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Abstract. Given a family of critical points u. : M"* — C for the complex Ginzburg-Landau

energies
/ (Ialul2 (1 -|uP)?
E&'(u) = + )
M 2 482

on a manifold M, with natural energy growth E.(u.) = O(llogel), it is known that the
vorticity sets {|ug| < %} converge subsequentially to the support of a stationary, rectifiable
(n —2)-varifold V in the interior, characterized as the concentrated portion of the limit
lim,_.¢ fﬁgé% of the normalized energy measures. When n = 2 or the solutions u, are energy-
minimizing, it is known moreover that this varifold V is integral; i.e., the (n — 2)-density
0" 2(|V],x) of |V| takes values in N at |V|-a.e. x € M. In the present paper, we show that
for a general family of critical points with E.(u.) = O(|lloge|) in dimension n = 3, this en-
ergy quantization phenomenon only holds where the density is less than 2: namely, we prove
that the density@)"‘z(l V1, x) of the limit varifold takes values in {1}U[2,00) at|V|-a.e. x € M,
and show that this is sharp, in the sense that for any n = 3 and 0 € {1} U [2,00), there exists
a family of critical points u, for E, in the ball B{' (0) with concentration varifold V given by

an (n—2)-plane with density 0.

© Alessandro Pigati and Daniel Stern
©@ @ Licensed under a Creative Commons Attribution License (CC-BY).



2 A. Pigati & D. Stern

Keywords. Ginzburg-Landau vortices, quantization, varifolds, minimal surfaces, calculus
of variations of the area.

1. INTRODUCTION

1.1. The Ginzburg-Landau equations and the integrality question. A complex valued
map u: M — C on a Riemannian manifold (or Euclidean domain) M is said to satisfy the
Ginzburg-Landau equations with parameter € > 0 if

(1.1) EAu=DWw) =-1-u®u,

where A = —d*d and W : R> — R? is the nonlinear potential W (u) = %(1 —|ul®?. The
system (1.1) arises as the Euler-Lagrange equations for the energy functional

(1.2) Eg(u)::/ eg(u)=/ (lldu|2+ W(zu)),
M M\2 3

which combines the usual Dirichlet energy f % |du|? with a nonlinear term f % which
penalizes the deviation of the values u from the unit circle S! = C, with increasing severity
ase—0.

While the study of the system (1.1) can be traced back to Ginzburg and Landau’s work
on superconductivity in the 1950s, the subject captured the attention of the geometric
analysis community about thirty years ago, with the publication of the influential mono-
graph [5] by Bethuel-Brezis—Hélein. The investigations of [5, 26], and others of this pe-
riod focused on solutions u, : Q — R? on simply connected planar domains Q < R? ob-
tained by minimizing E. with prescribed boundary data g : 9Q — S! of nonzero degree
deg(g,0Q) # 0, motivated by the search for a canonical ‘energy-minimizing’ extension
u, : Q — S! of g, in a setting where no finite-energy extension exists. It was shown that
these maps u, converge as £ — 0 to a singular harmonic S!-valued extension u, : Q — S! of
g, whose singularities minimize a certain interaction energy between points in the plane.
Moreover, these maps have energy E. (u,) = w|deg(g)|log(1/€)+0O(1) as € — 0, with the nor-
malized energy measures nfgg(?f/) 5 dx converging to a sum of Dirac masses at the |deg(g)
singular points of u,. Non-minimizing critical points on two-dimensional domains were
also studied, e.g., in [4] and [10].

Later, attention turned to solutions of (1.1) in dimension 7 = 3, with the work of Riviéere
[21], Lin-Riviere [17, 18], Jerrard—Soner [16], Bethuel-Brezis—Orlandi [6], and others. For
solutions u, : Q < R" — C of (1.1) in higher dimensional domains, satisfying the natural
energy growth E.(u,) = O(/logel), it was shown that the zero sets u; {0} converge (roughly
speaking) to the support of a generalized minimal submanifold of codimension two. In
particular, following the analysis of [6] (see also [24]), one arrives at the following asymp-
totic description of solutions as € — 0.

Theorem 1.1. Given a manifold M" without boundary, of dimension n = 3, assume that
we have a sequence of maps u. : M — C (indexed by a sequence € — 0) solving (1.1), with
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respect to a smoothly converging sequence of metrics g — 8o, such that

. 1 W (ue)
limsup 5
e—o0 |logel Jx £
for all compact K < M. Then, up to a subsequence, the normalized energy densities

1 2
(Elduglgs+ dvolg, <oo

ec(u lduelz, W
_ Celtle) volg,, wheree.(u,) := ;g + (28),
€

€=
n|loge|
converge to a Radon measure u which decomposes as
(1.3) p=V|+ fvolg,
for a suitable smooth nonnegative function f : M — R and a stationary rectifiable (n — 2)-
varifold with density ®"2(|V|,-) = c(n) > 0 on its support. Also, the measures Wg(é‘g) volg,
converge to a limit measure satisfying

w
(1.4) lim (;“‘ e)
e—0 fot

volg, < C(K)|V]

for all compact K < M. Finally, spt(|V]) is the limit of the sets {|u.| < B} in the local Haus-
dorff topology, for any B € (0,1).

Remark 1.2. Since the variants of Theorem 1.1 appearing in (6, 24] are not quite stated in
this form, we later include a sketch of the proof for the reader’s convenience. We note also
that the last statement is true even for 3 = 0; in this case, it follows from some arguments
contained in the present paper (see Theorem 4.5 below).

The simple example u,(x) = /1 — €2 kg etkeX on the circle M = R/27Z, with ke € N satis-
fying k. ~ v/|logel, shows that the limit measure u can be completely diffuse. In [25] (see
also [9]), it was shown however that any closed Riemannian manifold (M, gp) of dimension
= 2 admits a family of solutions satisfying the hypotheses of Theorem 1.1 with g, = gy for
which the energy concentration varifold V is nonzero, and it is expected that many such
families exist.

While results like Theorem 1.1 reveal a strong link between solutions of (1.1) and mini-
mal varieties of codimension two, the result sheds little light on the structure of the limit
varifold. In particular, the weakest notion of minimal variety typically considered in geo-
metric measure theory is not the stationary rectifiable varifold, but the slightly stronger
stationary integral varifold, which satisfies the additional condition that the density of its
weight ®"2(|V|, x) takes values in N for | V|-almost every X.

For some formally similar (though qualitatively rather different) families of equations
like the Allen-Cahn equations or the self-dual abelian Higgs equations, results analogous
to Theorem 1.1 do indeed give energy concentration along stationary integral varifolds of
codimension one [14] and codimension two [20], respectively. Moreover, the results of [17]
for E.-minimizing solutions of (1.1) and [10] for general solutions in dimension two reveal
that integrality of the limit varifold holds in these cases. All of these observations naturally
lead us to the following question.
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Question 1.3. When n = 3, is the stationary varifold V arising from a family of solutions to
(1.1) as in Theorem 1.1 necessarily integral? In other words, is the energy of u. quantized
along the concentration set?

For an equivalent formulation, consider the set 2 c (0,00) of positive real numbers 6 €
(0,00) for which there exists a family u. : B{'(0) — R? of solutions to (1.1) in the unit n-
ball whose energy concentrates along an (n — 2)-plane P c R” with (necessarily constant)
density 0, in the sense that

pe —* 0" 2P
By a straightforward blow-up argument, it is easy to check that Theorem 1.3 has a positive
answer if and only if 2 = N\ {0}.
In the present paper, we answer Theorem 1.3 in the negative, proving instead that

2 ={1}U[2,00) 2 N\ {0}.

In other words, we prove that the density O"2(|V|,-) of the energy concentration varifold
Vin Theorem 1.1 takes values in {1}U[2,00) almost everywhere, and give examples to show
that this cannot be improved in general.

1.2. Quantization and non-quantization results. The bulk of the paper is devoted the
proof of the following theorem, showing that 2 < {1} U [2,00), and hence that the density
of the limiting energy measure in Theorem 1.1 is indeed quantized where Q" 2(|V|,-) < 2.

Theorem 1.4. In the setting of Theorem 1.1, assume moreover that M = B}'(0) and g is the

Euclidean metric. If the energy densities concentrate along the plane P = R"™2 x {0} with

constant multiplicity 0 € (0,00), i.e.,
e (Ue)
m|loge]

in CO(M)*, then 0 € {1} U [2,00).

volg, — 07" *L_Pn B} (0)

In the general setting of Theorem 1.1, by applying Theorem 1.4 to a family of rescaled
solutions in balls centered at a point where the varifold V has flat tangent cone, we arrive
at the following corollary.

Corollary 1.5. Under the hypotheses of Theorem 1.1, the (n —2)-varifold V has density

" 2(|V|,x) = lim'V'(B—r(’f)Z) € {1} U [2,00)
r=0 Wp—pr"

for|V]-a.e. x.

Previously, the best known lower bound for non-minimizing solutions u, in dimension
n = 3 was the non-explicit lower bound " 2(|V|,) =c(n) >0, a consequence of the fol-
lowing important result, obtained by different methods in [18] when n = 3, and in [6] for
n = 3, which is the key ingredient in the proof of Theorem 1.1. In later works it was sug-
gestively called clearing-out for the vorticity. Here, for simplicity, we state it for the flat
Euclidean metric.
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Theorem 1.6. [18, 6] There exists a constantn(n) > 0 such that, if
Ec(ug; By (0) <nr’?log(r/e),

for a ball B, (x) in the domain with r = €, then |u.(x)| > %

By a trivial covering argument, up to changing the constant n(n), one then obtains that
lue| > % on the entire smaller ball B,/»2(x). When u, is a typical two-dimensional vortex
centered at x, then the energy is ~ r*2log(r/¢). Thus, Theorem 1.6 essentially says that, if
the energy is much smaller than the expected one, then indeed there cannot be any vortex
on a smaller ball.

While it is possible to obtain explicit lower bounds for the energy threshold n(n) using
the arguments of [6], the resulting bounds are non-sharp. As a simple consequence of
Theorem 1.5, we obtain the following sharp version of Theorem 1.6.

Corollary 1.7. Foranyn < m-w,_» there exists 6(n,n) > 0 such that, if
E¢(ug; By (x)) <nr"2log(r/e)
ande < 0r, then |ugs(x)| > %

For otherwise, since by scaling we can assume that x = 0 and r = 1, there would ex-
ist a sequence u, with ¢ — 0 and energy at most n|loge| on B;(0), but with |u.(0)] < %
By Theorem 1.1, the point 0 would belong to the support of the energy concentration
varifold V. Since V is stationary, Theorem 1.5 and upper semicontinuity of density give
®"2(|V|,0) = 1, which gives |V|[(B1(0)) = w,—» by the monotonicity formula. However,
this contradicts the fact that
E¢(ue; B1(0)) _n

wn_z.
n|loge|

IV1(B1(0)) < u(B1(0)) < limiglf
E—

Note that for any f < 1 the same argument gives |u.(x)| >  provided that we assume
Ec(ug; Br(x)) < nr"‘2 log(r/e) forn<nw;,-»and e <6(B,n,n)r.

Remark 1.8. It seems likely that variants of Theorem 1.4 and Corollary 1.7 should hold in
the parabolic setting as well, yielding, e.g., a sharp version of [8, Theorem 1].

Building on these observations, one can also easily obtain sharp lower bounds on the
energy of nontrivial solutions to the Ginzburg-Landau equations in several settings. For
instance, one obtains the following sharp lower bound on the energy of nonconstant entire
solutions, which was already shown in [23] when 7 = 3 and u is energy-minimizing.
Corollary 1.9. For n = 2, any entire solution u:R" — C of

Au=-(1-luP)u

for which

(1dul?® + W (w))
(1.5) limsup fBR(O) 2

< TWy—
R—oo R"2logR "2

must be a constant map u = el® for some a €[0,2m).
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Itis well known [13] that there exist nonconstant solutions for which equality holds. The
proof is a straightforward consequence of the previous corollary: if the strict inequality
(1.5) holds, then the arguments of the preceding paragraph can be employed to show that
|u| = 1 everywhere on R". Since we also have |u| < 1 +CR2on Bg)» (by rescaling the bound
(A.2) from the appendix), we obtain |u| = 1. Hence, u is harmonic as a map to R2, which
together with (1.5) clearly shows that u must be a constant map to S 1

The other main result gives a converse to Theorem 1.4, showing that {1} U[2,00) € 2, the
novel observation here being that [2,00) \N € 2.

Theorem 1.10. For any 0 € {1} U [2,00), there exists a family of solutions satisfying the hy-
potheses of Theorem 1.4 (with n = 3 and g. = go), with limit density 0.

The examples provided by Theorem 1.10 are obtained by scaling down certain entire
solutions in R® with helical symmetry, constructed in [11]. In particular, we see that the
conclusion of Theorem 1.4 is sharp in dimension = 3, without additional constraints on
the family of solutions.

1.3. Proofideas. Unlike in the asymptotic analysis of the Allen-Cahn or U (1)-Higgs equa-
tions, where most of the energy concentrates at the O(¢) scale about the zero sets of solu-
tions, the main contribution to the [loge| energy blow-up for solutions of the Ginzburg-
Landau equations as in Theorem 1.1 comes from the annular regions of distance £!° <
r < €% about the zero set of a solution us (for 6 € (0, %) small), where u, resembles a har-
monic S!-valued map. In particular, for any a € (0, 1), interactions between distinct com-
ponents of the zero sets u; {0} separated by a distance ~ €% influence the leading-order
behavior of the energy, and the key point in the proofs of Theorem 1.4 and Theorem 1.10
is to understand which kinds of interactions are permissible for solutions of (1.1) in higher
dimension.

Given a family of solutions u, in BJ'(0) with energy concentrating on an (n — 2)-plane
P =R" 2 x{0} as in Theorem 1.4, we show that the limiting multiplicity 8 € (0, 00) for which

e:(ug)

————volg, =" 07" 2P
mlog(1l/¢€)

€

can be computed via the following preliminary energy identity. After passing to a subse-
quence, for a generic sequence y; € B{’_z, the zero set {z € D% : Ug(Ve, 2) = 0} of the so-
lutions u, in the two-dimensional slice {y,} x D% is contained in a collection of m disks
Dce(25),...,Dce(2},) of radius O(e) with centers z5,..., z;,. Denoting by Kj. € Z the local
degree
K; = deg(ug/lugl,chg(zi)) €z,

we then find that (after passing to a subsequence)
: m £\2 £ £|10g|Z§_Z§||
(1.6) 6= lli% ijl(Kj) +221<i<]~sm1<l.1<jW

Note that if all of these degrees Kj- had the same sign, it would follow from (1.6) that
0 = m, and the conclusion of Theorem 1.4 would follow easily, since 6 < 2 would imply
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that there is only m = 1 such disk D¢, (z{), with degree (1<‘i)2 < 2, and therefore 6 = (1<*i")2 =
1. The difficulty in proving Theorem 1.4 therefore lies in the case where the degrees K?

X . . X llog|z%—2z5||
have different signs, so that the interaction terms xx* —

i~j llogel
density 6.
After some reductions, in the proof of Theorem 1.4 we may assume that Iz‘l?l < &9 for
some fixed 6 > 0 for all 1 < i, j < m, and denoting by « the total degree

subtract from the limiting

m
j=1
we argue that (possibly after precomposing u, with a small translation) the energy density
drop of 1, between the scales 1 and £? is given by

E¢ (ug; B1(0) — (€2)2 7" E¢ (4e; By (0) = mw oIk > log(1/€%) + o(|logel).

K= ‘Kj,

By the well-known monotonicity formula for solutions of (1.1), it then follows that

1
2 w
nwn_2|K|210g(1/86)+0(|10g£|)2/ - ()
2 7" g €

)

and one easily concludes that there exists a sequence r, € [€9,1] for which

2 Wug)
1.7 = 28 snwn_2|K|2+0(1).
Te “JB,(0) &

Note that in the two-dimensional setting, a simple argument via a Pohozaev identity up-
grades the inequality (1.7) to equality, which forms the basis for the quantization results
in [10].

We then introduce new estimates relating the potential energy || B,(0) % to the degrees

K?, concluding roughly that

2 Wiue) _ mwn-2py ¢
= 72, 2l
Te B, €

(1.8)

Combining this with (1.7), we deduce in particular that
2
2 Il <2l = 2|27 i
On the other hand, if 0 < 2, then the results of [16] imply that k = +1 or 0, and by the
preceding inequality, it follows that the only possibility is that, for some 1 <i < m, x§ = 1
and K? =0 for all j # i; hence, 8 = 1 by (1.6). This suffices for the proof of Theorem 1.4,
showing that 0 < 2 forces the vortex to occur with multiplicity one.
To prove Theorem 1.10, we observe that the families of entire solutions of (1.1) in R3
constructed in [11], whose zero sets consist of m = 2 degree-one helices separated by a
distance ~ ——— collapsing to the line L = {0} x R, can be blown down by a factor of £” for

v/ lloge|

any fixed 7 € [0, 1), to obtain a new family of solutions to (1.1) with parameter & = ' *7. The
zero sets of these blown-down solutions are then separated by a distance ~ £”[loge|~'/% =
£ [loge|~1/2, and we can use (1.6) to deduce that the limiting energy measure on the line
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L has density
— m . . . ._T = 2— —T
H(m,r)_zj:11+221s,<]<m1 1 T+1—m+(m m)T+1.
In particular, since
0(m, 7)1 T€[0,1)} = [m, 1 (m* + m))

and U%>_, [m, 3 (m? + m)) = [2,00), Theorem 1.10 follows.

Note that the solutions constructed in [11] appear to be quite unstable at large scales; in
particular, it should be possible to decrease the energy via a perturbation that spreads the
m components of the zero set farther apart. From a variational perspective, it would be
very interesting to understand whether an additional assumption of stability or bounded
Morse index of solutions allows one to refine the conclusions of Theorem 1.4, perhaps even
giving a positive answer to Theorem 1.3 in this case.
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2. PRELIMINARY ESTIMATES

In this section we prove Theorem 1.1 and, later, we obtain additional information in the
special situation of Theorem 1.4. While the proof of Theorem 1.1 is simply a localization
of some arguments from [6, 7, 18] and [9, 25], we summarize it here as a convenient way
to fix some notation which will be used in the next sections.

2.1. Proof of Theorem 1.1. Since the statement is local, we can assume that M = BJ(0),
and prove that the conclusions hold on B} ,(0). In the appendix, we recall some funda-
mental estimates from [7], stating them in the case of a general metric. Thus, we are con-
sidering a family of solutions

Ue : BI(0) — C

to the complex Ginzburg-Landau equation

2.1) e Ng, e = —(1— ue*) ue
with 5
|d u| w
/ i -C (;tg) dvolg, < Clloge|
B;’(O) 2 &

for some C > 0 independent of .
First of all, from the local bounds stated in the appendix, it follows that

2
1—uel

2.2) lug| <1+ Ce?, |du5|§ <—5—+C
€ €
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on the smaller ball B;,4 = B?/ 4(0), as well as
w
(2.3) / (|d|u€||2 A dvolg, <C,
Boa 8¢ 82

where, throughout the paper, C denotes different constants which do not depend on ¢, but
possibly on our sequence of solutions (we will, however, emphasize whether such con-
stants depend on additional parameters introduced later on). Henceforth, we suppress
the subscript g, in quantities depending on the metric when the meaning is clear from
context, as well as the volume form.

As in the works quoted above, we introduce the one-forms

Jue:= u;(rzde) =u'du®-u?du',

and observe that

.2
u
\duel? = |dluel? + L]
| Ug|
on {u, # 0}, and consequently
2 a2 2 2 2 s (L—lug®?
(2.4) Nduel® —1juel“l < |dluell” + 11— |ugl“lldue|” < |d|ugll +£—2+C-

Hence, it follows from (2.3) that

(2.5) /
B4

Note moreover that we have

(2.6) d*jue=0,

<C.

1 . 2
eg(ug)—iljuel

as an easy consequence of (2.1). Now, for each u,, we denote by 7 (u.) < By the vorticity
set
V (ue) := {luel < 3},

and define a perturbed map v, : B, — C by

Ve = X ([uel) U,
where y : R — R is smooth and such that y(#) = 1 on [O,i] and y () = % on [%,oo). In

particular,

Ve(x) = ug_(x) eS! forxe Bo \ 7V (ug)
| te (X))
and |v| < Clug|on ¥ (u.). Asin [6, 7, 18], a suitable Hodge decomposition of the one-forms
2.7) Jve=v;(r*d0) = y(ueh? ju,

plays a central role in the analysis. To obtain the exact part of the decomposition, first
consider a solution v, € C*°(B7/4) to the boundary value problem
{d*dw‘g-:d*(ngg):d*(jvg_ju!f) inB7/4)

2.8
28) Ye = 0 on 637/4.
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/ |d1//6|2</ |jV£_jus|2
B4 B4

s/ I (ueh? = 11 uel* | d ug |*
B7/4

Note then that

2 2
SC/ 11— luel“lldugl
B4

w
(by 22) <C W e,
Br14
which together with (2.3) gives
2.9) ljve — juell2s,,,) + ldwel 28, < C.

Next, let ¢ € CZ°(B7/4) be a cutoff function with B3, c< {¢ = 1}, and consider the two-
form

(2.10) Ee:= NG (@djve) =Gx (@djuve),
given by convolution of d jve = 2d v} A dv? (multiplied by the cutoff ¢) where

(G*{)(x):= ) Gi,p(X){(p),wi(p)) dvolg,
ielJ peBya

is the local Green's operator for the Hodge Laplacian Ay = d*d + dd™ with respect to the
metric g. as described in Theorem A.7 (with U := B, and K := B7/4), so that
AH{E = d*dé‘g + dd*fg = (pdjvg.
It is easy to see that ¢ d j v, is supported in ¥ (ue) N B7,4(0), where
W(ue)
£2

(2.11) |djve| < Cldug><C

(since |dug| < % and 1 - |u.|* = % on 7 (ug)). In particular, using Theorem A.7 to bound

IVG;,pl(x) < Cdistg, (x, p)' =", we have

w
(2.12) 1l () + VEe] (x) < C/ distg, (x, y)! " e DD
¥ (ue)NB74 €
and as an easy consequence,
W (u,)
(2.13) I€ellLp By + IVEellLp(Byy) < C(p) 2 S C(p)

B4
forany p e [1, %).
Finally, letting

(2.14) hg ::jUE_d*fé'_dWE)
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observe that &, is harmonic on the interior of {¢ = 1}, since here
Aphe =d*d(jve—d*Se) +dd™ (jue — dye)
=d*(djve—Apée)
= d*(djvs —@djuve)
=0.
In particular, elliptic estimates give

I Rellcr sy, < Cllhell 1B,

and using (2.9) and (2.13), we deduce that

(2.15) lhell 1 sy, < i vell (s, + C < Clloge| 2.

Using again (2.9), (2.14), and the trivial bound || juell;25,) < C lloge|'/?, this also implies

1/2 1/2

(216) ||d*fg||L2(33/2) < ”jvf”Lz(Bg/g) +C+C|10g£| < C|10g€|

Now, let S be the (subsequential) limit of the sets 7 (), in the Hausdorff topology on B,.
(Note that the metrics g, in the family are uniformly equivalent to the Euclidean metric
5, ie, C7! g: < 0 < Cg, on the ball B4, so Hausdorff convergence can be considered
with respect to the Euclidean metric.) This set will be useful in the proof of the following
statement.

Lemma 2.1. Ase — 0, we have

(2.17)

|d*€£||h£| =0.

lim
e—0 [loge| Basa

Proof. If x € S then we can find x, € 7 (u¢) such that x; — x, and by Theorem A.3 we then
have

(2.18) p(Br(x)) = Hmsup 1 (Br-—x,—x (%)) = c(m) im (r = |xe = x)" 7 = e(m)r" ™
e—0 -

for any r < 2 —|x|. By a simple Vitali covering argument, this implies that
(2.19) H_S<C(n)y,

and in particular S is negligible with respect to the Lebesgue measure.
Now, for any § > 0, denoting by Bs(S) the 6-neighborhood of S, we can bound

/ |d*Eelhel < / |d*Eellhel + 11d™ Ecll Lo B3\ By (SN 1 el L1 (s ) -
B3z B312NnBs(S)

By Cauchy-Schwarz, (2.15), and (2.16), the first term is bounded by
1d* &l 128, | Bs()IM? - 1 el oo (By.0) < Cllogel|Bs(S)['2.

Moreover, recalling the definition of S, (2.12) gives

< C(5),

. w W (ug)
(2.20) limsup [|d” ¢ |l 1o (By,,\B5(5) < C(0) 5 £

e—0 By14
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which implies that the second term above is at most C (5)|log£|1/ 2 and (2.17) follows by
letting € — 0 and then § — 0. 0J

By (2.5), (2.9), and (2.14), we have

Ve |? dwe +d* &, + he|? d*&. + h|?
[J,:lim |]V£| :lim| Ve e el d :lim| e el dx
e—02m|loge| e—0 2n|loge| e—~0 27m|loge|
The previous lemma, together with (2.15) and (2.16), implies that
d*&. + h|? 1
p= hm'"rg—gl dx=v+—|ho|>dx on By
e—0 2m|loge| 27

up to subsequences, where h :=lim,_. W is a harmonic one-form, while

* 2
vi= limM dx.
e—02m|loge|

From (2.20) it follows that spt(v) < S, while (2.18) and the structure of y imply

2.21) lim YBr )

—— =c(n)>0,
r—

which forces the reverse inclusion to hold on Bs;;. Thus,
S=spt(v) on Bs/.

Note that the previous argument also shows that lim._.¢{|u#| < §} = spt(v) on B3/, for any
p € (0,1) (without the need of a further subsequence, as any subsequential limit of {|u,| <
B} equals spt(v)).

To prove (1.4), define the measure A :=lim._.¢ Wg‘g) dx, which exists up to subsequences
by (2.3). Note that, by the monotonicity formula (A.1), the rescaled maps iz (x) := u:(p +
rx) (with € = ¢/r) have energy at most C|loge| on B;(0), for p € B3/2(0) and r < %. Applying
Theorem A.5 and scaling back, it follows that rz_”/l(Br/g(p)) < C. Also, from [7, Theo-
rem 2.1] it easily follows that A =0 on Bs;» \ S (since S is the limit of the sets {|u.| < f} for
any € (0,1)). Hence,

A<CA" LS
on B3/, while (2.19) and the structure of p imply that the right-hand side is bounded above
by Cv.
This proves (1.4) and the theorem, provided that we check that v = ul_S coincides with

the weight of a stationary (n — 2)-varifold V for the limit metric gy = lim,_¢ g.. On B3> we
introduce the stress-energy tensor

Tg = eg(u‘g)l_ dub‘ ® dug,

with the implicit scalar product du, ® du, = du} ® du} +du?®du?, and define the measure

To = lim —=— vol,,,
0 —0 r|loge| g
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taking values in symmetric bilinear forms. The fact that u, is critical with respect to inner
variations gives divg, T. = 0, which implies that Tj is also divergence-free, in the sense that
the pairing (T, Vg4, X) vanishes for any C ! vector field X supported in Bs/s.

A computation similar to (2.4), together with (2.3), shows that
( |j tel?

To =lim
0 2

~e—~0m|loge|

I—ju5®ju5)volg£.

Also, (2.9) and (2.17) give

|hol?
To=V+ TI— ho ® hy VOlgO,
with
o |d*€£‘|2 * *

Note that hy is strongly harmonic, meaning that d o = 0 and dg ho = 0: indeed, we already
have dg_he = dg (jve —dy,) = 0 by (2.8); also, (2.13) gives ||dSell11(p,,,) < C, and hence

. dhe . djve—dd*¢, | Apée—dd*i. d*dé,

dhy =1lim =lim =lim————=lim——— =
£0 |10g£|”2 £—0 |10g8|1/2 £—0 |log£|1/2 £—0 |10g€|1/2

on Bs/z, with the limits understood distributionally (where we used (2.14) in the second
equality and (2.10) in the third one). Since hy is strongly harmonic, the term @ I-hy®hy
is divergence-free, and thus divV =0, as well.

Since tr(V) = (n=2)vand {Vw, w)| < |w|?v for any w € R", the measure V can be identi-
fied with a generalized stationary (n—2)-varifold with weight v, according to the definition
from [25, Section A.2]. Since it has positive density on its support by (2.21), it now follows
from the classical result by Ambrosio—Soner [3, Theorem 3.8] that V is actually a rectifiable
varifold.

2.2. Additional bounds in the situation of Theorem 1.4. Suppose now that we are in the
setting of Theorem 1.4. Henceforth, we will assume for simplicity of notation that g; is in
fact equal to the flat Euclidean metric; it is an easy exercise to extend the arguments to
metrics converging smoothly to the Euclidean metric, and we will comment occasionally
on the necessary modifications for this case. Thus, we are considering a family of solutions
ue : B} (0) — C to (2.1), for which the normalized energy measures

_ ee(Ug)
E -~
m|loge|

converge weakly in Cg (B2)™* to a multiple of the (n—2)-plane P = R"2 x {0}
pe — 0A" 2P
ase — 0.

On any domain compactly contained in B, = B»(0), such as By/4, the following is a sim-
ple consequence of the last assumption.
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Lemma 2.2. Writing|du,(P)|*:= X"-|du,(e;)|?, we have

|duc(P)|* = 0.

(2.22) lim
£=0 Bry4

[loge|

Proof. Since the stationary varifold V from Theorem 1.1 coincides with a multiple of P,
viewing V as a matrix-valued measure we can write

(2.23) V=0M#A"LP
where M € R"*" is the orthogonal projection onto P. As seen in the proof of Theorem 1.1,

the normalized stress-energy tensors m%;;(?l converge to V, and by (2.23) this implies that

Te w,
lim/ )(de:/ )(d(Vw,w):/ xdlVv|
e—0 Jp, " mllogel B, B,

for any y € C%(B,) and any unit vector w € P. Recalling the definition of T, and the fact

that
. eq(ue)
hm/ —— :/ xalvy,
e—0 Jp, " m|loge] B
we deduce that lim,_. |’ dug ) _ | Celt) (Teww) _ o A desired O
e—0Jp, X nllogel e—0Jp, X w|logel - :

Using the preceding bounds, we can prove the following key estimates, showing that the
limiting energy density can be computed in terms of the one-form d*¢&,.

Lemma 2.3. Ase — 0, we have

|jue — d*felz =0.

lim
£=0 Bajo

logel

In particular, combining with (2.5) gives

1
(2.24) lim e.(ug) — —|d* &1 = 0.
e—0 2

[loge|

Bs/2

Proof. In view of (2.9), it suffices to show that
(2.25) ljve—d*Eell7zp, ) = ollogel)
as € — 0. Note that

jve - d*ée = he + dWS,

and we know from (2.9) that || dy|?

2By S C, so all that remains is to show that

17l 72 g, ,, = o(logel).
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Since the energy concentrates along P, note that, for any fixed § > 0,

X ||du£||Ll(B7,4) . ||due||L1(B7,4nBé(p))
hmsupw =limsup Togell 2
e—0 oge 0 oge

ldueli12(8,,,nB5P))

< limsup |B7/4 N Bs(P)|'?
£—0 lloge|'/?
< C6,
so that IIduEIIil(&M) = o(|logel). Using (2.15), we arrive at
el 28, < Il tell1s,,) + C = o(logel''?),
and the claim follows. O

Now, denote by Q the cylinder
Q:= B{'"?(0) x D} (0) < B}, (0),

and fix a large constant K > 0, which will be specified in the final part of the proof. In
what follows, we identify a distinguished family of two-dimensional slices perpendicular
to the (n—2)-plane P of concentration, such that the energy density 8 can be computed in
terms of the behavior of the solutions u, along these slices. (Cf,, e.g., [19] or [22] for similar
arguments in the harmonic map or Yang-Mills settings.)

Definition 2.4. Given y € B{’fzz (0), we say that PJJ; = {y} x D% (0) (or simply y) is a 6-good
slice for u; if

sup
0<r<1/2

< dllogel,

rz_”/ ee(Ue) — Twy,—20loge]
BI~2(y)xD?

1 *
ee(Ug) — §|d fslz

sup rz_"/ (IduE(P)|2+|jv£—d*6£|2+
0<r<1/2 B 2(y)x D?

and

) < dllogel,

_ W(u,)
sup r? "/ ( 28 +1&e]| < K.
0<r<1/2 B 2(yxp2 \ €

The first and second conditions require uniform L? vanishing of du.(P) on the cylin-
ders B"2(y) x D% centered at y at all small scales r, and assert that the density 6 can
be computed by integrating any one of e.(u,), %Id*cfglz, or %I jvel? along the cylinders
B/'%(y) x D, or (letting r — 0) along the slice Py = {y} x D3, while the third condition
enforces uniform L! control on the potential % and |¢.| over the same cylinders at all
scales.

Lemma 2.5. Denote by 94, s < Bf/‘zz (0) the collection of 6-good slices for u.. Then, for any
0 >0, we have

limsup IBf/_Z2 \ Y 5l<—.
e—0 K
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Proof. Let Fgl, FE, and Fg’ be the sets of slices where the first, second, and third require-
ments fail, respectively. In view of (2.3) and (2.13), we have

W € W €
/ / ( (g)+|€e| (y,Z)dzdyz/( (u)+l~fg|)<C,
Br2Jp?\ & Q

£2
for some constant C independent of €. The Hardy-Littlewood weak (1, 1) estimate for the

maximal function of
W (ug)
YH/ (—28+|€gl)(y,2)dz
p?\ €&

then implies that
C
|E3| < <
Similarly, from (2.22), (2.24), (2.25), and the maximal inequality, it follows that
|FZ| < (Idug(P)Iz +1jve —d* &l + |ec(ue) — = |d & ) — 0.
Olloge| ) 2

In order to bound the measure of F!, we observe that F! ¢ F!%U F!?, where we denote

by F}% and F}? the sets of slices y € B/"-? such that

_ )
sup r? ”/ e:(ue) = —|loge|
0<r<1/2 BI-2(y)x D2\ D? 2

2

and

sup

o
= —|logel,
0<r<1/2 2

2_
r "/ xee(ueg) —mw,_20|loge|
BI2(y)xD?

2

112 and

respectively, where y = y(z) is a cutoff function supported in D?, with y =1 on D
O<ysl
Since the energy concentrates along P, we have
1

[loge| 2 122 Ce(tte) =0,
8 B = x[DY\Dy ]

which implies that |F}?| — 0, again by the Hardy-Littlewood maximal inequality. Finally,
forye Bglf(O), let

fe(y) ::/ xee(ug) dz.
{y}xD%

Recall that the stress-energy tensor T, = e.(u.)I — du; du, has zero divergence. Hence,
testing against the vector field ¥ (y) y(z) ey gives

J

es(ue)ak(WX):/ 2510 uclucdj(yy),
B}

n
2
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foryeC 1 (35 1 3. In particular, for k=1,...,n -2, (2.22) and Cauchy-Schwarz imply that

feOry

n-2
BS/4

(as Bl xDf < BY,, and |yl < Clldylco). In particular, applying the Hahn-Banach
extension theorem to the functionals

< C||dus||L2(B7,4)||akue ||L2(B7,4)||1l/||c1 < o(llogeDlldw co

Vy — feOky

[loge] B2
on the subspace
Vy |y € Co (B} € Co(BL 2, R™™),
r'()

where C0(85 1 2 R2) = C"O(B5 A 2 Rn- 2) , it follows that there exist vector-valued Radon
measures XS € Co(B*72, R %)* such that

5/4
lim | X5 =0
e—0

and

1
(XE,Vy) = @/feak‘//»

so that div(X}) = 0k ( |]0fgg|)

We can then apply Allard’s strong constancy lemma [2, Theorem 1.(4)] and deduce that

distributionally.

—Elllfe - ae”LI(B{l—Z) -0,

for suitable constants a.. In fact, since |lo_1g£| f gn-2 fe = Twp—20, the same conclusion must
1

hold with a, = n0|loge|. This implies that IFEU’ | — 0, which completes the proof. O

Next, we record the following lemma about the small-scale behavior of the two-form
d jve near a good slice, which we will use repeatedly in subsequent sections to refine our
characterization of the limiting energy measure.

Lemma 2.6. Foranya € (0,1) andy > 0, there exists 61(a,y) € (0,1) such that if By, (x) € Q
is a ball with r = €* for which

(2.26) rz_”/ |due(P)|* < &, logel,
By (x)
then for € small enough (depending on a and )f )

(2.27)

<y for(a,b)# (n-1,n).

re " / (djve (X)) ap— _ax
B, (%) |x |
Moreover, if ¥V () N By, (x) N Py € B, (x), withx := deg(ve, x + {0} x rS') we have

(2.28) <7y.

rz_”/ (djve(X"))p-1,n —2KWp—2
B, (x)
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Proof. We first prove (2.27), via a contradiction argument. If the statement fails, then
(passing to a subsequence) there exist balls By, (x;) € Q with r, = €% such that

1
lim rg_" ldu.(P)|>=0
£=0 llogel Jp,,, (xo

but

X —x'
(2.29) ren / (djve(xX)ap———dx'| =y
By, (x¢) |x€ - X |

for some (a, b) # (n—1,n). Rescaling By, (x¢) to B2(0), we obtain a sequence of solutions
il of the Ginzburg-Landau equation on B (0), with € = £/r, <&!~% and

- C -
E:(i1z) < Clloge| < = allogel,
as well as
1 . 2
— |diz(P)|”— 0
llogé&| J,(0)
as&— 0.

By Theorem 1.1, the limit of the normalized energy densities of itz has a concentrated
part |V, for a rectifiable stationary varifold V, and by reversing the proof of Theorem 2.2,
we know that the tangent plane to V at x coincides with P, for |V]-a.e. x. Together with
stationarity, this easily implies (testing stationarity against vector fields of the form X = ¢v
for fixed vectors v € P) that V is invariant under translations by vectors in P, and therefore
coincides on B, (0) with alocally finite union of planes P+ x; parallel to P (with multiplicity
at least c(n) > 0).

Moreover, as in (2.11),

W (itz)
g "’

(2.30) ldjvgs|<C
and by (1.4) we deduce that
(2.31) djogl = X fj7" 2L (P +x;)

weakly in C2(B,)*, with f; locally bounded.
Hence, the rescaled (n —2)-cycles *d j7z converge weakly as currents in B, to a cycle
supported on U; (P + x;). By the constancy theorem for cycles, it follows that

(2.32) *(d j Ug) —ijZnKj(P+xj) on By,

for suitable constants x ; € R (actually x ; € Z, by [16, Theorem 5.2], or by a slicing argument
similar to the proof of (4.5) below, which reveals that « ; is the degree of 7z around P + x;).
If (2.29) holds, then rescaling gives
. x'
(djoe(xNap— dx'| 27,

(2.33) ,
B [x'|
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but fixing y € C°(B;), 0 < y < 1 be some test function supported away from 0 such that

Y; (1—)5)f,-d]£”‘2<£,

(P+x]')ﬁBl

it follows from the distributional convergence (2.32) that, for this couple (a, b) # (n—1, n),
(d j Ug) ap vanishes distributionally as € — 0, so
xl
. >~ / N / —
}jlil(l) Bl(d] Dz(x)) apx (x) T dx =0.

On the other hand, it then follows from (2.31) that

/

/
limsup (djﬁg(x'))abL, dx'| =limsup| [ (dj ﬁg(x’))ab(l—x(x’))i, dx'
¢—0 |J/B | x| ¢—0 |J/B | x|
<X L=y f;dAe" "
(P+xj)nBl
<yl/2,

contradicting (2.33).
The proof of (2.28) is similar, where in the limiting rescaled picture we have simply
> j2nkj(P+ xj) =27k P. O

In the following section, we will use this together with the following formulas for ¢, and
V¢, which follow simply from (2.10) and the formula for the Euclidean Green’s function
G(x,y) in R", together with a simple integration by parts (recall that nw, = 271w;_2).

Lemma 2.7. For any pair (a,b) with1 < a < b < n, we have

%]
(2.34) 21wn—2(Ee) ap(x) = / —(rz‘" / p(x"ldj vg(x’)]abdx’)dr,
o T By (x)
I’l—l o0 ]. 2—-n / . / x_x/ /
(2.35) V(¢e)ap(x) = —2(1‘ p()[d jve(x)]ap dx'|dr.
2nwn-2 Jo T B, (%) |x — x|

Remark 2.8. For non-Euclidean metrics g, converging smoothly to the Euclidean metric,
Theorem A.7 shows that (2.34) and (2.35) hold up to errors of size

0(1)-/ p2n (/ Iw(x’)djvgldx')dr, 0(1)-/ rl=n (/ I(p(x’)djvgldx’)dr,
0 B, (x) 0 B, (x)

both of which can be seen to be o(|loge|) (as in the proof of (2.36) below).
As in [6], note that combining (2.34) with (2.11) gives, for any x € B3,2(0),

1/4
1 % %
1Ee(0)] sc/ n_l( (ZE))dr+C/ (we)
o T Bx) € Bys0) €

which together with the monotonicity formula (A.1) (integrated over s € (0, i)) gives as in
[6] the pointwise estimate

W (u,)
(2.36) I€e(x)] < CEg(ug; Brja(x)) +C < CE¢(ug; B7/4(0)).

Bys0) €
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Interpolating with (2.13), we obtain

1/2n 1-1/2n 1-1/2n
el zznipyy < IEel 2 NEelj=ian, < Cllogel' ™27,
and using again (2.13) we get
1-1/2
(2.37) /B |€£||d*f£| < ||§£||L2n(33/2)||d*€£||L2n/(2n71)(B3,2) < C|10g5| / ",
3/2

For a given cutoff function y € CZ°(B3,2(0)) with y =1 on B;(0), a simple integration by
parts yields

/led*€g|2=/ (Ee,d(y?d* &)
Ba2 B3/

_ / o2y dy nd e + / Lo, dd™EL)
B3 Bsj

_ / o2y dy Ad*E) — / Beodhy+ | Peodive.
B3/

Bs/o Bs/2
It follows from (2.13), (2.15), and (2.37) that the first two terms on the last line are o(|loge|)
as € — 0, so that

1
20 g% 2 . 2 .
dé =lim—— é,d 1%
X | £| 81 0|1 | 3/2X < ea] .€>

CE¢(ug; B7/4(0))

lim
e=0|loge| /g,

(using (2.36)) <liminf ldjvel
& e—0 loge] Bs/s J Ve
CE s B774(0 w
(using (2.11)) <liminf e(te; B7)4(0) (38).
e—0 [loge] Bys €

In particular, using Theorem 2.3 and recalling that y = 1 on B;, we deduce that

Ee(us;Bl)<liminfCE£(ue;Bz) W (u,)
e—0 |[loge|  &—0 lloge| B, €

This computation holds for any sequence of solutions u, : B, — C obeying an energy
bound E; (u; B»(0)) < Alloge|.

Combining this observation with Theorem A.3 and a trivial rescaling, we obtain the fol-
lowing lemma, which will be useful later.

Lemma 2.9. There exists c(A, n) > 0 such that if u. solves the Ginzburg-Landau equation
on By (x), withr =€, Byjs(x) 0NV (u.) # ¢, and

> "E,(ug; B, (x)) < Alog(r/e),

then
W(u
(2.38) ran We) e, m.
B,x) €
Moreover, the simpler estimate
W (ue)

(2.39) e

> c(n)

B:(x) €
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holds for x € V (ug) without any additional assumptions.

Note that the second conclusion (as well as the first one, when r is comparable to ¢)
follows directly from the bound |du| < @, which implies that W (u,) = %0 in a c(n)e-
neighborhood of any point in B4 (x) N7 (ug).

3. PRELIMINARY ENERGY IDENTITY AND RELATED BOUNDS

In this section we establish two of the key ingredients for the proof of Theorem 1.4, prov-
ing the preliminary energy identity (1.6) and the new potential bound (1.8) for arbitrary
families satisfying the hypotheses of Theorem 1.4.

Let u, be a family of solutions satisfying the assumptions of Theorem 1.4. Appealing to
Lemma 2.5, choose a family . — 0 such that

.. wp— C
(3.1) hlglglflfﬁg,(sel = PTE >0 ase—0,
and fix y, € 9, s, .

Next, given 6 > 0, consider the set U . < PJt given by
Us,e := (X = (e, 2) € Py, e (0)] <16}

Proposition 3.1. There exists C = C(6) independent of € > 0 and points py, ..., p;. € Us ¢

with k < C such that .

Use € || Bee(P9),
j=1
up to a subsequence, for a disjoint family of balls B¢ ( p?).

Proof. By a simple Vitali covering argument applied to the covering {B.(p) | p € Us ¢}, it is
clear that there exist p{,..., p}, € Us ¢ such that

Be(p%) nt(pj) =g fori#j

and
m

Us,e < U Bse(p5),

j=1
where m = m, depends on ¢ a priori. On the other hand, since Iug(p§)| <1-6and |du.| <

Cc

2, writing p? = (Ve z;? ) it is clear that

W(u
/ (2 e c(6)
yelxDe(2) €

for some c(6) > 0, and summing over 1 < j < m, and using (5.2) gives

w
mgc(d) < / (38) < 2wy,
P 2

1
Ye

hence
me < C(0).



22 A. Pigati & D. Stern

In particular, passing to a subsequence, we may assume that m, = m is fixed independent
of ¢, and that the (possibly infinite) limits

p; =Pl
(3.2) yij = lim ———

exist. It is then easy to see that the desired conclusion holds with

C():= 10+I?a13(€, where F:={y;;|y;j <oo}.
€

Indeed, we can form an equivalence relation on {1,..., m} by declaring that i ~ j precisely
when y;; < oo, and we can take a set of representatives S < {1,..., m}; with the previous
choice of C(6), we have
Us,e < U Bse(P) < U Bewe (),
j= i€S
since if i represents the class of j then |ps - jl < (y;j + e for € small enough, and the last

Ipf-p5|

union is disjoint since for i, i’ € S we have ——=- — y;;; = oo (unless i = i'). O

Now, for k < C(6) and points py,..., p. as in Theorem 3.1, denote by D; . the disks
Dj.:= BCe(pi) N PJJ,;

(note that eventually D; . is compactly included in Pls ,as |ug| — 1 on B{l‘z x 0Dy), and
consider the degrees

:deg( dD]g)
|uel’

The following proposition gives a very useful (though non-sharp) bound on the de-
grees k% in terms of the potential W(u‘g) , which plays a crucial role in ruling out energy-
cancellation due to interactions between vortices with degrees of opposite signs in the
proof of Theorem 1.4

Proposition 3.2. For ¢ sufficiently small (depending on ),

(3.3) / ZW(ZME) ”| <101 -50).
D;, €

Proof. By Theorem 3.1, we know that 0D < {|u.| =1 - 6}. Foreach 0 < £ <1 -6, consider
the set
Qp:={lus| < ;N Djp,
and if ¢ is a regular value for |u,|, consider also the boundary
St = OQt C Dj’g.

By the coarea formula for |u:| on D; ., we have

W (1) /1‘5 (1-r%? ( / 1 )
5 = 5 dar.
Ql_g E 0 48 Sr |d|u8||
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Next, note that for each regular value ¢ € (0,1 —06) of |u,|, a few simple applications of the
Cauchy-Schwarz inequality give

-1/2 1/2
|Sr|=/ ldluell™ " |dluell
St

1 1/2 1/2
<| | — |d|u ||)
(/S,wuugn) ( s,
1 1/2 1/4
s(/ ) ( |d|ug||2) 15,114,
st|d|ug|| S;

which we can write equivalently as

1 3/2 2 -2
/ =[Syl ( |d|uel| ) ,
S; |d|uel| S;

and applying this in the preceding computation yields

W(u 1-6 (1 _ y2)2 -1/2
(3.4) % 2/ %lSAS/Z( |d|u5||2) dr.
Q.5 € 0 4e S,
Now, since )
1-|u
ldul” < |25| +C
€
on Dj ., we have for any regular value 7 € (0,1 - 6) of |u,| that
1-t>
(3.5) / |dug|2<( 5 +c)|5t|.
Sy €

In particular, writing
\due|® = |uel?|d (ue ! lug))|* + dlug I,

it follows that

1- ¢

| ldue/lue) + | 1dlucll < ( —+ C) 1S4,
St St €

and an application of Young’s inequality on the left-hand side gives

, 1/2 , 12 1_g2
2t( |d (e /| ue) ) ( |d|uel| ) S( 3 +C)|Sz|-
St St €

Moreover, since
277:7(; = (ue/|u£|)*(d9)
St
for each regular value ¢ € (0,1 - 6), we have that

1/2
2n|1<§-|</ |d(ug/|ug|)|<|st|”2(/ |d(u5/|ug|)|2) ,
St St

which we can combine with the preceding computation to see that
_ 42

+C|18,1%"2.

1/2
1
4n|v<;"-|t-( |d|ug||2) s(
St

g2
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Rearranging, we see that

-1/2 2 -1
|d|u5||2) >( +C) 47|kt

(3.6) 1S:1*/2 ( =

S;
Applying (3.6) to the integrand on the right-hand side of (3.4), we deduce that

W (u -2 (1-42 7
(te) 2/ ( 2) ( > +C) -4l dr
0 4e €

2
Qs €

1-6
anxj.l/ A -r*=Ce>rdr
0

1
E1 .1 _ _ 2
>7r|1<j|-4(1 46 — Ce?),

and choosing & small enough so that Ce? < §, we deduce that

2W(ue) 7, .
/D 82 >§|K]|(1_55))

€
as claimed. O

In particular, summing the estimate from Theorem 3.2 over j =1, ..., k, we deduce that

2W 2W
g(l —55)Z§:1|K§| < Z;?:l/ (ug) s/P (ug)

2 2
Dj,e € €

L
Ye
Later, in the proof of Theorem 1.4, we will use this together with sharp upper bounds on
/, P 2“2(2”5) to show that there can be only one zero of nonzero degree in a good slice when
the density 0 < 2.

Now, since y; € ¥, 5., we know already that

1 1
(3.7) 760 = lim —— —|d* &g
e—0 |loge| P 2

On our way to proving (1.6), we show next that the only terms in d*¢, which contribute
nontrivially to the limit are those of the form 0,(¢;) 45, where {a, b} = {n—1, n}.

Lemma 3.3. For y. € 9, 5. as above, and for any pair (a,b) # (n—1, n), we have

1
lim / V(&) apl* = 0.
e—0 |loge| P

Proof. To begin, fix a € (0, 1) close to 1, and consider the distance function

Pe(x) :=dist(x, 7 (ug)).

Foreache® <r < i, consider the set F, c Pi given by

Fr:={x €{ye} x D1j2: pe(x) <T}.
We claim first that, for € sufficiently small (depending on ) and r = €%, we have

(3.8) H(F,) < Cla)r?
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for a constant C(a) independent of €. To see this, note that for each x € F,, there exists
x' € B;(x) NV (ug). In particular, by Theorem A.3, it follows that

27" E.(ug; Boy (%)) = c(n) log(2r/e) = c(n)(1 - a)lloge|.

Now, Vitali’s covering lemma gives xi,...,xy € F; such that the balls B, (x1),..., B2, (xn)
are disjoint and F, < U}V:l Bior(x;). From the disjointness of the balls By, (x;) we deduce
that

N-c(m)(1-a)llogel < T r* 7" Ee(ute; Bar (x))) < 127" B (ue; By, (ye) x D).

In particular, since y € %, s,, the right-hand side is bounded by Clloge|, with C indepen-
dent of r and ¢, and therefore N < C(a) for € small enough. Since F; is covered by the N
balls Byo,(x;) of radius 10r, the bound (3.8) follows.

Next, let (a, b) be a pair of indices with a < n—1, and fix an arbitrary small y > 0. Since
Ve € Y 5., for € sufficiently small, the hypotheses of (the first part of) Theorem 2.6 hold for
every ball B, (x) with x € {y¢} x D1/, and e* <1 < i, so that

(3.9)

ren / (djve(x)) ap— dx <y.
B, (x) | |

As a consequence, if x & F,q, it follows from Theorem 2.7 that

1/4 !

1 ,_ ] X—Xx
VD ap(0] <C+C / = | / [ ve ()] o dx
peo) T B, (%) | — x|

1/4

< c+c/ Lar
pe(x) r?

S C[1+v/pe(x)]

(or |V < Cif pe(x) = i), while clearly |V(¢:) qp(x)] < C if x € {y} x [D1\ Dy2], by Theo-
rem 2.7 and the fact that here p, = i (eventually). Combining this with (3.8) and an appli-
cation of the coarea formula, since |dp¢| =1 (a.e.) we then see that

2
. . Y
limsu V() |2 <limsu (1 + )
eo logel PL\Fa @ o Ilogsl PLVFa \ Pe()?

1/4
/ ——(JfZ(F )dr
1/4 5
(integrating by parts) slir?j(l)lp loge] /g 3 ng(Fr)dr

(by (3.8)) <limsu —
Y 0 p loge| Jea T

=C(a)y.

And since y > 0 was arbitrary, it follows that

(by the coarea formula) <limsup
£—0 Ilog£I

(3.10) V(&) apl?* = 0.

lim
e=0|logel JpL \Foa
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To estimate the integral of |[V({ &)apl? on Fra, we first observe that, by definition of ¢,

1 .
IVEel < P *lpdjuel.

We can then invoke Theorem A.6 from the appendix and (2.11) to see that, since y, € ¥, 5,,
the gradient |V¢,| satisfies a uniform L>* bound

independent of € along the slice Pjs . In other words, we have the uniform estimate

C(K)

(3.11) FE*(Py N {IVE] > A} < P

Wé;‘f), we see from Theorem 2.7 that

€ C 1/2 C W
|V6£| $/ —2+/ - T'Z_n (;tg) +C
0o € e T B/(x) €

C(K)
<

E

for every A € (0,00). Moreover, since |d jv.| < C

on {y,} x D12, by definition of ¢, 5, (which gives fBr(x) % < Kr'*2), while |Vé,| < C on
the rest of the slice P;, . Hence, writing

Ap:=1{x € Py 1 [VE ()| > A},
we find that

CK)/e
/ |v55|2:/ 2A7%(Fea N Ay) dA
Fea 0

CKEe™ o
< e 2% 7% (Fpa) + / ¢
e A
< C(a) + C(K)log(C(K)e*™ 1,
thanks to (3.8) and (3.11). Combining this with (3.10), we deduce that

1
limsu
£—0 P lloge|

/ IV apl® < CK)(1 - ).
Py,

Finally, since a € (0, 1) was arbitrary, we can take @ — 1 to deduce that the limit vanishes,
as desired. O

With the above preparations in place, we are now ready to prove the identity (1.6).

Proposition 3.4. For u. satisfying the hypotheses of Theorem 1.4 and a sequence of slices
Ve € Y 5, With pj € P)t and degrees 1<§ as above, we have

llog|p’; = Pyl
_1; (€2 ) £,€ J 4
G—QL% Z](K]) +Z]<€2KjK[ |10g€|
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Proof. To begin, fix a cutoff function y(y, z) = x(z) on R"2 x R2 satisfying y(z) =1 for |z| <
%, x(z) =0for |z| = %, and |dy| < C. Since y, € %, 5,, we have

/ |jve —d* & = o(lloge));

Py

together with (3.7), this implies in particular that
IIjUEIILz(png) < Clloge|'?.

Moreover, using (2.12) and the fact that 7 (u:) N Pylg C {ye} x Dyy4, it is also easy to check

that
/ (Ecl*+1d* &) < C.
{ye}x[D1\D1/2]

As a consequence, using again (3.7), we have

1 1 1
0 =li —xld* &l =lim—— [ =x(d*&c, jve).
& sli% logel P 2%| el gli% logel /pylg 2X< SerJVe?

By Theorem 3.3, we can further refine this to see that
1
logel

1
7m0 = —lim / _X[an—l((fs)n—l,njve(an)+6n(€£)n,n—1jl}£(an—l)]-
Writing B, := ({¢)»n—1,» and integrating by parts on PJJ;E = {y¢} x Dy, we obtain

1 1
— dj d jU:].
acl /Pjezﬂs[?( JUe+dy A juel

70 = lim

e—0|lo

Since y =1 on {y:} x Dy/2, using the previous bounds and the fact that |B.| < |{.|, we see

that the second term gives no contribution in the limit. Also, y =1 on spt(djv:) N Pi . We
conclude that

1 1
(3.12) 70 =1lim -

= djve(0,-1,05).
e~0 [loge] Pyigzﬁg JVe(0p-1,01)

Next, note that d jv,| P is supported in the set
£

Us,e = {lugl <1-6}n Py,

and recall from Theorem 3.1 that there exists a constant C = C(§) and points pf e pi
with k < C such that

(3.13) V(ue) N Py € Us e S Bee(pf) U+ UBce(p).
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Using this in the right-hand side of (3.12), and writing D ¢ := Bc.( p?) N PLE , we see that

1 , 1 .
/ SBedjve0n-1,00) = X5, | SPedjve(@n-1,05)
P}, 2 2

Dj.

1.
:Z?=1'B5(p§)/;j’€Edjvf(an_l’an)

+Z] 12/ [,65_,Bg(pi)]djve(an—l»an)-
Dje

Now, since |df¢| < |V, | < C/e (as observed while proving the previous lemma), we have a
pointwise bound of the form |S, — ﬁg(pj)l <ConDj.. Also, nyL |d jve| < C (by the point-

wise bound |d jv,| < CWé;‘E)

), and we deduce that
Ik
HH_LEI(I)H—Z 1ﬁg(P])/ _d]VE(an 1,0n).
Moreover, noting that
/ djve(0,-1,0,) =2ndeg(ve,0Dj ) = 27‘[1(‘;-,
Dje

it follows that

(3.14) 76 =lim
e—0 |loge|

With (3.14) in hand, to complete the proof, it suffices to show that

T i1 Be (e,

(3.15) e oll—(ﬁg(pf) —«;llogel - X ;i lloglp; — p5I =0

for every i € {1,...,k}. Up to relabeling the indices, it of course suffices to treat the case
i =1, and assume that the distances

ri:=1p1 - pjl
are in increasing order 0 = r{ <r; <rg <---<T[.

Now, fix y > 0 small and a € (0,1) close to 1, and observe that for € sufficiently small
(depending on a and y), the ball B, (p) satisfies the full hypotheses of Theorem 2.6, with
degree

x&(r):= Zr;;<r1(§,
whenever

r —Ce r]+Ce

\U 5

where 6 = 61(a,y) > 0 is the constant from the hypotheses of Theorem 2.6, since this
ensures that, for each j > 1, either By, (p}) is disjoint from Bcg(p;{) ifr < r]g. or Bcg(pj) c

’
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Bs,r(py)ifr= r]"f. In particular, for every such r, we have

(3.16) <y.

27w ok (1) — rz‘”/ [djve(x)]p-1,ndx’
Br(Pi)

Now, it follows from Theorem 2.7 (and the bound |d jv,| < C% < E%) that

<C.
r

1/4 1
Z”U)n—zﬁe(lfi: _/ - r2—n/ [djve(x,)]n—l,ndx, dar
€ Br(pi:)

Combining this with (3.16), we have

1/4 K&(r)

dr|

Zﬂwn—zﬁs(l’@ —27tWp-2 /

£

1
<C+ylog(1/4£)+/— 27'[0.)”_21(8(1”)—7”2_”/ [djve(xX)]p-1ndx'],
1’ By (p))
where
. k r;?—Ce rJ“?+C8
I:=(g,e")U , .

Appealing once more to the uniform bound

W(u
rZ—YZ/ |de£|Sr2—n/ (2£)<C(K):C
B (pf) B.(p) €

(by definition of % 5,) and noting that each r;? = 2Ce for j =2, it therefore follows that

1/4 ¢
,Be(pi:)_/ () dr
P r

C
<C+)f|log£|+/—dr
1T

J

(ré+Ce)16,
(r]‘?—CE)/Z

< C+7ylloge|+ Clog(e* 1) + Z?zl log(
< C+vyllogel+ C(1 - a)lloge| + C(a, ).
Dividing through by [loge| and passing to the limit € — 0, we deduce that

1/4 ¢
ﬁe(pi?)_/ () dar
€

r

limsup ——

1
UP {oge] <sy+C(l-a)
E—

forany y >0 and «a € (0,1). In particular, taking y — 0 and @ — 1, we deduce that

1/4 , ¢
,Bg(pi:)_/ () dr‘:o.
P r

1
(3.17) limsup ——
£—0 P [logel
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But now we need only observe that

1/4 ¢ 1/4
K (r 1
/ ( )dr:/ — Yoo Ksdr
£ r € r J g

=« (log(1/¢) +log(1/4)) + Z;;ZK? (log(l/r;?) +log(1/4))

=« llogel + X5, llog| p§ — pll+ 0(1).
Together with (3.17), this gives the desired identity (3.15), completing the proof. O

4., SOLUTIONS OF DENSITY < 2

Denote by 2 c R the collection of densities 6 arising as in the statement of Theorem 1.4,
and set
7] min = info.
Note that 0,,;, > 0, by virtue of Theorem 1.1. By a simple diagonal sequence argument,
we see that 0,,;, € 2. In terms of the minimum density 0,,;,, it is clear that Theorem 1.4
is equivalent to the following proposition.

Proposition 4.1. Under the hypotheses of Theorem 1.4, if 0 < 20,,,;;,, then 0 = 1.

In particular, having established Theorem 4.1, it follows immediately that 6,,;, = 1, and
that 2 n[1,2) = {1}.

To begin the proof of Theorem 4.1, we note that the assumption 6 < 20,,;, allows us to
make the following reduction, showing roughly that the vorticity set lies close to a single
(n—2)-plane at all scales = €' for some fixed 7o > 0. Recall that ¥, s is the set of §-good
slices for ug, introduced in the previous section.

Lemma 4.2. Let 1 := % € (0, %). Under the assumptions of Theorem 4.1, for anyn €

(0,1] there exists c(n) > 0 independent of € such that, for any sequencesb. — 0 and y, € 9 s,
there exists

Pe= Ve, 2e) € PJJ,'E

such that

4.1) Boiz(pe) NV (ue) # @
and, for any x = (y,z) € Q, we have

4.2) dist(x, ¥ (u.)) = clz — z¢l,

provided that |z — z.| = nmax{e™, |y — y.|} and that € is sufficiently small (depending onn).

Proof. Given y, € %, 5,, choose z; € D% such that p, = (¥, z¢) is the closest point in the
slice PJt to the vorticity set 7 (u.). If (4.1) fails along a subsequence, then setting r; :=
dist(pe, ¥ (1)) = €'/? we can consider the rescaled solutions

Ug(X) := Ug(pe + 1eX),
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which solve the &-Ginzburg-Landau equation on B, (0) with & := £/, < £/ (note also that
ze — 0 and r; — 0, since 7 (1) — P N B,(0) in the Hausdorff sense). By our assumption
Ve € 9 5., we then see that the rescaled solutions #i; satisfy

(4.3) |diiz(P)|> = 0.

lim —
£—0 |logél /g, (0
By Theorem 1.1, the concentrated part of the limiting energy measure
1= lim ez (iiz)
e—0 1|logé|

is a stationary rectifiable varifold V, and by reversing the proof of Theorem 2.2, it follows
that its tangent planes coincide with P, and we deduce that V is given by a locally finite
union of (n —2)-planes parallel to P, each with multiplicity at least 0,,;,.

By assumption, 7 (#iz) does not intersect B; (0), and since p, was chosen to be the closest
point in Pjg to the vorticity set, we see that there exists g: € R"~2 with |gz| = 1 such that
(g&,0) € ¥ (iiz). Since the support of | V| is the Hausdorff limit of 7 (éiz), it follows that it is
disjoint from By (0), but at the same time it contains the whole (n —2)-plane P +(gp,0) = P
(intersected with B,), for a subsequential limit g of gz, a contradiction.

Now let us verify (4.2). We proceed by a similar contradiction argument: suppose to the
contrary that there exists x, = (y., z) € Q such that |z, — z;| = nmax{e™, |y. — y¢|}, but

4.4) lim distlxe, ¥ (1) _

: 0.
e—0 |Z£ - Zel

Evidently, since dist(x,, ¥ (¢;)) — 0, we must have z, — 0, and hence
Se 1= |z, — z¢| — 0.
For fixed small 6 € (0, 1), we can consider the rescaled solutions
iz (X) := Ug(pe + S x10),

which solve the & Ginzburg-Landau equation on B,(0) with & := §e/s. € (6¢,n el 770)
(since s; = ne™). Again, the rescaled solutions ii; satisfy (4.3). Also, by (4.1), since 7y < %
we have s

dist(pe, V
limM < lim £ =0.
e—0 Se e—07)€To

After passing to a subsequence, by the last observation and (4.4), the Hausdorff limit of
¥ (fig) N B1(0) must contain 0 and the point

g‘::limé-xe_pg,

e—0 Se

which exists thanks to the assumption that |y, — y,| < 17‘1 |z — z¢| = n‘l S¢, and satisfies
)
|PL(&)] =1lim —|z. — z¢| = 6.
e—0 S,

As observed above, from (4.3) it follows that in B;(0) the support of the energy concen-
tration varifold contains the parallel (n — 2)-planes P and (P + ¢), and therefore the limit
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e (Uz)

Zllog?] d x satisfies

energy measure p = lim,_.

Hence,

lim inf / ) - | (B1(0)) > Omintonall +(1- 57 "F ],
e—0 B;(0) 7[|IOgE|

Now, returning to the original family of solutions u,, by the monotonicity formula (A.1) we
have

. 1 es(ug)
0 =1lim
=0 Wp-2 Jp,(p,) wllogel

L. 1 e (Ue)
>hm1nf—2

e—0 a)n_g(sglé)”_ By, /5(pe) nllog&l
. |logé| 1 / ez (liz)

=liminf -
¢—0 [loge|l wp—2 /g, () wllogE|
n-2

>(1-70)0minll +(1-6%7 1],

and since 6 > 0 was arbitrary, it follows that

0=2(1-10)0min.

However, this cannot hold since we have chosen 7( such that 7 < 22’5’#’{_9. We thus reach
min

a contradiction, concluding the proof. O

Next, choosing a radial cutoff function ¢ € C}(D;) with0< ¢ < 1and ¢ =1 on Dy,, and
applying [16, Theorem 2.1], we see that
< lim/ e (ile) =70
e—0 P loge|

[
D,

where J; := %d jue is the Jacobian of u, along the slice Pjt = D, (in the last equality we

ee(Ug)
llogel

limsup
e—0

used the fact that y, € %, 5., which gives | f pL — 0| < 6,). But, integrating by parts
Ye

and using polar coordinates, we have

1 ! _
/ </)Jg=——/ 0r / Jug(de)] dr,
Dy 2.Jo {Ve}x0D,
and since |u.| — 1 on spt(d¢p) < Dy \ Dy, the last expression is the same as
1 /1
_Z )
2 "

up to an infinitesimal error. We deduce that the degree

K¢ := deg(vg, {0} x Shez

/ jvg(dH)] dr = ndeg(ve, {0} x S1),
{_}’5}X6Dr

eventually satisfies
|Ke| <0 <20, <2.
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Thus, passing to a subsequence, we may assume that x, = x is constant and
(4.5) x| < 1.

Applying Theorem 4.2 (for fixed 1), note also that

(4.6) x = deg(ve, {ye} x 0D, (z.)) forall r € [ne'®, %],

since (4.2) implies that |u.| > % on the annulus {y.} x [D1(0) \ Dpero (z¢)].
Ultimately, we wish to show that |x| = 1 = 0. First, we compute the energy contribution
from an annular region centered at p,.

Lemma 4.3. For any fixedn € (0,1] and p¢, T € (0,7¢] as in Theorem 4.2, we have
1

Iim———— e (Ug) = TW KT,
e~0 [loge|(eT)"~2 /MT(,,S) eltte) =72
where we set
oty (pe) := B (ye) x [DF(0)\ Dy, (2)].
log(1/7¢)

More generally, for any family of radii r € [€'°,1) for whichlim,_. Tog(i/e) = ©» We have
. 1 2
4.7) lim —_— es(Ug) = TW,_2K°T.
e—0 |logel|r} A1 (pe)

Proof. Let r¢ € [€7°,1) be a family of radii as above. For simplicity, we assume that p, = 0,
and write simply drz = dg (0).
Let B¢ (x) := ({¢) n—1,n(x). To begin with, we claim that

1 1
4.8 lim——— ee(ue) =lim —— d*&.(0p).
4.8  lUm lloge|r=2 /d elite) = lim 2|loge|r/~? /B;zsz(o) /013,7,5(0) Ped ¢ ()

Te
Indeed, since 0 € ¥, 5, for some sequence 6, — 0 by assumption, it follows from the defi-
nition of ¥, 5, that

1 1
(4.9) lim—/ es(u ):lim—/ da*éel?.
=0 [loge|r 2 Jon 7 e=02|loge|r? drﬂgl ‘el

re

Moreover, since 0 € ¥, 5, for any fixed 6, > 0, it is easy to see that
(4.10) rz_"/ |dug(P)|* < 8,|loge|
Bar(x)

for any x = (y,2) € oy, with |y| < 3 and g > r = cnre = cne™, where we take ¢ > 0 to be the
constant from Theorem 4.2, for ¢ sufficiently small. As a consequence, for any given y > 0
we see that the hypotheses of Theorem 2.6 hold for every such ball B, (x). Combining this
with Theorem 2.7, the fact that spt(d jv,) < ¥ (u,), and (2.11), we find that, for x € .szfrz and
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(Cl, b) ?ﬁ (n - ]-) n))
1/8

IV(fe)abl(x)SC/ — rz_”/ [d]vg(x)]ab dx dr+C
dist(x, 7 (ug) T B, (%) |x |
1/8
1 C
<c+c/ —ydr\C+_—Y,
dist(x, ¥ (ug)) r? dist(x, 7 (u))

provided ¢ is sufficiently small (if dist(x, ¥ (u,)) = 3 L then actually |[V¢,| < C). In particular,
since x € g{rz , by Theorem 4.2 we know that dlst(x ¥V (ug)) = c|z|, and it follows that

I : / V&l <li . / Cr
imsup ——— imsu
g_.opllogelrgn‘2 Al elab s—»opllogé‘lrn 2 oA |z|2
log(1/
slimsupC)/ZM
0 log(1/¢)
sCyer
for any y > 0; hence,
1
(4.11) lim—_z/ IV apl? =0 for(a,b) #(n—-1,n).
e=0 |logelre ™= Jo

Combining this with (4.9), we then see that

, 1 1 .
};%WLW eg(ug) —’OWLU [d ée(an l)an,ﬁe d fs(an)an—lﬁe]-

A simple integration by parts shows that

/ [d*fe(an—l)anﬁs_d*ge(an)an—lﬁg]
D1\Dyy,

[ peacon- | pedteop+ / BeddE. (01,0,

0Dy, 0Dy D1\ Dy,

on any slice Pl D,. Also, recall that dd*¢,; = djv. — dh.. Hence, using the fact that
djve =0o0n »erz as well as | B,| < |¢,|, we deduce from the preceding identities that

1
/ ee(ug)__/ ( ﬁsd*fe(ae)_ ,Bsd*fg(ae))
) 2 Jpr2\Jop,, D,

/ / ﬁEdd*é‘E[an—l»an]
B2 J D\\Dy,

C
<lim ————|ldh, ||L°°(Q)/ , el
:2_ x Dy

¢—0 |loge|r]

im
¢—0 |loge|rf

=1lim
£e—0 2|log£|r

C
hm }llogel ldhell Q)

=0,
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where in the last two lines we used the fact that 0 € ¥, 5, (giving f B2 D, €l <K rE”_z) and
(2.15). ’

Now, by Theorem A.5 and the monotonicity formula (A.1), together with the pointwise
bound (2.11), it is easy to see that

(4.12) r2n

/ PN jve(X)] oy ndx| < C
B;(x)

for all r = €2, for some C independent of ¢ (alternatively, a similar bound with CK in
place of C follows immediately from (2.11) and the fact that 0 = y. € ¥, 5,). Combining
this observation with Theorem 2.7, writing

pe(x) :=dist(x, ¥ (ue)),
we see that
(4.13) I€el < Clog(1/pe) + C, |d*€£|<C/p£,

whenever p, = €Y% In particular, since p; — 1 uniformly on B{l‘z(O) x 0D1(0) as € — 0, it

follows that
/ /Iﬁed65(69)|<
2|log£|r B2 JaDp,

as € — 0, which proves (4.8).
In order to estimate the right-hand side of (4.8), we let S, := Bﬁg‘z x 0Dy, and, for x =
(, 2) € S¢, we first show for any fixed y > 0 the uniform bound

(4.14) 27w -2 B (X) — 2K Wp—2log(1/ 1) < C(y,n) + yllogel.
Note that by Theorem 4.2 we have
(4.15) 2re 2 pe(x) = cnre forall xe S;.
Moreover, again by Theorem 4.2, for any x = (y, 2) € S; < «,, we have

¥ (ug) N Py S {y} x Dpy. (0) S Bay, (X).

Hence, fixing an arbitrary y > 0, we see that the full hypotheses of Theorem 2.6 hold on
By, (x) for € > 0 sufficiently small, whenever

2re
———<r<-
61(70,7) 8
(note that (2.26) holds by (4.10)). As in (4.6), the degree deg(ve,{y} x 0D, (z)) = x, and from
(2.28) we deduce that

(4.16)

2MKW -2 — rz_”/ [djve(xNn-1,n| <y
B, (x)

2rg 1
for x€ S, and So < <&
Next, recall from Theorem 2.7 that

ann-zﬁg(x):/ 1(rz‘”/ <p(x’)[djvg(x’)]n_1,ndx’)dr,
o T B, (x)
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and note that ¢|p (yy =1 forr < %, so that
1/8

1
pe(x) T B, (%)

for a suitable C independent of € > 0. Note also that, by (4.15) and (4.12),

27'5/51 1

/ (rz "/ [djve(X)]n-1n dx') dr
pe T Br(x)

while, by (4.16),
/1/8 1
21‘5/61 r

Combining these bounds, we arrive at (4.14).

Turning now to the right-hand side of (4.8), it follows that, for any y > 0,

<C

2]”5/51
s/ —dr < Clog(2/cnéy),
cnrg r

1/8 dar
dr<y/ — <vylog(1/r).
27'5/51 r

2MKWy—p — rz_"/ [djve(xX)]p-1,ndx’
B (x)

e—»02|10g£| /(ﬁe kllogrel) d*§e(0p) \llr?j(l)lp /(C(y m +yllogeNld™ &l
" Cly,m +7ll
(using (4.13)) <limsup—£— [ ¢.C@m*+rilogel
e—~0  |logel /s, cnre
=C(my,

and since y > 0 was arbitrary, it follows that the limit on the left-hand side must vanish. In
particular, returning to (4.8), we see that

1
lim—— | d*é.(0
EIE% |10g£|r£”1_2 /'Q{rg eg(ug) 8—»0 2|10g£| /;" 2 /Dnre Kl Og rE| fs( 6)

r2n
r2 n
_zlglir(l)zllo |1<|logr£| - (/D,,,e d]vg)
L r2 "xllogrel
_ll—r»r(l) 2|loge] B;lg_Zaneg(vg,{y}anan)dy
l 1/

e—»O log(1/¢)’

where we used again (4.6) and, in the third equality, the fact that djv. —dd*¢; = dh, is
bounded pointwise by C|loge|'/2. This concludes the proof. O
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Next, note that for p, and 7¢ as in Theorem 4.2, using the fact that y. € %, 5, and the

inclusion B/ % (y,) x D127570 (2e) © B , ) cro (Pe), we have for any given n € (0, 1] that
_ Eelug sl (pe))  Ee(ug; B2 (ye) x D30) E¢ (ug; Basmero (Pe))
lim = lim —limsup
e—0 [logel(e70)*=2 " £—0 [loge|(eT0)"—2 e—0 [loge|(eT0)"—2
. o Ee(ug; By(pe))  Ee(ue; Bapero (Pe))
=liminf -
£—0 loge| lloge|(gTo)n~2
> liminf(Eg(ug;Bl (pe)) _ EE(ME;B(l'H])ETO (pe)) )
£—0 lloge] llogel[(1 +mn)eTo]~2

. EE(UE;B(1+T))£TO (pe)
— Cnlimsup ,
e—0 |logel[(1+n)eT0]"—2

. . E¢ (ug; B ? (ye) x DY (0))
where the equality comes from the fact that lim._q £

[loge|(e70)—2
. . . E ;B . .
Y 5.), which in turn equals lim,_¢ % since energy concentrates on a plane with

multiplicity 8. In particular, combining Theorem 4.3 with the monotonicity formula (A.1)
(integrated between radii (1 + n)e* and 1), we see that

= Twn-20 (as y, €

' 1 1 1 2W (1) )
(4.17) limsup ————— — 5— STTWp—2k” +Cn).
e—0 10g(L/€™) Jiymero 71 I (py €

As an easy consequence, we have the following proposition.

Proposition 4.4. For p. and 1 as in Theorem 4.2, given § € (0,1), there exists 1 € (€7, 970)
such that

2W ()  mwn_ok?
(4.18) 1imsup—_2/ (2 e)  Fn-2
em0 Tl 2 [y iy € -5
In particular, we can conclude that |x| =1, and

2W(u TWy,—
(4.19) limsup—_z/ (2 e) <=2
e—0 (rg/Z)” Bro12(pe) & 1-6

) B 2W (u,)
lg := inf ren / 5 =3
re(e70/2,6970/2) Br(ps) €

we see that the existence of a sequence r; satisfying (4.18) is equivalent to the statement

2
that limsup, e < 754 By (4.17) we have, for every >0,

Proof. Writing

) 1 £970/2 .
TW,—2k“+Cn=limsup——— —dr
n-z 1 g_.oplog(llsfo) (L+mero T
1 0T0/2(1 +m)eT0
=limsup Lelog(e (L+me?)
0 log(1/€g"0)
=(1-6)limsupi.

e—0

Since 1 > 0 was arbitrary, (4.18) clearly follows.
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As discussed earlier in the section, since 0 < 20,,;, < 2, we know that |x| < 1, so to com-
plete the proof of the proposition, we simply need to demonstrate that |x| # 0. And this is
straightforward: in view of the bound (4.18), if x = 0, it would follow that

1 / W (ug) 0
rel2)"2 Jp, ppo €

as € — 0; but since p, € %, s,, this would contradict Theorem 2.9 (which applies by (4.1)).
Hence, we must have x = +1, as claimed. O

Remark 4.5. This bound gives another proof that, in Theorem 1.1, the support of |V| is
characterized as the limit of the zero sets u; {0} (which can also be deduced from Propo-
sition 3.4). To check this, it is enough to show that the energy cannot concentrate when
ug # 0 everywhere on B,. And indeed, if this happened, we could define a minimal density
o' .. >0, among all densities 0 arising as in Theorem 1.4 with the additional constraint
that u; # 0 on B,. Repeating the previous arguments, since now the degree x = 0, we would
reach a contradiction to Theorem 2.9.

In the next section, we show that a sequence of Ginzburg-Landau solutions on B{*(0)
with energy concentrating along the (n — 2)-plane P must have energy = nw,_»|loge| as
€ — 0, provided that an additional assumption such as (4.19) holds with r, = 1. In particu-
lar, by combining Theorem 4.4 with Theorem 5.2 of the next section, we can complete the
proof of Theorem 4.1 as follows.

Proof of Theorem 4.1. Let p. = (y¢, z¢) and 1¢ be as in Theorem 4.2. For a given 6 € (0,1)
to be specified below, let r. be the sequence of scales satisfying (4.19), whose existence is
guaranteed by Theorem 4.4. Passing to a subsequence so that “2%"2 converges, let

log(1/¢€)
log(1/r¢)
7:=lim——,
e—0 log(1/¢€)

and note that 7 € (0, 7o] since r; € (€79, %70).

Fixing an arbitrary y > 0 and recalling (4.1), we then see that By,, (p,) satisfies the hy-
potheses of Theorem 5.2 in the next section for ¢ sufficiently small, provided that we
choose 6 such that % <mwpn-2(1+062) (with §, as in Theorem 5.2), and provided that

e:(U
(4.20) limrZ ™" / e(tle) _ o
e—0 Bore (pe)\Bsyre (P+pe) |10g8|

holds. To check (4.20), observe that
Bor, (D) \ By,r, (P + pe) € By, (ye) x D3, (20) \ Dy, | (2)]
= oty 22 (pe)\ oty (Pe),
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and using Theorem 4.3, it follows that

5212
- eelue) _. Ee(ug; oty “(pe))  Eelug; oty, (pe))
gll.l(l) Te I | = El_r,% 1 n—2 B 1 n—2
Bar, (pe)\Bs,yr, (P+p,) HOBE llogelr, llogelr;
= 2" 21,2k T = 2" 2w oK 2T
=0,
as desired.

In particular, for ¢ sufficiently small, we can now apply Theorem 5.2 on the ball By, (p,)
to conclude that
2—-n
r&'

ee(Ueg) —mwp_2| <Y,

log(re/€) JBr-2(y)x Dy, (20)
which implies

@21) rb?_" log(re/€)

ec(Ue) —TTWwyn_2
llogel ./ pr-2(ye)x Dy (2e) llogel

On the other hand, it follows from Theorem 4.3 (together with |« | = 1) that, for ¢ sufficiently
small,

zn log(1/
rg ef(ug) - nwn_ZM
llogel Jusl (p,) log(1/¢)

as well. Since B]'%(ye) x D1(0) = &} (p¢) U [B%(ye) x Dy, (z¢)] and

log(r:/€) +log(1/r;) =log(1/¢),

we can combine these estimates to conclude that

2—n
rE

m
e—0 |loge]| BI2(ye)x D1 (0)

ec(Ug) =Twy—».

Since y, € %, s,, it follows that 0 = 1, as desired. ]

5. FROM BOUNDS ON W(Lt)/E2 TO UNIT DENSITY

In this section we show that if, in addition to the hypotheses of Theorem 4.1, we have
the bound

2W(u TWq,—
(5.1) limsup/ (2 e) < n’_l22(1+5),
B1/2(0) € 2

e—0
for some (explicit) 6 > 0 small enough, then the limiting density 8 = 1. In other words, we
are going to prove Theorem 4.1 with the additional assumption (5.1). As we saw above, this
combines with the analysis of the preceding section to give Theorem 4.1 in full generality,
from which Theorem 1.4 follows.
Since the measures W dx converge to an absolutely continuous measure with re-

spectto A" 2_P (by Theorem 1.1), where the plane P = R"2 x {0}, the estimate (5.1) also
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gives

2w _
limsup/ (1de) < Ion 2(1+6).
Bl’l—Z

2 n-2
2 £ 2
e=0  JBJ20)xD}(0)

In particular, this implies that

T 2W(u
n 2(14—5)>limsup/ (ue)
2n=2 e—~0  J4, 5, xD? &
2W(u
=limsup|(|%s, |- inf / (28) '
£—0 V€Y 5¢ {yg}xD% €

which together with (3.1) implies the existence of y, € ¥, 5, for which

, / 2W (k)  (wp—2/2"3H(1+06)
limsup S— < — )
e=0 Jyxp? & (Wp—2/2"72) = (C/K)

We now fix K large enough (e.g., K = K(6) = %3)2—__2 in such a way that the previous esti-

2
mate becomes

2w
(5.2) limsup/ (Zug) <m(1+29).
e=0 J{y}xD? £

Applying Propositions 3.1 and 3.2, we deduce that for these y, such that (5.2) holds, the
set
Us,e = {x € Py, : lug(x)| <16}
is contained in a disjoint collection of disks Dc¢(pY), ..., Dce(p}) such that the degrees K‘;
of u, around Och(pj) satisfy

limsup = (1 —58)£k_ Ix5] < (1 +26).
es 2 =1

In particular, since K? € Z, taking 6 small enough it follows that
k
Yilkil<2

for € sufficiently small.
On the other hand, by Theorem 4.4, we know that

Kl =125 x51=1,
so we see by parity that the case ). ?:1 IK‘;I € {0,2} is impossible, so we must have
kG =1,

In other words, up to relabeling p7,..., p;. and possibly replacing u, with the conjugate
solution g, for € sufficiently small, we must have

(5.3) Ki=1,k5="-=x5=0.

Finally, combining this with Proposition 3.4 immediately gives the following conclu-
sion.
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Lemma 5.1. Suppose that the hypotheses of Theorem 1.4 and the potential bound (5.1) are
both satisfied. Then the limiting density 0 = 1.

By a simple contradiction and scaling argument, we can recast the result in the following
‘quantitative’ form.

Proposition 5.2. For anyy > 0, there exists 6,(y) > 0 such that if u, solves the Ginzburg—
Landau equation on a ball By, (x) (where x = (y, z) € R x R?) with € < §>r, and satisfies

2W(u
(r/2)2_”/ (2 2 STWy—o+ 09,
Brj2(x) €

V(ueg) N Br(x) # 9,
and (to ensure that all energy concentrates along the (n — 2)-plane P + x)

rz_"/ ec(ug) < d2log(r/e),
B (x)\Bg,  (P+x)

rz—n

log(r/e) Jpp-2(y)xD3(a)

then

es(Ug) —TTwp—2| <.

6. SOLUTIONS CONCENTRATING WITH PRESCRIBED DENSITY 0 € {1} U [2,00)

In this section, we explain how to use the entire solutions of the Ginzburg-Landau equa-
tions constructed in [11] to prove Theorem 1.10. More precisely, we prove the following
proposition.

Proposition 6.1. For each integer x = 2 and 1 € [0,1), there exists a family of solutions
(U)ec(0,60x,7)) IN the unit 3-ball Bf(O) < R3 with energy concentrating along the line P =

{0} x R, degree x = deg(u,, %Sl x {0}) and limiting energy measure

e:(u
i e (Ue) =0(x,1) AP
¢—0 rr|loge|
where
T K(k+1)
Ok, 7):=xk+x(k—-1) € |x, )
1+7 2

Itis straightforward to check that Theorem 1.10 follows from Theorem 6.1, since we have
U2, lx, @) = [2,00). The solutions described in Theorem 6.1 are obtained by rescaling
families of entire solutions with « helical vortex filaments constructed in [11]. Namely,
we rely on the following result. (In what follows, we make the identifications R? = C and
S'=R/2nZ.)

Theorem 6.2. [11, Theorem 1] Fork € {2,3,...} and € < €y(x) sufficiently small, there exists
a solution v : R? x S' — R? of the Ginzburg-Landau equations

6.1) e?Av, = DW (v,)

satisfying
ety 1, _ gt Cx)
ve(z, )~ wie (2= f; (D)) < lloge
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where w : R — R? is the radially symmetric degree-one solution constructed in [13], and
fr S' — R? satisfies

1ifrg)‘ logelff (1) - Vn—Te''e?'U=V7x] = g,
E—

Moreover, these v, have the additional symmetry

6.2) Ve(z, 1) = €' e (e 2)

for some map v, : R?> — R?,

By looking closely at the construction of these solutions and keeping track of a few key
estimates in [11], we are able to check that the following estimate holds.

Lemma 6.3. For every T € [0,1), there exists a constant C(k) < oo such that the solutions
Ve :R% x S! — R? from Theorem 6.2 satisfy

(6.3) / eq(ve) < C(x)log(1/e™*1)
D, xSt

fore < gy(x, 1), and, for every 6 € (0,1), there exists moreover a constant C(0,x,T) < oo such
that

(6.4) / e:(ve) < C(6,x,7)
[D,~t\Dgp—71xS1
fore<ei(0,x,1).

We postpone the proof of Theorem 6.3 to the end of the section; next, we show how the
results of Theorem 6.2 and Theorem 6.3 can be used to prove Theorem 6.1.

Proof of Theorem 6.1. As in [11], we identify the solutions v, : R?> x S' — R? given by Theo-
rem 6.2 with solutions on R3 that are 27-periodic in the third variable. Under this identifi-
cation, note that Theorem 6.3 gives

/ ee(Ve) < / ee(Ve)
B3 Dy-7x[-€77,e77]

E_T
-7
<Ce / e (ve)
DE—T XSI

<CK)e "loge™™™h,

and similarly

/ ec(ve) <Ce™’ / ec(ve)
B? 1 (0)\Bs,—7 (P) [Dy—7\Dge—7]x S

<C(6,x, 1) ".
It is then straightforward to see that, for & = £!*7, the rescaled maps

u;: R — R?, uz(x) == ve(x/e")
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solve the £-Ginzburg-Landau equations
E*Aul = DW (uf)

on R3, and satisfy

/ ez (ul) = s’/ e:(ve) < C(x,1)log(1/8)
B}(0) B} . (0)

and, for any 6 > 0,

/ ez (ul) = ET/ e: (V) < C(6,x,T).
B3(0)\Bs(P) B, (0\Bs—1 (P)

In particular, it follows that the maps
ul: By (0) —R? for&e (0,e0(1)'*7),

give a family of solutions to the Ginzburg-Landau equations on Bf’(O) (or similarly, any
fixed compact subset of R3) with energy of order log(1/#) concentrating along P as & — 0;

i.e. (up to subsequences),
ez (ug)

i —dx=0"L_P
é—-0m|logé|

for some 6 > 0.

To compute 0, we appeal to Theorem 3.4, together with Theorem 6.2. Fixing a small (but
arbitrary) 4 € (0, %), consider 6z — 0 and 7z € %z 5, < (—%, %) a family of 6z-good slices for ug
as in the preceding sections. By virtue of the symmetry (6.2) of v,, note that we can simply
take z = 0. Following the analysis of the preceding section, consider the set

Usz:={zeR*:|ul(z,0)| < 1-6}.
By Theorem 6.2, we see that if |v:(z,0)| < 1—0, then

_ C(x)
K I, _ f€ <
Hj:llU(E [z f] (0)])‘ < |10g£|

0
+1-6<1-—
2

for € sufficiently small, and since the model single-vortex solution w satisfies |w(z)| — 1
as |z| — oo, it follows that
K
z€ ([ Bee(ff ().
j=1
Moreover, note that for 1 < j <[ <, Theorem 6.2 gives

IFEO) - ff0)] vnol eig-nmix

V llogel
- c(x)
V/Iloge|

for € sufficiently small and c(x) > 0, and a similar upper bound also holds. In particular,
it follows that the balls B¢ s)e( f]? (0)) are mutually disjoint for € sufficiently small, and it

2i(l-Dn/x 1/2)

e |+ o(|logel”
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follows from the C° closeness

C
UE(Z)O)_H;?:lw(E_l [Z_fjg(t)]) < (K)

[loge|

that
deg(vg,ch(a)g(ij(O))) =1
In particular, for our rescaled solutions uz (2,0) = ve(z/€",0), writing
A HO
it follows that
K K _
Usz=1{(e"2,0):v:(2,0)| <1-8} U Bes)er+r (ETff(O)) = U BC(6);¢(P§),
j=1 Jj=1
where the balls B¢ s)z( p?) are mutually disjoint, u] has degree
K? := deg(uz, 0Dc)z(F)) =1,

and
(6, ¢(§,x)€" CE,xe™  C(6,1)8/0+D)

= p7| <
v/ llogel v/ loge| Pl v/ llogel Vv llogel

for 1 < j < <«. Thus, applying Theorem 3.4, we deduce that
lloglp§ = pill
llogé&|

<Ipj-

0=lim|¥* | 1+2% 1 1

T
=k+k(xK—-1——7i,
1+7

completing the proof of Theorem 6.1.

O

It remains now to prove Theorem 6.3, verifying that natural energy growth conditions

hold for the solutions constructed in [11].

Proof of Theorem 6.3. For simplicity, we specialize to the case x = 2, for which the con-
struction in [11] is carried out in detail. In this case, the solutions v, : R? x S' — R? of

Theorem 6.2 have the form
Ve(z, t) = ez”Vg(e_”zls),

for a map V; of the form

Ve(2) := wlz—do)w(z+de)n- (A +iye) + (1-m)- eV
(see [11, eq. (3.2)]), where w : R? — R? is the radially symmetric solution of

Av+(1-vPv=0

with degree one constructed in [13], cig € R? are points in the plane with
C

ey/ Ilog£|’

|de| <
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7 is a cutoff function of the form
1(2) =1z =del) + 1112+ de)),

with n,(#) = 1 for £ <1 and n1(¢) = 0 for ¢ > 2, and ¥, : R? — C is an unknown function
whose implicit construction (with estimates) is the content of the proof of Theorem 6.2.

It follows from [11, Proposition 6.1] (see also [11, p. 18] for the definition of ||y ) that
the real part R(y,) of v, satisfies

C -
(6.5) [R(we)| < —— where min{|z + d,|} > 2
llogel

and, for any fixed o € (0, 1], the imaginary part satisfies’
6.6) IS <CO)(|z—de|” *+|z+de|” > +€*°) where min{|z+d,|} > 2.
In particular, where min{|z + d.|} > 2, we have
1-1Ve(@) = 1= |w(z - de)llw(z+de)le >V

<l —lwz=do)ll+1-lwz+do)ll+1-e V7|

<CO)z—del" 2 +|z+de|" 2+ €27,
where we used that the model single-vortex solution w(z) satisfies 0 <1 —|w(z)| < # (cf.
it

(11, Lemma 7.1]). In particular, scaling back down to the solutions v, = e*/V,(e~'!z/¢), it

follows that
11—|ve(z, Dl < C0)e? 7 (|z—e'ledy|” % + |z +e'led.|" 2 +1)
where |z+e’ed,| > 2¢. Also, from the bound (A.2) in the appendix (and a trivial rescaling),

we have |u(x)| < 1+Ce?>R~2 on Bg/»(0), forall R = 1, which implies that |v,| < 1 everywhere.
In particular, by the preceding estimates, setting

pe(z, 1) :=min{|z - e'ed,|, |z + e''ed, |},

we see that foro,7 € (0,1)

/ (1—|vg|2)2</ (1—lvel®)?
Dyt xSt 82 {pe<2e} 82

/ (1—|vel»?
+ T S—
{4e"T=pe>2¢} £

C 1
< Ce?- =+ C(o) — 77072+ D)?

2
{4e"T=p>2¢} €

C(o)  g22-0) (202

<C+—5- -2
&

+ €

< C(o)(1 +&217977),

INote that the first occurrence of €72 in the definition of lw2ll2,« from [11, p. 18] should read g2 o,
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where we used the coarea formula to bound f{ 4T3, >26) 0272 < C(0)€22 (as each level
set {p, = r} has length at most Cr); hence, taking o =1 — 7 gives
1—1p.12)2
6.7) / % <C(1)
Dy—1 xS! €

for all 7 € (0,1), and thus also for all T € [0, 1).
With the bound (6.7) in place, it follows from Theorem A.4 (after a suitable rescaling)
that

(6.8) / |d|vell* < C(1)
DE—T ><81

as well, so to obtain the desired energy estimates for v,, it remains to estimate the contri-
bution from
|dvel” = 1d|vell? = |vel 2| juel?,
recalling that
w2 _ 12 241
jue=v,(r°d0)=v,dv; - v;dv,.

To start, observe that on {p, < 4¢}, we have
C
(6.9) / ldv|* < Ce*-— <C,
{pe<de} €

so we only need to estimate the energy contribution from the region
A:=[De—r x S'1n{pe = 4€}.
To this end, for R € [2€,2¢7 7], consider the annular regions
Qr:={R<p(z,t) <5R}

and
Qf:={2R< p.(z,1) <4R},
so that, for € < € (7) sufficiently small (since Ieitscigl < C/+/|lloge| <e7"), we have
]e,'r

(6.10) Ac UIQ’ng
]:

where J ; := [log(e """ !)/log2] and, for ¢ < £1(8,7) (since |e''ed,| < C/+/|loge| < 36e77),

Jex
(6.11) [Dg-r \ Dgo—] x St < . %J Q;,
J=1e1,5

where I, ; 5 := Llog(5£‘7‘1)/log(2)J —3. Now, given R € [2¢,2e7 "], let yr be a cutoff function
such that

C
0<yreCX(Qgr), yr=lonQp, |dyrl< =
Next, observe that where p, = 2¢, v, has the form

[ —it .- 7 —it - = jwa(e—ite=1
ve(z, 1) = e w(e ez —dowe e z+ dp)e'Ve@ T E A,
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and since the model single-vortex solution w satisfies Izggl = H’ it follows that

ve(z, 1) z—eélled, z+eé'led,

= — ei‘PS
[vel(z, 1) |z — e”sdgl |z + eited,|

)

where we set '
Pe(z, D) :=Re(e e 2)).
It is straightforward to check that
'd(zieitscig)’< C
|z + eiled,| lz+eited,|’

and as a consequence,
; i C
|j el lvel) = del = 1j(e™" e vellve ] < o
£
where p, = 2¢. Moreover, recall that, since v, solves the Ginzburg-Landau equations, we
have as always d* jv, = 0; as a consequence, for any R € [2¢,2¢7 7], we see that

/X%Ulfe,d%)=—/<pg<jvg,d(x§)>,

and therefore

/ximrzumz=/x§<jv5,j(v8/|vg|)>

=/x§a<jve,j(vg/|vgl)—d¢g>+/x§<ju£,d¢g>

. C )
</X§|Jvel-p——/cpg<1vg,d(x§g)>
€
1/2
<Clxrjvel 2 (/p22x§+IIwgdellim-IQRI) .

Now, since yr is supported on the set Qr = {R < p, < 5R}, whose area is < CR?, we see that

/ps XR\/ _<C

on Qf for R = 2¢, so that
c ., C

—_— e — . S .

lloge|? R? lloge|?

Moreover, it follows from (6.5) that |¢,| < Togzl el

lpe dxrlGeo - IQRI <
Finally, since |v.| < 1, we have

xR jVell2 < lxrlvel ™ jvel 2,

and putting together the preceding computations gives

— 1 .
lxrlvel ™ jvel?, < Clixrlvel ™ jvell 2,
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and hence
(6.12) / |vg|'2|jvg|2s/xéwgrzuvazsc.
Qy

Now, applying (6.10), it follows that

=2 s 2 =20 = 2 -2 s 2
/ Vel 1 j vel =/ Vel ™1 j Vel +/|ng | Vel
D, -1 xSt {pe<de} A

<C+Y [ el Pljvel?
2j£

<C+CJer

< Clog(1/e™1),

and since we have already shown (in (6.7) and (6.8)) that
/ (es(us)_|U£|_2|jV&‘|2) < C(7),
DE—T XSI

it follows that

ec(te) < Clog(1/e™1) + C(1) < Clog(1/e"™h)
D, x S!
for € < g¢(7) sufficiently small, as claimed.
Moreover, for any 6 € (0,1) and € < g(6) sufficiently small, it follows from (6.11) and

(6.12) that

=212 Je, 20002
/ Vel %1 Vel SZ]Z,M/ [Vel ™1 j Vel
[DE—T\D&—T]XS1 rJQ.

2Je

< Z]E,T C

j:IE,T,5
= C([log(e " 1 /1og2] - (llog(6e~ "1 /1og(2)] —3))
< C(5-1og(d)),

/ eé‘(u&‘) S(:(5)‘[))
[Dg-7\Dgp—7]xS!

completing the proof of the claim. 0

hence

APPENDIX.

In this appendix we collect some fundamental estimates for maps u : B{*(0) — C which
are critical for the Ginzburg-Landau energy

ldul?  w
Eg(u):/ ( £+ (zu) d volg,
B 2 E
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with respect to a smooth Riemannian metric g, defined on the closure Bj. Recall that u
solves the nonlinear elliptic equation

e*Agu+(1—|u*)u=0.
In the proof of these results a central ingredient, which also appears in our arguments, is

the following monotonicity formula (see, e.g., [25, Proposition A.1]).

Proposition A.1. For any x € B{'(0), denoting by %;(x) the geodesic ball with respect to g,
we have

Al iec(g)szEg(u;t%s(x)))2 1/ o ul + 1/ 2W (u)
ds 0B, (x) B (x)

Sn—2 Sn—Z 8 Sn—l 82
forallse (0, injg(x)), where we omit the volume element of g. In particular,

c(g)s Ee(1; B5(X))

S— e -2

is an increasing function of the radius s € (0,inj, (x)).

Note that the constant C(g) — 1, when we let g converge smoothly to the Euclidean
metric. We also record some useful pointwise bounds for u and its differential.

Proposition A.2. Assuminge <1, on the smaller ball B}, (0) we have
(A.2) lu(x)| <1+ C(g, n)e?, ldulg < e n).
Also, if the energy E¢(u) < Allogel, then on By, (0)
(A3) dul? < ;'2“'2 +Clg, A, n).
Proof. The function p := |u| satisfies

Cagps @R o

£2
while it is easy to check that, for any fixed s € (3,1), by (x) := 1 +ye?
tion on B = B}'(0), for y =¥ (g, n) > 0 large enough.

On B, we have p < by for some least y = 0. However, we cannot have y =y, since
then the supersolution b, would touch the subsolution p from above (at an interior point),
violating the maximum principle for semilinear equations.

Thus, we must have p < by on B, and letting s — 1 we get

2
m is a supersolu-

2

(1—1x]2)?

on Bj, from which the first half of (A.2) follows. Using also the equation, it follows that
lul < C(g,n) and |[Agu| < Cen o Bi15/16, which easily imply the bound

82
C(g,n)

lux)|<1+C(g,n)

ldulg <
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on B7/g. Indeed, the bounds |i| + [Agi| < C(g,n) for ii(x) := u(ex) on Bys/6e (With the
rescaled metric g) easily give the desired bound |diilz < C(g,n) on any ball Byg(x) S
B7,8:(0), hence on By/g. (as € <1).

It is interesting to observe that, even without assumptions on the energy of u on B,
the previous inequalities give E¢(u; By/2) < C(fz'") (which is sharp, for the trivial unstable
solution u = 0).

In order to improve on the previous pointwise bound for |du| = |dulg, we observe that

dul? 1—|ul?
laul = (du,dAgu) +Ricg(du,du) = - glzul

Ag |dul® - || Ricg || o= |d ul?

by Bochner’s formula, and

1-|ul®  |ul* 1-[ul® |duf®

§ o2 T g2 £2 g2
As a consequence, the difference
|dul? . 1-|ul?
= —(1+&7||Ricg || oo
fi=—— A+l Ricg =) — 5
satisfies 5
2|ul
Agf = Tf

In particular, the positive part f* is subharmonic, and it follows that

f<C(g, A n)lloge|

on Byg. Also, by the bound |du| < @ and Theorem A.5 below, we have

W (u)
/B 1 ff<C(gn = <C(g,A,n).
3anflul<sz} Bsja

On the other hand, the subequation for f easily implies that

/ ¢° SC/ (fH2del?,
Byg Bis

2g)- In particular, by Cauchy-Schwarz,

/ fr<cC(gn / lulP(f*)?
Bjanflul=3} Bygnilul=3}

where we used the bound 0 < f* < C(g, A, n)|loge| on B7;g. Together with the previous
bound, using again the subharmonicity of f*, we arrive at

2
ldf*1?+ 'Z—z'(fﬂ2

n

for any ¢ € C°(B
1/2
< C(g,A\, n)ellogel,

f<C(g,n ft<C(g A n)1+ellogel)

Bs/4

on By /2, which gives (A.3). O

In the asymptotic analysis, the most fundamental tool is the clearing-out for the vor-
ticity, which we state here for arbitrary metrics (the proof is a simple localization of the
arguments from [24, Section 4.3]).
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Theorem A.3. Given f € (0,1), there exist constants n(f,n) and c(f, g, n) such that, for a
geodesic ball 28, (x) < B]'(0) withe <r <, if Ec(u; B, (x)) < 17r"_2 log(r/¢), then |u(x)| > .

As we saw in (2.5), the logarithmic growth of the energy exhibited by typical solutions
u is caused solely by the angular part ju = u*(r*> d0) = u' du® — u? du' of the differential.
This fact relies on two inequalities: first of all, we can bound the radial part d|u| in terms
of the potential as follows (see, e.g., the argument from [7, pp. 329-331], which readily
generalizes to arbitrary metrics).

Proposition A.4. On the smaller ball By, = Bf/Z(O) we have
1—[ul?)?

+C(g, n)ez,
B 482

(A.4) / \d|ull* < C(g,n)
By
provided that e < 1.

Also, we have the following sharp bound, which constitutes one of the main contribu-
tions of [7], and allows to deduce the same bound for the previous integral of |d|u| 2.

Proposition A.5. On the smaller ball By, = Bf,Z(O) we have
1—ul?)? E.(u;B E.(u;B
/ ( |L;| ) sC(g,n) ¢(u; By) lo (2+ e (U 1))
B, A€ [loge| loge]

provided that € < ¢ and E;(u; By) < e~ %, for some c = c¢(g,n) and ay = ay(n). In particular,
assuming E.(u; By) < Allogel, it follows that

/ ol <C(g AN
B2 4e? o

(A.5)

for € small enough.

The proof relies on a covering argument using Theorem A.3 (see [7, pp. 323-328]%), and
adapts to arbitrary metrics with straightforward modifications, using balls with respect
to g in the statement of [7, Proposition 2.4] (see [12, Thereom 2.8.14] for a proof of the
Besicovitch covering theorem on Riemannian manifolds).

The conclusion then follows from an estimate off the vorticity set {|u| < 1—-0}, for some
0o small enough (see [7, Theorem 2.1]%).

On an unrelated note, we also record the following useful Lorentz estimate for a Riesz
potential, which is used in the proof of Theorem 3.3. Recall that, for a function f: R — R,

2Note that (2.3) in [7, Proposition 2.2] should read |u. (x)| < 1+ Wgy;mz (which follows from the bound (A.2)
in the present paper, by scaling) and that the assumption in [7, Proposition 2.2 and Proposition 2.3] should
be dist(x,0Q) > €.

Swe point out the following misprints: in (A.5), a = ng_eg) = ﬁ (we assume |ug| = %); in equations
(A.11)-(A.12) some signs are wrong, but this does not affect the argument; most importantly, in (A.21) the

right-hand side is just C ||eg(ug)||i/1%Bl) but, assuming (without loss of generality) 4 > 2 the last estimate

q-2 =
on p. 347 still implies (A.23) with §4 = (2 - a:o)%2 € (0,1), as well as (A.25) with the same g, (by (A.20) with

q=2).
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its L>*-quasinorm is defined as

£ 1l 2oogmy = sup Al f1 > A}'2.
A>0
Proposition A.6. If f,g:R" — R satisfy

Ifl<

P g1,

then for any y € R"2 we have

(A.6) I1f (¥, ) 2002y < C(m) sup % gl
>0 T B2 (y)xR2

Thus, the exponent # in the classical Sobolev bound || f | n/n-100 < C(n)lIgll;1 can be
improved to 2 (the exponent that we have on the plane), on a slice {y} x R?, provided that
we control the maximal function on the right-hand side of (A.6).

The proof is presented in [18, Lemma A.2] when n = 3, but it is straightforward to adapt
it to the case of general n.

Finally, we briefly show how one can obtain precise asymptotics for the (local) Green
function of Ay, the Hodge Laplacian on k-forms, even when the metric is not Euclidean.
Let U c R” be a bounded smooth domain (n = 3), together with a smooth metric g on U.
Let us fix an orthonormal frame (w;);e; for the bundle of k-forms on U.

Proposition A.7. Given a compact subset K < U, there exists G; p € QkW\ { p}) for every
p € K, satisfying
AHGi,p = 5p -w;(p)
on U, in the distributional sense, and such that the difference
H; p(q) := Gi »(q) - G(dist(p, ¢) wi p(q)
obeys the bounds
|H; p(q)| < Cdist(p,q)°™", |VH;,,(q)| < Cdist(p,q)*™"

for q € U, for some constant C = C(g, K, U), where G(r) := m is the standard Green
function onR" and dist(p, q) is the geodesic distance induced by g (the constant C — 0 when

g converges to the Euclidean metric in the smooth topology).

It is clear from the proof that G; ,(g) and VG; ,(q) depend continuously on the couple
(p, q), away from the diagonal {p = g}. With this proposition in hand, we can then easily
invert the Hodge Laplacian (locally): given n € Q¥ (U), the convolution

B(q) := Zie[/ Gi,p(@)(n(p),wi(p)) dvolg(p)
K

then satisfies Ay = n on the interior of K, and the previous bounds for H; ;, imply that
p resembles the usual convolution with the Euclidean Green function (at small scales, or
when g is almost flat).

Proof. For any (smooth) differential form w € Q¥ (U) we can find a unique a € Q*(U) such
that Agya = w, with each component of a vanishing at 0U. Such a can be obtained by
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/ (Idal2 |d*al?
a— —t — —{a,w)
gl 2 2

in the space W01’2(U,Ak|R2”) (note that [lally12 < C(g, U)(ldall;2 + lld* al ;2) for a in this
space, by [15, Theorem 4.8] and a simple compactness and contradiction argument). We
have | ally12y) < C(g, U)llwll 2y and, by standard elliptic regularity for systems,

minimizing the energy

(A7) lelizs@ < €8, s, DlwlLiw)

forall s, t € (1,00) such that % > %— %

Fix a cutoff function y € CZ°(U) with y =1 near K, and let
Gip(q) := x(q)Gdist(p, ¢)) wi,p(q)

for any fixed p € K, where w;,, € QF(U) is such that w; p(p) =w;(p)and Vw; ,(p) = 0. Using
normal coordinates centered at p, it is easy to check that

IAnG; | < Clg, K, U)dist(p, 9)*~"

hence, AHGi,p coincides with a k-form ¢; , € L'(U) on U\ {p}, where r € (1, ﬁ).

On the other hand, an integration by parts shows that

AHGi,p = 6p Wip(P)+@ip= 5]3 wi(p)+@ip

on U, in the distributional sense. As explained above, by approximating ¢; , with smooth
k-forms, we can then find @ = «; , such that Aga; , = ¢; , and (A.7) holds (with w := ¢; ;).
To conclude the proof, we show that |Va(q)| < Cdist(p, g)*>~" for some C = C(g, K, U); the
conclusion will follow by taking G;,, := G; , — @, p.

But indeed, considering the rescaled k-form a,(x) := a(p + r x), we see that

2 4- -y
IAga 1oy < Croll@ipllioBB,) < Cr™ ", llarlizsca < C)r™ "

whenever % >1- %, for the annular region A := B; \ By/», provided that r is small enough
(with C depending also on g, K, U). By standard elliptic regularity, we then obtain |Va,| <
C(s)(r*="+r~"%) on A, which gives

IVa(q)| < C(s)(dist(p, q)g_n + dist(p, q)—l—n/s).

Taking s sufficiently close to - (if n > 4, or to co if n = 4) gives the claim for n > 4; when
n =3, from Aya = ¢; , we can immediately conclude that |a| < C, and we can take s := oo
in the previous bound to conclude that [Va(q)| < Cdist(p, q)_l. O
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