possibly on our sequence of solutions (we will, however, emphasize whether such con-
stants depend on additional parameters introduced later on). Henceforth, we suppress
the subscript gε in quantities depending on the metric when the meaning is clear from
context, as well as the volume form.

As in the works quoted above, we introduce the one-forms

j uε := u∗
ε (r 2 d¹) = u1 du2 −u2 du1,

and observe that

|duε|2 = |d |uε||2 +
| j uε|2

|uε|2
on {uε ̸= 0}, and consequently

||duε|2 −| j uε|2| É |d |uε||2 +|1−|uε|2||duε|2 É |d |uε||2 +
(1−|uε|2)2

ε2
+C .(2.4)

Hence, it follows from (2.3) that

(2.5)

ˆ

B7/4

∣

∣

∣

∣

eε(uε)−
1

2
| j uε|2

∣

∣

∣

∣

ÉC .

Note moreover that we have

(2.6) d∗ j uε = 0,

as an easy consequence of (2.1). Now, for each uε, we denote by V (uε) ¦ B2 the vorticity

set

V (uε) := {|uε| É 1
2 },

and define a perturbed map vε : B2 →C by

vε :=Ç(|uε|)uε,

where Ç : R → R is smooth and such that Ç(t ) = 1 on [0, 1
4 ] and Ç(t ) = 1

t
on [ 1

2 ,∞). In
particular,

vε(x) =
uε(x)

|uε(x)|
∈ S1 for x ∈ B2 \V (uε)

and |vε| ÉC |uε| on V (uε). As in [6, 7, 18], a suitable Hodge decomposition of the one-forms

(2.7) j vε = v∗
ε (r 2 d¹) =Ç(|uε|)2 j uε

plays a central role in the analysis. To obtain the exact part of the decomposition, first
consider a solution Èε ∈C∞(B7/4) to the boundary value problem

{

d∗dÈε = d∗( j vε) = d∗( j vε− j uε) in B7/4,

Èε = 0 on ∂B7/4.
(2.8)
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Note then that
ˆ

B7/4

|dÈε|2 É
ˆ

B7/4

| j vε− j uε|2

É
ˆ

B7/4

|Ç(|uε|)2 −1|2|uε|2|duε|2

ÉC

ˆ

B7/4

|1−|uε|2||duε|2

(by (2.2)) ÉC

ˆ

B7/4

W (uε)

ε2
+C ,

which together with (2.3) gives

(2.9) ∥ j vε− j uε∥L2(B7/4) +∥dÈε∥L2(B7/4) ÉC .

Next, let ϕ ∈ C∞
c (B7/4) be a cutoff function with B3/2 ¢¢ {ϕ = 1}, and consider the two-

form

Àε :=∆
−1
H (ϕd j vε) =G ∗ (ϕd j vε),(2.10)

given by convolution of d j vε = 2d v1
ε 'd v2

ε (multiplied by the cutoff ϕ) where

(G ∗·)(x) :=
∑

i∈I

ˆ

p∈B7/4

Gi ,p (x)+·(p),ωi (p),d volgε

is the local Green’s operator for the Hodge Laplacian ∆H = d∗d +dd∗ with respect to the
metric gε as described in Theorem A.7 (with U := B2 and K := B 7/4), so that

∆HÀε = d∗dÀε+dd∗Àε =ϕd j vε.

It is easy to see that ϕd j vε is supported in V (uε)∩B7/4(0), where

|d j vε| ÉC |duε|2 ÉC
W (uε)

ε2
(2.11)

(since |duε| É C
ε

and 1− |uε|2 Ê 3
4 on V (uε)). In particular, using Theorem A.7 to bound

|∇Gi ,p |(x) ÉC distgε(x, p)1−n , we have

(2.12) |Àε|(x)+|∇Àε|(x) ÉC

ˆ

V (uε)∩B7/4

distgε(x, y)1−n W (uε(y))

ε2
d y,

and as an easy consequence,

(2.13) ∥Àε∥Lp (B7/4) +∥∇Àε∥Lp (B7/4) ÉC (p)

ˆ

B7/4

W (uε)

ε2
ÉC (p)

for any p ∈ [1, n
n−1 ).

Finally, letting

(2.14) hε := j vε−d∗Àε−dÈε,
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observe that hε is harmonic on the interior of {ϕ= 1}, since here

∆H hε = d∗d( j vε−d∗Àε)+dd∗( j vε−dÈε)

= d∗(d j vε−∆HÀε)

= d∗(d j vε−ϕd j vε)

= 0.

In particular, elliptic estimates give

∥hε∥C 1(B3/2) ÉC∥hε∥L1(B7/4),

and using (2.9) and (2.13), we deduce that

∥hε∥C 1(B3/2) É ∥ j vε∥L1(B7/4) +C ÉC |logε|1/2.(2.15)

Using again (2.9), (2.14), and the trivial bound ∥ j uε∥L2(B2) ÉC |logε|1/2, this also implies

∥d∗Àε∥L2(B3/2) É ∥ j vε∥L2(B3/2) +C +C |logε|1/2 ÉC |logε|1/2.(2.16)

Now, let S be the (subsequential) limit of the sets V (uε), in the Hausdorff topology on B2.
(Note that the metrics gε in the family are uniformly equivalent to the Euclidean metric
¶, i.e., C−1gε É ¶ É C gε on the ball B7/4, so Hausdorff convergence can be considered
with respect to the Euclidean metric.) This set will be useful in the proof of the following
statement.

Lemma 2.1. As ε→ 0, we have

lim
ε→0

1

|logε|

ˆ

B3/2

|d∗Àε||hε| = 0.(2.17)

Proof. If x ∈ S then we can find xε ∈ V (uε) such that xε → x, and by Theorem A.3 we then
have

µ(B r (x)) Ê limsup
ε→0

µε(Br−|xε−x|(xε)) Ê c(n) lim
ε→0

(r −|xε−x|)n−2 = c(n)r n−2(2.18)

for any r < 2−|x|. By a simple Vitali covering argument, this implies that

H
n−2 S ÉC (n)µ,(2.19)

and in particular S is negligible with respect to the Lebesgue measure.
Now, for any ¶> 0, denoting by B¶(S) the ¶-neighborhood of S, we can bound

ˆ

B3/2

|d∗Àε||hε| É
ˆ

B3/2∩B¶(S)
|d∗Àε||hε|+∥d∗Àε∥L∞(B3/2\B¶(S))∥hε∥L1(B3/2).

By Cauchy–Schwarz, (2.15), and (2.16), the first term is bounded by

∥d∗Àε∥L2(B3/2)|B¶(S)|1/2 · ∥hε∥L∞(B3/2) ÉC |logε||B¶(S)|1/2.

Moreover, recalling the definition of S, (2.12) gives

limsup
ε→0

∥d∗Àε∥L∞(B3/2\B¶(S)) ÉC (¶)

ˆ

B7/4

W (uε)

ε2
ÉC (¶),(2.20)
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which implies that the second term above is at most C (¶)|logε|1/2, and (2.17) follows by
letting ε→ 0 and then ¶→ 0. □

By (2.5), (2.9), and (2.14), we have

µ= lim
ε→0

| j vε|2

2Ã|logε|
d x = lim

ε→0

|dÈε+d∗Àε+hε|2

2Ã|logε|
d x = lim

ε→0

|d∗Àε+hε|2

2Ã|logε|
d x.

The previous lemma, together with (2.15) and (2.16), implies that

µ= lim
ε→0

|d∗Àε+hε|2

2Ã|logε|
d x = ¿+

1

2Ã
|h0|2 d x on B3/2

up to subsequences, where h0 := limε→0
hε

|logε|1/2 is a harmonic one-form, while

¿ := lim
ε→0

|d∗Àε|2

2Ã|logε|
d x.

From (2.20) it follows that spt(¿) ¦ S, while (2.18) and the structure of µ imply

lim
r→0

¿(Br (x))

r n−2
Ê c(n) > 0,(2.21)

which forces the reverse inclusion to hold on B3/2. Thus,

S = spt(¿) on B3/2.

Note that the previous argument also shows that limε→0{|uε| É ´} = spt(¿) on B3/2 for any
´ ∈ (0,1) (without the need of a further subsequence, as any subsequential limit of {|uε| É
´} equals spt(¿)).

To prove (1.4), define the measure¼ := limε→0
W (uε)
ε2 d x, which exists up to subsequences

by (2.3). Note that, by the monotonicity formula (A.1), the rescaled maps ũε̃(x) := uε(p +
r x) (with ε̃= ε/r ) have energy at most C |logε| on B1(0), for p ∈ B3/2(0) and r < 1

4 . Applying
Theorem A.5 and scaling back, it follows that r 2−n¼(Br /2(p)) É C . Also, from [7, Theo-
rem 2.1] it easily follows that ¼ = 0 on B3/2 \ S (since S is the limit of the sets {|uε| É ´} for
any ´ ∈ (0,1)). Hence,

¼ÉCH
n−2 S

on B3/2, while (2.19) and the structure ofµ imply that the right-hand side is bounded above
by C¿.

This proves (1.4) and the theorem, provided that we check that ¿=µ S coincides with
the weight of a stationary (n −2)-varifold V for the limit metric g0 = limε→0 gε. On B3/2 we
introduce the stress-energy tensor

Tε := eε(uε)I −duε·duε,

with the implicit scalar product duε·duε = du1
ε·du1

ε+du2
ε·du2

ε, and define the measure

T0 = lim
ε→0

Tε

Ã|logε|
volgε ,
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taking values in symmetric bilinear forms. The fact that uε is critical with respect to inner
variations gives divgε Tε = 0, which implies that T0 is also divergence-free, in the sense that
the pairing +T0,∇g0 X , vanishes for any C 1 vector field X supported in B3/2.

A computation similar to (2.4), together with (2.3), shows that

T0 = lim
ε→0

1

Ã|logε|

( | j uε|2

2
I − j uε· j uε

)

volgε .

Also, (2.9) and (2.17) give

T0 =V +
( |h0|2

2
I −h0 ·h0

)

volg0 ,

with

V := lim
ε→0

1

Ã|logε|

[|d∗Àε|2

2
I − (d∗Àε)· (d∗Àε)

]

volgε .

Note that h0 is strongly harmonic, meaning that dh0 = 0 and d∗
g0

h0 = 0: indeed, we already
have d∗

gε
hε = d∗

gε
( j vε−dÈε) = 0 by (2.8); also, (2.13) gives ∥dÀε∥L1(B3/2) ÉC , and hence

dh0 = lim
ε→0

dhε

|logε|1/2
= lim

ε→0

d j vε−dd∗Àε
|logε|1/2

= lim
ε→0

∆HÀε−dd∗Àε
|logε|1/2

= lim
ε→0

d∗dÀε

|logε|1/2
= 0

on B3/2, with the limits understood distributionally (where we used (2.14) in the second

equality and (2.10) in the third one). Since h0 is strongly harmonic, the term |h0|2
2 I −h0·h0

is divergence-free, and thus divV = 0, as well.
Since tr(V ) Ê (n−2)¿ and |+V w, w,| É |w |2¿ for any w ∈R

n , the measure V can be identi-
fied with a generalized stationary (n−2)-varifold with weight ¿, according to the definition
from [25, Section A.2]. Since it has positive density on its support by (2.21), it now follows
from the classical result by Ambrosio–Soner [3, Theorem 3.8] that V is actually a rectifiable
varifold.

2.2. Additional bounds in the situation of Theorem 1.4. Suppose now that we are in the
setting of Theorem 1.4. Henceforth, we will assume for simplicity of notation that gε is in
fact equal to the flat Euclidean metric; it is an easy exercise to extend the arguments to
metrics converging smoothly to the Euclidean metric, and we will comment occasionally
on the necessary modifications for this case. Thus, we are considering a family of solutions
uε : B n

2 (0) →C to (2.1), for which the normalized energy measures

µε :=
eε(uε)

Ã|logε|
d x

converge weakly in C 0
c (B2)∗ to a multiple of the (n −2)-plane P =R

n−2 × {0}

µε * ¹H
n−2 P

as ε→ 0.
On any domain compactly contained in B2 = B2(0), such as B7/4, the following is a sim-

ple consequence of the last assumption.
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Lemma 2.2. Writing |duε(P )|2 :=
∑n−2

i=1 |duε(ei )|2, we have

(2.22) lim
ε→0

1

|logε|

ˆ

B7/4

|duε(P )|2 = 0.

Proof. Since the stationary varifold V from Theorem 1.1 coincides with a multiple of P ,
viewing V as a matrix-valued measure we can write

V = ¹M H
n−2 P,(2.23)

where M ∈R
n×n is the orthogonal projection onto P . As seen in the proof of Theorem 1.1,

the normalized stress-energy tensors Tε

Ã|logε| converge to V , and by (2.23) this implies that

lim
ε→0

ˆ

B2

Ç
+Tεw, w,
Ã|logε|

d x =
ˆ

B2

Çd+V w, w, =
ˆ

B2

Çd |V |

for any Ç ∈ C 0
c (B2) and any unit vector w ∈ P . Recalling the definition of Tε and the fact

that

lim
ε→0

ˆ

B2

Ç
eε(uε)

Ã|logε|
=
ˆ

B2

Çd |V |,

we deduce that limε→0
´

B2
Ç |duε(w)|2

Ã|logε| = limε→0
´

B2
Ç eε(uε)−+Tεw,w,

Ã|logε| = 0, as desired. □

Using the preceding bounds, we can prove the following key estimates, showing that the
limiting energy density can be computed in terms of the one-form d∗Àε.

Lemma 2.3. As ε→ 0, we have

lim
ε→0

1

|logε|

ˆ

B3/2

| j uε−d∗Àε|2 = 0.

In particular, combining with (2.5) gives

(2.24) lim
ε→0

1

|logε|

ˆ

B3/2

∣

∣

∣

∣

eε(uε)−
1

2
|d∗Àε|2

∣

∣

∣

∣

= 0.

Proof. In view of (2.9), it suffices to show that

∥ j vε−d∗Àε∥2
L2(B3/2) = o(|logε|)(2.25)

as ε→ 0. Note that
j vε−d∗Àε = hε+dÈε,

and we know from (2.9) that ∥dÈε∥2
L2(B7/4)

ÉC , so all that remains is to show that

∥hε∥2
L2(B3/2) = o(|logε|).
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Since the energy concentrates along P , note that, for any fixed ¶> 0,

limsup
ε→0

∥duε∥L1(B7/4)

|logε|1/2
= limsup

ε→0

∥duε∥L1(B7/4∩B¶(P ))

|logε|1/2

É limsup
ε→0

∥duε∥L2(B7/4∩B¶(P ))

|logε|1/2
|B7/4 ∩B¶(P )|1/2

ÉC¶,

so that ∥duε∥2
L1(B7/4)

= o(|logε|). Using (2.15), we arrive at

∥hε∥L2(B3/2) É ∥ j uε∥L1(B7/4) +C = o(|logε|1/2),

and the claim follows. □

Now, denote by Q the cylinder

Q := B n−2
1 (0)×D2

1(0) ¢ B n
3/2(0),

and fix a large constant K > 0, which will be specified in the final part of the proof. In
what follows, we identify a distinguished family of two-dimensional slices perpendicular
to the (n−2)-plane P of concentration, such that the energy density ¹ can be computed in
terms of the behavior of the solutions uε along these slices. (Cf., e.g., [19] or [22] for similar
arguments in the harmonic map or Yang–Mills settings.)

Definition 2.4. Given y ∈ B n−2
1/2 (0), we say that P§

y := {y}×D2
1(0) (or simply y) is a ¶-good

slice for uε if

sup
0<r<1/2

∣

∣

∣

∣

∣

r 2−n

ˆ

B n−2
r (y)×D2

1

eε(uε)−Ãωn−2¹|logε|
∣

∣

∣

∣

∣

< ¶|logε|,

sup
0<r<1/2

r 2−n

ˆ

B n−2
r (y)×D2

1

(

|duε(P )|2 +| j vε−d∗Àε|2 +
∣

∣

∣

∣

eε(uε)−
1

2
|d∗Àε|2

∣

∣

∣

∣

)

< ¶|logε|,

and

sup
0<r<1/2

r 2−n

ˆ

B n−2
r (y)×D2

1

(

W (uε)

ε2
+|Àε|

)

< K .

The first and second conditions require uniform L2 vanishing of duε(P ) on the cylin-
ders B n−2

r (y) × D2
1 centered at y at all small scales r , and assert that the density ¹ can

be computed by integrating any one of eε(uε), 1
2 |d

∗Àε|2, or 1
2 | j vε|2 along the cylinders

B n−2
r (y)×D2

1, or (letting r → 0) along the slice P§
y = {y}×D2

1, while the third condition

enforces uniform L1 control on the potential W (u)
ε2 and |Àε| over the same cylinders at all

scales.

Lemma 2.5. Denote by Gε,¶ ¦ B n−2
1/2 (0) the collection of ¶-good slices for uε. Then, for any

¶> 0, we have

limsup
ε→0

|B n−2
1/2 \Gε,¶| É

C

K
.
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Proof. Let F 1
ε , F 2

ε , and F 3
ε be the sets of slices where the first, second, and third require-

ments fail, respectively. In view of (2.3) and (2.13), we have
ˆ

B n−2
1

ˆ

D2
1

(

W (uε)

ε2
+|Àε|

)

(y, z)d z d y =
ˆ

Q

(

W (uε)

ε2
+|Àε|

)

ÉC ,

for some constant C independent of ε. The Hardy–Littlewood weak (1,1) estimate for the
maximal function of

y 7→
ˆ

D2
1

(

W (uε)

ε2
+|Àε|

)

(y, z)d z

then implies that

|F 3
ε | É

C

K
.

Similarly, from (2.22), (2.24), (2.25), and the maximal inequality, it follows that

|F 2
ε | É

C

¶|logε|

ˆ

Q

(

|duε(P )|2 +| j vε−d∗Àε|2 +
∣

∣

∣

∣

eε(uε)−
1

2
|d∗Àε|2

∣

∣

∣

∣

)

→ 0.

In order to bound the measure of F 1
ε , we observe that F 1

ε ¦ F 1a
ε ∪F 1b

ε , where we denote
by F 1a

ε and F 1b
ε the sets of slices y ∈ B n−2

1/2 such that

sup
0<r<1/2

r 2−n

ˆ

B n−2
r (y)×[D2

1\D2
1/2]

eε(uε) Ê
¶

2
|logε|

and

sup
0<r<1/2

∣

∣

∣

∣

∣

r 2−n

ˆ

B n−2
r (y)×D2

1

Çeε(uε)−Ãωn−2¹|logε|
∣

∣

∣

∣

∣

Ê
¶

2
|logε|,

respectively, where Ç = Ç(z) is a cutoff function supported in D2
1, with Ç ≡ 1 on D2

1/2 and
0 ÉÇÉ 1.

Since the energy concentrates along P , we have

1

|logε|

ˆ

B n−2
1 ×[D2

1\D2
1/2]

eε(uε) → 0,

which implies that |F 1a
ε | → 0, again by the Hardy–Littlewood maximal inequality. Finally,

for y ∈ B n−2
5/4 (0), let

fε(y) :=
ˆ

{y}×D2
1

Çeε(uε)d z.

Recall that the stress-energy tensor Tε = eε(uε)I −du∗
ε duε has zero divergence. Hence,

testing against the vector field È(y)Ç(z)ek gives
ˆ

B n
2

eε(uε)∂k (ÈÇ) =
ˆ

B n
2

∑n
j=1∂ j uε∂k uε∂ j (ÈÇ),
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for È ∈C 1
c (B n−2

5/4 ). In particular, for k = 1, . . . ,n −2, (2.22) and Cauchy–Schwarz imply that
∣

∣

∣

∣

∣

ˆ

B n−2
5/4

fε∂kÈ

∣

∣

∣

∣

∣

ÉC∥duε∥L2(B7/4)∥∂k uε∥L2(B7/4)∥È∥C 1 É o(|logε|)∥dÈ∥C 0

(as B n−2
5/4 ×D2

1 ¦ B n
7/4 and ∥È∥C 1 É C∥dÈ∥C 0 ). In particular, applying the Hahn–Banach

extension theorem to the functionals

∇È 7→
1

|logε|

ˆ

B n−2
5/4

fε∂kÈ

on the subspace
{∇È |È ∈C 1

c (B n−2
5/4 )} ¢C0(B n−2

5/4 ,Rn−2),

where C0(B n−2
5/4 ,Rn−2) = C∞

c (B n−2
5/4 ,Rn−2)

C 0

, it follows that there exist vector-valued Radon
measures X ε

k
∈C0(B n−2

5/4 ,Rn−2)∗ such that

lim
ε→0

∥X ε
k∥ = 0

and

+X ε
k ,∇È, =

1

|logε|

ˆ

fε∂kÈ,

so that div(X ε
k

) = ∂k

(

fε
|logε|

)

distributionally.

We can then apply Allard’s strong constancy lemma [2, Theorem 1.(4)] and deduce that

1

|logε|
∥ fε−³ε∥L1(B n−2

1 ) → 0,

for suitable constants ³ε. In fact, since 1
|logε|
´

B n−2
1

fε →Ãωn−2¹, the same conclusion must

hold with ³ε =Ã¹|logε|. This implies that |F 1b
ε |→ 0, which completes the proof. □

Next, we record the following lemma about the small-scale behavior of the two-form
d j vε near a good slice, which we will use repeatedly in subsequent sections to refine our
characterization of the limiting energy measure.

Lemma 2.6. For any ³ ∈ (0,1) and µ> 0, there exists ¶1(³,µ) ∈ (0,1) such that if B2r (x) ¢Q

is a ball with r Ê ε³ for which

(2.26) r 2−n

ˆ

B2r (x)
|duε(P )|2 É ¶1|logε|,

then for ε small enough (depending on ³ and µ)

(2.27)

∣

∣

∣

∣

r 2−n

ˆ

Br (x)
(d j vε(x ′))ab

x −x ′

|x −x ′|
d x ′

∣

∣

∣

∣

< µ for (a,b) ̸= (n −1,n).

Moreover, if V (uε)∩B2r (x)∩P§
x ¦ B¶1r (x), with » := deg(vε, x + {0}× r S1) we have

(2.28)

∣

∣

∣

∣

r 2−n

ˆ

Br (x)
(d j vε(x ′))n−1,n −2Ã»ωn−2

∣

∣

∣

∣

< µ.
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Proof. We first prove (2.27), via a contradiction argument. If the statement fails, then
(passing to a subsequence) there exist balls B2rε(xε) ¢Q with rε Ê ε³ such that

lim
ε→0

r 2−n
ε

1

|logε|

ˆ

B2rε (xε)
|duε(P )|2 = 0

but

(2.29)

∣

∣

∣

∣

∣

r 2−n
ε

ˆ

Brε (xε)
(d j vε(x ′))ab

xε−x ′

|xε−x ′|
d x ′

∣

∣

∣

∣

∣

Ê µ

for some (a,b) ̸= (n −1,n). Rescaling B2rε(xε) to B2(0), we obtain a sequence of solutions
ũε̃ of the Ginzburg–Landau equation on B2(0), with ε̃= ε/rε É ε1−³ and

Eε̃(ũε̃) ÉC |logε| É
C

1−³
|log ε̃|,

as well as
1

|log ε̃|

ˆ

B2(0)
|dũε̃(P )|2 → 0

as ε̃→ 0.
By Theorem 1.1, the limit of the normalized energy densities of ũε̃ has a concentrated

part |Ṽ |, for a rectifiable stationary varifold Ṽ , and by reversing the proof of Theorem 2.2,
we know that the tangent plane to Ṽ at x coincides with P , for |Ṽ |-a.e. x. Together with
stationarity, this easily implies (testing stationarity against vector fields of the form X =Æv

for fixed vectors v ∈ P ) that Ṽ is invariant under translations by vectors in P , and therefore
coincides on B2(0) with a locally finite union of planes P+x j parallel to P (with multiplicity
at least c(n) > 0).

Moreover, as in (2.11),

(2.30) |d j ṽε̃| ÉC
W (ũε̃)

ε̃2
,

and by (1.4) we deduce that

(2.31) |d j ṽε̃|*
∑

j f j H
n−2 (P +x j )

weakly in C 0
c (B2)∗, with f j locally bounded.

Hence, the rescaled (n − 2)-cycles ∗d j ṽε̃ converge weakly as currents in B2 to a cycle
supported on

⋃

j (P +x j ). By the constancy theorem for cycles, it follows that

(2.32) ∗(d j ṽε̃) *
∑

j 2Ã» j (P +x j ) on B2,

for suitable constants » j ∈R (actually » j ∈Z, by [16, Theorem 5.2], or by a slicing argument
similar to the proof of (4.5) below, which reveals that » j is the degree of ṽε̃ around P +x j ).

If (2.29) holds, then rescaling gives

(2.33)

∣

∣

∣

∣

ˆ

B1

(d j ṽε̃(x ′))ab
x ′

|x ′|
d x ′

∣

∣

∣

∣

Ê µ,
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but fixing Ç ∈C∞
c (B1), 0 ÉÇÉ 1 be some test function supported away from 0 such that

∑

j

ˆ

(P+x j )∩B1

(1−Ç) f j dH
n−2 <

µ

2
,

it follows from the distributional convergence (2.32) that, for this couple (a,b) ̸= (n −1,n),
(d j ṽε̃)ab vanishes distributionally as ε̃→ 0, so

lim
ε̃→0

ˆ

B1

(d j ṽε̃(x ′))abÇ(x ′)
x ′

|x ′|
d x ′ = 0.

On the other hand, it then follows from (2.31) that

limsup
ε̃→0

∣

∣

∣

∣

ˆ

B1

(d j ṽε̃(x ′))ab
x ′

|x ′|
d x ′

∣

∣

∣

∣

= limsup
ε̃→0

∣

∣

∣

∣

ˆ

B1

(d j ṽε̃(x ′))ab(1−Ç(x ′))
x ′

|x ′|
d x ′

∣

∣

∣

∣

É
∑

j

ˆ

(P+x j )∩B1

(1−Ç) f j dH
n−2

< µ/2,

contradicting (2.33).
The proof of (2.28) is similar, where in the limiting rescaled picture we have simply

∑

j 2Ã» j (P +x j ) = 2Ã»P . □

In the following section, we will use this together with the following formulas for Àε and
∇Àε, which follow simply from (2.10) and the formula for the Euclidean Green’s function
G(x, y) in R

n , together with a simple integration by parts (recall that nωn = 2Ãωn−2).

Lemma 2.7. For any pair (a,b) with 1 É a < b É n, we have

(2.34) 2Ãωn−2(Àε)ab(x) =
ˆ ∞

0

1

r

(

r 2−n

ˆ

Br (x)
ϕ(x ′)[d j vε(x ′)]ab d x ′

)

dr,

(2.35) ∇(Àε)ab(x) =
n −1

2Ãωn−2

ˆ ∞

0

1

r 2

(

r 2−n

ˆ

Br (x)
ϕ(x ′)[d j vε(x ′)]ab

x −x ′

|x −x ′|
d x ′

)

dr.

Remark 2.8. For non-Euclidean metrics gε converging smoothly to the Euclidean metric,

Theorem A.7 shows that (2.34) and (2.35) hold up to errors of size

o(1) ·
ˆ ∞

0
r 2−n

(ˆ

Br (x)
|ϕ(x ′)d j vε|d x ′

)

dr, o(1) ·
ˆ ∞

0
r 1−n

(ˆ

Br (x)
|ϕ(x ′)d j vε|d x ′

)

dr,

both of which can be seen to be o(|logε|) (as in the proof of (2.36) below).

As in [6], note that combining (2.34) with (2.11) gives, for any x ∈ B3/2(0),

|Àε(x)| ÉC

ˆ 1/4

0

1

r n−1

(ˆ

Br (x)

W (uε)

ε2

)

dr +C

ˆ

B7/4(0)

W (uε)

ε2
,

which together with the monotonicity formula (A.1) (integrated over s ∈ (0, 1
4 )) gives as in

[6] the pointwise estimate

(2.36) |Àε(x)| ÉC Eε(uε;B1/4(x))+C

ˆ

B7/4(0)

W (uε)

ε2
ÉC Eε(uε;B7/4(0)).
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Interpolating with (2.13), we obtain

∥Àε∥L2n (B3/2) É ∥Àε∥1/2n
L1(B3/2)∥Àε∥

1−1/2n
L∞(B3/2) ÉC |logε|1−1/2n ,

and using again (2.13) we get
ˆ

B3/2

|Àε||d∗Àε| É ∥Àε∥L2n (B3/2)∥d∗Àε∥L2n/(2n−1)(B3/2) ÉC |logε|1−1/2n .(2.37)

For a given cutoff function Ç ∈C∞
c (B3/2(0)) with Ç≡ 1 on B1(0), a simple integration by

parts yields
ˆ

B3/2

Ç2|d∗Àε|2 =
ˆ

B3/2

+Àε,d(Ç2 d∗Àε),

=
ˆ

B3/2

+Àε,2ÇdÇ'd∗Àε,+
ˆ

B3/2

+Ç2Àε,dd∗Àε,

=
ˆ

B3/2

+Àε,2ÇdÇ'd∗Àε,−
ˆ

B3/2

+Ç2Àε,dhε,+
ˆ

B3/2

+Ç2Àε,d j vε,.

It follows from (2.13), (2.15), and (2.37) that the first two terms on the last line are o(|logε|)
as ε→ 0, so that

lim
ε→0

1

|logε|

ˆ

B3/2

Ç2|d∗Àε|2 = lim
ε→0

1

|logε|

ˆ

B3/2

Ç2+Àε,d j vε,

(using (2.36)) É liminf
ε→0

C Eε(uε;B7/4(0))

|logε|

ˆ

B3/2

|d j vε|

(using (2.11)) É liminf
ε→0

C Eε(uε;B7/4(0))

|logε|

ˆ

B3/2

W (uε)

ε2
.

In particular, using Theorem 2.3 and recalling that Ç≡ 1 on B1, we deduce that

lim
ε→0

Eε(uε;B1)

|logε|
É liminf

ε→0

C Eε(uε;B2)

|logε|

ˆ

B2

W (uε)

ε2
.

This computation holds for any sequence of solutions uε : B2 → C obeying an energy
bound Eε(uε;B2(0)) ÉΛ|logε|.

Combining this observation with Theorem A.3 and a trivial rescaling, we obtain the fol-
lowing lemma, which will be useful later.

Lemma 2.9. There exists c(Λ,n) > 0 such that if uε solves the Ginzburg–Landau equation

on Br (x), with r Ê ε, Br /4(x)∩V (uε) ̸= ;, and

r 2−nEε(uε;Br (x)) ÉΛ log(r /ε),

then

(2.38) r 2−n

ˆ

Br (x)

W (uε)

ε2
> c(Λ,n).

Moreover, the simpler estimate

(2.39) ε2−n

ˆ

Bε(x)

W (uε)

ε2
> c(n)
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holds for x ∈ V (uε) without any additional assumptions.

Note that the second conclusion (as well as the first one, when r is comparable to ε)
follows directly from the bound |duε| É C (n)

ε
, which implies that W (uε) Ê 1

10 in a c(n)ε-
neighborhood of any point in Br /4(x)∩V (uε).

3. PRELIMINARY ENERGY IDENTITY AND RELATED BOUNDS

In this section we establish two of the key ingredients for the proof of Theorem 1.4, prov-
ing the preliminary energy identity (1.6) and the new potential bound (1.8) for arbitrary
families satisfying the hypotheses of Theorem 1.4.

Let uε be a family of solutions satisfying the assumptions of Theorem 1.4. Appealing to
Lemma 2.5, choose a family ¶ε → 0 such that

(3.1) liminf
ε→0

|Gε,¶ε | Ê
ωn−2

2n−2
−

C

K
> 0 as ε→ 0,

and fix yε ∈Gε,¶ε .
Next, given ¶> 0, consider the set U¶,ε ¦ P§

yε
given by

U¶,ε := {x = (yε, z) ∈ P§
yε

: |uε(x)| < 1−¶}.

Proposition 3.1. There exists C = C (¶) independent of ε > 0 and points pε
1, . . . , pε

k
∈ U¶,ε

with k ÉC such that

U¶,ε ¦
k
⊔

j=1
BCε(pε

j ),

up to a subsequence, for a disjoint family of balls BCε(pε
j
).

Proof. By a simple Vitali covering argument applied to the covering {Bε(p) | p ∈U¶,ε}, it is
clear that there exist pε

1, . . . , pε
m ∈U¶,ε such that

Bε(pε
i )∩Bε(pε

j ) =∅ for i ̸= j

and

U¶,ε ¦
m
⋃

j=1
B5ε(pε

j ),

where m = mε depends on ε a priori. On the other hand, since |uε(pε
j
)| < 1−¶ and |duε| É

C
ε

, writing pε
j
= (yε, zε

j
) it is clear that

ˆ

{yε}×Dε(zε
j
)

W (uε)

ε2
Ê c(¶)

for some c(¶) > 0, and summing over 1 É j É mε and using (5.2) gives

mεc(¶) É
ˆ

P§
yε

W (uε)

ε2
É 2ωn ,

hence
mε ÉC (¶).
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In particular, passing to a subsequence, we may assume that mε = m is fixed independent
of ε, and that the (possibly infinite) limits

(3.2) µi j := lim
ε→0

|pε
i
−pε

j
|

ε

exist. It is then easy to see that the desired conclusion holds with

C (¶) := 10+max
ℓ∈F

ℓ, where F := {µi j | µi j <∞}.

Indeed, we can form an equivalence relation on {1, . . . ,m} by declaring that i ∼ j precisely
when µi j < ∞, and we can take a set of representatives S ¦ {1, . . . ,m}; with the previous
choice of C (¶), we have

U¶,ε ¦
m
⋃

j=1
B5ε(pε

j ) ¦
⋃

i∈S

BC (¶)ε(pε
i ),

since if i represents the class of j then |pε
i
−pε

j
| É (µi j +1)ε for ε small enough, and the last

union is disjoint since for i , i ′ ∈ S we have
|pε

i
−pε

i ′ |
ε → µi i ′ =∞ (unless i = i ′). □

Now, for k ÉC (¶) and points pε
1, . . . , pε

k
as in Theorem 3.1, denote by D j ,ε the disks

D j ,ε := BCε(pε
j )∩P§

yε

(note that eventually D j ,ε is compactly included in P§
yε

, as |uε| → 1 on B n−2
1 ×∂D1), and

consider the degrees

»ε
j := deg

(

uε

|uε|
,∂D j ,ε

)

.

The following proposition gives a very useful (though non-sharp) bound on the de-
grees »ε

j
in terms of the potential W (uε)

ε2 , which plays a crucial role in ruling out energy-
cancellation due to interactions between vortices with degrees of opposite signs in the
proof of Theorem 1.4

Proposition 3.2. For ε sufficiently small (depending on ¶),

(3.3)

ˆ

D j ,ε

2W (uε)

ε2
Ê

Ã

2
|»ε

j |(1−5¶).

Proof. By Theorem 3.1, we know that ∂D j ,ε ¦ {|uε| Ê 1−¶}. For each 0 < t < 1−¶, consider
the set

Ωt := {|uε| < t }∩D j ,ε,

and if t is a regular value for |uε|, consider also the boundary

St := ∂Ωt ¢ D j ,ε.

By the coarea formula for |uε| on D j ,ε, we have
ˆ

Ω1−¶

W (uε)

ε2
=
ˆ 1−¶

0

(1− r 2)2

4ε2

(ˆ

Sr

1

|d |uε||

)

dr.
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Next, note that for each regular value t ∈ (0,1−¶) of |uε|, a few simple applications of the
Cauchy–Schwarz inequality give

|St | =
ˆ

St

|d |uε||−1/2|d |uε||1/2

É
(ˆ

St

1

|d |uε||

)1/2 (ˆ

St

|d |uε||
)1/2

É
(ˆ

St

1

|d |uε||

)1/2 (ˆ

St

|d |uε||2
)1/4

|St |1/4,

which we can write equivalently as
ˆ

St

1

|d |uε||
Ê |St |3/2

(ˆ

St

|d |uε||2
)−1/2

,

and applying this in the preceding computation yields

(3.4)

ˆ

Ω1−¶

W (uε)

ε2
Ê
ˆ 1−¶

0

(1− r 2)2

4ε2
|Sr |3/2

(ˆ

Sr

|d |uε||2
)−1/2

dr.

Now, since

|duε|2 É
1−|uε|2

ε2
+C

on D j ,ε, we have for any regular value t ∈ (0,1−¶) of |uε| that

(3.5)

ˆ

St

|duε|2 É
(

1− t 2

ε2
+C

)

|St |.

In particular, writing
|duε|2 = |uε|2|d(uε/|uε|)|2 +|d |uε||2,

it follows that

t 2
ˆ

St

|d(uε/|uε|)|2 +
ˆ

St

|d |uε||2 É
(

1− t 2

ε2
+C

)

|St |,

and an application of Young’s inequality on the left-hand side gives

2t

(ˆ

St

|d(uε/|uε|)|2
)1/2 (ˆ

St

|d |uε||2
)1/2

É
(

1− t 2

ε2
+C

)

|St |.

Moreover, since

2Ã»ε
j =
ˆ

St

(uε/|uε|)∗(d¹)

for each regular value t ∈ (0,1−¶), we have that

2Ã|»ε
j | É
ˆ

St

|d(uε/|uε|)| É |St |1/2
(ˆ

St

|d(uε/|uε|)|2
)1/2

,

which we can combine with the preceding computation to see that

4Ã|»ε
j |t ·

(ˆ

St

|d |uε||2
)1/2

É
(

1− t 2

ε2
+C

)

|St |3/2.
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Rearranging, we see that

(3.6) |St |3/2
(ˆ

St

|d |uε||2
)−1/2

Ê
(

1− t 2

ε2
+C

)−1

·4Ã|»ε
j |t .

Applying (3.6) to the integrand on the right-hand side of (3.4), we deduce that
ˆ

Ω1−¶

W (uε)

ε2
Ê
ˆ 1−¶

0

(1− r 2)2

4ε2
·
(

1− r 2

ε2
+C

)−1

·4Ã|»ε
j |r dr

ÊÃ|»ε
j |
ˆ 1−¶

0
(1− r 2 −Cε2)r dr

ÊÃ|»ε
j | ·

1

4
(1−4¶−Cε2),

and choosing ε small enough so that Cε2 É ¶, we deduce that
ˆ

D j ,ε

2W (uε)

ε2
Ê

Ã

2
|»ε

j |(1−5¶),

as claimed. □

In particular, summing the estimate from Theorem 3.2 over j = 1, . . . ,k, we deduce that

Ã

2
(1−5¶)

∑k
j=1|»

ε
j | É

∑k
j=1

ˆ

D j ,ε

2W (uε)

ε2
É
ˆ

P§
yε

2W (uε)

ε2
.

Later, in the proof of Theorem 1.4, we will use this together with sharp upper bounds on
´

P§
yε

2W (uε)
ε2 to show that there can be only one zero of nonzero degree in a good slice when

the density ¹ < 2.
Now, since yε ∈Gε,¶ε , we know already that

(3.7) Ã¹ = lim
ε→0

1

|logε|

ˆ

P§
yε

1

2
|d∗Àε|2.

On our way to proving (1.6), we show next that the only terms in d∗Àε which contribute
nontrivially to the limit are those of the form ∂a(Àε)ab , where {a,b} = {n −1,n}.

Lemma 3.3. For yε ∈Gε,¶ε as above, and for any pair (a,b) ̸= (n −1,n), we have

lim
ε→0

1

|logε|

ˆ

P§
yε

|∇(Àε)ab |2 = 0.

Proof. To begin, fix ³ ∈ (0,1) close to 1, and consider the distance function

Äε(x) := dist(x,V (uε)).

For each ε³ É r É 1
4 , consider the set Fr ¢ P§

yε
given by

Fr := {x ∈ {yε}×D1/2 : Äε(x) É r }.

We claim first that, for ε sufficiently small (depending on ³) and r Ê ε³, we have

(3.8) H
2(Fr ) ÉC (³)r 2
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for a constant C (³) independent of ε. To see this, note that for each x ∈ Fr , there exists
x ′ ∈ B r (x)∩V (uε). In particular, by Theorem A.3, it follows that

r 2−nEε(uε;B2r (x)) Ê c(n) log(2r /ε) Ê c(n)(1−³)|logε|.

Now, Vitali’s covering lemma gives x1, . . . , xN ∈ Fr such that the balls B2r (x1), . . . ,B2r (xN )
are disjoint and Fr ¦ ⋃N

j=1 B10r (x j ). From the disjointness of the balls B2r (x j ) we deduce
that

N · c(n)(1−³)|logε| É
∑N

j=1r 2−nEε(uε;B2r (x j )) É r 2−nEε(uε;B n−2
2r (yε)×D1).

In particular, since yε ∈Gε,¶ε , the right-hand side is bounded by C |logε|, with C indepen-
dent of r and ε, and therefore N É C (³) for ε small enough. Since Fr is covered by the N

balls B10r (x j ) of radius 10r , the bound (3.8) follows.
Next, let (a,b) be a pair of indices with a < n −1, and fix an arbitrary small µ> 0. Since

yε ∈Gε,¶ε , for ε sufficiently small, the hypotheses of (the first part of) Theorem 2.6 hold for
every ball Br (x) with x ∈ {yε}×D1/2 and ε³ É r É 1

4 , so that

(3.9)

∣

∣

∣

∣

r 2−n

ˆ

Br (x)
(d j vε(x ′))ab

x −x ′

|x −x ′|
d x ′

∣

∣

∣

∣

< µ.

As a consequence, if x ̸∈ Fε³ , it follows from Theorem 2.7 that

|∇(Àε)ab(x)| ÉC +C

ˆ 1/4

Äε(x)

1

r 2

∣

∣

∣

∣

r 2−n

ˆ

Br (x)
[d j vε(x ′)]ab

x −x ′

|x −x ′|
d x ′

∣

∣

∣

∣

dr

ÉC +C

ˆ 1/4

Äε(x)

µ

r 2
dr

ÉC [1+µ/Äε(x)]

(or |∇Àε| É C if Äε(x) Ê 1
4 ), while clearly |∇(Àε)ab(x)| É C if x ∈ {yε}× [D1 \ D1/2], by Theo-

rem 2.7 and the fact that here Äε Ê 1
4 (eventually). Combining this with (3.8) and an appli-

cation of the coarea formula, since |dÄε| = 1 (a.e.) we then see that

limsup
ε→0

1

|logε|

ˆ

P§
yε\Fε³

|∇(Àε)ab |2 É limsup
ε→0

C

|logε|

ˆ

P§
yε\Fε³

(

1+
µ2

Äε(x)2

)

(by the coarea formula) É limsup
ε→0

C

|logε|

ˆ 1/4

ε³

µ

r 2

d

dr
(H 2(Fr ))dr

(integrating by parts) É limsup
ε→0

C

|logε|

ˆ 1/4

ε³

2µ

r 3
H

2(Fr )dr

(by (3.8)) É limsup
ε→0

C (³)µ

|logε|

ˆ 1/4

ε³

dr

r

=C (³)µ.

And since µ> 0 was arbitrary, it follows that

(3.10) lim
ε→0

1

|logε|

ˆ

P§
yε\Fε³

|∇(Àε)ab |2 = 0.
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To estimate the integral of |∇(Àε)ab |2 on Fε³ , we first observe that, by definition of Àε,

|∇Àε| É
1

|x|n−1
∗|ϕd j vε|.

We can then invoke Theorem A.6 from the appendix and (2.11) to see that, since yε ∈Gε,¶ε ,
the gradient |∇Àε| satisfies a uniform L2,∞ bound

∥∇Àε∥L2,∞(P§
yε ) ÉC (K )

independent of ε along the slice P§
yε

. In other words, we have the uniform estimate

(3.11) H
2(P§

yε
∩ {|∇Àε| >¼}) É

C (K )

¼2

for every ¼ ∈ (0,∞). Moreover, since |d j vε| ÉC
W (uε)
ε2 , we see from Theorem 2.7 that

|∇Àε| É
ˆ ε

0

C

ε2
+
ˆ 1/2

ε

C

r 2
· r 2−n

ˆ

Br (x)

W (uε)

ε2
+C

É
C (K )

ε

on {yε}×D1/2, by definition of Gε,¶ε (which gives
´

Br (x)
W (uε)
ε2 É K r n−2), while |∇Àε| ÉC on

the rest of the slice P§
yε

. Hence, writing

A¼ := {x ∈ P§
yε

: |∇Àε(x)| >¼},

we find that
ˆ

Fε³

|∇Àε|2 =
ˆ C (K )/ε

0
2¼H

2(Fε³ ∩ A¼)d¼

É ε−2³
H

2(Fε³)+
ˆ C (K )ε−1

ε−³

C (K )

¼
d¼

ÉC (³)+C (K ) log(C (K )ε³−1),

thanks to (3.8) and (3.11). Combining this with (3.10), we deduce that

limsup
ε→0

1

|logε|

ˆ

P§
yε

|∇(Àε)ab |2 ÉC (K )(1−³).

Finally, since ³ ∈ (0,1) was arbitrary, we can take ³→ 1 to deduce that the limit vanishes,
as desired. □

With the above preparations in place, we are now ready to prove the identity (1.6).

Proposition 3.4. For uε satisfying the hypotheses of Theorem 1.4 and a sequence of slices

yε ∈Gε,¶ε with pε
j
∈ P§

yε
and degrees »ε

j
as above, we have

¹ = lim
ε→0

(

∑

j (»ε
j )2 +

∑

j<ℓ2»ε
j»

ε
ℓ

|log |pε
j
−pε

ℓ
||

|logε|

)

.
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Proof. To begin, fix a cutoff function Ç(y, z) =Ç(z) on R
n−2 ×R

2 satisfying Ç(z) = 1 for |z| É
1
2 , Ç(z) = 0 for |z| Ê 3

4 , and |dÇ| ÉC . Since yε ∈Gε,¶ε , we have
ˆ

P§
yε

| j vε−d∗Àε|2 = o(|logε|);

together with (3.7), this implies in particular that

∥ j vε∥L2(P§
yε ) ÉC |logε|1/2.

Moreover, using (2.12) and the fact that V (uε)∩P§
yε

¢ {yε}×D1/4, it is also easy to check
that

ˆ

{yε}×[D1\D1/2]
(|Àε|2 +|d∗Àε|2) ÉC .

As a consequence, using again (3.7), we have

Ã¹ = lim
ε→0

1

|logε|

ˆ

P§
yε

1

2
Ç|d∗Àε|2 = lim

ε→0

1

|logε|

ˆ

P§
yε

1

2
Ç+d∗Àε, j vε,.

By Theorem 3.3, we can further refine this to see that

Ã¹ =− lim
ε→0

1

|logε|

ˆ

P§
yε

1

2
Ç[∂n−1(Àε)n−1,n j vε(∂n)+∂n(Àε)n,n−1 j vε(∂n−1)].

Writing ´ε := (Àε)n−1,n and integrating by parts on P§
yε
= {yε}×D1, we obtain

Ã¹ = lim
ε→0

1

|logε|

ˆ

P§
yε

1

2
´ε[Çd j vε+dÇ' j vε].

Since Ç ≡ 1 on {yε}×D1/2, using the previous bounds and the fact that |´ε| É |Àε|, we see
that the second term gives no contribution in the limit. Also, Ç≡ 1 on spt(d j vε)∩P§

yε
. We

conclude that

(3.12) Ã¹ = lim
ε→0

1

|logε|

ˆ

P§
yε

1

2
´ε d j vε(∂n−1,∂n).

Next, note that d j vε|P§
yε

is supported in the set

U¶,ε = {|uε| < 1−¶}∩P§
yε

,

and recall from Theorem 3.1 that there exists a constant C = C (¶) and points pε
1, . . . , pε

k

with k ÉC such that

V (uε)∩P§
yε
¦U¶,ε ¦ BCε(pε

1)∪·· ·∪BCε(pε
k ).(3.13)



28 A. Pigati & D. Stern

Using this in the right-hand side of (3.12), and writing D j ,ε := BCε(pε
j
)∩P§

yε
, we see that

ˆ

P§
yε

1

2
´εd j vε(∂n−1,∂n) =

∑k
j=1

ˆ

D j ,ε

1

2
´εd j vε(∂n−1,∂n)

=
∑k

j=1´ε(pε
j )

ˆ

D j ,ε

1

2
d j vε(∂n−1,∂n)

+
∑k

j=1

1

2

ˆ

D j ,ε

[´ε−´ε(pε
j )]d j vε(∂n−1,∂n).

Now, since |d´ε| É |∇Àε| ÉC /ε (as observed while proving the previous lemma), we have a
pointwise bound of the form |´ε−´ε(pε

j
)| ÉC on D j ,ε. Also,

´

P§
yε
|d j vε| ÉC (by the point-

wise bound |d j vε| ÉC
W (uε)
ε2 ), and we deduce that

Ã¹ = lim
ε→0

1

|logε|
∑k

j=1´ε(pε
j )

ˆ

D j ,ε

1

2
d j vε(∂n−1,∂n).

Moreover, noting that
ˆ

D j ,ε

d j vε(∂n−1,∂n) = 2Ãdeg(vε,∂D j ,ε) = 2Ã»ε
j ,

it follows that

(3.14) Ã¹ = lim
ε→0

1

|logε|
∑k

i=1´ε(pε
i )Ã»ε

i .

With (3.14) in hand, to complete the proof, it suffices to show that

(3.15) lim
ε→0

1

|logε|
(´ε(pε

i )−»ε
i |logε|−

∑

j ̸=i»
ε
j |log |pε

i −pε
j ||) = 0

for every i ∈ {1, . . . ,k}. Up to relabeling the indices, it of course suffices to treat the case
i = 1, and assume that the distances

r ε
j := |pε

1 −pε
j |

are in increasing order 0 = r ε
1 < r ε

2 É r ε
3 É ·· · É r ε

k
.

Now, fix µ > 0 small and ³ ∈ (0,1) close to 1, and observe that for ε sufficiently small
(depending on ³ and µ), the ball Br (pε

1) satisfies the full hypotheses of Theorem 2.6, with
degree

»ε(r ) :=
∑

r ε
j
<r»

ε
j ,

whenever

r ∈
[

ε³,
1

4

]

\
k
⋃

j=2

[

r ε
j
−Cε

2
,

r ε
j
+Cε

¶1

]

,

where ¶1 = ¶1(³,µ) > 0 is the constant from the hypotheses of Theorem 2.6, since this
ensures that, for each j > 1, either B2r (pε

1) is disjoint from BCε(pε
j
) if r < r ε

j
or BCε(pε

j
) ¦
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B¶1r (pε
1) if r Ê r ε

j
. In particular, for every such r , we have

(3.16)

∣

∣

∣

∣

∣

2Ãωn−2»
ε(r )− r 2−n

ˆ

Br (pε
1)

[d j vε(x ′)]n−1,n d x ′
∣

∣

∣

∣

∣

< µ.

Now, it follows from Theorem 2.7 (and the bound |d j vε| ÉC
W (uε)
ε2 É C

ε2 ) that
∣

∣

∣

∣

∣

2Ãωn−2´ε(pε
1)−
ˆ 1/4

ε

1

r

(

r 2−n

ˆ

Br (pε
1)

[d j vε(x ′)]n−1,n d x ′
)

dr

∣

∣

∣

∣

∣

ÉC .

Combining this with (3.16), we have
∣

∣

∣

∣

∣

2Ãωn−2´ε(pε
1)−2Ãωn−2

ˆ 1/4

ε

»ε(r )

r
dr

∣

∣

∣

∣

∣

ÉC +µ log(1/4ε)+
ˆ

I

1

r

∣

∣

∣

∣

∣

2Ãωn−2»
ε(r )− r 2−n

ˆ

Br (pε
1)

[d j vε(x ′)]n−1,n d x ′
∣

∣

∣

∣

∣

,

where

I := (ε,ε³)∪
k
⋃

j=2

(

r ε
j
−Cε

2
,

r ε
j
+Cε

¶1

)

.

Appealing once more to the uniform bound

r 2−n

ˆ

Br (pε
1)
|d j vε| É r 2−n

ˆ

Br (pε
1)

W (uε)

ε2
ÉC (K ) =C

(by definition of Gε,¶ε) and noting that each r ε
j
Ê 2Cε for j Ê 2, it therefore follows that

∣

∣

∣

∣

∣

´ε(pε
1)−
ˆ 1/4

ε

»ε(r )

r
dr

∣

∣

∣

∣

∣

ÉC +µ|logε|+
ˆ

I

C

r
dr

ÉC +µ|logε|+C log(ε³−1)+
∑k

j=1 log

(

(r ε
j
+Cε)/¶1

(r ε
j
−Cε)/2

)

ÉC +µ|logε|+C (1−³)|logε|+C (³,µ).

Dividing through by |logε| and passing to the limit ε→ 0, we deduce that

limsup
ε→0

1

|logε|

∣

∣

∣

∣

∣

´ε(pε
1)−
ˆ 1/4

ε

»ε(r )

r
dr

∣

∣

∣

∣

∣

É µ+C (1−³)

for any µ> 0 and ³ ∈ (0,1). In particular, taking µ→ 0 and ³→ 1, we deduce that

(3.17) limsup
ε→0

1

|logε|

∣

∣

∣

∣

∣

´ε(pε
1)−
ˆ 1/4

ε

»ε(r )

r
dr

∣

∣

∣

∣

∣

= 0.



30 A. Pigati & D. Stern

But now we need only observe that
ˆ 1/4

ε

»ε(r )

r
dr =

ˆ 1/4

ε

1

r
·
∑

r ε
j
<r»

ε
j dr

=
ˆ 1/4

ε

»ε
1

r
dr +

∑k
j=2

ˆ 1/4

r ε
j

»ε
j

r
dr

= »ε
1(log(1/ε)+ log(1/4))+

∑k
j=2»

ε
j (log(1/r ε

j )+ log(1/4))

= »ε
1|logε|+

∑k
j=2»

ε
j |log |pε

1 −pε
j ||+O(1).

Together with (3.17), this gives the desired identity (3.15), completing the proof. □

4. SOLUTIONS OF DENSITY < 2

Denote by D ¢R the collection of densities ¹ arising as in the statement of Theorem 1.4,
and set

¹mi n := infD.

Note that ¹mi n > 0, by virtue of Theorem 1.1. By a simple diagonal sequence argument,
we see that ¹mi n ∈ D. In terms of the minimum density ¹mi n , it is clear that Theorem 1.4
is equivalent to the following proposition.

Proposition 4.1. Under the hypotheses of Theorem 1.4, if ¹ < 2¹mi n , then ¹ = 1.

In particular, having established Theorem 4.1, it follows immediately that ¹mi n = 1, and
that D∩ [1,2) = {1}.

To begin the proof of Theorem 4.1, we note that the assumption ¹ < 2¹mi n allows us to
make the following reduction, showing roughly that the vorticity set lies close to a single
(n −2)-plane at all scales Ê εÄ0 for some fixed Ä0 > 0. Recall that Gε,¶ is the set of ¶-good
slices for uε, introduced in the previous section.

Lemma 4.2. Let Ä0 := 2¹mi n−¹
4¹mi n

∈ (0, 1
2 ). Under the assumptions of Theorem 4.1, for any ¸ ∈

(0,1] there exists c(¸) > 0 independent of ε such that, for any sequences ¶ε → 0 and yε ∈Gε,¶ε ,

there exists

pε = (yε, zε) ∈ P§
yε

such that

(4.1) Bε1/2 (pε)∩V (uε) ̸= ;

and, for any x = (y, z) ∈Q, we have

(4.2) dist(x,V (uε)) Ê c|z − zε|,

provided that |z − zε| Ê ¸max{εÄ0 , |y − yε|} and that ε is sufficiently small (depending on ¸).

Proof. Given yε ∈ Gε,¶ε , choose zε ∈ D2
1 such that pε = (yε, zε) is the closest point in the

slice P§
yε

to the vorticity set V (uε). If (4.1) fails along a subsequence, then setting rε :=
dist(pε,V (uε)) Ê ε1/2 we can consider the rescaled solutions

ũε̃(x) := uε(pε+ rεx),
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which solve the ε̃-Ginzburg–Landau equation on B2(0) with ε̃ := ε/rε É ε1/2 (note also that
zε → 0 and rε → 0, since V (uε) → P ∩B2(0) in the Hausdorff sense). By our assumption
yε ∈Gε,¶ε , we then see that the rescaled solutions ũε̃ satisfy

lim
ε̃→0

1

|log ε̃|

ˆ

B2(0)
|dũε̃(P )|2 = 0.(4.3)

By Theorem 1.1, the concentrated part of the limiting energy measure

µ= lim
ε→0

eε̃(ũε̃)

Ã|log ε̃|
d x

is a stationary rectifiable varifold V , and by reversing the proof of Theorem 2.2, it follows
that its tangent planes coincide with P , and we deduce that V is given by a locally finite
union of (n −2)-planes parallel to P , each with multiplicity at least ¹mi n .

By assumption, V (ũε̃) does not intersect B1(0), and since pε was chosen to be the closest
point in P§

yε
to the vorticity set, we see that there exists qε̃ ∈ R

n−2 with |qε̃| = 1 such that
(qε̃,0) ∈ V (ũε̃). Since the support of |V | is the Hausdorff limit of V (ũε̃), it follows that it is
disjoint from B1(0), but at the same time it contains the whole (n−2)-plane P + (q0,0) = P

(intersected with B2), for a subsequential limit q0 of qε̃, a contradiction.
Now let us verify (4.2). We proceed by a similar contradiction argument: suppose to the

contrary that there exists xε = (y ′
ε, z ′

ε) ∈Q such that |z ′
ε− zε| Ê ¸max{εÄ0 , |y ′

ε− yε|}, but

lim
ε→0

dist(xε,V (uε))

|z ′
ε− zε|

= 0.(4.4)

Evidently, since dist(xε,V (uε)) → 0, we must have z ′
ε → 0, and hence

sε := |z ′
ε− zε|→ 0.

For fixed small ¶ ∈ (0,1), we can consider the rescaled solutions

ũε̃(x) := uε(pε+ sεx/¶),

which solve the ε̃-Ginzburg–Landau equation on B2(0) with ε̃ := ¶ε/sε ∈ (¶ε,¸−1ε1−Ä0 )
(since sε Ê ¸εÄ0 ). Again, the rescaled solutions ũε̃ satisfy (4.3). Also, by (4.1), since Ä0 < 1

2
we have

lim
ε→0

dist(pε,V (uε))

sε
É lim

ε→0

ε1/2

¸εÄ0
= 0.

After passing to a subsequence, by the last observation and (4.4), the Hausdorff limit of
V (ũε̃)∩B1(0) must contain 0 and the point

À := lim
ε→0

¶ ·
xε−pε

sε
,

which exists thanks to the assumption that |y ′
ε− yε| É ¸−1|z ′

ε− zε| = ¸−1sε, and satisfies

|P§(À)| = lim
ε→0

¶

sε
|z ′

ε− zε| = ¶.

As observed above, from (4.3) it follows that in B1(0) the support of the energy concen-
tration varifold contains the parallel (n −2)-planes P and (P + À), and therefore the limit
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energy measure µ= limε→0
eε̃(ũε̃)
Ã|log ε̃| d x satisfies

µÊ ¹mi nH
n−2 P +¹mi nH

n−2 (P +À).

Hence,

liminf
ε→0

ˆ

B1(0)

eε̃(ũε̃)

Ã|log ε̃|
Êµ(B1(0)) Ê ¹mi nωn−2[1+ (1−¶2)

n−2
2 ].

Now, returning to the original family of solutions uε, by the monotonicity formula (A.1) we
have

¹ = lim
ε→0

1

ωn−2

ˆ

B1(pε)

eε(uε)

Ã|logε|

Ê liminf
ε→0

1

ωn−2(sε/¶)n−2

ˆ

Bsε/¶(pε)

eε(uε)

Ã|logε|

= liminf
ε→0

|log ε̃|
|logε|

1

ωn−2

ˆ

B1(0)

eε̃(ũε̃)

Ã|log ε̃|

Ê (1−Ä0)¹mi n[1+ (1−¶2)
n−2

2 ],

and since ¶> 0 was arbitrary, it follows that

¹ Ê 2(1−Ä0)¹mi n .

However, this cannot hold since we have chosen Ä0 such that Ä0 < 2¹mi n−¹
2¹mi n

. We thus reach
a contradiction, concluding the proof. □

Next, choosing a radial cutoff function Æ ∈C 1
c (D1) with 0 ÉÆÉ 1 and Æ≡ 1 on D1/2, and

applying [16, Theorem 2.1], we see that

limsup
ε→0

∣

∣

∣

∣

ˆ

D1

ÆJε

∣

∣

∣

∣

É lim
ε→0

ˆ

P§
yε

eε(uε)

|logε|
=Ã¹,

where Jε := 1
2 d j uε is the Jacobian of uε along the slice P§

yε
∼= D1 (in the last equality we

used the fact that yε ∈ Gε,¶ε , which gives |
´

P§
yε

eε(uε)
|logε| −Ã¹| É ¶ε). But, integrating by parts

and using polar coordinates, we have
ˆ

D1

ÆJε =−
1

2

ˆ 1

0
∂rÆ

[

ˆ

{yε}×∂Dr

j uε(d¹)

]

dr,

and since |uε|→ 1 on spt(dÆ) ¢ D1 \ D1/2, the last expression is the same as

−
1

2

ˆ 1

1/2
∂rÆ

[

ˆ

{yε}×∂Dr

j vε(d¹)

]

dr =Ãdeg(vε, {0}×S1),

up to an infinitesimal error. We deduce that the degree

»ε := deg(vε, {0}×S1) ∈Z

eventually satisfies
|»ε| É ¹ < 2¹mi n É 2.
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Thus, passing to a subsequence, we may assume that »ε = » is constant and

|»| É 1.(4.5)

Applying Theorem 4.2 (for fixed ¸), note also that

»= deg(vε, {yε}×∂Dr (zε)) for all r ∈ [¸εÄ0 , 1
2 ],(4.6)

since (4.2) implies that |uε| > 1
2 on the annulus {yε}× [D1(0) \ D¸εÄ0 (zε)].

Ultimately, we wish to show that |»| = 1 = ¹. First, we compute the energy contribution
from an annular region centered at pε.

Lemma 4.3. For any fixed ¸ ∈ (0,1] and pε, Ä ∈ (0,Ä0] as in Theorem 4.2, we have

lim
ε→0

1

|logε|(εÄ)n−2

ˆ

A
¸

εÄ
(pε)

eε(uε) =Ãωn−2»
2Ä,

where we set

A
¸

r (pε) := B n−2
r (yε)× [D2

1(0) \ D2
¸r (zε)].

More generally, for any family of radii rε ∈ [εÄ0 ,1) for which limε→0
log(1/rε)
log(1/ε) = Ä, we have

(4.7) lim
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε (pε)
eε(uε) =Ãωn−2»

2Ä.

Proof. Let rε ∈ [εÄ0 ,1) be a family of radii as above. For simplicity, we assume that pε = 0,
and write simply A

¸
rε =A

¸
rε(0).

Let ´ε(x) := (Àε)n−1,n(x). To begin with, we claim that

(4.8) lim
ε→0

1

|logε|r n−2
ε

ˆ

Arε

eε(uε) = lim
ε→0

1

2|logε|r n−2
ε

ˆ

B n−2
rε (0)

ˆ

∂D¸rε (0)
´ε d∗Àε(∂¹).

Indeed, since 0 ∈ Gε,¶ε for some sequence ¶ε → 0 by assumption, it follows from the defi-
nition of Gε,¶ε that

(4.9) lim
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε

eε(uε) = lim
ε→0

1

2|logε|r n−2
ε

ˆ

A
¸

rε

|d∗Àε|2.

Moreover, since 0 ∈Gε,¶ε , for any fixed ¶1 > 0, it is easy to see that

(4.10) r 2−n

ˆ

B2r (x)
|duε(P )|2 < ¶1|logε|

for any x = (y, z) ∈Arε with |y | É 1
2 and 1

8 Ê r Ê c¸rε Ê c¸εÄ0 , where we take c > 0 to be the
constant from Theorem 4.2, for ε sufficiently small. As a consequence, for any given µ> 0
we see that the hypotheses of Theorem 2.6 hold for every such ball B2r (x). Combining this
with Theorem 2.7, the fact that spt(d j vε) ¦ V (uε), and (2.11), we find that, for x ∈A

¸
rε and
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(a,b) ̸= (n −1,n),

|∇(Àε)ab |(x) ÉC

ˆ 1/8

dist(x,V (uε))

1

r 2

∣

∣

∣

∣

r 2−n

ˆ

Br (x)
[d j vε(x ′)]ab

x −x ′

|x −x ′|
d x ′

∣

∣

∣

∣

dr +C

ÉC +C

ˆ 1/8

dist(x,V (uε))

1

r 2
µdr ÉC +

Cµ

dist(x,V (uε))
,

provided ε is sufficiently small (if dist(x,V (uε)) Ê 1
8 , then actually |∇Àε| ÉC ). In particular,

since x ∈A
¸

rε , by Theorem 4.2 we know that dist(x,V (uε)) Ê c|z|, and it follows that

limsup
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε

|∇(Àε)ab |2 É limsup
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε

Cµ2

|z|2

É limsup
ε→0

Cµ2 log(1/¸rε)

log(1/ε)

ÉCµ2Ä0

for any µ> 0; hence,

(4.11) lim
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε

|∇(Àε)ab |2 = 0 for (a,b) ̸= (n −1,n).

Combining this with (4.9), we then see that

lim
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε

eε(uε) = lim
ε→0

1

2|logε|r n−2
ε

ˆ

A
¸

rε

[d∗Àε(∂n−1)∂n´ε−d∗Àε(∂n)∂n−1´ε].

A simple integration by parts shows that
ˆ

D1\D¸rε

[d∗Àε(∂n−1)∂n´ε−d∗Àε(∂n)∂n−1´ε]

=
ˆ

∂D¸rε

´ε d∗Àε(∂¹)−
ˆ

∂D1

´ε d∗Àε(∂¹)+
ˆ

D1\D¸rε

´εdd∗Àε[∂n−1,∂n]

on any slice P§
y
∼= D1. Also, recall that dd∗Àε = d j vε −dhε. Hence, using the fact that

d j vε = 0 on A
¸

rε , as well as |´ε| É |Àε|, we deduce from the preceding identities that

lim
ε→0

1

|logε|r n−2
ε

∣

∣

∣

∣

∣

ˆ

A
¸

rε

eε(uε)−
1

2

ˆ

B n−2
rε

(

ˆ

∂D¸rε

´ε d∗Àε(∂¹)−
ˆ

∂D1

´ε d∗Àε(∂¹)

)∣

∣

∣

∣

∣

= lim
ε→0

1

2|logε|r n−2
ε

∣

∣

∣

∣

∣

ˆ

B n−2
rε

ˆ

D1\D¸rε

´εdd∗Àε[∂n−1,∂n]

∣

∣

∣

∣

∣

É lim
ε→0

C

|logε|r n−2
ε

∥dhε∥L∞(Q)

ˆ

B n−2
rε ×D1

|Àε|

É lim
ε→0

C

|logε|
∥dhε∥L∞(Q)

= 0,
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where in the last two lines we used the fact that 0 ∈Gε,¶ε (giving
´

B n−2
rε ×D1

|Àε| É K r n−2
ε ) and

(2.15).
Now, by Theorem A.5 and the monotonicity formula (A.1), together with the pointwise

bound (2.11), it is easy to see that

r 2−n

∣

∣

∣

∣

ˆ

Br (x)
ϕ(x ′)[d j vε(x ′)]n−1,n d x ′

∣

∣

∣

∣

ÉC(4.12)

for all r Ê ε1/2, for some C independent of ε (alternatively, a similar bound with C K in
place of C follows immediately from (2.11) and the fact that 0 = yε ∈ Gε,¶ε). Combining
this observation with Theorem 2.7, writing

Äε(x) := dist(x,V (uε)),

we see that

(4.13) |Àε| ÉC log(1/Äε)+C , |d∗Àε| ÉC /Äε,

whenever Äε Ê ε1/2. In particular, since Äε → 1 uniformly on B n−2
1 (0)×∂D1(0) as ε→ 0, it

follows that
1

2|logε|r n−2
ε

ˆ

B n−2
rε

ˆ

∂D1

|´ε d∗Àε(∂¹)| É
C

|logε|
→ 0

as ε→ 0, which proves (4.8).
In order to estimate the right-hand side of (4.8), we let Sε := B n−2

rε
×∂D¸rε and, for x =

(y, z) ∈ Sε, we first show for any fixed µ> 0 the uniform bound

|2Ãωn−2´ε(x)−2Ã»ωn−2 log(1/rε)| ÉC (µ,¸)+µ|logε|.(4.14)

Note that by Theorem 4.2 we have

2rε Ê Äε(x) Ê c¸rε for all x ∈ Sε.(4.15)

Moreover, again by Theorem 4.2, for any x = (y, z) ∈ Sε ¢Arε we have

V (uε)∩P§
y ¦ {y}×D¸rε(0) ¦ B2rε(x).

Hence, fixing an arbitrary µ > 0, we see that the full hypotheses of Theorem 2.6 hold on
B2r (x) for ε> 0 sufficiently small, whenever

2rε

¶1(Ä0,µ)
< r É

1

8

(note that (2.26) holds by (4.10)). As in (4.6), the degree deg(vε, {y}×∂Dr (z)) = », and from
(2.28) we deduce that

(4.16)

∣

∣

∣

∣

2Ã»ωn−2 − r 2−n

ˆ

Br (x)
[d j vε(x ′)]n−1,n

∣

∣

∣

∣

< µ

for x ∈ Sε and 2rε
¶1(Ä0,µ) < r É 1

8 .
Next, recall from Theorem 2.7 that

2Ãωn−2´ε(x) =
ˆ ∞

0

1

r

(

r 2−n

ˆ

Br (x)
ϕ(x ′)[d j vε(x ′)]n−1,n d x ′

)

dr,
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and note that ϕ|Br (x) ≡ 1 for r É 1
8 , so that

∣

∣

∣

∣

∣

2Ãωn−2´ε(x)−
ˆ 1/8

Äε(x)

1

r

(

r 2−n

ˆ

Br (x)
[d j vε(x ′)]n−1,n d x ′

)

dr

∣

∣

∣

∣

∣

ÉC

for a suitable C independent of ε> 0. Note also that, by (4.15) and (4.12),
∣

∣

∣

∣

∣

ˆ 2rε/¶1

Äε(x)

1

r

(

r 2−n

ˆ

Br (x)
[d j vε(x ′)]n−1,n d x ′

)

dr

∣

∣

∣

∣

∣

É
ˆ 2rε/¶1

c¸rε

C

r
dr ÉC log(2/c¸¶1),

while, by (4.16),
ˆ 1/8

2rε/¶1

1

r

∣

∣

∣

∣

2Ã»ωn−2 − r 2−n

ˆ

Br (x)
[d j vε(x ′)]n−1,n d x ′

∣

∣

∣

∣

dr < µ

ˆ 1/8

2rε/¶1

dr

r
< µ log(1/rε).

Combining these bounds, we arrive at (4.14).
Turning now to the right-hand side of (4.8), it follows that, for any µ> 0,

lim
ε→0

r 2−n
ε

2|logε|

∣

∣

∣

∣

ˆ

Sε

(´ε−»|logrε|)d∗Àε(∂¹)

∣

∣

∣

∣

É limsup
ε→0

r 2−n
ε

|logε|

ˆ

Sε

(C (µ,¸)+µ|logε|)|d∗Àε|

(using (4.13)) É limsup
ε→0

r 2−n
ε

|logε|

ˆ

Sε

C ·
C (µ,¸)+µ|logε|

c¸rε

=C (¸)µ,

and since µ> 0 was arbitrary, it follows that the limit on the left-hand side must vanish. In
particular, returning to (4.8), we see that

lim
ε→0

1

|logε|r n−2
ε

ˆ

A
¸

rε

eε(uε) = lim
ε→0

r 2−n
ε

2|logε|

ˆ

B n−2
rε

ˆ

∂D¸rε

»|logrε|d∗Àε(∂¹)

= lim
ε→0

r 2−n
ε

2|logε|
»|logrε|

ˆ

B n−2
rε

(

ˆ

D¸rε

dd∗Àε

)

= lim
ε→0

r 2−n
ε

2|logε|
»|logrε|

ˆ

B n−2
rε

(

ˆ

D¸rε

d j vε

)

= lim
ε→0

r 2−n
ε »|logrε|

2|logε|

ˆ

B n−2
rε

2Ãdeg(vε, {y}×∂D¸rε)d y

=Ãωn−2»
2 lim
ε→0

log(1/rε)

log(1/ε)
,

where we used again (4.6) and, in the third equality, the fact that d j vε−dd∗Àε = dhε is
bounded pointwise by C |logε|1/2. This concludes the proof. □
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Next, note that for pε and Ä0 as in Theorem 4.2, using the fact that yε ∈ Gε,¶ε and the
inclusion B n−2

εÄ0 (yε)×D2
¸εÄ0 (zε) ¢ B n

(1+¸)εÄ0 (pε), we have for any given ¸ ∈ (0,1] that

lim
ε→0

Eε(uε;A ¸

εÄ0 (pε))

|logε|(εÄ0 )n−2
Ê lim

ε→0

Eε(uε;B n−2
εÄ0 (yε)×D2

1(0))

|logε|(εÄ0 )n−2
− limsup

ε→0

Eε(uε;B(1+¸)εÄ0 (pε))

|logε|(εÄ0 )n−2

= liminf
ε→0

(

Eε(uε;B1(pε))

|logε|
−

Eε(uε;B(1+¸)εÄ0 (pε))

|logε|(εÄ0 )n−2

)

Ê liminf
ε→0

(

Eε(uε;B1(pε))

|logε|
−

Eε(uε;B(1+¸)εÄ0 (pε))

|logε|[(1+¸)εÄ0 ]n−2

)

−C¸ limsup
ε→0

Eε(uε;B(1+¸)εÄ0 (pε))

|logε|[(1+¸)εÄ0 ]n−2
,

where the equality comes from the fact that limε→0
Eε(uε;B n−2

εÄ0
(yε)×D2

1(0))

|logε|(εÄ0 )n−2 = Ãωn−2¹ (as yε ∈

Gε,¶ε), which in turn equals limε→0
Eε(uε;B1(pε))

|logε| since energy concentrates on a plane with
multiplicity ¹. In particular, combining Theorem 4.3 with the monotonicity formula (A.1)
(integrated between radii (1+¸)εÄ0 and 1), we see that

(4.17) limsup
ε→0

1

log(1/εÄ0 )

ˆ 1

(1+¸)εÄ0

1

r n−1

ˆ

Br (pε)

2W (uε)

ε2
ÉÃωn−2»

2 +C¸.

As an easy consequence, we have the following proposition.

Proposition 4.4. For pε and Ä0 as in Theorem 4.2, given ¶ ∈ (0,1), there exists rε ∈ (εÄ0 ,ε¶Ä0 )
such that

(4.18) limsup
ε→0

1

(rε/2)n−2

ˆ

Brε/2(pε)

2W (uε)

ε2
É

Ãωn−2»
2

1−¶
.

In particular, we can conclude that |»| = 1, and

(4.19) limsup
ε→0

1

(rε/2)n−2

ˆ

Brε/2(pε)

2W (uε)

ε2
É

Ãωn−2

1−¶
.

Proof. Writing

ºε := inf
r∈(εÄ0 /2,ε¶Ä0 /2)

r 2−n

ˆ

Br (pε)

2W (uε)

ε2
,

we see that the existence of a sequence rε satisfying (4.18) is equivalent to the statement

that limsupε→0 ºε É
Ãωn−2»

2

1−¶ . By (4.17) we have, for every ¸> 0,

Ãωn−2»
2 +C¸Ê limsup

ε→0

1

log(1/εÄ0 )

ˆ ε¶Ä0 /2

(1+¸)εÄ0

ºε

r
dr

= limsup
ε→0

ºε log(ε¶Ä0 /2(1+¸)εÄ0 )

log(1/εÄ0 )

= (1−¶) limsup
ε→0

ºε.

Since ¸> 0 was arbitrary, (4.18) clearly follows.
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As discussed earlier in the section, since ¹ < 2¹mi n É 2, we know that |»| É 1, so to com-
plete the proof of the proposition, we simply need to demonstrate that |»| ̸= 0. And this is
straightforward: in view of the bound (4.18), if »= 0, it would follow that

1

(rε/2)n−2

ˆ

Brε/2(pε)

W (uε)

ε2
→ 0

as ε→ 0; but since pε ∈ Gε,¶ε , this would contradict Theorem 2.9 (which applies by (4.1)).
Hence, we must have »=±1, as claimed. □

Remark 4.5. This bound gives another proof that, in Theorem 1.1, the support of |V | is

characterized as the limit of the zero sets u−1
ε {0} (which can also be deduced from Propo-

sition 3.4). To check this, it is enough to show that the energy cannot concentrate when

uε ̸= 0 everywhere on B2. And indeed, if this happened, we could define a minimal density

¹′
mi n

> 0, among all densities ¹ arising as in Theorem 1.4 with the additional constraint

that uε ̸= 0 on B2. Repeating the previous arguments, since now the degree »= 0, we would

reach a contradiction to Theorem 2.9.

In the next section, we show that a sequence of Ginzburg–Landau solutions on B n
1 (0)

with energy concentrating along the (n − 2)-plane P must have energy ≈ Ãωn−2|logε| as
ε→ 0, provided that an additional assumption such as (4.19) holds with rε = 1. In particu-
lar, by combining Theorem 4.4 with Theorem 5.2 of the next section, we can complete the
proof of Theorem 4.1 as follows.

Proof of Theorem 4.1. Let pε = (yε, zε) and Ä0 be as in Theorem 4.2. For a given ¶ ∈ (0,1)
to be specified below, let rε be the sequence of scales satisfying (4.19), whose existence is

guaranteed by Theorem 4.4. Passing to a subsequence so that log(1/rε)
log(1/ε) converges, let

Ä := lim
ε→0

log(1/rε)

log(1/ε)
,

and note that Ä ∈ (0,Ä0] since rε ∈ (εÄ0 ,ε¶Ä0 ).
Fixing an arbitrary µ > 0 and recalling (4.1), we then see that B2rε(pε) satisfies the hy-

potheses of Theorem 5.2 in the next section for ε sufficiently small, provided that we
choose ¶ such that Ãωn−2

1−¶ <Ãωn−2(1+¶2) (with ¶2 as in Theorem 5.2), and provided that

(4.20) lim
ε→0

r 2−n
ε

ˆ

B2rε (pε)\B¶2rε (P+pε)

eε(uε)

|logε|
= 0

holds. To check (4.20), observe that

B2rε(pε) \ B¶2rε(P +pε) ¦ B n−2
2rε

(yε)× [D2
2rε

(zε) \ D2
¶2rε

(zε)]

=A
¶2/2

2rε
(pε) \A

1
2rε

(pε),
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and using Theorem 4.3, it follows that

lim
ε→0

r 2−n
ε

ˆ

B2rε (pε)\B¶2rε (P+pε)

eε(uε)

|logε|
É lim

ε→0





Eε(uε;A ¶2/2
2rε

(pε))

|logε|r n−2
ε

−
Eε(uε;A 1

2rε
(pε))

|logε|r n−2
ε





= 2n−2Ãωn−2»
2Ä−2n−2Ãωn−2»

2Ä

= 0,

as desired.
In particular, for ε sufficiently small, we can now apply Theorem 5.2 on the ball B2rε(pε)

to conclude that
∣

∣

∣

∣

∣

r 2−n
ε

log(rε/ε)

ˆ

B n−2
rε (yε)×Drε (zε)

eε(uε)−Ãωn−2

∣

∣

∣

∣

∣

< µ,

which implies

(4.21)

∣

∣

∣

∣

∣

r 2−n
ε

|logε|

ˆ

B n−2
rε (yε)×Drε (zε)

eε(uε)−Ãωn−2
log(rε/ε)

|logε|

∣

∣

∣

∣

∣

< µ.

On the other hand, it follows from Theorem 4.3 (together with |»| = 1) that, for ε sufficiently
small,

∣

∣

∣

∣

∣

r 2−n
ε

|logε|

ˆ

A
1

rε (pε)
eε(uε)−Ãωn−2

log(1/rε)

log(1/ε)

∣

∣

∣

∣

∣

< µ

as well. Since B n−2
rε

(yε)×D1(0) =A
1

rε
(pε)⊔ [B n−2

rε
(yε)×Drε(zε)] and

log(rε/ε)+ log(1/rε) = log(1/ε),

we can combine these estimates to conclude that

lim
ε→0

r 2−n
ε

|logε|

ˆ

B n−2
rε (yε)×D1(0)

eε(uε) =Ãωn−2.

Since yε ∈Gε,¶ε , it follows that ¹ = 1, as desired. □

5. FROM BOUNDS ON W (u)/ε2 TO UNIT DENSITY

In this section we show that if, in addition to the hypotheses of Theorem 4.1, we have
the bound

(5.1) limsup
ε→0

ˆ

B1/2(0)

2W (uε)

ε2
É

Ãωn−2

2n−2
(1+¶),

for some (explicit) ¶> 0 small enough, then the limiting density ¹ = 1. In other words, we
are going to prove Theorem 4.1 with the additional assumption (5.1). As we saw above, this
combines with the analysis of the preceding section to give Theorem 4.1 in full generality,
from which Theorem 1.4 follows.

Since the measures W (uε(x))
ε2 d x converge to an absolutely continuous measure with re-

spect to H
n−2 P (by Theorem 1.1), where the plane P =R

n−2×{0}, the estimate (5.1) also
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gives

limsup
ε→0

ˆ

B n−2
1/2 (0)×D2

1(0)

2W (uε)

ε2
É

Ãωn−2

2n−2
(1+¶).

In particular, this implies that

Ãωn−2

2n−2
(1+¶) Ê limsup

ε→0

ˆ

Gε,¶ε×D2
1

2W (uε)

ε2

Ê limsup
ε→0

(

|Gε,¶ε | · inf
y∈Gε,¶ε

ˆ

{yε}×D2
1

2W (uε)

ε2

)

,

which together with (3.1) implies the existence of yε ∈Gε,¶ε for which

limsup
ε→0

ˆ

{yε}×D2
1

2W (uε)

ε2
É

(Ãωn−2/2n−2)(1+¶)

(ωn−2/2n−2)− (C /K )
.

We now fix K large enough (e.g., K = K (¶) = 4C
¶

2n−2

ωn−2
), in such a way that the previous esti-

mate becomes

limsup
ε→0

ˆ

{yε}×D2
1

2W (uε)

ε2
ÉÃ(1+2¶).(5.2)

Applying Propositions 3.1 and 3.2, we deduce that for these yε such that (5.2) holds, the
set

U¶,ε = {x ∈ P§
yε

: |uε(x)| < 1−¶}

is contained in a disjoint collection of disks DCε(pε
1), . . . ,DCε(pε

k
) such that the degrees »ε

j

of uε around ∂DCε(pε
j
) satisfy

limsup
ε→0

Ã

2
(1−5¶)

∑k
j=1|»

ε
j | ÉÃ(1+2¶).

In particular, since »ε
j
∈Z, taking ¶ small enough it follows that

∑k
j=1|»

ε
j | É 2

for ε sufficiently small.
On the other hand, by Theorem 4.4, we know that

|»| = |
∑k

j=1»
ε
j | = 1,

so we see by parity that the case
∑k

j=1|»
ε
j
| ∈ {0,2} is impossible, so we must have

∑k
j=1|»

ε
j | = 1.

In other words, up to relabeling pε
1, . . . , pε

k
and possibly replacing uε with the conjugate

solution uε, for ε sufficiently small, we must have

(5.3) »ε
1 = 1, »ε

2 = ·· · = »ε
k = 0.

Finally, combining this with Proposition 3.4 immediately gives the following conclu-
sion.
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Lemma 5.1. Suppose that the hypotheses of Theorem 1.4 and the potential bound (5.1) are

both satisfied. Then the limiting density ¹ = 1.

By a simple contradiction and scaling argument, we can recast the result in the following
‘quantitative’ form.

Proposition 5.2. For any µ > 0, there exists ¶2(µ) > 0 such that if uε solves the Ginzburg–

Landau equation on a ball B2r (x) (where x = (y, z) ∈R
n−2 ×R

2) with εÉ ¶2r , and satisfies

(r /2)2−n

ˆ

Br /2(x)

2W (uε)

ε2
ÉÃωn−2 +¶2,

V (uε)∩Br (x) ̸=∅,

and (to ensure that all energy concentrates along the (n −2)-plane P +x)

r 2−n

ˆ

B2r (x)\B¶2r (P+x)
eε(uε) É ¶2 log(r /ε),

then
∣

∣

∣

∣

∣

r 2−n

log(r /ε)

ˆ

B n−2
r (y)×D2

r (z)
eε(uε)−Ãωn−2

∣

∣

∣

∣

∣

< µ.

6. SOLUTIONS CONCENTRATING WITH PRESCRIBED DENSITY ¹ ∈ {1}∪ [2,∞)

In this section, we explain how to use the entire solutions of the Ginzburg–Landau equa-
tions constructed in [11] to prove Theorem 1.10. More precisely, we prove the following
proposition.

Proposition 6.1. For each integer » Ê 2 and Ä ∈ [0,1), there exists a family of solutions

(uÄ
ε)ε∈(0,ε0(»,Ä)) in the unit 3-ball B 3

1 (0) ¢ R
3 with energy concentrating along the line P =

{0}×R, degree »= deg(uε, 1
2 S1 × {0}) and limiting energy measure

lim
ε→0

eε(uε)

Ã|logε|
= ¹(»,Ä)H 1 P,

where

¹(»,Ä) := »+»(»−1)
Ä

1+Ä
∈

[

»,
»(»+1)

2

)

.

It is straightforward to check that Theorem 1.10 follows from Theorem 6.1, since we have
⋃∞

»=2[», »(»+1)
2 ) = [2,∞). The solutions described in Theorem 6.1 are obtained by rescaling

families of entire solutions with » helical vortex filaments constructed in [11]. Namely,
we rely on the following result. (In what follows, we make the identifications R

2 ∼= C and
S1 ∼=R/2ÃZ.)

Theorem 6.2. [11, Theorem 1] For » ∈ {2,3, . . .} and ε< ε0(») sufficiently small, there exists

a solution vε : R2 ×S1 →R
2 of the Ginzburg–Landau equations

(6.1) ε2
∆vε = DW (vε)

satisfying
∣

∣

∣vε(z, t )−
∏»

j=1w(ε−1[z − f ε
j (t )])

∣

∣

∣É
C (»)

|logε|
,
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where w : R2 → R
2 is the radially symmetric degree-one solution constructed in [13], and

f ε
j

: S1 →R
2 satisfies

lim
ε→0

∣

∣

∣

√

|logε| f ε
j (t )−

p
n −1e i t e2i ( j−1)Ã/»

∣

∣

∣= 0.

Moreover, these vε have the additional symmetry

(6.2) vε(z, t ) = e»i t ṽε(e−i t z)

for some map ṽε : R2 →R
2.

By looking closely at the construction of these solutions and keeping track of a few key
estimates in [11], we are able to check that the following estimate holds.

Lemma 6.3. For every Ä ∈ [0,1), there exists a constant C (») < ∞ such that the solutions

vε : R2 ×S1 →R
2 from Theorem 6.2 satisfy

(6.3)

ˆ

Dε−Ä×S1
eε(vε) ÉC (») log(1/εÄ+1)

for ε< ε0(»,Ä), and, for every ¶ ∈ (0,1), there exists moreover a constant C (¶,»,Ä) <∞ such

that

(6.4)

ˆ

[Dε−Ä\D¶ε−Ä ]×S1
eε(vε) ÉC (¶,»,Ä)

for ε< ε1(¶,»,Ä).

We postpone the proof of Theorem 6.3 to the end of the section; next, we show how the
results of Theorem 6.2 and Theorem 6.3 can be used to prove Theorem 6.1.

Proof of Theorem 6.1. As in [11], we identify the solutions vε : R2 ×S1 →R
2 given by Theo-

rem 6.2 with solutions on R
3 that are 2Ã-periodic in the third variable. Under this identifi-

cation, note that Theorem 6.3 gives
ˆ

B 3
ε−Ä

eε(vε) É
ˆ

Dε−Ä×[−ε−Ä,ε−Ä]
eε(vε)

ÉCε−Ä
ˆ

Dε−Ä×S1
eε(vε)

ÉC (»)ε−Ä log(ε−Ä−1),

and similarly
ˆ

B 3
ε−Ä (0)\B¶ε−Ä (P )

eε(vε) ÉCε−Ä
ˆ

[Dε−Ä\D¶ε−Ä ]×S1
eε(vε)

ÉC (¶,»,Ä)ε−Ä.

It is then straightforward to see that, for ε̃= ε1+Ä, the rescaled maps

uÄ
ε̃ : R3 →R

2, uÄ
ε̃(x) := vε(x/εÄ)
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solve the ε̃-Ginzburg–Landau equations

ε̃2
∆uÄ

ε̃ = DW (uÄ
ε̃)

on R
3, and satisfy

ˆ

B 3
1 (0)

eε̃(uÄ
ε̃) = εÄ

ˆ

B 3
ε−Ä (0)

eε(vε) ÉC (»,Ä) log(1/ε̃)

and, for any ¶> 0,
ˆ

B 3
1 (0)\B¶(P )

eε̃(uÄ
ε̃) = εÄ

ˆ

B 3
ε−Ä (0)\B¶ε−Ä (P )

eε(vε) ÉC (¶,»,Ä).

In particular, it follows that the maps

uÄ
ε̃ : B 3

1 (0) →R
2, for ε̃ ∈ (0,ε0(»)1+Ä),

give a family of solutions to the Ginzburg–Landau equations on B 3
1 (0) (or similarly, any

fixed compact subset of R3) with energy of order log(1/ε̃) concentrating along P as ε̃→ 0;
i.e. (up to subsequences),

lim
ε̃→0

eε̃(uÄ
ε̃)

Ã|log ε̃|
d x = ¹H

1 P

for some ¹ > 0.
To compute ¹, we appeal to Theorem 3.4, together with Theorem 6.2. Fixing a small (but

arbitrary) ¶ ∈ (0, 1
2 ), consider ¶ε̃ → 0 and tε̃ ∈Gε̃,¶ε̃ ¦ (−1

2 , 1
2 ) a family of ¶ε̃-good slices for uÄ

ε̃

as in the preceding sections. By virtue of the symmetry (6.2) of vε, note that we can simply
take tε̃ = 0. Following the analysis of the preceding section, consider the set

U¶,ε̃ := {z ∈R
2 : |uÄ

ε̃(z,0)| < 1−¶}.

By Theorem 6.2, we see that if |vε(z,0)| < 1−¶, then
∣

∣

∣

∏»
j=1w(ε−1[z − f ε

j (0)])
∣

∣

∣É
C (»)

|logε|
+1−¶É 1−

¶

2

for ε sufficiently small, and since the model single-vortex solution w satisfies |w(z)| → 1
as |z|→∞, it follows that

z ∈
»
⋃

j=1
BC (¶)ε( f ε

j (0)).

Moreover, note that for 1 É j < l É », Theorem 6.2 gives

| f ε
j (0)− f ε

l (0)| Ê
p

n −1
√

|logε|
|e2i ( j−1)Ã/»−e2i (l−1)Ã/»|+o(|logε|−1/2)

Ê
c(»)

√

|logε|
for ε sufficiently small and c(») > 0, and a similar upper bound also holds. In particular,
it follows that the balls BC (¶)ε( f ε

j
(0)) are mutually disjoint for ε sufficiently small, and it
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follows from the C 0 closeness
∣

∣

∣vε(z,0)−
∏k

j=1w(ε−1[z − f ε
j (t )])

∣

∣

∣É
C (»)

|logε|
that

deg(vε,∂DC (¶)ε( f ε
j (0))) = 1.

In particular, for our rescaled solutions uÄ
ε̃(z,0) = vε(z/εÄ,0), writing

p ε̃
j := εÄ f ε

j (0),

it follows that

U¶,ε̃ = {(εÄz,0) : |vε(z,0)| < 1−¶} ¦
»
⋃

j=1
BC (¶)ε1+Ä(εÄ f ε

j (0)) =
»
⋃

j=1
BC (¶)ε̃(p ε̃

j ),

where the balls BC (¶)ε̃(p ε̃
j
) are mutually disjoint, uÄ

ε̃ has degree

»ε̃
j := deg(uÄ

ε̃ ,∂DC (¶)ε̃(p̃ε
j )) = 1,

and
c(¶,»)ε̃Ä/(1+Ä)

√

|logε|
=

c(¶,»)εÄ
√

|logε|
É |p̃ε

j − p̃ε
l | É

C (¶,»)εÄ
√

|logε|
=

C (¶,»)ε̃Ä/(1+Ä)

√

|logε|
for 1 É j < l É ». Thus, applying Theorem 3.4, we deduce that

¹ = lim
ε̃→0

(

∑»
j=11+2

∑

j<l 1 ·1 ·
|log |p ε̃

j
−p ε̃

l
||

|log ε̃|

)

= »+»(»−1)
Ä

1+Ä
,

completing the proof of Theorem 6.1. □

It remains now to prove Theorem 6.3, verifying that natural energy growth conditions
hold for the solutions constructed in [11].

Proof of Theorem 6.3. For simplicity, we specialize to the case » = 2, for which the con-
struction in [11] is carried out in detail. In this case, the solutions vε : R2 × S1 → R

2 of
Theorem 6.2 have the form

vε(z, t ) = e2i t Vε(e−i t z/ε),

for a map Vε of the form

Vε(z) := w(z − d̃ε)w(z + d̃ε)[¸ · (1+ iÈε)+ (1−¸) ·e iÈε]

(see [11, eq. (3.2)]), where w : R2 →R
2 is the radially symmetric solution of

∆v + (1−|v |2)v = 0

with degree one constructed in [13], d̃ε ∈R
2 are points in the plane with

|d̃ε| É
C

ε
√

|logε|
,
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¸ is a cutoff function of the form

¸(z) = ¸1(|z − d̃ε|)+¸1(|z + d̃ε|),

with ¸1(t ) = 1 for t É 1 and ¸1(t ) = 0 for t Ê 2, and Èε : R2 → C is an unknown function
whose implicit construction (with estimates) is the content of the proof of Theorem 6.2.

It follows from [11, Proposition 6.1] (see also [11, p. 18] for the definition of ∥È∥∗) that
the real part ℜ(Èε) of Èε satisfies

(6.5) |ℜ(Èε)| É
C

|logε|
where min{|z ± d̃ε|} > 2

and, for any fixed Ã ∈ (0,1], the imaginary part satisfies1

(6.6) |ℑ(Èε)| ÉC (Ã)(|z − d̃ε|Ã−2 +|z + d̃ε|Ã−2 +ε2−Ã) where min{|z ± d̃ε|} > 2.

In particular, where min{|z ± d̃ε|} > 2, we have

|1−|Vε(z)|| = |1−|w(z − d̃ε)||w(z + d̃ε)|e−ℑ(Èε)|

É |1−|w(z − d̃ε)||+ |1−|w(z + d̃ε)||+ |1−e−ℑ(Èε)|

ÉC (Ã)(|z − d̃ε|Ã−2 +|z + d̃ε|Ã−2 +ε2−Ã),

where we used that the model single-vortex solution w(z) satisfies 0 É 1−|w(z)| É C
|z|2 (cf.

[11, Lemma 7.1]). In particular, scaling back down to the solutions vε = e2i t Vε(e−i t z/ε), it
follows that

|1−|vε(z, t )|| ÉC (Ã)ε2−Ã(|z −e i tεd̃ε|Ã−2 +|z +e i tεd̃ε|Ã−2 +1)

where |z±e i tεd̃ε| > 2ε. Also, from the bound (A.2) in the appendix (and a trivial rescaling),
we have |u(x)| É 1+Cε2R−2 on BR/2(0), for all R Ê 1, which implies that |vε| É 1 everywhere.

In particular, by the preceding estimates, setting

Äε(z, t ) := min{|z −e i tεd̃ε|, |z +e i tεd̃ε|},

we see that for Ã,Ä ∈ (0,1)
ˆ

D2ε−Ä×S1

(1−|vε|2)2

ε2
É
ˆ

{ÄεÉ2ε}

(1−|vε|2)2

ε2

+
ˆ

{4ε−ÄÊÄε>2ε}

(1−|vε|2)2

ε2

ÉCε2 ·
C

ε2
+C (Ã)

ˆ

{4ε−ÄÊÄε>2ε}

1

ε2
[ε2−Ã(ÄÃ−2

ε +1)]2

ÉC +
C (Ã)

ε2
·ε2(2−Ã)(ε2Ã−2 +ε−2Ä)

ÉC (Ã)(1+ε2(1−Ã−Ä)),

1Note that the first occurrence of εÃ−2 in the definition of ∥È2∥2,∗ from [11, p. 18] should read ε2−Ã.
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where we used the coarea formula to bound
´

{4ε−ÄÊÄε>2ε}Ä
2(Ã−2)
ε ÉC (Ã)ε2Ã−2 (as each level

set {Äε = r } has length at most Cr ); hence, taking Ã= 1−Ä gives

(6.7)

ˆ

D2ε−Ä×S1

(1−|vε|2)2

ε2
ÉC (Ä)

for all Ä ∈ (0,1), and thus also for all Ä ∈ [0,1).
With the bound (6.7) in place, it follows from Theorem A.4 (after a suitable rescaling)

that

(6.8)

ˆ

Dε−Ä×S1
|d |vε||2 ÉC (Ä)

as well, so to obtain the desired energy estimates for vε, it remains to estimate the contri-
bution from

|d vε|2 −|d |vε||2 = |vε|−2| j vε|2,

recalling that
j vε = v∗

ε (r 2 d¹) = v1
ε d v2

ε − v2
ε d v1

ε .

To start, observe that on {Äε É 4ε}, we have

(6.9)

ˆ

{ÄεÉ4ε}
|d vε|2 ÉCε2 ·

C

ε2
ÉC ,

so we only need to estimate the energy contribution from the region

A := [Dε−Ä ×S1]∩ {Äε Ê 4ε}.

To this end, for R ∈ [2ε,2ε−Ä], consider the annular regions

ΩR := {R < Äε(z, t ) < 5R}

and
Ω

′
R := {2R É Äε(z, t ) É 4R},

so that, for ε< ε0(Ä) sufficiently small (since |e i tεd̃ε| ÉC /
√

|logε| É ε−Ä), we have

(6.10) A ¦
Jε,Ä
⋃

j=1
Ω

′
2 j ε

where Jε,Ä := +log(ε−Ä−1)/ log2, and, for ε< ε1(¶,Ä) (since |e i tεd̃ε| ÉC /
√

|logε| É 1
2¶ε

−Ä),

(6.11) [Dε−Ä \ D¶ε−Ä]×S1 ¦
Jε,Ä
⋃

j=Iε,Ä,¶

Ω
′
2 j ε

where Iε,Ä,¶ := +log(¶ε−Ä−1)/ log(2),−3. Now, given R ∈ [2ε,2ε−Ä], let ÇR be a cutoff function
such that

0 ÉÇR ∈C∞
c (ΩR ), ÇR ≡ 1 on Ω

′
R , |dÇR | É

C

R
.

Next, observe that where Äε Ê 2ε, vε has the form

vε(z, t ) = e2i t w(e−i tε−1z − d̃ε)w(e−i tε−1z + d̃ε)e iÈε(e−i tε−1z),
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and since the model single-vortex solution w satisfies w(z)
|w(z)| =

z
|z| , it follows that

vε(z, t )

|vε|(z, t )
=

z −e i tεd̃ε

|z −e i tεd̃ε|
·

z +e i tεd̃ε

|z +e i tεd̃ε|
·e iϕε ,

where we set
ϕε(z, t ) :=ℜ(Èε(e−i tε−1z)).

It is straightforward to check that
∣

∣

∣

∣

d

(

z ±e i tεd̃ε

|z ±e i tεd̃ε|

)∣

∣

∣

∣

É
C

|z ±e i tεd̃ε|
,

and as a consequence,

| j (vε/|vε|)−dϕε| = | j (e−iϕεvε/|vε|)| É
C

Äε

where Äε Ê 2ε. Moreover, recall that, since vε solves the Ginzburg–Landau equations, we
have as always d∗ j vε = 0; as a consequence, for any R ∈ [2ε,2ε−Ä], we see that

ˆ

Ç2
R+ j vε,dϕε, =−

ˆ

ϕε+ j vε,d(Ç2
R ),,

and therefore
ˆ

Ç2
R |vε|−2| j vε|2 =

ˆ

Ç2
R+ j vε, j (vε/|vε|),

=
ˆ

Ç2
R+ j vε, j (vε/|vε|)−dϕε,+

ˆ

Ç2
R+ j vε,dϕε,

É
ˆ

Ç2
R | j vε| ·

C

Äε
−
ˆ

ϕε+ j vε,d(Ç2
R ),

ÉC∥ÇR j vε∥L2

(ˆ

Ä−2
ε Ç2

R +∥ϕε dÇR∥2
L∞ · |ΩR |

)1/2

.

Now, since ÇR is supported on the set ΩR = {R < Äε < 5R}, whose area is ÉC R2, we see that
ˆ

Ä−2
ε Ç2

R É
ˆ

ΩR

C

R2
ÉC .

Moreover, it follows from (6.5) that |ϕε| É C
|logε| on ΩR for R Ê 2ε, so that

∥ϕε dÇR∥2
L∞ · |ΩR | É

C

|logε|2
·

C

R2
·C R2 É

C

|logε|2
.

Finally, since |vε| É 1, we have

∥ÇR j vε∥L2 É ∥ÇR |vε|−1 j vε∥L2 ,

and putting together the preceding computations gives

∥ÇR |vε|−1 j vε∥2
L2 ÉC∥ÇR |vε|−1 j vε∥L2 ,
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and hence

(6.12)

ˆ

Ω
′
R

|vε|−2| j vε|2 É
ˆ

Ç2
R |vε|−2| j vε|2 ÉC .

Now, applying (6.10), it follows that
ˆ

Dε−Ä×S1
|vε|−2| j vε|2 =

ˆ

{ÄεÉ4ε}
|vε|−2| j vε|2 +

ˆ

A

|vε|−2| j vε|2

ÉC +
∑Jε,Ä

j=1

ˆ

Ω
′
2 j ε

|vε|−2| j vε|2

ÉC +C Jε,Ä

ÉC log(1/εÄ+1),

and since we have already shown (in (6.7) and (6.8)) that
ˆ

Dε−Ä×S1
(eε(uε)−|vε|−2| j vε|2) ÉC (Ä),

it follows that
ˆ

Dε−Ä×S1
eε(uε) ÉC log(1/εÄ+1)+C (Ä) ÉC log(1/εÄ+1)

for ε< ε0(Ä) sufficiently small, as claimed.
Moreover, for any ¶ ∈ (0,1) and ε < ε0(¶) sufficiently small, it follows from (6.11) and

(6.12) that
ˆ

[Dε−Ä\D¶ε−Ä ]×S1
|vε|−2| j vε|2 É

∑Jε,Ä

j=Iε,Ä,¶

ˆ

Ω
′
2 j ε

|vε|−2| j vε|2

É
∑Jε,Ä

j=Iε,Ä,¶
C

=C (+log(ε−Ä−1)/ log2,− (+log(¶ε−Ä−1)/ log(2),−3))

ÉC (5− log(¶)),

hence
ˆ

[Dε−Ä\D¶ε−Ä ]×S1
eε(uε) ÉC (¶,Ä),

completing the proof of the claim. □

APPENDIX.

In this appendix we collect some fundamental estimates for maps u : B n
1 (0) → C which

are critical for the Ginzburg–Landau energy

Eε(u) =
ˆ

B1

(

|du|2g
2

+
W (u)

ε2

)

d volg ,
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with respect to a smooth Riemannian metric g , defined on the closure B 1. Recall that u

solves the nonlinear elliptic equation

ε2
∆g u + (1−|u|2)u = 0.

In the proof of these results a central ingredient, which also appears in our arguments, is
the following monotonicity formula (see, e.g., [25, Proposition A.1]).

Proposition A.1. For any x ∈ B n
1 (0), denoting by Bs(x) the geodesic ball with respect to g ,

we have

d

d s

(

eC (g )s2 Eε(u;Bs(x))

sn−2

)

Ê
1

sn−2

ˆ

∂Bs (x)
|∂¿u|2g +

1

sn−1

ˆ

Bs (x)

2W (uε)

ε2
(A.1)

for all s ∈ (0, injg (x)), where we omit the volume element of g . In particular,

s 7→ eC (g )s2 Eε(u;Bs(x))

sn−2

is an increasing function of the radius s ∈ (0, injg (x)).

Note that the constant C (g ) → 1, when we let g converge smoothly to the Euclidean
metric. We also record some useful pointwise bounds for u and its differential.

Proposition A.2. Assuming εÉ 1, on the smaller ball B n
1/2(0) we have

|u(x)| É 1+C (g ,n)ε2, |du|g É
C (g ,n)

ε
.(A.2)

Also, if the energy Eε(u) ÉΛ|logε|, then on B n
1/2(0)

|du|2g É
1−|u|2

ε2
+C (g ,Λ,n).(A.3)

Proof. The function Ä := |u| satisfies

−∆gÄ+
(Ä+1)(Ä−1)Ä

ε2
É 0,

while it is easy to check that, for any fixed s ∈ ( 1
2 ,1), bµ(x) := 1+µε2 s2

(s2−|x|2)2 is a supersolu-

tion on Bs = B n
s (0), for µÊ µ(g ,n) > 0 large enough.

On Bs , we have Ä É bµ for some least µ Ê 0. However, we cannot have µ Ê µ, since
then the supersolution bµ would touch the subsolution Ä from above (at an interior point),
violating the maximum principle for semilinear equations.

Thus, we must have Ä É bµ on Bs , and letting s → 1 we get

|u(x)| É 1+C (g ,n)
ε2

(1−|x|2)2

on B1, from which the first half of (A.2) follows. Using also the equation, it follows that

|u| ÉC (g ,n) and |∆g u| É C (g ,n)
ε2 on B15/16, which easily imply the bound

|du|g É
C (g ,n)

ε
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on B7/8. Indeed, the bounds |ũ| + |∆g̃ ũ| É C (g ,n) for ũ(x) := u(εx) on B15/16ε (with the
rescaled metric g̃ ) easily give the desired bound |dũ|g̃ É C (g ,n) on any ball B1/8(x) ¦
B7/8ε(0), hence on B7/8ε (as εÉ 1).

It is interesting to observe that, even without assumptions on the energy of u on B1,

the previous inequalities give Eε(u;B1/2) É C (g ,n)
ε2 (which is sharp, for the trivial unstable

solution u ≡ 0).
In order to improve on the previous pointwise bound for |du| = |du|g , we observe that

∆g
|du|2

2
Ê +du,d∆g u,+Ricg (du,du) Ê−

1−|u|2

ε2
|du|2 −∥Ricg ∥L∞ |du|2

by Bochner’s formula, and

∆g
1−|u|2

2ε2
=

|u|2

ε2
·

1−|u|2

ε2
−
|du|2

ε2
.

As a consequence, the difference

f :=
|du|2

2
− (1+ε2∥Ricg ∥L∞)

1−|u|2

2ε2

satisfies

∆g f Ê
2|u|2

ε2
f .

In particular, the positive part f + is subharmonic, and it follows that

f ÉC (g ,Λ,n)|logε|

on B7/8. Also, by the bound |du| É C (g ,n)
ε and Theorem A.5 below, we have

ˆ

B3/4∩{|u|É 1
2 }

f + ÉC (g ,n)

ˆ

B3/4

W (u)

ε2
ÉC (g ,Λ,n).

On the other hand, the subequation for f easily implies that
ˆ

B7/8

ϕ2
[

|d f +|2 +
|u|2

ε2
( f +)2

]

ÉC

ˆ

B7/8

( f +)2|dϕ|2,

for any ϕ ∈C∞
c (B n

7/8). In particular, by Cauchy–Schwarz,

ˆ

B3/4∩{|u|Ê 1
2 }

f + ÉC (g ,n)

[

ˆ

B7/8∩{|u|Ê 1
2 }
|u|2( f +)2

]1/2

ÉC (g ,Λ,n)ε|logε|,

where we used the bound 0 É f + É C (g ,Λ,n)|logε| on B7/8. Together with the previous
bound, using again the subharmonicity of f +, we arrive at

f ÉC (g ,n)

ˆ

B3/4

f + ÉC (g ,Λ,n)(1+ε|logε|)

on B1/2, which gives (A.3). □

In the asymptotic analysis, the most fundamental tool is the clearing-out for the vor-
ticity, which we state here for arbitrary metrics (the proof is a simple localization of the
arguments from [24, Section 4.3]).
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Theorem A.3. Given ´ ∈ (0,1), there exist constants ¸(´,n) and c(´, g ,n) such that, for a

geodesic ball Br (x) ¦ B n
1 (0) with εÉ r É c, if Eε(u;Br (x)) É ¸r n−2 log(r /ε), then |u(x)| >´.

As we saw in (2.5), the logarithmic growth of the energy exhibited by typical solutions
u is caused solely by the angular part j u = u∗(r 2 d¹) = u1 du2 −u2 du1 of the differential.
This fact relies on two inequalities: first of all, we can bound the radial part d |u| in terms
of the potential as follows (see, e.g., the argument from [7, pp. 329–331], which readily
generalizes to arbitrary metrics).

Proposition A.4. On the smaller ball B1/2 = B n
1/2(0) we have

ˆ

B1/2

|d |u||2 ÉC (g ,n)

ˆ

B1

(1−|u|2)2

4ε2
+C (g ,n)ε2,(A.4)

provided that εÉ 1.

Also, we have the following sharp bound, which constitutes one of the main contribu-
tions of [7], and allows to deduce the same bound for the previous integral of |d |u||2.

Proposition A.5. On the smaller ball B1/2 = B n
1/2(0) we have

ˆ

B1/2

(1−|u|2)2

4ε2
ÉC (g ,n)

Eε(u;B1)

|logε|
log

(

2+
Eε(u;B1)

|logε|

)

,(A.5)

provided that εÉ c and Eε(u;B1) É ε−³0 , for some c = c(g ,n) and ³0 =³0(n). In particular,

assuming Eε(u;B1) ÉΛ|logε|, it follows that
ˆ

B1/2

(1−|u|2)2

4ε2
ÉC (g ,Λ,n)

for ε small enough.

The proof relies on a covering argument using Theorem A.3 (see [7, pp. 323–328]2), and
adapts to arbitrary metrics with straightforward modifications, using balls with respect
to g in the statement of [7, Proposition 2.4] (see [12, Thereom 2.8.14] for a proof of the
Besicovitch covering theorem on Riemannian manifolds).

The conclusion then follows from an estimate off the vorticity set {|u| É 1−Ã0}, for some
Ã0 small enough (see [7, Theorem 2.1]3).

On an unrelated note, we also record the following useful Lorentz estimate for a Riesz
potential, which is used in the proof of Theorem 3.3. Recall that, for a function f : Rm →R,

2Note that (2.3) in [7, Proposition 2.2] should read |uε(x)| É 1+ Cε2

dist(x,∂Ω)2 (which follows from the bound (A.2)
in the present paper, by scaling) and that the assumption in [7, Proposition 2.2 and Proposition 2.3] should
be dist(x,∂Ω) > ε.
3We point out the following misprints: in (A.5), a = (1−¹ε)(2−¹ε)

ε2 Ê 1
2ε2 (we assume |uε| Ê 1

2 ); in equations
(A.11)–(A.12) some signs are wrong, but this does not affect the argument; most importantly, in (A.21) the
right-hand side is just C∥eε(uε)∥1/2

L1(B1)
but, assuming (without loss of generality) q

q−2 Ê 2, the last estimate

on p. 347 still implies (A.23) with ´q = (2−³0) q−2
q

∈ (0,1), as well as (A.25) with the same ´q (by (A.20) with
q = 2).
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its L2,∞-quasinorm is defined as

∥ f ∥L2,∞(Rm ) = sup
¼>0

¼|{| f | >¼}|1/2.

Proposition A.6. If f , g : Rn →R satisfy

| f | É
1

|x|n−1
∗|g |,

then for any y ∈R
n−2 we have

∥ f (y, ·)∥L2,∞(R2) ÉC (n)sup
r>0

1

r n−2

ˆ

B n−2
r (y)×R2

|g |.(A.6)

Thus, the exponent n
n−1 in the classical Sobolev bound ∥ f ∥Ln/(n−1),∞ ÉC (n)∥g∥L1 can be

improved to 2 (the exponent that we have on the plane), on a slice {y}×R
2, provided that

we control the maximal function on the right-hand side of (A.6).
The proof is presented in [18, Lemma A.2] when n = 3, but it is straightforward to adapt

it to the case of general n.
Finally, we briefly show how one can obtain precise asymptotics for the (local) Green

function of ∆H , the Hodge Laplacian on k-forms, even when the metric is not Euclidean.
Let U ¢ R

n be a bounded smooth domain (n Ê 3), together with a smooth metric g on U .
Let us fix an orthonormal frame (ωi )i∈I for the bundle of k-forms on U .

Proposition A.7. Given a compact subset K ¢ U , there exists Gi ,p ∈ Ω
k (U \ {p}) for every

p ∈ K , satisfying

∆HGi ,p = ¶p ·ωi (p)

on U , in the distributional sense, and such that the difference

Hi ,p (q) :=Gi ,p (q)−G(dist(p, q))ωi ,p (q)

obeys the bounds

|Hi ,p (q)| ÉC dist(p, q)3−n , |∇Hi ,p (q)| ÉC dist(p, q)2−n

for q ∈U , for some constant C =C (g ,K ,U ), where G(r ) := 1
n(n−2)ωn r n−2 is the standard Green

function onR
n and dist(p, q) is the geodesic distance induced by g (the constant C → 0 when

g converges to the Euclidean metric in the smooth topology).

It is clear from the proof that Gi ,p (q) and ∇Gi ,p (q) depend continuously on the couple
(p, q), away from the diagonal {p = q}. With this proposition in hand, we can then easily
invert the Hodge Laplacian (locally): given ¸ ∈Ω

k (U ), the convolution

´(q) :=
∑

i∈I

ˆ

K

Gi ,p (q)+¸(p),ωi (p),d volg (p)

then satisfies ∆H´ = ¸ on the interior of K , and the previous bounds for Hi ,p imply that
´ resembles the usual convolution with the Euclidean Green function (at small scales, or
when g is almost flat).

Proof. For any (smooth) differential form ω ∈Ω
k (U ) we can find a unique ³ ∈Ω

k (U ) such
that ∆H³ = ω, with each component of ³ vanishing at ∂U . Such ³ can be obtained by
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minimizing the energy

³ 7→
ˆ

U

( |d³|2

2
+
|d∗³|2

2
−+³,ω,

)

in the space W 1,2
0 (U ,Λk

R
n) (note that ∥³∥W 1,2 É C (g ,U )(∥d³∥L2 +∥d∗³∥L2 ) for ³ in this

space, by [15, Theorem 4.8] and a simple compactness and contradiction argument). We
have ∥³∥W 1,2(U ) ÉC (g ,U )∥ω∥L2(U ) and, by standard elliptic regularity for systems,

∥³∥Ls (U ) ÉC (g , s,U )∥ω∥Lt (U )(A.7)

for all s, t ∈ (1,∞) such that 1
s
> 1

t
− 2

n
.

Fix a cutoff function Ç ∈C∞
c (U ) with Ç≡ 1 near K , and let

G̃i ,p (q) :=Ç(q)G(dist(p, q))ωi ,p (q)

for any fixed p ∈ K , whereωi ,p ∈Ω
k (U ) is such thatωi ,p (p) =ωi (p) and∇ωi ,p (p) = 0. Using

normal coordinates centered at p, it is easy to check that

|∆HG̃i ,p | ÉC (g ,K ,U )dist(p, q)2−n ;

hence, ∆HG̃i ,p coincides with a k-form ϕi ,p ∈ Lt (U ) on U \ {p}, where t ∈ (1, n
n−2 ).

On the other hand, an integration by parts shows that

∆HG̃i ,p = ¶p ·ωi ,p (p)+ϕi ,p = ¶p ·ωi (p)+ϕi ,p

on U , in the distributional sense. As explained above, by approximating ϕi ,p with smooth
k-forms, we can then find ³=³i ,p such that ∆H³i ,p =ϕi ,p and (A.7) holds (with ω :=ϕi ,p ).
To conclude the proof, we show that |∇³(q)| ÉC dist(p, q)2−n for some C =C (g ,K ,U ); the
conclusion will follow by taking Gi ,p := G̃i ,p −³i ,p .

But indeed, considering the rescaled k-form ³r (x) :=³(p + r x), we see that

∥∆H³r ∥L∞(A) ÉCr 2∥ϕi ,p∥L∞(Br \Br /2) ÉCr 4−n , ∥³r ∥Ls (A) ÉC (s)r−n/s

whenever 1
s
> 1− 4

n
, for the annular region A := B1 \ B1/2, provided that r is small enough

(with C depending also on g ,K ,U ). By standard elliptic regularity, we then obtain |∇³r | É
C (s)(r 4−n + r−n/s) on A, which gives

|∇³(q)| ÉC (s)(dist(p, q)3−n +dist(p, q)−1−n/s).

Taking s sufficiently close to n
n−4 (if n > 4, or to ∞ if n = 4) gives the claim for n Ê 4; when

n = 3, from ∆H³=ϕi ,p we can immediately conclude that |³| ÉC , and we can take s :=∞
in the previous bound to conclude that |∇³(q)| ÉC dist(p, q)−1. □
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