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Abstract

In the present paper, we study sharp isoperimetric inequalities for the first Steklov

eigenvalue �1 on surfaces with fixed genus and large number k of boundary com-

ponents. We show that as k ! 1 the free boundary minimal surfaces in the unit

ball arising from the maximization of �1 converge to a closed minimal surface in the

boundary sphere arising from the maximization of the first Laplace eigenvalue on

the corresponding closed surface. For some genera, we prove that the corresponding

areas converge at the optimal rate
logk
k

. This result appears to provide the first exam-

ples of free boundary minimal surfaces in a compact domain converging to closed

minimal surfaces in the boundary, suggesting new directions in the study of free

boundary minimal surfaces, with many open questions proposed in the present paper.

A similar phenomenon is observed for free boundary harmonic maps associated to

conformally constrained shape optimization problems.
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1. Introduction

1.1. Background

Since the eighteenth century, minimal surfaces have played a central role in geometry

and analysis, among other areas of mathematics and physics. While early investi-

gations focused on minimal surfaces in Euclidean space, the twentieth century saw

an increased interest in the study of minimal surfaces and higher-dimensional mini-

mal submanifolds in compact Riemannian manifolds, with a fundamental special case

being the study of minimal submanifolds in the sphere Sn. Indeed, in addition to their

intrinsic geometric interest, minimal submanifolds in Sn are an unavoidable object of

study for those investigating analytic aspects of minimal submanifolds, since cones

over minimal varieties in the sphere generate the blowup models for singularities of

minimal submanifolds in any ambient space.

In recent decades, the study of minimal submanifolds in spheres has been greatly

enriched by the discovery of an intimate link between minimal surfaces in spheres and

certain natural shape optimization problems for Laplacian eigenvalues. On a closed

Riemannian surface .M;g/, denote by

0D �0.M;g/ < �1.M;g/� �2.M;g/� : : :% C1

the spectrum of the positive Laplacian �g D ıgd . Normalizing by the area, one

obtains a sequence of scale-invariant quantities, of which the most fundamental is

the first nontrivial normalized eigenvalue

N�1.M;g/ WD �1.M;g/Areag.M/:

About 50 years ago, Hersch observed in the influential paper [18] that N�1.S2; g/� 8�

for any metric g on S2, with equality only for round metrics. This paved the way for

the study of the maximization problem for N�1.M;g/ over metrics on a surface of fixed

topological type, and the associated maxima

ƒ1.M/ WD sup
g2Met.M/

N�1.M;g/:

Early key contributions were made by Yang and Yau [47], who showed thatƒ1.M/ <

1 for orientableM (see [23] for the nonorientable case), and Li and Yau [34], whose

introduction of the conformal volume led to the characterization of the round metric

as the unique N�1-maximizing metric on RP2, among other important consequences.

In the 1990s, a significant breakthrough was made by Nadirashvili [39], who

realized that metrics maximizing the normalized Laplacian eigenvalues N�1.M;g/ are

induced by branched minimal immersions to the unit sphere of area 1
2
ƒ1.M/—an

observation which he used to confirm Berger’s conjecture that the flat equilateral met-

ric on T2 maximizes N�1. The only other surfaces whose N�1-maximizing metrics have



FROM STEKLOV TO LAPLACE 1559

been identified are M D S2;RP2, the Klein bottle K (see [5], [7], [20]), and the ori-

entable surface of genus two (see [19], [40], [46]). By the work of Petrides in [43], for

general M , the supremum ƒ1.M/ is achieved by a N�1-maximizing metric—possibly

with conical singularities—provided that for any maximizing sequence of metrics
N�1.M;gj / ! ƒ1.M/, the sequence of conformal classes Œgj � does not escape to

infinity in the moduli space. In [43], Petrides has shown that for orientable surfaces,

such topological degeneration does not occur provided a certain gap condition on the

value of ƒ1.M/ is satisfied. The gap condition essentially amounts to strict mono-

tonicity of ƒ1 in genus of M , as described in (2.3). He then observed that the gap

condition holds for infinitely many values of the genus, thus proving the existence of
N�1-maximizing metric for infinitely many topological types, and it is expected that the

gap condition holds for all surfaces M . The corresponding results for nonorientable

surfaces were obtained in [36]; see Section 2.5 for more details. Let us also remark

that the corresponding theory for higher eigenvalues has seen a lot of recent progress

(see [24], [27], [28], [44]). Moreover, it has been observed in [8] that the induced

metric on any minimally immersed closed submanifold in Sn is a (typically non-

maximizing) critical point for one of the functionals N�i , so in principle all immersed

minimal submanifolds in the sphere may arise from variational methods for N�i . In the

setting of surfaces with boundary .N;g/, one finds a strong analogy between closed

minimal surfaces in the sphere and free boundary minimal surfaces—critical points

for the area functional among relative 2-cycles—in Euclidean balls. In recent years,

much activity in this direction has been stimulated by the work of Fraser and Schoen

[12], who demonstrated that metrics maximizing normalized Steklov eigenvalues

N�i .N;g/D �i .N;g/Length.N;g/;

where �i .N;g/ are eigenvalues of the Dirichlet-to-Neumann map C1.@N / !
C1.@N /, are induced by free boundary minimal immersions to Euclidean balls. In

addition to solving several important problems related to optimal bounds for Steklov

eigenvalues, their work reinvigorated the study of free boundary minimal submani-

folds in general; see the survey [33] for a discussion of many results in this direction

obtained over the last decade. For the purposes of this paper, let us note that the

supremum

†1.N / WD sup
g

N�1.N;g/

of the first nontrivial normalized Steklov eigenvalue over metrics on a surface with

boundary N is finite (see [10], [16], [37]). The existence theory for metrics achieving

†1.N / is analogous to that for metrics achieving ƒ1.M/. Namely, it is shown in

[45] that a N�1-maximizing metric exists provided certain gap conditions are satisfied

(see (2.4) and (2.6)), and it follows from [30] that the gap conditions are satisfied for
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infinitely many N . More precisely, let M be a closed surface and let Nk be a surface

with boundary obtained by removing k disjoint disks fromM , so thatNk is orientable

if and only ifM is orientable, andNk has k boundary components and the same genus

as M . According to [30], if the the gap condition for ƒ1.M/ holds (in the sense

of Definition 2.21), for example, if M D S2;RP2;T2;K, or an orientable surface of

genus 2, then gap conditions for†1.Nk/ are satisfied for an infinite set of values of k;

therefore, the N�1-maximizing metrics and the corresponding free boundary minimal

surfaces exist. We refer to Section 2.5 for a more detailed description of those results.

In the present paper, we establish an explicit link—beyond the well-known

analogy—between the free boundary minimal surfaces in Euclidean balls arising

from maximization of N�1 and the closed minimal surfaces in Sn arising from maxi-

mization of N�1. Namely, building on the recent results of [14], [15], [30], and [29],

for M satisfying the gap condition and any sequence kj ! 1 for which N�1.Nkj
/-

maximizing metrics exist, we show that the free boundary minimal surfaces in BnC1

arising from maximization of N�1 on Nkj
converge subsequentially as kj ! 1, in

the varifold sense, to a closed minimal surface in Sn arising from maximization of
N�1 on M . We also obtain sharp estimates for the rate at which their areas 1

2
†1.Nkj

/

converge to 1
2
ƒ1.M/.

In particular, while the explicit maximizers for N�1 are known only for the disk, the

annulus, and the Möbius band (see [12]), our results provide an asymptotic descrip-

tion of the N�1-maximizing metrics on surfaces with many boundary components in

every case where the maximizing metric for N�1 is known on the corresponding closed

surface (namely, at the moment, for M D S2;RP2;T2;K, or the orientable surface of

genus 2). Moreover, to our knowledge, these results provide the first examples of fam-

ilies of compact free boundary minimal surfaces in a manifold with boundary limiting

to closed minimal surfaces in the boundary, suggesting a number of new questions and

lines of investigation in the study of free boundary minimal surfaces (see Section 1.5

below).

1.2. Convergence of N�1-maximizing maps

Recall that for a closed surfaceM , we denote byNk the compact surface with bound-

ary obtained by removing k disjoint disks fromM . The following surprising identities

were recently established in [15] and [30]:

†1.Nk/ < ƒ1.M/; (1.1)

lim
k!1

†1.Nk/Dƒ1.M/ (1.2)

(see also [14] for a more streamlined proof of (1.2)).
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Suppose that M satisfies the gap condition in the sense of Definition 2.21

and ¹kj º is a sequence such that N�1-maximizing metric exists on Nkj
. Since the

corresponding free boundary minimal surfaces are of bounded area 1
2
†1.Nkj

/ <
1
2
ƒ1.M/ < 1 in a ball BnC1 of fixed dimension n, it follows that these minimal

surfaces must converge subsequentially in the varifold sense (see Section 2.7 below

for relevant definitions) to some limit varifold in BnC1, satisfying a weak version

of the free boundary stationary condition. By (1.2), we see that this limit varifold

must have area 1
2
ƒ1.M/, and since closed minimal surfaces in Sn satisfy the weak

definition of free boundary stationary varifolds in BnC1, it is natural to expect that

these free boundary minimal surfaces converge as kj ! 1 to the closed minimal

surface in Sn realizingƒ1.M/. ForM D S2 this was posed as a conjecture in [15]. In

the first result of the present paper we resolve this conjecture for an arbitrary closed

surface M and prove the following theorem. (See Section 2.7 and Theorem 2.26 for

a more detailed statement.)

THEOREM 1.1

Let M be a closed surface satisfying the gap condition of Definition 2.21. Then, there

exists a sequence kj ! 1 such that N�1-maximizing metrics on Nkj
exist. Further-

more, for an appropriate nD n.M/ 2 N and for any such sequence, the (branched)

free boundary minimal surfaces in BnC1 inducing the N�1-maximizing metrics on Nkj

converge, up to a choice of a subsequence, in the varifold sense to a closed (branched)

minimal surface in Sn, inducing the N�1-maximizing metric on M . Moreover, as a

consequence, their supports converge in the Hausdorff distance, and the boundary

measures converge to twice the area measure of the limit surface.

Remark 1.2

The gap condition is known to hold on all surfaces for which the N�1-maximization

problem has been solved, namely, S2, RP2, T 2, the Klein bottle K, and the oriented

surface of genus 2. Petrides observed in [43] that there are infinitely many closed,

oriented surfaces M satisfying the gap condition (see Section 2.5). Thus, the above

theorem gives infinitely many examples of sequences of free boundary minimal sur-

faces in the ball converging to a minimal surface in the boundary sphere. Moreover,

it is expected that all M satisfy the gap condition so that the convergence statement

holds for all closed surfaces M .

Remark 1.3

As is customary in the theory of varifolds, the surfaces in Theorem 1.1 should be

understood with the appropriate multiplicity (see Section 2.7). For example, if M D
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M2 is the orientable surface of genus 2, then the limiting surface is S2 with multiplic-

ity 2; see Open Question 6 below.

Remark 1.4

Note that one should not expect to improve the convergence statement far beyond var-

ifold convergence: in particular, note that a free boundary surface in BnC1 cannot be

C 1 close to any surface in Sn near its boundary, and it is clear from direct examina-

tion of the minimal surface equations in RnC1 and Sn that a minimal surface in BnC1

is nowhere close to a minimal surface in Sn in a C 2 sense. Nonetheless, one can of

course ask for a more refined picture of the convergence given in Theorem 1.1; see

Section 1.5 below for some open questions in this direction.

If M is a sphere S2, a projective plane RP2, a torus T2, or a Klein bottle K, then

the branched minimal surface corresponding to N�1.M/-maximal metric is unique up

to an isometry of RnC1 (see, e.g., [5]). Since O.nC 1/ is compact, the convergence

of Theorem 1.1 holds along the full sequence after applying a suitable element of

O.nC 1/ to each member of the sequence. Moreover, in all these examples, the limit

surface and the value of n are known explicitly.

� If M D S2, then nD 2 and the limit surface is the whole sphere. Furthermore,

[12, Proposition 8.1] implies that all of these free boundary minimal surfaces

are embedded. In particular, we have the following corollary.

COROLLARY 1.5

For a sequence kj ! 1, maximization of N�1 gives rise to an embedded free boundary

minimal surface in B3 of genus 0 with kj boundary components, such that as j ! 1,

these surfaces converge in the varifold sense to the boundary sphere S2 D @B3.

Remark 1.6

Note that Corollary 1.5 and the relation (1.2) are in contradiction with [12, Theo-

rem 1.6]. We refer to the appendix in [15] for the explanation.

Remark 1.7

Approximate pictures of these free boundary minimal surfaces are obtained in [15]

and [42] using numerical computations. After our paper was completed, Kapouleas

and Zou [22] used gluing methods to construct other families of free boundary mini-

mal surfaces in B3 converging to the boundary, which seem to be distinct from those

given by N�1-maximization.

� If M D RP2, then nD 4 and the limit surface is the Veronese surface.
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� IfM D K, then nD 4 and the limit surface is one of the minimal Klein bottles

constructed by Lawson in [32], in his notation Q�3;1. Note that the same surface

is conjectured to be the Klein bottle with the smallest Willmore energy.

� If M D T2, then n D 5 and the limit surface is the so-called Bryant–Itoh–

Montiel–Ros torus. It is characterized by the fact that the induced metric is the

flat metric corresponding to the equilateral lattice.

We remark that, using arguments similar to those in [12, Proposition 8.1],

it is possible to show that the free boundary immersions corresponding to M D
RP2;K;T2 are unbranched as soon as they are linearly full, that is, not contained in a

proper linear subspace of RnC1. However, embeddedness seems to be a more subtle

issue; see Open Question 3.

In Section 2.8 below, we observe that a variant of the phenomenon described in

Theorem 1.1 also holds for the conformally constrained N�1-maximization and N�1-

maximization problems under certain natural assumptions, in which case one finds a

sequence of free boundary harmonic maps on domains �k �M converging to a har-

monic map u W M ! Sn associated to the conformally constrained N�1-maximization

problem.

1.3. Refined asymptotics for †1.Nk/

In our second result we provide a sharp rate of convergence for the limit (1.2); namely,

we identify
logk
k

as the decay rate of the correction term.

THEOREM 1.8

Let M be a closed surface for which there exists a N�1-maximizing metric, and let Nk
be a compact surface with boundary obtained by removing k disjoint disks from a

closed surface M . Then the following holds.

(1) There exists a constant C D C.M/ > 0 such that for all k > 0 one has

†1.Nk/�ƒ1.M/�C logk

k
: (1.3)

(2) Let M be a sphere S2, a projective plane RP2, a torus T2, or a Klein bottle

K. Then there exists a constant c D c.M/ > 0 such that for all k > 0 one has

†1.Nk/�ƒ1.M/� c logk

k
: (1.4)

Remark 1.9

If, furthermore, there exists a N�1-maximizing metric on Nk , then in terms of the free

boundary minimal immersion uk W Nk ! BnC1 realizing †1.Nk/ and the minimal

immersion u W M ! Sn realizing ƒ1.M/, this tells us that the areas satisfy
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Area
�
u.M/

�
� Area

�
uk.Nk/

�
� C.M/

logk

k
; (1.5)

and this convergence rate is sharp for M D S2;RP2;T2, or K.

Remark 1.10

The proof of (1.4) is based on a refinement of the quantitative stability of N�1-maximal

metrics as defined in [29], and the surfaces listed in the assumptions are precisely

those for which quantitative stability is verified in [29]. However, it is interesting to

note that the results of [29] alone do not suffice to establish the sharp bound (1.4); see

the discussion in Section 5.1.

Remark 1.11

Inequality (1.4) is a quantitative improvement over (1.1). The only other known result

of this type is [14, Theorem 1.8], where the correction term decays exponentially

with k. We note that a variant of (1.3) also holds for the conformally constrained

maximization problem (see Proposition 4.2), and the corresponding variant of the

upper bound (1.4) holds for many nonmaximizing conformal classes, for example,

for any conformal class admitting a minimal immersion to Sn by first eigenfunctions

(see Remark 5.5).

1.4. Ideas of the proofs

For the remainder of the introduction we write k instead of kj to simplify the notation.

To prove Theorem 1.1, we begin by applying uniformization results of [35] and [17]

to identify N�1-maximizing metrics .Nk; Qgk/ on Nk conformally with a domain �k �
.M;gk/ given by removing disjoint geodesic disks from a constant curvature metric

gk on M . Combining (1.2) with the stability results of [29], we are able to deduce

that the the conformal classes Œgk� converge subsequentially to Œg�, and the boundary

length measures ds Qgk
of @�k converge in W �1;2.M;g/ to the area measure dvgmax

of a N�1-maximizing metric gmax 2 Œg� on M .

We then show that there exists a metric Qg on M with respect to which the har-

monic extension Ouk W M ! BnC1 of the branched free boundary minimal immer-

sions uk W .Nk; Qgk/! BnC1 by �1.Nk; Qgk/-eigenfunctions have vanishing energy in

the complement M n�k , and use the strong W �1;2 convergence ds Qgk
! dvgmax

to

deduce that the maps Ouk converge strongly (subsequentially) inW 1;2.M; Qg/ to a min-

imal immersion .M;gmax/! Sn by first eigenfunctions of�gmax
. The convergence of

the associated varifolds then follows by standard arguments from the strong conver-

gence Ouk ! u and the vanishing of the energy
R
Mn�k

jd Oukj2gk
! 0.

The proof of the lower bound (1.3) in Theorem 1.8 is constructive; namely, we

produce a metric on Nk satifying N�1 � ƒ1.M/ � C
logk
k

. As in [15], we begin by
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removing several small geodesic disks—of radius k�˛ for ˛ sufficiently large—with

respect to a constant curvature metric conformal to a N�1-maximizing metric gmax, to

produce a domain�k �M diffeomorphic to Nk . We then choose a conformal metric

Qgk on this domain with the property that the pairing h	k; 'i of the resulting length

measure 	k D ds Qgk
of @�k with a smooth function ' 2 C1.@�k/ is given by the

integral
R
�k

O' dvgmax
of the harmonic extension O' over �k with respect to gmax.

To show that the resulting metric .�k; Qgk/ satisfies N�1.�k; Qgk/ � ƒ1.M/ �
C

logk
k

, we first argue that the restriction to @�k of the first eigenfunctions for �gmax

are, in an appropriate sense, approximate eigenfunctions, that is, quasimodes, of the

Dirichlet-to-Neumann map for .�k; Qgk/, with the normalized eigenvalue lying in

Œƒ1 �C logk
k
;ƒ1 CC

logk
k
�. Denoting by m the multiplicity of the first eigenvalue of

�gmax
, we then deduce that there must exist at least m Steklov eigenvalues in Œƒ1 �

C
logk
k
;ƒ1 C C

logk
k
�, and we employ a contradiction argument to conclude that the

first normalized Steklov eigenvalue N�1.�; Qgk/must lie in Œƒ1�C logk
k
;ƒ1CC

logk
k
�,

as desired.

To prove the upper bound (1.4) in Theorem 1.8, we need to show that if M D
S2;RP2;T2, or K, then every metric g on Nk must satisfy N�1.Nk ; g/ � ƒ1.M/ �
c

logk
k

. To this end, we again begin by identifying a given metric .Nk ; g/ conformally

with the complement of geodesic disks for some constant curvature metric on M .

Building on the techniques of [29], we then show that for any such domain �k with

conformal metric Qgk , there exists a N�1-maximizing metric gmax on M such that the

gap ƒ1.M/ � N�1.�k; Qgk/ is bounded below by Areagmax
.M n �k/ and the square

of the W �1;2.M;gmax/-distance between the length measure ds Qgk
of @�k and an

appropriate multiple of the area measure dvgmax
. The area bound Areagmax

.M n�k/�
C.ƒ1.M/� N�1.�k; Qgk// is then used to show that a certain test function 'k (related

to the logarithm of the distance to the centers of the disks comprising the complement

M n�k) satisfies

c
logk

k
� h'k; ds Qgk

� dvgmax
i

k'kkW 1;2.M;gmax/

� kds Qgk
� dvgmax

kW�1;2.M;gmax/
;

from which the desired bound follows.

1.5. Discussion and Open Questions

Item (2) of Theorem 1.8 immediately suggests the following question.

OPEN QUESTION 1

Does the inequality (1.4) hold for all closed surfaces M ?

One of the ways to resolve this question would be to prove an appropriate quanti-

tative stability result relating the difference ƒ1.M/� N�1.�; Qg/ for a domain ��M
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to the W �1;2.M;gmax/ difference between the measures dvgmax
and ds Qg and the

area of M n � with respect to some N�1-maximizing metric gmax on M . It could

be illuminating to investigate this problem first for surfaces of genus 2, where the
N�1-maximizing metrics are known but do not meet the criteria needed to apply our

methods of proof for (1.4).

It is also natural to ask to what extent the estimates of Theorem 1.8 can be sharp-

ened. In this direction, the following question is an obvious place to begin.

OPEN QUESTION 2

Does the limit

lim
k!1

�
ƒ1.M/�†1.Nk/

� k

logk

exist? If so, then find its value.

An explicit answer to this question will likely go hand in hand with a sharper

geometric picture of the associated N�1-maximizing metrics; see Question 4 below.

There are many natural questions concerning the limiting behavior of the free

boundary minimal surfaces realizing †1.Nk/. From the perspective of geometric

measure theory, one of the first questions one might pose concerns the persistence

of singularities of these surfaces in the limit as k ! 1.

OPEN QUESTION 3

If the limiting minimal surface in Sn realizing ƒ1.M/ is embedded, does it neces-

sarily follow that the free boundary minimal surfaces in BnC1 realizing †1.Nk/ are

embedded for k sufficiently large?

Remark 1.12

Note that the standard persistence-of-singularities result for stationary varifolds in a

fixed domain does not hold for families of free boundary stationary varifolds in BnC1

approaching a stationary varifold in Sn. For an elementary counterexample, note that

the boundary of an inscribed regular k-gon in the 2-dimensional unit disk B2 gives

a singular free boundary stationary geodesic network which approaches the (smooth,

multiplicity one) boundary circle as k ! 1. However, it is straightforward to check

that the embededdness of the limit surface in Sn—by Allard regularity and standard

monotonicity results—rules out the possibility of singularities with density larger than

2 in nearby free boundary minimal surfaces in BnC1; moreover, these free boundary

minimal surfaces must look roughly conical at all small scales (though perhaps with

different cones at different scales) near a singularity of density equal to 2, so the
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conditions under which singularities could disappear in the limit appear to be quite

restrictive.

The following question is inspired by Corollary 1.5 and concerns a finer structure

of free boundary minimal surfaces corresponding to N�1.Nk/-maximal metrics. We

formulate the question for M D S2, but, of course, similar problems can be posed for

other closed surfaces.

OPEN QUESTION 4

Let �k � B3 be an embedded free boundary minimal surface of genus 0 with k

boundary components corresponding to a N�1-maximizing metric. Prove or disprove

the following.

(1) �k is unique up to isometries of B3.

(2) All boundary components are approximately of the same size. In particular, let

Lj;k , j D 1; : : : ; k be the lengths of boundary components of �k; then there

exist c;C > 0 such that for all j , k,

c

k
�Lj;k � C

k
:

More precisely, show that

lim
k!1

sup
1�j�k

Lj;kPj
jD1Lj;k

D 1

k
:

(3) The boundary @�k is dense on the scale 1p
k

inside S2; that is, there exists

C > 0 such that the Cp
k

-tubular neighborhood of @�k contains S2.

(4) For large k, each boundary component is close to a half-catenoid; that is,

the blowups of boundary components on the scale 1
k

converge to the unique

rotationally symmetric free boundary minimal surface in the half-space.

The numerical examples of [15] and [42] point to the fact that the topology of�k
alone does not guarantee uniqueness for free boundary minimal surfaces in B3. For

example, numerical computations of [15] suggest that for k D 8; 20, there exist free

boundary minimal surfaces of genus 0 and k-boundary components with the symme-

try group of cube and dodecahedron, respectively. At the same time, the computa-

tions in [42] indicate that these surfaces are not Steklov maximizers and that, instead,

the boundary components of the maximizers are distributed more irregularly. This

resulted in the observation in [42, Section 5] that centers of mass of boundary com-

ponents form a solution to a point distribution problem—in particular, the Thompson

problem was suggested as a candidate. While the sample size in [42] is too small to
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formulate an exact open question, the possibility is too tantalizing to ignore. Thus, the

following question is purposefully open ended.

OPEN QUESTION 5

In the notation of Question 4, show that the centers of mass of the boundary compo-

nents of �k are located according to a solution of some k-point distribution problem

of S2.

Another special case which merits further study is the genus 2 setting. When M

is the orientable surface of genus 2, then ƒ1.M/D 16� , there is a continuous family

of N�1.M/-maximal metrics, and the corresponding branched minimal immersions are

simply branched covers of S2 with the location of branch points varying within the

family (see [19], [40], [46]). The most symmetric member of the family is the so-

called Bolza surface with branch points at the vertices of an octahedron. At the same

time, the fact that the limiting map is a cover of S2 does not mean that nD 2 in Theo-

rem 1.1, although it seems reasonable to suggest that the immersion corresponding to

N2k could be a double branched cover of �k defined in Question 4, at least for large

k. If the answer to the latter question is positive, it would be interesting to understand

the location of the branch points, even though it is likely such covers are not unique,

similarly to the closed case. We collect these thoughts below.

OPEN QUESTION 6

Let M be an orientable surface of genus 2, and let Nk be a surface with boundary

obtained by removing k disjoint disks from M . Let uk be a branched free boundary

immersion corresponding to a N�1.Nk/-maximizing metric.

(1) Is the map uk unique, up to isometries of RnC1? What are the possible limits

of uk? For example, is it true that the Bolza cover is the only accumulation

point of ¹ukº?

(2) Is it true that for large enough k the image of uk is contained in B3?

(3) More specifically, is it true that for large enough k the maps u2k are branched

covers over surfaces �k defined in Question 4? If so, then what are the loca-

tions of branch points?

(4) Similarly, is there any relation between u2kC1 and the surfaces �j ?

Finally, let us close by posing a question which should be of general interest to

the minimal surface community, independent of any connections to spectral geometry.

OPEN QUESTION 7

Given a smooth, convex domain P � RnC1 and a minimal submanifold M � @P in
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@P , does there exist a family of free boundary minimal surfaces in P approachingM

in a varifold sense? As a special case, do there exist free boundary minimal hyper-

surfaces in P approaching @P in the varifold sense? (Note that Corollary 1.5 gives a

positive answer in the case P D B3.)

Remark 1.13

Naïvely, one might hope to approach this via novel gluing methods, or perhaps some

variational scheme.

2. Preliminaries

2.1. Uniformization theorems for surfaces

Recall the notation used in the introduction, where Nk is a compact surface obtained

by removing k disjoint disks from a closed surface M .

Uniformization theorems are concerned with choosing a canonical metric in each

conformal class of metrics. For example, the classical uniformization theorem states

that given a conformal class C on M there exists a unit area metric g 2 C of constant

Gauss curvature. Furthermore, if M ¤ S2, then such a metric is unique, whereas on

S2 it is unique up to a conformal automorphism. We denote by Metcan.M/ the space

of metrics of unit area and constant Gauss curvature on M .

The most commonly used uniformization theorem for surfaces with boundary

states that for any conformal class C on N there is a unit area metric g 2 C with

constant Gauss curvature and geodesic boundary (see, e.g., [41]). In the present paper

we use another, perhaps lesser-known, uniformization result.

THEOREM 2.1 ([17], [35])

Let .Nk ;C/ be a compact surface with k boundary components endowed with a con-

formal class C . Then there exists a closed Riemannian surface .M;g/ of unit area and

constant curvature, a collection Bi �M , i D 1; : : : ; k of embedded open nonempty

geodesic disks with disjoint closure, and a conformal diffeomorphism F W .N;C/!
.�k ; g/, where �k D M n

Sk
iD1Bi . Moreover, for any two such conformal diffeo-

morphisms F W .N;C/! .�k; g/, F
0 W .N;C/! .�0

k
; g0/, there exists a conformal

automorphism G W .M;g/! .M 0; g0/ such that G ıF D F 0.
In other words, .N;C/ can be (uniquely) conformally identified with a comple-

ment of k geodesic disks in a closed surface endowed with a metric of constant cur-

vature.

Remark 2.2

Theorem A in [35] as originally stated provides a biholomorphism of the interior of
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Nk onto the complement of closed disks, but standard results on boundary regularity

of biholomorphisms imply that this extends to a diffeomorphism up to the boundary.

For example, one can refer to the introduction of [1], where it is explained how the

classical boundary regularity for the Riemann mapping theorem implies the analogous

result for multiply connected planar domains. In particular, any biholomorphism of

open annuli extends to a diffeomorphism of their closures—a result which we can

apply to small annuli near the boundary circles of Nk .

As written, the original statement of Theorem A in [35] applies only to Riemann

surfaces, but it is straightforward to extend it to the nonorientable case, as follows.

Given a nonorientable compact surface N with boundary, let � W QN !N be the ori-

ented double cover, with free antiholomorphic involution s W QN ! QN such that s2 D id

and � ı s D � . By Haas and Maskit’s results for orientable surfaces, we know that

there exists a closed surface . QM;g/ of unit area and constant curvature, and geodesic

disks Bi � QM with disjoint closures, such that QN admits a conformal diffeomorphism

QF W . QN;C/! . Q�;g/

onto the complement Q� D QM n
S
Bi . Moreover, observe that the composition QF ı

s W .N;C/ ! . Q�;g/ with the antiholomorphic involution s gives another conformal

diffeomorphism, so by the uniqueness part of Maskit’s theorem, there must exist a

conformal diffeomorphism G W . QM;g/! . QM;g/ such that QF ı s D G ı QF . Without

loss of generality, we may assume that G is an isometry of . QM;g/; if QM ¤ S2, this

is automatic, while if QM D S2, this may be achieved by replacing QF with ˆ ı QF for a

suitable conformal automorphism ˆ W S2 ! S2.

Evidently, this isometry G W . QM;g/ ! . QM;g/ preserves the image Q� D QM nS
Bi , reverses orientation, and satisfies G2 D id on Q�; hence G2 D id on QM , by

unique continuation. Moreover, since s has no fixed points on QN , G cannot have

fixed points in Q�. We claim now that G has no fixed points in QM . Indeed, if G fixes

a point x 2 QM n Q�, then x must lie in the interior of one of the disks Bi � QM n Q�,

and since G fixes the disjoint union
S
Bi , we see that the restriction GjBi

must then

act as an antiholomorphic diffeomorphism of the closed disk Bi . However, it follows

from the standard classification of holomorphic automorphisms of the closed disk that

any antiholomorphic automorphism G of Bi must have fixed points on the boundary

@Bi � @ Q�, which cannot occur since G acts freely on Q�.

We therefore see that the isometry G W . QM;g/ ! . QM;g/ is an orientation-

reversing involution acting freely on QM , from which we obtain a smooth quotient

surface

p W . QM;g/! .M;g/ WD . QM;g/=G
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of constant curvature (and area 1
2

), such that the conformal diffeomorphism QF W
. QN;C/! . Q�;g/ descends to a conformal diffeomorphism

F W .N;C/! .�;g/� .M;g/;

where� WD p. Q�/DM np.
S
Bi /. Evidently, the image p.

Sk
iD1Bi / of the geodesic

disks under the 2-fold covering map p is a union of k=2 geodesic disks in .M;g/,

so that F gives the desired uniformization of .N;C/. Uniqueness of F up to con-

formal diffeomorphisms likewise follows from uniqueness in the orientable case and

the observation that any such uniformization .N;C/! .�;g/ lifts to an orientable

uniformization . QN;C/! . Q�;g/.

2.2. Eigenvalues of measures

In recent years, it has been observed that the study of variational problems for Laplace

and Steklov eigenvalues fits into a useful, more general framework, based on assign-

ing certain natural spectra to Radon measures on Riemann surfaces. To be precise, let

N be a compact surface with boundary (possibly empty), and let C be a conformal

class on N . Given a Radon measure 	 on N , one can define the variational eigenval-

ues

�k.N;C ;	/D inf
EkC1

sup
0¤f 2EkC1

R
N jrf j2g dvgR
N
f 2 d	

; (2.1)

where g 2 C is any representative of the conformal class and EkC1 ranges over all

.k C 1/-dimensional subspaces of C1.N / \ L2.N;	/; one then defines the mass-

normalized eigenvalues

N�k.N;C ;	/D �k.N;C ;	/	.N /:

We say that the measure 	 is admissible (see [14], [30], [31]) if the identity map

on C1.M/ can be extended to a compact map W 1;2.M;g/! L2.	/, g 2 C . This

definition does not depend on the choice of g 2 C and essentially guarantees that the

eigenvalues �k.N;C ;	/ behave similarly to the classical eigenvalues of the Laplacian

(see, e.g., [14]). While many examples of admissible measures lead to interesting

eigenvalue problems (see [14, Section 4]), the following are the only examples used

in the present paper.

Example 2.3

Let @N D ∅, 	 be a volume measure of a smooth metric g 2 C , 	D dvg . Then the

Rellich–Kondrachov compactness theorem implies that 	 is admissible. In fact, then

�k.N;C ;	/D �k.N;g/ corresponds to the kth nontrivial eigenvalue of the Laplacian

�g .
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Example 2.4

Let @N D ∅, 	D f dvg , where g 2 C is a smooth metric and f � 0 with zeroes of

finite order at isolated points of N . Then 	 is a volume measure of the metric fg,

which is a smooth metric outside of finitely many conical singularities. The variational

eigenvalues �k.N;C ;	/ coincide with the eigenvalues of the Friedrichs extension of

�fg , and we continue to write �k.N;fg/D �k.N;C ;	/.

Example 2.5

Let @N ¤ ∅, 	D ds@Ng be the boundary length measure of a metric g 2 C . Then the

Sobolev trace embedding implies that 	 is admissible and �k.N;C ;	/D �k.N;g/.

In particular, the Steklov eigenvalues �k.N;g/ depend only on the conformal class

Œg� and the restriction of g to the boundary @N .

Example 2.6

Let .M;g/ be a closed surface, and let � � M be a smooth domain. Let 	 be the

boundary length measure of @�, 	 D ds@�g . Consider � � M as a manifold with

boundary; then one has N�k.�; Œg�;	/D N�k.�;g/. Furthermore, the definition (2.1)

easily implies that

N�k.�;g/D N�k
�
�; Œg�;	

�
� N�k

�
M; Œg�;	

�
: (2.2)

Remark 2.7 (Invariance under diffeomorphisms)

Let N be a compact surface, g 2 Metcan.N /, and let 	 be an admissible measure on

N . If ˆ W N ! N1 is a diffeomorphism, then it is easy to see that �1.N; Œg�;	/ D
�1.N1; Œ.ˆ

�1/�g�;ˆ�	/. Furthermore, if f is an eigenfunction on N1, then ˆ�f is

an eigenfunction on N with the same eigenvalue. In particular, this induces the action

of Diff.N / on the set of pairs .g;	/ by

ˆ � .g;	/D
�
.ˆ�1/�g;ˆ�	

�
;

which preserves the variational eigenvalues.

Finally, we endow the space of all admissible measures with the topology induced

by the W
�1;2
g .M/-norm. Namely, for any Radon measure 	, we define

k	kW�1;2.M;g/ D sup
u

Z

M

ud	;

where the supremum is over all smooth functions u, satisfying kukW 1;2.M;g/ D 1. It

is easy to see that any admissible 	 has finite W �1;2.M;g/-norm.
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2.3. Geometric characterization of maximal metrics: Laplacian

In the next two sections we recall some key results on the connection between eigen-

value optimization problems and minimal surfaces, starting with the Laplace eigen-

values of closed surfaces.

Given a closed surface M , consider again the supremum

ƒ1.M/D sup
g

N�1.M;g/

of the normalized first eigenvalue over all metrics on M , as well as the conformally

constrained supremum

ƒ1
�
M; Œg�

�
D sup
h2Œg�

N�1.M;h/;

where in the second quantity one can always assume g 2 Metcan.M/. For any con-

formal class Œg�, the supremum is achieved by some metric, smooth up to a finite

number of conical singularities (see [27], [30], [43]); the existence theory for ƒ1.M/

is more subtle and is discussed in Section 2.5 below. Furthermore, these singular-

ities have integer angles: in particular, if h is such a metric, then h D fg, where

g 2 Metcan.M/ and f 2 C1.M/ is given by the energy density of a harmonic map

M ! Sn, with f > 0 outside of finitely many branch points corresponding to the

singularities of h (see Example 2.4). If the metric h (possibly with isolated coni-

cal singularities) is such that N�1.M;h/Dƒ1.M/ (or N�1.M;h/Dƒ1.M; Œg�/), then

we say that h is a N�1-(conformally) maximal metric. Additionally, keeping in mind

Example 2.4, we also say that dvh is a N�1-(conformally) maximal measure. We denote

by Met0.M/� Metcan.M/ the subset of unit-area, constant curvature metrics corre-

sponding to N�1-maximal conformal classes; that is,

Met0.M/ WD
®
g 2 Metcan.M/

ˇ̌
ƒ1

�
M; Œg�

�
Dƒ1.M/

¯
:

Recall that a map u W .M;g/! Sn is called harmonic if the Rn-valued Laplacian

�gu satisfies

�guD jduj2gu;

which holds precisely when u is a critical point for the energy

Eg.u/D 1

2

Z

M

jduj2g dvg

among Sn-valued maps. This equation is conformally invariant on surfaces; that is, u

is harmonic with respect to any other metric in the conformal class Œg�. In particular,

setting gu D 1
2
jduj2gg, one obtains �gu

uD 2u so that the components are the eigen-

functions of �gu
with eigenvalue 2. If, furthermore, �1.M;gu/D 2, then we say that
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u is of spectral index 1 and write indS .u/ D 1. Note that du D 0 only at isolated

points of M , which correspond to conical singularities of gu.

THEOREM 2.8 ([8], [11])

Let g be a N�1-conformally maximal metric. Then there exists n > 0, a harmonic map

u W .M; Œg�/ ! Sn of spectral index 1 and ˛ > 0 such that g D ˛gu. In particular,

ƒ1.M; Œg�/D 2Eg.u/.

Remark 2.9

Note that n is bounded by the multiplicity of the first eigenvalue of �gu
but is not

necessarily equal to it (see [5, Remark 1.4]). The multiplicity bounds of [2], [4], and

[38] imply that n is bounded from above only in terms of the topology of M .

Conversely, for any harmonic map u W .M;g/! Sn of spectral index 1 satisfying

2Eg.u/Dƒ1.M; Œg�/, the metric gu is N�1-conformally maximal. We say that such a

map u is a N�1-conformally maximal map.

A map u W .M;g/ ! .P;h/ is called weakly conformal if u�h D gu. On sur-

faces, any weakly conformal harmonic map is a branched minimal immersion and

vice versa. The branch points of the immersion correspond to the singularities of gu.

THEOREM 2.10 ([8], [11], [39])

Let g be a N�1-maximal metric. Then there exists n > 0, a branched minimal immersion

u W M ! Sn of spectral index 1 and ˛ > 0 such that g D ˛u�gSn . In particular,

ƒ1.M/D 2Area.u.M//.

Conversely, for any branched minimal immersion u W M ! Sn of spectral index

1 satisfying 2Area.u.M//D ƒ1.M; Œg�/, the metric u�gSn is N�1-maximal. We say

that such a map u is a N�1-maximal map.

2.4. Geometric characterization of maximal metrics: Steklov

The variational theory for normalized Steklov eigenvalues is to a large extent parallel

to that of the Laplacian.

Given a connected compact surface with boundary N , we consider again the

supremum

†1.N /D sup
g

N�1.N;g/

of the first nontrivial (length-normalized) Steklov eigenvalue over all metrics on N ,

as well as the conformally constrained supremum
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†1
�
N; Œg�

�
D sup
h2Œg�

N�1.N;h/:

As was mentioned in the introduction, †1.N / < 1 for any surface N . We discuss

the existence of metrics achieving †1.N / in Section 2.5 below; for the conformally

constrained supremum, one has the following.

THEOREM 2.11 ([45])

Assume that †1.N; Œg�/ > 2� . Then the supremum is achieved by a smooth metric.

Remark 2.12

It is expected that †1.N; Œg�/ > 2� for N ¤ D and for any conformal class Œg�, but as

of this writing, this has only been verified for some conformal classes on the annulus

(see [26]).

If the metric g is such that N�1.N;g/D†1.N / (or N�1.N;g/D†1.N; Œg�/), then

we say that g is a N�1-(conformally) maximal metric. Additionally, keeping in mind

Example 2.5, we also say that ds@Ng is a N�1-(conformally) maximal measure. Note

that by Example 2.5, if g is a N�1-(conformally) maximal metric, then any h 2 Œg� with

ds@N
h

D ds@Ng is also a N�1-(conformally) maximal. For that reason, in the following

we predominantly refer to N�1-(conformally) maximal measures as opposed to metrics.

Recall that a map u W .N;g/ ! BnC1 is called free boundary harmonic if

u.@N/� Sn D @BnC1 and

´
�guD 0 in N ,

@�g
u k u on @N ,

where 
g is the outer unit normal. Its energy satisfies

Eg.u/D 1

2

Z

N

jduj2g dvg D 1

2

Z

@N

j@�g
ujdsg :

Similar to the harmonic maps, this definition only depends on the conformal class

Œg� in our 2-dimensional setting. In particular, setting 	u D j@�g
ujdsg , one obtains

that the components of u are Steklov eigenfunctions associated with the measure 	u,

whose eigenvalue is equal to 1. If, furthermore, �1.N; Œg�;	u/D 1, then we say that

u is of spectral index 1 and write indS .u/D 1.

THEOREM 2.13 ([11], [26])

Let 	 be a N�1-conformally maximal measure. Then there exists n > 0, a free boundary

harmonic map u W .N; Œg�/! BnC1 of spectral index 1 and ˛ > 0 such that 	D ˛	u.

In particular, †1.N; Œg�/D 2Eg.u/.
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Remark 2.14

Similarly to Remark 2.9, the number n is bounded only in terms of the topology of

N (see [12], [21], [25]). Furthermore—and crucially for the purposes of the present

paper—the upper bound does not depend on the number of boundary components of

N .

Conversely, for any free boundary harmonic map u W .N;g/! BnC1 of spectral

index 1 satisfying 2Eg.u/D†1.N; Œg�/, the measure 	u is N�1-conformally maximal.

We refer to such maps u as N�1-conformally maximal maps.

THEOREM 2.15 ([11], [26])

Let 	 be a N�1-maximal measure. There exists n > 0, a free boundary branched mini-

mal immersion u W N ! BnC1 of spectral index 1 and ˛ > 0 such that 	D ˛ dsu�gSn .

In particular, †1.N /D 2Area.u.N //.

For any free boundary branched minimal immersion u W N ! BnC1 of spectral

index 1 satisfying 2Area.u.N //D†1.N /, the measure ds@N
u�.gSn /

is N�1-maximal. We

say that such a map u is N�1-maximal.

2.5. Existence of maximal metrics

In this section we review the existence theory for N�1 and N�1-maximizing metrics

established in [43] and [45], following the discussion in [30, Section 5.2]. We start

with orientable surfaces, where the results are easier to state. Let M� be an orientable

surface of genus � , and set ƒ1.�/ WD ƒ1.M� /, and ƒ1.�1/ WD 0 for convenience.

Similarly, if N�;k is an orientable surface of genus � with k boundary components,

we set †1.�; k/ WD†1.N�;k/ and †1.�1; k/D†1.�; 0/ WD 0.

THEOREM 2.16 ([43], [45])

Suppose that

ƒ1.�/ > ƒ1.� � 1/: (2.3)

Then there exists a N�1-maximizing metric on M� , possibly with isolated conical sin-

gularities.

Similarly, if

†1.�; k/ >max
®
†1.�; k � 1/;†1.� � 1; kC 1/

¯
; (2.4)

then there exists a N�1-maximizing metric on N�;k .
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It is known that (2.3) holds for � D 0; 1; 2, and Petrides observed in the introduc-

tion to [43] that it holds for an infinite sequence of genera (see also [30, Section 5.2]).

Furthermore, a similar result can be proven for gap conditions (2.4).

PROPOSITION 2.17 (Theorem 5.9 in [30])

Let � � 0 be such that the gap condition (2.3) is satisfied. Then there is a sequence

kj ! 1, such that for � and those kj the inequality (2.4) is satisfied.

We now pass to nonorientable surfaces. Let cM� be a closed nonorientable surface

of genus � , that is, such that its orientable double cover has genus � , and set bƒ1.�/ WD
ƒ1.cM� /, bƒ1.�1/ WD 0. Similarly, if bN�;k is an orientable surface of genus � with k

boundary components we set b†1.�; k/ WD†1.bN�;k/, b†1.�1; k/D b†1.�; 0/ WD 0.

THEOREM 2.18 ([36])

Suppose that

bƒ1.�/ >max
°
bƒ1.� � 1/;ƒ1

�j�
2

k�±
: (2.5)

Then there exists a N�1-maximizing metric on cM� , possibly with isolated conical sin-

gularities.

We remark that in [36], the genus of a nonorientable surface is defined as � C 1

in our notation, so that (2.5) has a different form in [36]. As far as we are aware,

the analogue of the gap condition (2.4) for nonorientable surfaces has not appeared

explicitly in the literature. However, the analysis of degenerating sequences of con-

formal classes has been performed in [37], and it can be shown using these techniques

that the following holds.

THEOREM 2.19

Suppose that

b†1.�; k/ >max
°
b†1.�; k � 1/;b†1.� � 1; k/;b†1.� � 2; kC 1/;

†1

�j� � 1
2

k
; kC 1

�
;†1

�j�
2

k
; k

�±
: (2.6)

Then there exists a N�1-maximizing metric on bN�;k .

Furthermore, the following result can be proven in the same way as [30, Theo-

rem 5.9].
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PROPOSITION 2.20

Let � � 0 be such that the gap condition (2.5) is satisfied. Then there is a sequence

kj ! 1, such that for � and those kj the inequality (2.6) is satisfied.

We summarize our discussion as follows.

Definition 2.21

We say that a closed orientable surface of genus � satisfies the gap condition if (2.3)

holds. Similarly, we say that a closed nonorientable surface of genus � satisfies the

gap condition if (2.5) holds.

Combining Propositions 2.17 and 2.20, we obtain the following.

PROPOSITION 2.22

Suppose that M is a closed surface satisfying the gap condition in the sense of Def-

inition 2.21, and Nk is a surface with boundary obtained by removing k disjoint

disks from M . Then there is a sequence kj ! 1 such that for all j there exists a

N�1-maximizing metric on Nkj
.

2.6. Convergence of †1.Nk/

In the present section we explain the ideas behind the identities (1.1) and (1.2).

In [30], the following regularity/rigidity result for conformally N�1-maximal mea-

sures is obtained as a byproduct of a new characterization of ƒ1.M; Œg�/ via the min-

max theory of harmonic maps.

THEOREM 2.23 (Regularity of maximal measures, [30])

Let M be a closed surface, and let C be a conformal class on M . Then for any

admissible measure 	 on M one has

N�1.M;C ;	/�ƒ1.M;C/ (2.7)

with equality if and only if 	 is a N�1-conformally maximal measure, that is, 	D dvg ,

where g is a N�1-conformally maximal metric.

The meaning of this theorem is as follows: even after relaxing the optimization

problem for N�1.M;g/ to include (admissible) measures, the set of maximizers (and,

as a result, the optimal value) does not change. Now, let ��M be a smooth domain.

Combining (2.2) with (2.7) (and noting that the length measure realizing †1 cannot

coincide with a smooth N�1-maximal measure) gives

†1.�;C/ < ƒ1.M;C/;
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where we abuse notation slightly by letting C denote the conformal class on �

induced by the inclusion � � .M;C/. Taking the supremum over all conformal

classes C yields (1.1).

The relation (1.2) follows from the following theorem.

THEOREM 2.24 ([15])

For any closed surface .M;g/ there exists a sequence of domains �k �M , such that

N�1.�k; g/! N�1.M;g/ (2.8)

as k ! 1. The domains �k are obtained by removing many small disks from M .

As in the introduction, let M be a closed surface, and denote by Nk the compact

surface with boundary obtained by removing k disjoint disks from M . It is easy to

see that the sequence †1.Nk/ is nondecreasing; thus, taking the supremum over all g

in (2.8) yields

lim
k!1

†1.Nk/�ƒ1.M/;

which combined with (2.7) yields (1.2).

For convenience, we formulate the following corollary of the proof of Theo-

rem 2.24.

PROPOSITION 2.25

For any closed surface .M;g/, there exists a sequence of domains �k �M such that

lim
k!1

†1
�
�k ; Œg�

�
Dƒ1

�
M; Œg�

�
:

2.7. Varifold convergence of N�1-maximal maps

Let us recall some basic notions from the theory of varifolds, following [6, Chap-

ter 3]. Let � W G2.nC 1/! RnC1 denote the bundle of (tangent) 2-planes over RnC1.

A 2-varifold T is a Radon measure on G2.nC 1/. The weight measure of T is the

pushforward 
T WD ��.T /. Given a Sobolev map v 2 W 1;2.N;RnC1/ from a sur-

face .N;g/ (possibly with boundary) to RnC1, one defines the associated 2-varifold

Tv 2 C 00 .G2.nC 1//� by

Z

G2.nC1/
f dTv WD

Z

N\¹Jv.x/>0º
f

�
v.x/; dv.TxN/

�
Jv.x/dvg ;

where Jv.x/ denotes the Jacobian determinant

Jv.x/ WD
q

detg.dvtx dvx/D
q

detg.v�gRnC1/.x/:
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Note that, while Jv.x/ and dvg depend on the metric g, their product does not, and

in the case where v W N ,! RnC1 is a smooth embedding, the preceding definition is

equivalent to setting

Tv.U /D Area
�
U \ T v.N /

�
;

by the area formula. Similarly, if v is a branched d -sheeted covering over the image,

then

Tv.U /D d Area
�
U \ T v.N /

�
:

A sequence of varifolds Tk is said to converge to T if they weak-� converge as

measures. A sequence of surfaces Ni � RnC1 (possibly with multiplicity) arising as

images of branched conformal immersions is likewise said to converge toM � RnC1

in the varifold sense if the corresponding varifolds converge.

Recall now the setup from Section 2.6:M is a closed surface, and Nk is the com-

pact surface with boundary obtained by removing k disjoint disks from M . Assume

that M satisfies the gap condition as in Definition 2.21; then there is a N�1-maximal

metric realized by a branched minimal immersion u W M ! Sn to the sphere, with

associated varifold T . Let kj ! 1 be a sequence for which a N�1-maximal metric

exists on Nkj
(as provided by Proposition 2.22). To simplify notation we often omit

the index j in the following. Choose a N�1-maximal map uk W Nk ! BnkC1. While

in principle the dimension of the ball nk C 1 does depend on k, Remark 2.14 guar-

antees that nk are bounded independent of k. Thus, without loss of generality, one

can assume nk � n. This allows us to define the 2-varifolds Tk in BnC1 � RnC1

associated to uk . Thus, the exact statement of Theorem 1.1 is as follows.

THEOREM 2.26

Assume thatM satisfies the gap condition of Definition 2.21, and consider a sequence

kj ! 1 for which there exist N�1-maximal metrics on Nkj
. Then there exists a N�1-

maximal map u W M ! Sn such that, up to a choice of a subsequence, the varifolds

Tkj
associated to N�1.Nkj

/-maximal maps ukj
converge to the varifold T associated

with u.

We record several consequences of the varifold convergence, which may paint a

clearer picture for readers unfamiliar with varifolds.

COROLLARY 2.27

Along the converging subsequence Tk*
� T one has

(1) the free boundary branched minimal surfaces uk.Nk/� BnC1 converge to the

branched minimal surface u.M/� Sn in the Hausdorff distance;
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(2) the boundary length measures of uk.Nk/ converge to twice the area measure

of u.M/.

Proof

To prove (1), assume the contrary, that is, there exists a further subsequence, ı > 0

and a point xk 2 uk.Nk/ at a distance � ı from support of the limit varifold spt.T /D
u.M/. Passing to yet another subsequence, we may assume that xk converges to some

point y D limk!1 xk a distance � ı from u.M/.

Now, let 0 < f 2 C 00 .BnC1/ be equal to 1 on the ball of radius ı=2 around y

and 0 outside the ball of radius ı. Let 
k and 
 be the weight measures of Tk and

T , respectively. If y lies in the interior of BnC1, then we may assume without loss

of generality that Bı.y/� BnC1, and the monotonicity formula for minimal surfaces

(see, e.g., [6, Proposition 1.12]) implies that 
k.f /� �ı2

4
. If instead y 2 Sn, we may

argue similarly, using a well-known boundary variant of the monotonicity formula for

free boundary minimal surfaces (cf., e.g., [3] for the sharpest version in the unit ball)

to deduce that 
k.f / � cı2 > 0 in that case as well. At the same time, the varifold

convergence yields

cı2 � 
k.f /! 
.f /D 0;

which is a contradiction.

To show (2), let f 2 C 00 .RnC1/ and consider the vector field X.x/ D f x on

RnC1. Then the first variation formula implies
Z

@uk.Nk/

f D
Z

uk.Nk/

�
2f C hx;ruk.Nk/f i

�
:

Define F 2 C 00 .G2.nC 1// by F.x;…/D hx;r…f .x/i, where r…f .x/ is the pro-

jection of rf .x/ onto …. Then the varifold convergence implies
Z

uk.Nk/

hx;ruk.Nk/f i D
Z
F dTk !

Z
F dT D

Z

u.M/

hx;ru.M/f i D 0;

since x ? T Sn 	 T u.M/. At the same time, since 
k*
� 
 one has

Z

uk.Nk/

2f !
Z

u.M/

2f;

which completes the proof.

2.8. Convergence of N�1-conformally maximal maps

Let .M;C/ be a closed surface with a fixed conformal class C . Consider domains

� �M with the restricted conformal class, which we denote by the same letter C .

By Proposition 2.25 there exist sequences �k �M satisfying
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†1.�k;C/!ƒ1.M;C/:

In particular, since ƒ1.M;C/ � 8� , Theorem 2.11 implies that for large enough

k there exist a N�1.�k ;C/-conformally maximal map uk W .�k;C/ ! BnkC1. By

Remark 2.14, we can assume nk � n is independent of k. The following theorem

describes convergence properties of the sequence ¹ukº.

THEOREM 2.28

Let .M;C/ be a closed surface with a fixed conformal class, g 2 C . Let �k �M be

a sequence of domains such that

†1.�k;C/!ƒ1.M;C/: (2.9)

Assume further that the N�1.�k;C/-conformally maximal maps uk W .�k;C/! BnC1

admit an extension Ouk 2W 1;2
g .M;BnC1/ such that

lim
k!1

Eg. Ouk IM n�k/D 0: (2.10)

Then there exists a N�1.M;C/-conformally maximal map u W .M;C/ ! Sn,= such

that, up to a choice of a subsequence, Ouk ! u in W
1;2
g .M;BnC1/.

Remark 2.29

It is plausible that the condition (2.10) is superfluous, that is, it could be a consequence

of (2.9).

3. Convergence of N�1-maximal maps

3.1. Qualitative stability of N�1-maximal metrics

A key ingredient in the proof of Theorem 2.26 is the following qualitative stability

result for globally N�1-maximizing measures (see [29, Theorems 1.2 and 1.14]).

THEOREM 3.1 ([29])

Suppose thatM satisfies the gap condition as in Definition 2.21. Let 	k be a sequence

of admissible probability measures on M , and let gk 2 Metcan.M/ be a sequence of

constant curvature metrics such that

�1
�
M; Œgk�;	k

�
!ƒ1.M/

as k ! 1. Then there exist ˆk 2 Diff.M/, g 2 Met0.M/, and a N�1-maximal proba-

bility measure 	max such that, up to a choice of a subsequence, the pairs

. Qgk; Q	k/ WDˆk � .gk;	k/
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satisfy

k Qgk � gkC1.g/ C k Q	k �	maxkW�1;2.g/ ! 0: (3.1)

If M D S2, then one can additionally choose 	max D dvg .

Remark 3.2

The gap condition onM ensures that the sequence of conformal classes Œgk� does not

escape to infinity in the moduli space of conformal classes.

Remark 3.3

For a closed surface M ¤ S2 one has 	max D f dvg , f 2 C1.M/ and the set of N�1-

maximal measures is compact (up to the action by diffeomorphisms). In particular,

kf k1 � C , where C only depends on M . The last statement of the theorem implies

that the same inequality can be used on S2.

For technical reasons, we find it convenient to replace the W �1;2.g/ distance

in the conclusion (3.1) with a slightly different (but equivalent) one, which has the

advantage of being conformally invariant, in addition to simplifying some computa-

tions.

Definition 3.4

Let 
 and 	 be two probability measures on M , and let g be a metric on M . Then we

set

k
 �	k PW�1;2.g/ WD sup
°Z

M

f d.	� 
/
ˇ̌
ˇ f 2 C1.M/;kdf kL2.g/ D 1

±
:

Extended to measures of arbitrary mass, this definition would yield a pseudomet-

ric; for probability measures, however, we have the following.

LEMMA 3.5

For any probability measures 	, 
 on M , one has

k
 �	kW�1;2.g/ � k
 �	k PW�1;2.g/ �
s
1C 1

�1.M;g/
k
 �	kW�1;2.g/:

Proof

Recall that the W �1;2.g/ norm is given by

k
 �	kW�1;2.g/ WD sup
°Z

M

f d.	� 
/
ˇ̌
ˇ f 2 C1.M/;kf kW 1;2.g/ D 1

±
;
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where the W 1;2.g/ norm of a function f is given as usual by

kf k2
W 1;2.g/

WD kf k2
L2.g/

C kdf k2
L2.g/

:

In particular, comparing with the definition of PW �1;2.g/ and noting that kdf kL2.g/ �
kf kW 1;2.g/ holds trivially, the first inequality

k
 �	kW�1;2.g/ � k
 �	k PW�1;2.g/

is immediate.

For the latter inequality, note that since 
 and 	 are probability measures, one

has
Z

M

f d.	� 
/D
Z

M

.f C c/d.	� 
/

for any constant c; as a consequence, one can equivalently characterize the PW �1;2.g/
metric via

k
 �	k PW�1;2.g/

D sup
°Z

M

f d.	� 
/
ˇ̌
ˇ f 2 C1.M/;kdf kL2.g/ D 1;

Z

M

f dvg D 0
±
:

But for f 2 C1.M/ satisfying
R
M
f dvg D 0, we of course have

�1.M;g/kf k2
L2.g/

� kdf k2
L2.g/

;

so that kf kW 1;2.g/ �
q
1C 1

�1.M;g/
, and the desired bound follows easily from defi-

nitions.

Lemma 3.5 implies that in the conclusion of Theorem 3.1 one can replaceW �1;2

by PW �1;2-distance, that is,

k Q	k �	maxk PW�1;2.g/ ! 0: (3.2)

A result similar to Theorem 3.1 holds in a fixed conformal class (see [29, The-

orem 1.9]). We assume that M ¤ S2, since in that case there is only one conformal

class, and the result is already covered by Theorem 3.1.

THEOREM 3.6

Assume M ¤ S2. Let g 2 Metcan.M/ and 	k be a sequence of admissible probability

measures such that

�1
�
M; Œg�;	k

�
!ƒ1

�
M; Œg�

�
:
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Then there exists a conformally N�1-maximal probability measure in Œg� such that, up

to a choice of a subsequence, 	k ! 	max in W �1;2.M;g/.

Note that by the discussion above, theW �1;2-distance can be replaced by PW �1;2-

distance.

3.2. Proof of Theorem 2.26

In this section we work under the assumptions of Theorem 2.26, that is, that M satis-

fies the gap condition as in Definition 2.21, and kj ! 1 is a sequence for which

there exist N�1.Nkj
/-maximal metrics, whose existence is guaranteed by Proposi-

tion 2.22. In the following we omit the subscript j to simplify the notation. Let hk
be a N�1-maximal metric on Nk so that †1.Nk/ D N�1.N;hk/, normalized to have

Length.@Nk; hk/D 1. By Theorem 2.1 .Nk ; hk/ can be conformally identified with a

domain �k � .M;gk/, where gk 2 Metcan.M/.

Denote by	k the pushforward F�.ds
@Nk

hk
/ of the boundary length measure ds

@Nk

hk

by the conformal embedding F W .N;hk/ ! .M;gk/. By Remark 2.7 and relation

(1.2), we obtain admissible probability measures 	k supported on @�k satisfying

†1.Nk/D �1
�
�k ; Œgk�;	k

�
!ƒ1.M/

as k ! 1. By inequality (2.2), one further has that �1.M; Œgk�;	k/!ƒ1.M/ and,

therefore, the measures 	k satisfy the conditions of Theorem 3.1. It turns out that

the biggest challenge in proving Theorem 2.26 is showing that the N�1-maximal maps

corresponding to hk have a small energy extension to M . This is item (2) of the

following proposition, whose proof we postpone to the next subsection.

PROPOSITION 3.7

For every k in the subsequence there exist gk 2 Metcan.M/ and a smooth domain

�k � .M;gk/ such that

(1) The N�1-maximal metrics hk on Nk are conformally equivalent to the domain

.�k; gk/� .M;gk/;

(2) The corresponding (branched) free boundary minimal immersions uk W �k !
BnC1 admit an extension Ouk 2W 1;2.M;BnC1Igk/ such that

Egk
. OukIM n�k/! 0

as k ! 1;

(3) There exist g 2 Met0.M/ and a N�1-maximizing probability measure 	max so

that N�1.M; Œg�;	max/ D ƒ1.M/, for which gk ! g in C 1.g/ and k	k �
	maxk PW�1;2.g/ ! 0.

In particular, items (2) and (3) imply that Eg. OukIM/! 1
2
ƒ1.M/.
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Item (3) is a direct consequence of item (1) and Theorem 3.1, since by Remark 2.7

we can assume without loss of generality that ˆk D id. Note that we do not explicitly

require here that the domains �k are complements of geodesic discs, although the

full power of Theorem 2.1 is used in the proof of item (2) in Section 3.3 below (and

again in Section 5). For now, let us show how Proposition 3.7 implies Theorem 2.26.

For the remainder of the section we work with the metric g; in particular,

W 1;2.M/ refers to the Sobolev space with respect to g. Items (2) and (3) imply that

the sequence Ouk is uniformly bounded in W 1;2.M;BnC1/. Therefore, up to a choice

of a subsequence, Ouk converges weakly to a map u 2W 1;2.M;BnC1/.

LEMMA 3.8

The limit map u is a weakly conformal harmonic map (i.e., a branched minimal

immersion) to the sphere M ! Sn D @BnC1, whose components are �1.M; Œg�;

	max/-eigenfunctions. Furthermore, Ouk ! u strongly in W 1;2.M;BnC1/.

Proof

Since j Ouk j2 � 1 are uniformly bounded inW 1;2.M/, up to a choice of a subsequence,

we may assume that j Ouk j2 converge to juj2 weakly in W 1;2.M/, and since 	max 2
W �1;2.M/, it follows that

Z

M

�
1� juj2

�
d	max D lim

k!1

Z

M

�
1� j Oukj2

�
d	max:

Moreover, since 	k ! 	max in W �1;2.M/ and j Oukj2 are uniformly bounded in

W 1;2.M/, one further has

lim
k!1

Z

M

�
1� j Oukj2

�
d	max D lim

k!1

Z

M

�
1� j Ouk j2

�
d	k D 0;

where in the last step we used that j Oukj2 � 1 on supp.	k/ � @�k . Recalling that

.1� juj2/� 0, we obtain u 2W 1;2.M;Sn/.

Next, for any v 2 C1.M;RnC1/ one has
Z

M

hdu;dvidvg D lim
k!1

Z

M

hd Ouk; dvidvg

�
since Eg. Ouk IM n�k/! 0

�
D lim
k!1

Z

�k

hduk; dvidvg

�
since gk ! g in C 1.g/

�
D lim
k!1

Z

�k

hduk; dvidvgk
:

In particular, since the components of the maps uk W �k ! BnC1 are Steklov

eigenfunctions corresponding to the eigenvalue �1.�k; Œgk�;	k/ D †1.Nk/, and

limk!1†1.Nk/Dƒ1.M/ by (1.2), this gives
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Z

M

hdu;dvidvg D lim
k!1

†1.Nk/

Z

�k

huk ; vid	k

�
since supp.	k/� @�k

�
Dƒ1.M/ lim

k!1

Z

M

h Ouk ; vid	k:

In particular, since d	k ! d	max in W �1;2 and kh Ouk; vikW 1;2 � C , and using

the fact that h Ouk ; vi* hu;vi weakly in W 1;2, we deduce that

Z

M

hdu;dvidvg Dƒ1.M/ lim
k!1

Z

M

h Ouk; vid	max

Dƒ1.M/

Z

M

hu;vid	max:

As a result, since �1.M; Œg�;	max/ D ƒ1.M/, the components of u are �1.M; Œg�;

	max/-eigenfunctions. In particular, since 	max D dvgmax
for the maximizing metric

gmax 2 Œg�, this implies

0D�gmax

�
juj2

�
D 2ƒ1.M/� 2jduj2gmax

;

that is, �gmax
uD jduj2gmax

u, which implies that u 2W 1;2.M;Sn/ is harmonic.

Now, since

lim
k!1

Eg. OukIM/D 1

2
ƒ1.M/D ƒ1.M/

2

Z
juj2 d	max

D 1

2

Z

M

jduj2 dvg DEg.uIM/;

we see that there is no energy drop in the limit, and Ouk ! u strongly in W 1;2.M;

BnC1/.
Finally, using the facts that Ouk ! u strongly in W 1;2.M;BnC1/, gk ! g in

C 1.g/, Egk
. Ouk IM n�k/! 0, and the branched free boundary minimal immersions

uk are conformal on .�k ; gk/, we have the L1 convergence of the stress-energy ten-

sors

dut du� 1

2
jduj2ggD lim

k!1
d Outk d Ouk � 1

2
jd Oukj2gk

gk

D lim
k!1

�
dutk duk � 1

2
jdukj2gk

gk

�
� 1�k

D 0;

confirming that u is weakly conformal and hence a branched, minimal immersion

u W M ! Sn by �1.M; Œg�;	max/-eigenfunctions, as desired.
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The varifold convergence statement of Theorem 2.26 now follows by fairly stan-

dard arguments.

PROPOSITION 3.9

Up to a choice of a subsequence, the 2-varifolds Tk associated to the branched free

boundary minimal immersions uk W�k ! BnC1 converge as varifolds

Tk*
� T

to the varifold T associated to the N�1-maximal map u WM ! Sn.

Proof

It is well known that strong W 1;2-convergence of maps M ! RnC1 from a closed

surfaceM implies convergence of the associated varifolds in RnC1; see, for example,

[6, Section 3.6], where a much stronger result is proved for maps from the sphere

M D S2 (easily adapted to maps from any closed surface). Thus, as a consequence

of Lemma 3.8, we see that the varifolds OTk associated to the maps Ouk WM ! BnC1

converge as varifolds OTk *� T to the varifold T associated with the limiting N�1-

maximal map u WM ! Sn.

Moreover, since Eg. Ouk IM n�k/! 0 as k ! 1, letting Tk denote the varifolds

associated to the free boundary (branched) minimal immersions uk W�k ! BnC1, we

see that, for any f 2 C 0.G2.nC 1//,

ˇ̌
h OTk � Tk ; f i

ˇ̌
D

ˇ̌
ˇ
Z

Mn�k

f
�
Ouk.x/; d Ouk.TxM/

�
J Ouk

.x/dvg

ˇ̌
ˇ

� kf kC0

Z

Mn�k

1

2
jd Oukj2g dvg

! 0 as k ! 1:

Thus, the varifold limit of the sequence Tk coincides with that of OTk , giving us the

desired convergence Tk*
� T .

3.3. Small energy extension

In this section we prove item (2) of Proposition 3.7 using items (1), (3), and Theo-

rem 2.1. We first observe that by Theorem 2.1 we can assume that the complement of

�k is a collection of geodesic disks in the metric gk , which we denote by

M n�k D
k[

jD1
Bj;k;
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where Bj;k D Brj;k
.pj;kIgk/ is the disk of radius rj;k > 0 and center pj;k 2M in

the metric gk . Recall moreover that item (3) of Proposition 3.7 gives

k	k �	maxk PW�1;2.g/ ! 0: (3.3)

We argue now that the radii rj;k of the disks Bj;k must vanish as k ! 1, as does

the contribution of each individual boundary component @Bj;k to the total length

	k.@�k/.

LEMMA 3.10

One has

lim
k!1

max
1�j�k

rj;k D 0 (3.4)

and

lim
k!1

max
1�j�k

	k.@Bj;k/D 0: (3.5)

Proof

We first observe that, given a sequence of radii rn and points pn 2 M with

	max.Brn.pnIg// ! 0, one has rn ! 0. Indeed, otherwise there exists a sequence

rn � � > 0 and pn ! p 2M such that 	max.Brn.pnIg//! 0. Then for large enough

n one has Brn.pnIg/ 	 B�=2.pIg/. As a result, 	max.B�=2.pIg//D 0, which con-

tradicts the fact that 	max D dvgmax
D f dvg , where f � 0 has only finitely many

zeroes.

Let us now prove (3.4). Recall that gk ! g in C 1.g/, and therefore

Brj;k=2.pj;kIg/�Bj;k

for k sufficiently large. Consider the Lipschitz functions

fj;k.x/D

8
ˆ̂<
ˆ̂:

1 if distg.x;pj;k/ <
rj;k

4
;

0 if distg.x;pj;k/ >
rj;k

2
;

2� 4distg.x;pj;k/

rj;k
otherwise:

By direct computation, it is easy to see that kdfj;kkL2.g/ � C for C independent of

j and k, and therefore kdfj;kkL2.gk/
� C 0 independent of j and k as well, since

gk ! g in C 1. At the same time, since fj;k vanishes on the support of 	k , one has

Z
fj;k d.	max �	k/� 	max

�
Brj;k=4.pj;kIg/

�
:

Combining these estimates, one obtains
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0 < 	max

�
Brj;k=4.pj;kIg/

�
�

Z
fj;k d.	max �	k/

� k	k �	maxk PW�1;2.gk/
kdfj;kkL2.gk/

� Ck	k �	maxk PW�1;2.gk/
! 0

as k ! 1, which implies (3.4) by the observation at the beginning of the proof.

To prove (3.5), note that

Bj;k �B2rj;k
.pj;kIg/

for large enough k. Consider the function

Qfj;k.x/D

8
ˆ̂<
ˆ̂:

1 if distg.x;pj;k/ < 2rj;k;

0 if distg.x;pj;k/ > 4rj;k;

2� distg.x;pj;k/

2rj;k
otherwise:

Once again, it is easy to see that kd Qfj;kkL2.gk/
� C . Furthermore, 	max D f dvg �

C dvg for large enough k; therefore,

ˇ̌
ˇ
Z

Qfj;k d.	max �	k/
ˇ̌
ˇ � 	k.@Bj;k/�C Areag

�
B4rj;k

.pj;kIg/
�
:

Thus,

	k.@Bj;k/�C Areag
�
B4rj;k

.pj;kIg/
�

� Ck	k �	maxk PW�1;2.gk/
! 0

as k ! 1, and since, by (3.4),

max
j

Areag
�
B4rj;k

.pj;kIg/
�

� C 0 max
j
r2j;k ! 0

as k ! 1, it follows that

lim sup
k!1

max
j
	k.@Bj;k/� C lim

k!1
max
j

Areag
�
B4rj;k

.pj;kIg/
�

! 0;

as desired.

Recall that if uk W �k ! BnC1 is the N�1-maximal map corresponding to 	k , then

the induced boundary length measure ds
@�k

u�
k
.g

RnC1 /
coincides with †1.Nk/	k . Thus,

identity (3.5) can be equivalently stated as

lim
k!1

max
1�j�k

Length
�
uk.@Bj;k/

�
D 0:
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LEMMA 3.11

There exists an extension Ouk 2W 1;2.M;BnC1/ of uk 2W 1;2.�k;B
nC1/ such that

lim
k!1

Area
�
Ouk.M n�k/

�
D 0:

Proof

The argument is standard, but we recall it here for completeness. Consider the curve

�j;k WD ukj@Bj;k
W @Bj;k ! BnC1

of length

lj;k D
Z

@Bj;k

ˇ̌
� 0
j;k.s/

ˇ̌
ds D†1.Nk/	k.@Bj;k/:

The diameter diam.Cj;k/ of the image Cj;k D �j;k.@Bj;k/ clearly satisfies

diam.Cj;k/� 1

2
lj;k;

so there exists a point zj;k 2 BnC1 such that Cj;k � Blj;k=2.zj;k/ (indeed, one can

take any zj;k 2 Cj;k).

We then define the extension Ouk on Bj;k to be the cone over Cj;k centered at

zj;k ; that is, in geodesic polar coordinates centered at pj;k we set

Ouk.r; 
/D zj;k C r

rj;k

�
uk.rj;k; 
/� zj;k

�
:

Since ju.rj;k ; 
/� zj;kj � lj;k

2
, one has

Area
�
Ouk.Bj;k/

�
� C

Z 2�

0

Z rj;k

0

r

r2
j;k

ˇ̌
u.rj;k; 
/� zj;k

ˇ̌ˇ̌
u	 .rj;k; 
/

ˇ̌
dr d


� Clj;k

4

Z 2�

0

ˇ̌
u	 .rj;k; 
/

ˇ̌
d
 D

Cl2
j;k

4
:

As a result,

Area
�
Ouk.M n�k/

�
� C

4

kX

jD1
l2j;k � C†1.Nk/

4
	k.@�k/ max

1�j�k
lj;k ! 0;

since 	k is a probability measure and †1.Nk/!ƒ1.M/.

The final obstacle is that the extensions constructed in the previous lemma could

be far from being conformal and, thus, the area bound does not imply the energy
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bound. However, this can be easily remedied by changing the metric gk in the interior

of the holes.

LEMMA 3.12

There exists a metric Ogk on M such that Ogk D gk on �k and

lim
k!1

E Ogk
. OukIM n�k/D 0:

Proof

Fix j , k. It is sufficient to construct a metric h on Bj;k such that hD gk near @Bj;k
and

Eh. OukIBj;k/� C
�

Area
�
Ouk.Bj;k/

�
C 1

k2

�
: (3.6)

We construct a metric satisfying (3.6) and then arrange it to agree with gk near the

boundary. First, one can approximate Ouk 2 Lip.Bj;k;R
nC1/ by a smooth map v (see,

e.g., [9, p. 251]) arbitrarily close in Lipschitz norm, which in turn can be approximated

by a smooth immersion to RnC1
R2. Indeed, if v 2 C1.Bj;k;RnC1/, then v".x/ WD
.v.x/; "x/ is obviously an immersion for any " > 0 (where Bj;k is identified with the

unit disk so that Bj;k � R2). Setting h0 D v�
" geuc for small enough " > 0, we obtain

a metric satisfying (3.6).

Let ı > 0 be such that

Egk

�
Ouk IBj;k nBrj;k�ı.pj;k/

�
� 1

k2
:

Define a discontinuous metric h1 to be gk on Bj;k nBrj;k�ı.pj;k/ and h0 otherwise;

then h1 satisfies the requirements of the claim. Then a suitable mollification of h1

yields the desired smooth metric h.

As a final step of the proof we apply the uniformization theorem for closed sur-

faces to the pair .M; Ogk/ to replace a smooth metric Ogk by Qgk 2 Metcan.M/. This

completes the proof, up to a slight abuse of notation Qgk 7! gk .

3.4. Proof of Theorem 2.28

The proof of Theorem 2.28 follows the same ideas, but is substantially simpler. We

outline the main steps. One applies the conformal qualitative stability of Theorem 3.6

to obtain an analogue of Proposition 3.7. However, since the small energy extension

is an assumption (2.10) of Theorem 2.28, we do not need to prove item (2). After that,

using the same arguments as in Lemma 3.8 with only minor modifications completes

the proof.
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4. Lower bounds for †1.Nk/

In this section, we prove the lower bound (1.3) for †1.Nk/ given in Theorem 1.8

by producing a metric on Nk whose first normalized Steklov eigenvalue is within

C
logk
k

of the maximal normalized Laplacian eigenvalue ƒ1.M/. The bound is a con-

sequence of the following more general result.

THEOREM 4.1

Let .M;g0/ be a closed surface of unit area and constant curvature Kg0
�

2��.M/. Then for any k 2 N we can find a collection of disjoint geodesic disks

Br1.p1/; : : :Brk .pk/ in the metric g0 such that the domain

�k WDM n
k[

jD1
Brj .pj /

satisfies the following. For any ƒ > 0 and any metric g 2 Œg0� smooth up to a finite

number of conical singularities with integer angles, there exist C D C.M;g;ƒ/ and

Qgk 2 Œg0� such that

Length.@�k; Qgk/� Area.M;g/� C

k2
;

and for any i > 0 such that �i .M;g/�ƒ one has

ˇ̌
�i .�k; Qgk/� �i .M;g/

ˇ̌
� C

logk

k
:

Applying this theorem to a unit area N�1-conformally maximal metric in the con-

formal class Œg0� one obtains the following conformally constrained version of the

bound (1.3).

PROPOSITION 4.2

Let .M;g0/ be a closed surface of unit area and constant curvature Kg0
� 2��.M/.

Then there exists C D C.M;g0/ such that for any k 2 N we can find �k �M and

Qgk 2 Œg0� satisfying

N�1.�k ; Qgk/�ƒ1
�
M; Œg0�

�
�C logk

k
:

Note that the lower bound (1.3) of Theorem 1.8 is an immediate corollary of

Proposition 4.2, simply by taking Œg0� to be a maximizing conformal class, so that

ƒ1.M; Œg0�/ D ƒ1.M/. The remainder of this section is therefore devoted to the

proof of Theorem 4.1.



1594 KARPUKHIN and STERN

To begin, we observe that without loss of generality one can assume that

Area.M;g/D 1. Then we write

gD fg0;

where f 2 C1.M/ is a nonnegative function with isolated zeroes of finite order.

Denote by V� � C1.M/ the �-eigenspace for �g , that is,

V� WD
®
� 2 C1.M/

ˇ̌
�g0

� D �f �
¯
;

and for any given ƒ<1, let

V0���ƒ WD
M

0���ƒ
V�:

Even when f vanishes at some finite collection of points so that g is not a classical

Riemannian metric, it is still easy to see that V0���ƒ is a finite-dimensional subspace

of C1.M/. Indeed, smoothness of solutions to �g0
� D �f � follows from standard

elliptic regularity theory (see, e.g., [13, Chapter 8]), while finite-dimensionality fol-

lows from the bound

kd�k2
L2

g0

�ƒk�k2
L2

g
� kf kC0ƒk�k2

L2
g0

for all � 2 V0���ƒ;

which together with Rellich’s compactness theorem implies that theW 1;2-unit ball in

V0���ƒ is compact. As a consequence, any two norms on V0���ƒ must be equiva-

lent, and since kd�kL2 C j
R
� dvg j defines such a norm, it follows that there exists

some C.M;g;ƒ/ such that

k�kC2 � C
�
kd�kL2 C

ˇ̌
ˇ
Z

M

� dvg

ˇ̌
ˇ
�

for all � 2 V0���ƒ. In particular, if � 2 V� for � > 0, then
R
� dvg D 0 so that

k�kC2 � C.M;g;ƒ/kd�kL2 for all � 2 V� (4.1)

for all � 2 V� with 0 < ��ƒ.

Remark 4.3

Throughout this section, all function spaces and associated norms (W 1;2, Lp , C k ,

etc.) will be defined with respect to the constant curvature metric g0 unless otherwise

indicated.

Before beginning the proof of Proposition 4.2 in earnest, we find it useful to

record the following elementary estimates for the areas and boundary lengths of

geodesic disks.
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LEMMA 4.4

Let .M;g0/ be a closed surface of unit area and constant curvature Kg0
� 2��.M/,

and injectivity radius inj.M/. Then there is a constant r0.�.M// > 0 such that for

any geodesic disk Br.x/�M with r <min¹r0; inj.M/º, we have

3

4
� 2�r � Length

�
@Br.x/

�
� 5

4
� 2�r (4.2)

and

3

4
�r2 � Area

�
Br.x/

�
� 5

4
�r2: (4.3)

Proof

Since .M;g0/ has curvature Kg0
� 2��.M/, standard computations (e.g., applying

the Gauss–Bonnet formula to geodesic disks) show that the length function

L.t/ WD Length
�
@Bt .x/

�

satisfies the equation

L00.t/C 2��.M/L.t/D 0

when t < inj.M/, with L.0/ D 0 and L0.0/ D 2� . In particular, for t < inj.M/, it

follows that

L.t/D
s

2�

j�.M/j sinh
�q
2�

ˇ̌
�.M/

ˇ̌
t
�

when �.M/ < 0;

L.t/D 2�t if �.M/D 0;

and

L.t/D
s

2�

�.M/
sin

�p
2��.M/t

�
when �.M/ > 0:

The estimate (4.2) for r < min¹r0.�.M//; inj.M/º follows by direct inspection of

these functions. Likewise, since d
dr

Area.Br.x//DL.r/ for r < inj.M/, the estimate

(4.3) follows by integration of (4.2).

4.1. Choosing the domain �k
To prove Theorem 4.1, we first select the desired domain �k in a manner similar to

the construction in [15], by removing several small disks centered at a collection of k

maximally separated points.
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LEMMA 4.5

For k � k0.M;g0/ sufficiently large, there exist points p1; : : : ; pk 2M and universal

constants 0 < c0 � C0 <1 such that

dist.pi ; pj /� c0p
k

when i ¤ j;

and

M �
k[

jD1
B
C0=

p
k
.pj /:

Proof

The proof follows elementary covering arguments, but we give it here for complete-

ness. Given

0 < R <
1

2
min

®
r0

�
�.M/

�
; inj.M/

¯
;

let BR.x1/; : : : ;BR.x`.R// be a maximal disjoint collection of disks of radius R. By

maximality, we see that

M �
`.R/[

jD1
B2R.xj /;

and since (by Lemma 4.4) the area of a geodesic disk Bt .x/ with t <min¹r0; inj.M/º
satisfies

3�

4
t2 � Area

�
Bt .x/

�
� 5�

4
t2; (4.4)

it follows that

1D Area.M;g0/�
`.R/X

jD1
Area

�
B2R.xj /

�

� `.R/
5�

4
4R2 D `.R/5�R2:

In particular, taking Rk D 1p
5�k

for k � k0.M;g0/ sufficiently large, we see that

`k WD `.Rk/� k:

For each T 2 .Rk;min¹r0; inj.M/º/, let ST � ¹x1; : : : ; x`k
º be a maximal sub-

collection such that ¹BT .xj / j xj 2 ST º is disjoint. It follows from disjointness and

Lemma 4.4 that
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1D Area.M;g0/�
X

x2ST

Area
�
BT .x/

�

� jST j � 3�
4
T 2

so that the number of points jST j in ST is bounded above by 4
3�T 2 . In particular,

taking Tk D 2p
3�k

, we have

mk WD jSTk
j � k:

Writing STk
D ¹x1; : : : ; xmk

º � ¹x1; : : : ; x`k
º, note that the maximality in the defini-

tion of STk
implies that dist.xj ; STk

/� 2Tk for all 1� j � `k , and consequently

mk[

jD1
B2TkC2Rk

.xj /	
`k[

jD1
B2Rk

.xj /	M:

Thus, since mk � k � `k , we can arbitrarily extend STk
� SRk

to a set of k points

STk
� ¹x1; : : : ; xkº � ¹x1; : : : ; x`k

º;

which necessarily satisfy

dist.xi ; xj /� 2Rk D 2p
5�k

for i ¤ j

and

M �
k[

jD1
B2.RkCTk/.xj /�

k[

jD1
B
8=

p
3�k

.xj /

so that the conclusion of the lemma is satisfied by ¹p1; : : : ; pkº D ¹x1; : : : ; xkº with

c0 D 1p
5�

and C0 D 8p
3�

.

Now, fix a collection of points ¹p1; : : : ; pkº satisfying the conclusions of

Lemma 4.5. Since dist.pi ; pj / � c0p
k
> 4k�3=2 for k � k0, the disks B2k�3=2.p1/;

: : : ;B2k�3=2.pk/ are disjoint, and we can consider the domain

�k WDM n
k[

jD1
Bk�3=2.pj /: (4.5)

In what follows, we will make use of the following simple lemma, stating that the

norm of the harmonic extension operator W 1;2.�k/ ! W 1;2.M n�k/ is bounded

independent of k.
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LEMMA 4.6

There exists a constant C1 < 1 such that for k � k0, any � 2 W 1;2.�k/, the har-

monic extension O� 2W 1;2.M n�k/ to M n�k satisfies

kd O�kL2.Mn�k/
� C1kd�kL2.�k/

: (4.6)

Proof

Denote by C0 any constant such that the harmonic extension operator

W 1;2
�
D2.0/ nD1.0/

�
3 � 7! O� 2W 1;2

�
D1.0/

�

from the Euclidean annulus D2.0/ nD1.0/ in R2 to D1.0/ satisfies

kd O�kL2.D1/
� C0kd�kL2.D2nD1/

:

For example, for a coarse bound, fix some function  2 C1.D1.0// with  � 1 near

@D1 and  � 0 on D1=2.0/, so that any � 2 W 1;2.D2 n D1/ admits an extension

Q� 2W 1;2.D1.0// via Q�.z/D .z/�.z=jzj2/. Then clearly

kd O�kL2.D1/
� kd Q�kL2.D1/

� C. /
�
k�kL2.D2nD1/

C kd�kL2.D2nD1/

�
;

and by the Poincaré inequality on D2 nD1, we can find c D c.�/ 2 R and some con-

stant C 00 for which k��ckL2 � C 00kd�kL2 , so that applying the preceding inequality

with �� c and �̂� c D O�� c in place of � gives

kd O�kL2 � C. /.C 00 C 1/kd�kL2 D C0kd�kL2 :

By the conformal invariance of the Dirichlet energy in dimension 2, it follows

that

kd O�kL2.Dr .0//
� C0kd�kL2.D2r .0/nDr .0//

(4.7)

for any r > 0.

Using the exponential map, it is straightforward to extend this inequality to

.M;g0/ for r > 0 small (see, e.g., [15, Lemma 3.4]). The desired statement then

follows from the fact that the balls B2k�3=2.pj / are disjoint.

Remark 4.7

The choice of k�3=2 as the radius of the holes in the definition (4.5) is somewhat

arbitrary. Any sufficiently large (fixed) power of 1
k

would suffice, and determining

the optimal such power (perhaps k�1, as in [15]) could be an important step toward

answering Open Question 2 in the introduction.
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4.2. Choosing the metric Qgk
Having chosen our domain�k �M , we next need to produce a conformal metric Qgk .

To this end, define  k 2 C1.�k/ to be the unique solution of

�g0
 k D d� d k D �f in �k and  kj@�k

D 0; (4.8)

where f is the conformal factor gD fg0. Setting

ˇk WD @ k

@

2 C1.@�k/;

we then see that
Z

@�k

'ˇk dsg0
D

Z

�k

O'f dvg0
; (4.9)

for all ' 2 C1.@�k/ with harmonic extension O' 2 C1.�k/.
By definition of ˇk and the strong maximum principle (e.g., Lemma 3.4 in [13]),

we see that

ˇk > 0 on @�k ;

and applying (4.9) with ' D 1 gives

Z

@�k

ˇk dsg0
D

Z

�k

f dvg0

D Area.M;g/�
kX

jD1

Z

B
k�3=2 .pj /

f dvg0

� 1�C.M;g/k � k� 2�3
2 ;

so that

1D Area.M;g/�
Z

@�k

ˇk dsg � 1� C

k2
: (4.10)

We set Qgk D Ǒ2
k
g0, where Ǒ

k is an arbitrary positive extension of ˇk to C1.M/. In

particular, the inequality (4.10) implies the first property of Qgk ,

Length.@�k; Qgk/� Area.M;g/� C

k2
:

In what follows, we argue that the Steklov eigenvalues of .�k;
Ǒ2
k
g0/ in the interval

Œ0;ƒ� must lie within O.
logk
k
/ of the Laplace eigenvalues of .M;g/. As a first step,

we record the following L2 estimate for the function  k solving (4.8).
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LEMMA 4.8

Let  k 2 C1.�k/ be the unique solution of (4.8). Then

k kkL2.�k/
� C.M;g/

logk

k
: (4.11)

Proof

For each i D 1; : : : ; k, let

Ui WDBCk�1=2.pi / nBk�3=2.pi /

so that

�k �
k[

iD1
Ui :

For any x 2M , we note that the quantity

N.x/ WD #
®
i 2 ¹1; : : : ; kº

ˇ̌
x 2 Ui

¯

satisfies a uniform bound

N.x/�N0 (4.12)

independent of k. Indeed, if

x 2 U1 \ � � � \UN �BCk�1=2.p1/\ � � � \BCk�1=2.pk/;

then since Lemma 4.5 guarantees dist.pi ; pj /� c0p
k

for i ¤ j , it follows that the disk

B.CCc0/k�1=2.x/ contains at least N DN.x/ disjoint disks of radius c0

2
p
k

, so that

N.x/
c20
k

� C 0 .C C c0/
2

k
;

from which (4.12) follows.

Now, since  k vanishes on @�k , we may trivially extend  k to a function  k in

Lip.M/ by setting

 kjMn�k
� 0:

Now, for each i D 1; : : : ; k, define a function �i 2 Lip.BCk�1=2.0/ n Bk�3=2.0// by

setting

�i WD k ı exppi
;
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and note that

k kkL2.Ui /
� Ck�ikL2 ; kd�ikL2 � Ckd kkL2.Ui /

(4.13)

for a constant C D C.M;g0/ (which could be taken arbitrarily close to 1 for k suffi-

ciently large).

Then a direct computation (which the reader may prefer to apply to a smooth

approximation of �i ) gives, for t 2 Œk�3=2;Ck�1=2�,

d

dt

�1
t

Z

@Bt .0/

�2i

�
� 2

t

Z

@Bt .0/

�i
@�i

@


(by Cauchy–Schwarz) � 2
�1
t

Z

@Bt .0/

�2i

�1=2�1
t

Z

@Bt .0/

jd�i j2
�1=2

;

or equivalently,

d

dt

�1
t

Z

@Bt .0/

�2i

�1=2
�

�1
t

Z

@Bt .0/

jd�i j2
�1=2

:

Since �i j@B
k�3=2 .0/ � 0, integrating the above over t 2 Œk�3=2; s� gives

�1
s

Z

@Bs.0/

�2i

�1=2
�

Z s

k�3=2

t�1=2
�Z

@Bt .0/

jd�i j2
�1=2

dt

(by Cauchy–Schwarz) �
�Z s

k�3=2

1

t
dt

�1=2�Z s

k�3=2

Z

@Bt .0/

jd�i j2 dt
�1=2

D
q

log.s=k�3=2/
�Z

Bs.0/nBk�3=2 .0/

jd�i j2
�1=2

;

which we can rearrange to see that
Z

@Bs.0/

�2i � s log.sk3=2/

Z

Bs.0/nBk�3=2 .0/

jd�i j2

� Cs log.k/

Z

B
C k�1=2 .0/nBk�3=2 .0/

jd�i j2:

Integrating once more over s 2 Œk�3=2;Ck�1=2� gives

Z

B
C k�1=2 .0/nBk�3=2 .0/

�2i � C 2 log.k/

2k

Z

B
C k�1=2 .0/nBk�3=2 .0/

jd�i j2;

and using (4.13), it follows that

Z

Ui

 
2

k dvg0
� C.M;g0/

logk

k

Z

Ui

jd kj2g0
dvg0

:
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Summing over i D 1; : : : ; k and applying (4.12), we then conclude that
Z

�k

 2k dvg0
� C

logk

k

Z

�k

jd kj2g0
dvg0

: (4.14)

On the other hand, by (4.8) (and the fact that kf kC2 � C.M;g/), we have
Z

�k

jd kj2 dvg0
D �

Z

�k

f  k dvg0
� C.M;g/k kkL2.�k/

so that

k kk2
L2.�k/

� C
logk

k

Z

�k

jd kj2g0
dvg0

� C 0 logk

k
k kkL2.�k/

;

from which the desired estimate follows.

Remark 4.9

Note that the proof of the preliminary estimate (4.14) does not require that  k is a

solution of (4.8), and only uses that  k 2W 1;2
0 .�k/. Thus, we see that

Z

�k

'2 dvg0
� C

logk

k

Z

�k

jd'j2g0
dvg0

holds for any ' 2W 1;2
0 .�k/.

In the proof of Proposition 4.2, the following L1 estimate for  k will also be

useful.

LEMMA 4.10

The function  k 2 C1.�k/ given by (4.8) satisfies a bound of the form

k kkL1 � C

r
logk

k

for some constant C D C.M;g/.

Proof

We proceed by a Moser iteration-type argument. For any ' 2 W 1;2
0 .�k/, we may

extend ' to all of M by setting ' � 0 on M n�k , and apply the Sobolev embedding

theorem for W 1;1.M;g0/!L2.M;g0/ to the square '2 to see that

k'2kL2 � Ck'2kL1 CC
��d.'2/

��
L1

D C

Z

M

'2 C 2C

Z
j'jjd'j

� C
�
k'k2

L2 C k'kL2kd'kL2

�
:
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Moreover, using Remark 4.9 to bound the k'kL2 terms, it follows that

k'k2
L4 � C

r
logk

k
kd'k2

L2 (4.15)

for all ' 2W 1;2
0 .�k/.

Now, for each integer p � 1, recalling that �j k j D �� k D f , we compute

Z

�k

ˇ̌
d. 

p

k
/
ˇ̌2 D

Z

�k

p2j k j2p�2jd kj2 D p2

2p � 1

Z

�k

˝
d

�
j kj2p�1�; d j kj

˛

D p2

2p � 1

Z

�k

j kj2p�1�j k j D p2

2p � 1

Z

�k

f j kj2p�1

� C
p2

2p � 1k kk2p�1
L2p Area.M/

1
2p

which together with (4.15) (taking ' D 
p

k
) yields

k kk2p
L4p � C0p

r
logk

k
k kk2p�1

L2p : (4.16)

Next, set

q0 WD sup
°
q 2 .1;1/

ˇ̌
ˇ k kkLq �

r
logk

k

±
:

We know from Lemma 4.8 that q0 > 2 (for k � k0.M;g0/ sufficiently large), and

if q0 D 1, then it follows that k kkL1 D limq!1 k kkLq �
q

logk
k

, giving the

desired estimate. Thus, we can assume without loss of generality that there is a finite

q0 2 Œ2;1/ such that

k kkLq0 D
r

logk

k
and k kkLq >

r
logk

k
for all q > q0:

Now, taking p D q=2 for q � q0 in (4.16) gives

k kkq
L2q � C0q

2

r
logk

k
k kkq�1

Lq � C0q

2
k kkqLq :

In particular, taking the qth root of both sides gives

k kkL2q � .C0q=2/
1=qk kkLq (4.17)

for all q � q0, and the standard iteration argument starting at q D q0 then gives, for

all j 2 N,
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k kk
L2`q0

�
�`�1Y

jD0
.C02

j�1q0/
1

2j q0

�
k kkLq0 : (4.18)

Taking the logarithm of the product term on the right-hand side of (4.18), we see that

log
�`�1Y

jD0
ŒC02

j�1q0�
1

2j q0

�

D
`�1X

jD0

log.C0/C log.q0/C .j � 1/ log.2/

2j q0

� 1

q0

�
log.C0/C log.q0/

� 1X

jD0

1

2j
C log.2/

q0

1X

jD0

j � 1
2j

D 2.log.C0/C log.q0//

q0
� C1;

where in the final inequality we used the fact that q0 � 2 and the boundedness of
logx
x

over 1� x <1. Returning to (4.18), it follows that

k kk
L2`q0

� eC1k kkLq0 D eC1

r
logk

k
;

and taking `! 1 yields k kkL1 � eC1

q
logk
k

, as desired.

4.3. Proof of Theorem 4.1

With Lemma 4.8 in place, we next show that the restriction to @�k of the �-

eigenspace, ��ƒ, for �g

V� WD
®
� 2 C1.M/

ˇ̌
�g0

� D �f �
¯

are O.
logk
k
/-quasimodes of the Dirichlet-to-Neumann operator on .�k; Qgk/ with

eigenvalue �, and we use this to deduce the existence of at least dim.V / Steklov

eigenvalues on .�k ; Qgk/ in the range Œ��C logk
k
; �CC

logk
k
�.

For convenience, we consider the norm adapted to the Steklov problem on

.�k ; Qgk/: for any harmonic � 2W 1;2.�k/, we set

k�kLk
WD k�kL2.@�k ; Qgk/

C kd�kL2.�k ;g0/
:

LEMMA 4.11

For any � 2 V� and any harmonic function � 2W 1;2.�k/, there is a constant C D
C.M;g;ƒ/ such that
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ˇ̌
ˇ
Z

�k

hd�;d�i � �
Z

@�k

ˇk��
ˇ̌
ˇ � C

logk

k
kd�kL2.M/k�kLk

: (4.19)

Moreover, for any � 2 V�, we have

kd�k2
L2.M/

�
�
�CC

logk

k

�Z

@�k

ˇk�
2: (4.20)

In particular, (4.19) can be rewritten as

ˇ̌
ˇ
Z

�k

hd�;d�i � �
Z

@�k

ˇk��
ˇ̌
ˇ � C 0.M;g;ƒ/

logk

k
k�kL2.@�k ; Qgk/

k�kLk
: (4.21)

Proof

Given � 2 V�, let � 2W 1;2.�k/ be harmonic, and let O� 2W 1;2.M/ be the harmonic

extension to M n�k . Recall that

kd O�kL2
g0
.M/ � Ckd�kL2

g0
.�k/

by Lemma 4.6; moreover, applying, for example, [30, Theorem 3.15] with L. O�/ WD
1

Areag.�k/

R
�k

O�dvg , we see that

�� O��L. O�/
��
L2

g0
.M/

� Ckf kL2
g0

kd O�kL2
g0
.M/;

which together with the estimate above gives

k O�k
W

1;2
g0

.M/
� C 0k�k

W
1;2
g .�k/

: (4.22)

Next, note that

ˇ̌
ˇ
Z

�k

�
hd�;d�i � �f ��

�ˇ̌
ˇ

D
ˇ̌
ˇ
Z

�k

div.�d�/
ˇ̌
ˇ D

ˇ̌
ˇ
Z

@�k

�
@�

@


ˇ̌
ˇ

D
ˇ̌
ˇ
Z

Mn�k

�
hd O�;d�i � �f � O�

�ˇ̌
ˇ � C.M;g;ƒ/k�kC1 jM n�kj1=2k O�kW 1;2.M/:

In particular, by (4.1) and (4.22) and the fact that

Area.M n�k/�
kX

jD1
Area

�
Bk�3=2.pj /

�
� Ck1� 2�3

2 D C

k2
;

it follows that
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ˇ̌
ˇ
Z

�k

�
hd�;d�i � �f ��

�ˇ̌
ˇ � C

k
kd�kL2k�k

W
1;2
g .�k/

: (4.23)

Next, recalling the definition (4.8) of  k and ˇk D @ k

@�
, and keeping in mind that �

is harmonic, we compute

Z

@�k

ˇk��D
Z

@�k

@ k

@

��

D
Z

�k

.�� k/��C
Z

�k

˝
d k ; d.��/

˛

D
Z

�k

�f ��C
Z

�k

 k�.��/

D
Z

�k

�f ��C
Z

�k

 k
�
�f ��� 2hd�;d�i

�

so that

ˇ̌
ˇ
Z

@�k

ˇk���
Z

�k

�f ��
ˇ̌
ˇ �

ˇ̌
ˇ
Z

�k

 k
�
�f ��� 2hd�;d�i

�ˇ̌
ˇ

� Ck kkL2.�k/
k�kC1

�
kd�kL2.�k/

C k�kL2.�k ;g/

�
:

To relate the right-hand side to the Lk-norm, we write

k�k2
L2.�k ;g/

D
Z

�k

f�2 D �
Z

�k

�2� k D
Z

@�k

ˇk�
2 C 2

Z

�k

 kjd�j2:

As a result, Lemma 4.10 implies that k�k2
L2.�k ;g/

� Ck�k2
Lk

. Combining with

(4.23), (4.1), and Lemma 4.8, this implies that

ˇ̌
ˇ
Z

�k

hd�;d�i � �
Z

@�k

ˇk��
ˇ̌
ˇ � C

logk

k
kd�kL2.M/k�kLk

(4.24)

for any harmonic � 2W 1;2.�k/, as desired.

To prove (4.20), first note that

kd�k2
L2.M/

D �

Z

M

f �2 D �

Z

�k

f �2 C �

Z

Mn�k

f �2

(by (4.1)) � �

Z

�k

f �2 CCkd�k2
L2.M/

Area.M n�k/

� �

Z

�k

f �2 CC 0kd�k2
L2.M/

� 1
k2

so that
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�
1� C 0

k2

�
kd�k2

L2.M/
� �

Z

�k

f �2:

On the other hand, we see that
Z

�k

f �2 D
Z

�k

.�� k/�2

D
Z

�k

�
div.�2 d k/�

˝
d k; d.�

2/
˛�

D
Z

@�k

@ k

@

�2 �

Z

�k

 k�.�
2/

so that
Z

�k

f �2 �
Z

@�k

ˇk�
2 D �

Z

�k

 k�.�
2/

� Ck kkL2.�k/
k�k2

C2 ;

and by (4.1) and Lemma 4.8, it follows that

Z

�k

f �2 �
Z

@�k

ˇk�
2 CC 0 logk

k
kd�k2

L2.M/
:

Combining this with the preceding estimates, we deduce that

�
1� C 0

k2

�
kd�k2

L2.M/
� �

Z

@�k

ˇk�
2 CC 0 logk

k
kd�k2

L2.M/
;

and consequently

�
1� C 00 logk

k

�
kd�k2

L2.M/
� �

Z

@�k

ˇk�
2;

from which (4.20) readily follows.

Now, denote by

0D �0.�k ; Qgk/ < �1.�k; Qgk/� � � �

the Steklov spectrum of .�k; Qgk/, and let '0; '1; : : : be an associated collection of

eigenfunctions, normalized so that

Z

@�k

ˇk'i'j D ıij :

For any � 2 Spec.�g/\ .0;ƒ� and � > 0, consider the space
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W�;
 WD Span¹'i j �� �� �i � �C �º

spanned by all Steklov eigenspaces of .�k; Qgk/ corresponding to eigenvalues in Œ��
�;�C ��. Using the preceding lemma, we can prove the following.

LEMMA 4.12

There exists a constant C2.M;g;ƒ/ such that

dim.W
�;C2

log k

k

/� dimV�:

Proof

Fix � 2 .0; 1/, and let

�� �� �m � � � � � �mC` � �C �

be the portion of the Steklov spectrum of .�k; Qgk/ lying in Œ�� �;�C ��. Consider

the projection map

…
 W V� !W�;


given by

…
� WD
mCX̀

iDm

�Z

@�k

ˇk�'i

�
'i :

Suppose that � 2 ker.…
/ is an element of the kernel. The harmonic extension O� DP
ai'i of �j@�k

to �k can be written

O� D O�� C O�C WD
X

�i<��

ai'i C

X

�i>�C

ai'i ;

where ai D 0 if �� �� �i � �C �. Setting

I˙ WD
®
i 2 N[ ¹0º

ˇ̌
˙.�i � �/ > �

¯
;

one then has

ˇ̌
ˇ
Z

�k

jd O�˙j2 � �
Z

@�k

ˇk O�2˙
ˇ̌
ˇ D

ˇ̌
ˇ
X

i2I˙

.�i � �/a2i
ˇ̌
ˇ

� min
i2I˙

®
˙.�i � �/

¯ X

i2I˙

a2i � �k�˙k2
L2.@�k ; Qgk/

:

(4.25)
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At the same time, since O�C ? O�� in L2.@�k; Qgk/, one has

Z

�k

hd�;d O�˙i D
Z

�k

hd O�;d O�˙i D
Z

�k

jd O�˙j2:

Therefore, Lemma 4.11 implies that

ˇ̌
ˇ
Z

�k

hd�;d O�˙i � �
Z

@�k

ˇk O��˙
ˇ̌
ˇ D

ˇ̌
ˇ
Z

�k

jd O�˙j2 � �
Z

@�k

ˇk O�2˙
ˇ̌
ˇ

� C
logk

k
k�kL2.@�k ; Qgk/

k O�˙kLk
:

Combining this with (4.25) and adding up the inequalities for O�˙ yields

�k�k2
L2.@�k ; Qgk/

� C 0 logk

k
k�kL2.@�k ; Qgk/

k O�kLk
: (4.26)

Finally, the inequality (4.20) gives that

kd O�kL2.�k/
� kd�kL2.M/ � Ck�kL2.@�k ; Qgk/

;

which together with (4.26) implies

�k�k2
L2.@�k ; Qgk/

� C 00 logk

k
k�k2

L2.@�k ; Qgk/
:

If � ¤ 0, dividing by k�k2
L2.@�k ; Qgk/

on both sides yields �� C 00 logk
k

. In other words,

…
 W V� ! W�;
 must be injective whenever � > C 00 logk
k

, so setting, for example,

C2 D 2C 00, it follows that

dim.W
�;C2

log k

k

/� dimV�;

as desired.

Without loss of generality, we may assume that ƒ 62 Spec.�g/ (otherwise,

replace ƒ by ƒC " for small enough "). With Lemma 4.12 in hand, we argue finally

that all Steklov eigenfunctions of .�k; Qgk/ with eigenvalues below ƒ must lie in

some W
�;C2

log k

k

for k � k0 sufficiently large.

Proof of Theorem 4.1

Let C2 D C2.M;g;ƒ/ be the constant from Lemma 4.12. Let N be the total dimen-

sion of �g -eigenspaces corresponding to the eigenvalues in .0;ƒ/, that is,

N D
X

0<�<ƒ

dimV�:
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It follows from Lemma 4.12 that there are at least N nontrivial Steklov eigenvalues

of .�k; Qgk/ in C2
logk

k
-neighborhood of Spec.�g/ \ .0;ƒ�. We define a set S � N

by saying that k 2 S if there are other nontrivial Steklov eigenvalues in the inter-

val .0;ƒ�, that is, if there are at least N C 1 such eigenvalues in .0;ƒ�. To prove

Theorem 4.1, it is sufficient to show that S is finite. To achieve this, we show that

�i .�k; Qgk/ converge to �i .M;g/; thus, if S were infinite, there would be at least

N C 1 eigenvalues of �g in .0;ƒ�, contradicting the definition of N .

To be precise, assume by contradiction that S is infinite. Denote by 'k;1; : : : ;

'k;NC1 the corresponding Steklov eigenfunctions, normalized so that

Z

@�k

ˇk'k;i'k;j D ıij ;

and let O'k;i 2W 1;2.M/ denote the harmonic extension into M n�k ; note then that

k O'k;ikW 1;2.M/ � Ck'k;ikW 1;2.�k/
� C; (4.27)

by Lemma 4.6.

Since S is infinite, we can pass to a subsequence kj 2 S such that

O'kj ;i * O'i 2W 1;2.M/

weakly in W 1;2 and strongly in L2 as kj ! 1. (In what follows, we write kj D k

for simplicity.) For any � 2 C1.M/, we note then that

ˇ̌
ˇ
Z

M

hd O'k;i ; d�i � �i .�k ; Qgk/
Z

M

f O'k;i�
ˇ̌
ˇ

�
ˇ̌
ˇ
Z

�k

hd'k;i ; d�i � �i .�k; Qgk/
Z

�k

f 'k;i�
ˇ̌
ˇ

C
ˇ̌
ˇ
Z

Mn�k

�
hd O'k;i ; d�i � �i .�k ; Qgk/f O'k;i�

�ˇ̌
ˇ

� �i .�k; Qgk/
ˇ̌
ˇ
Z

@�k

ˇk'k;i��
Z

�k

f 'k;i�
ˇ̌
ˇ

CCk�kC1k O'k;ikW 1;2 Area.M n�k/1=2:

In particular, since

Area.M n�k/� C

k2
! 0

as k ! 1 and, by definition of ˇk D @ k

@�
,
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ˇ̌
ˇ
Z

@�k

ˇk'k;i��
Z

�k

f 'k;i�
ˇ̌
ˇ D

ˇ̌
ˇ
Z

�k

˝
d k; d.�'k;i /

˛ˇ̌
ˇ

D
ˇ̌
ˇ
Z

�k

 k�.�'k;i /
ˇ̌
ˇ

D
ˇ̌
ˇ
Z

�k

 k
�
'k;i��� 2hd�;d'k;i

�ˇ̌
ˇ

� Ck kkL2k�kC2k'k;ikW 1;2 ! 0

as k ! 1 by Lemma 4.8, it follows that

lim
k!1

ˇ̌
ˇ
Z

M

hd O'k;i ; d�i � �i .�k; Qgk/
Z

M

f O'k;i�
ˇ̌
ˇ D 0

for any � 2 C1.M/. Thus, the weak limit O'i of O'k;i along the subsequence kj 2 S
satisfies

�g0
O'i D Q�if O'i ; (4.28)

where

Q�i WD lim
k!1

�i .�k; Qgk/�ƒ: (4.29)

Moreover, we see that

ˇ̌
ˇ
Z

M

f O'i O'j � ıij
ˇ̌
ˇ �

ˇ̌
ˇ
Z

�k

f O'i O'j �
Z

@�k

ˇk'k;i'k;j

ˇ̌
ˇ

CCk O'ikL1k O'j kL1 Area.M n�k/

�
Z

�k

f j O'i O'j � 'k;i'k;j j C
ˇ̌
ˇ
Z

�k

f 'k;i'k;j �
Z

@�k

ˇk'k;i'k;j

ˇ̌
ˇ

C k O'ikL1k O'j kL1 � C
k2
;

and in view of the (strong) L2 convergence 'k;i � 1�k
! O'i , it follows that

ˇ̌
ˇ
Z

M

f O'i O'j � ıij
ˇ̌
ˇ � lim

k!1

ˇ̌
ˇ
Z

�k

f 'k;i'k;j �
Z

@�k

ˇk'k;i'k;j

ˇ̌
ˇ

D lim
k!1

ˇ̌
ˇ
Z

�k

 k�.'k;i'k;j /
ˇ̌
ˇ

(since �'k;i D 0) D 2 lim
k!1

ˇ̌
ˇ
Z

�k

 khd'k;i ; d'k;j i
ˇ̌
ˇ

� C lim
k!1

k kkL1
q
�i .�k ; Qgk/�j .�k; Qgk/
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(by Lemma 4.10) � C lim
k!1

r
logk

k
D 0

so that the functions ¹ O'iºNC1
iD1 are orthonormal in L2.M;g/.

Similarly, since
R
�k
f 'k;i D

R
@�k

ˇk'k;i D 0, it is easy to see that

Z

M

f O'i D lim
k!1

Z

�k

f 'k;i D 0

so that each O'i is likewise orthogonal to the constant functions in L2.M;g/. Putting

all this together, we see that ¹ O'iºNC1
iD1 gives an L2.M;g/-orthonormal collection of

eigenfunctions for�g , corresponding to eigenvalues in .0;ƒ� by (4.29). But there are

only N such eigenfunctions, a contradiction.

5. Upper bounds for †1.Nk/

In this section, we complete the proof of Theorem 1.8 by proving the upper bound

(1.4), which we reformulate as the following proposition.

PROPOSITION 5.1

Let M D S2;RP2;T2, or the Klein bottle K, and let Nk be the compact surface with

boundary given by removing k disjoint disks from M . Then there exists a constant

c.M/ > 0 such that for any metric g on Nk ,

N�1.Nk; g/�ƒ1.M/� c.M/
logk

k
: (5.1)

As discussed in the introduction, it is quite possible that the estimate holds for all

closed surfaces M , not just those listed here. From the arguments below, it follows

that the upper bound (1.4) holds for all M , satisfying the hypotheses of [29, Theo-

rem 6.1]; that is, all those M for which the minimal surfaces in Sn realizing ƒ1.M/

have maximal possible Morse index nC1Cdim.M.M// as critical points of the area

functional, where M.M/ denotes the moduli space of conformal structures on M .

5.1. Refined quantitative stability for Steklov-maximizing metrics

As an important first step toward proving Proposition 5.1, we need to refine the

quantitative stability results of [29] for nearly N�1-maximizing metrics. The difference

between the results of [29] and those below is that here we are interested in obtaining

lower bounds on the gap

ƒ1.M/� N�1
�
�; Œg�;	

�

between the maximum ƒ1.M/ and the normalized first eigenvalue restricted to a

domain � �M for a measure 	 supported on � � M , whereas the results in [29]
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provide lower bounds for the gap ƒ1.M/� N�1.M; Œg�;	/. While the proofs are quite

similar, we note that the refinement is necessary to obtain the sharp upper bound, as

a direct application of the results in [29] seems to yield at best the nonsharp bound

†1.Nk/�ƒ1.M/� c
k

.

We begin with the following straightforward adaptation of Lemma 2.1 in [29].

LEMMA 5.2

Let ��M be a smooth domain in a closed Riemannian surface .M;g/, and let 	 be

an admissible measure supported in � with the first nontrivial eigenvalue

�1 WD �1
�
�; Œg�;	

�
:

If u 2W 1;1.M;Sn/ is a sphere-valued map such that

Z

M

ud	D 0;

then

���1	� jduj2g dvgb�
��2
.W 1;2.�;g//� � kuk2

W 1;1.g/

�
2Eg.uI�/� �1	.M/

�
: (5.2)

Proof

Denote by V �W 1;2.�;RnC1/ the subspace of maps v W �! RnC1 for which
Z
v d	D 0;

and consider the quadratic form Q on V given by

Q.v; v/ WD
Z

�

jdvj2g dvg � �1
Z

�

jvj2 d	:

By definition of �1, it is clear that Q is nonnegative definite on V , and therefore the

Cauchy–Schwarz inequality for the associated bilinear form gives

ˇ̌
ˇ
Z

�

hdu;dvig dvg � �1
Z

�

hu;vid	
ˇ̌
ˇ �

p
Q.u;u/

p
Q.v; v/: (5.3)

Now, let u 2 V \W 1;1.M;Sn/, as in the hypotheses of the lemma. Then since

juj � 1, we have

Q.u;u/D 2Eg.uI�/� �1	.M/;

and for any v 2W 1;2.�;RnC1/, applying (5.3) to u and the map

v1 D v � 1

	.M/

Z

�

v d	;
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we see that

ˇ̌
ˇ
Z

�

hdu;dvig dvg � �1
Z

�

hu;vid	
ˇ̌
ˇ D

ˇ̌
ˇ
Z

�

hdu;dv1ig dvg � �1
Z

�

hu;v1id	
ˇ̌
ˇ

�
p
Q.v1; v1/

q
2Eg.uI�/� �1	.M/

� kdvkL2.�/

q
2Eg.uI�/� �1	.M/:

In particular, taking v D 'u for some ' 2W 1;2.�/, and recalling that hdu;d.'u/i D
'jduj2 since juj � 1, it follows that

ˇ̌
ˇ
Z

�

'jduj2g dvg � �1
Z

�

' d	
ˇ̌
ˇ �

��d.'u/
��
L2.�/

q
2Eg.uI�/� �1	.M/:

In particular, since

��d.'u/
��2
L2.�/

D
Z

�

'2jduj2g C juj2jd'j2g dvg � kuk2
W 1;1.g/

k'k2
W 1;2.�;g/

;

it follows that

jh'; jduj2g dvg � �1	ij
k'kW 1;2.�;g/

� kukW 1;1.g/

q
2Eg.uI�/� �1	.M/;

which is precisely what we wanted to show.

As an immediate consequence, for surfaces of genus 0, we have the following sta-

bility estimate, which, combined with uniformization and the standard Hersch trick,

will suffice for our purposes in the genus 0 case.

PROPOSITION 5.3

Let �� S2 be a domain in the round unit sphere .S2; g0/� R3, and let Qg 2 Œg0� be a

conformal metric such that the identity map I W S2 ,! R3 satisfies

Z

S2

I d	D 0;

where 	 is the length measure 	D ds Qg of @�. Then for the first nontrivial Steklov

eigenvalue �1 D �1.�; Qg/, we have

k�1	� 2dvg0
b�k2

.W 1;2.�;g0//�
C 6Areag0

.M n�/� 3
�
8� � N�1.�; Qg/

�
: (5.4)

Proof

Applying Lemma 5.2 with 	 D H
1
Qg b@� and the identity map u D I , for which

jduj2g0
� 2 and 2Eg0

.uI�/D 2Areag0
.�/, we see that (5.2) gives
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k�1	� 2dvg0
b�k2

.W 1;2.�;g0//�
� 3

�
2Areag0

.�/� N�1.�; Qg/
�

D 3
�
8� � 2Areag0

.M n�/� N�1.�; Qg/
�
;

from which the desired estimate immediately follows.

To obtain analogous estimates in the cases where M D RP2;T2, or the Klein

bottle K, we combine Lemma 5.2 with the techniques of [29, Section 6]. The case of

M D RP2—which carries only one conformal structure—is in principle simpler, but

we group it with the others for convenience.

PROPOSITION 5.4

Let M be a closed surface homeomorphic to RP2, T2, or the Klein bottle K, and

let g1 2 Metcan.M/ be a unit-area, constant curvature metric on M . There exist con-

stants C.M/; ı1.M/ 2 .0;1/ such that the following holds. If � �M is a smooth

domain in M with a conformal metric Qg 2 Œg1� such that

N�1.�; Qg/�ƒ1.M/� ı1;

then there exists a N�1-maximal metric gmax conformal to some g0 2 Metcan.M/ such

that

kg0 � g1k2C1.g0/
� C

�
ƒ1.M/� N�1.�; Qg/

�
(5.5)

and the length measure 	D ds Qg of @�, normalized by �1 D �1.�; Qg/, satisfies

���1	� �1.gmax/ dvgmax

��2
.W 1;2.�;g0//�

C Areag0
.M n�/� C

�
ƒ1.M/� N�1.�; Qg/

�
:

(5.6)

Proof

The proof follows closely that of [29, Theorem 1.17], with Lemma 5.2 replacing [29,

Lemma 2.1] at the final step. As discussed in [29, Section 6], the minimal immersions

u W M ! Sn that induce the N�1-maximizing metrics on M D RP2, T2, and K all

have maximal Morse index as critical points of the area functional, in the sense that

indA.u/D nC 1C dim.M0.M//, where M0.M/D Metcan.M/=Diff0.M/ denotes

the Teichmüller space of conformal structures on M . In particular, these minimal

immersions satisfy the hypotheses of [29, Lemma 6.5].

Following the proof of [29, Theorem 6.1], let Cmax � M0.M/ denote the

set of (equivalence classes of) conformal structures hgi achieving the maximum

ƒ1.M; Œg�/Dƒ1.M/. By [29, Lemma 6.5], there exist a neighborhood U of Cmax in

M0.M/ and a family of maps
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U 3 � 7! F� 2 C1.M;Sn/ (5.7)

such that the constant curvature metric g� conformal to F �
� .gSn/ lies in � 2 M0.M/;

for every hg0i 2 Cmax the map Fhg0i D u0 is a minimal immersion inducing the N�1-

maximizing metric, and denoting by

BnC1 3 a 7!Ga 2 Conf.Sn/

the canonical family of conformal dilations, and for every .a; �/ 2 BnC1 
 U such

that

Area.Ga ıF� /� 1

2

�
ƒ1.M/� ı0.M/

�
; (5.8)

for a small constant ı0.M/ > 0, we have

kg� � g0k2C1.g0/
C kGa ıF� � u0k2C2.g0/

� C.M/
�
ƒ1.M/� 2Area.Ga ıF� /

�
;

(5.9)

for some hg0i 2 Cmax with u0 D Fhg0i.
Now, let � � M and Qg 2 Œg1� be as in the hypotheses of the proposition, with

	D ds Qg . It follows from (2.2) that

ƒ1.M/� ı1 < N�1.�; Qg/� N�1
�
M; Œg1�;	

�
: (5.10)

Theorem 3.1 then implies that for ı1 D ı1.M/ > 0 sufficiently small, one has

hg1i 2 U;

where U is the neighborhood of Cmax given above. Assume now that (5.10) holds,

and let F1 D Fhg1i be the map associated to hg1i as in (5.7). We know then that

F1 ı ˆ W .M;g1/ ! Sn is conformal for some diffeomorphism ˆ 2 Diff0.M/, and

since the desired estimates (5.5)–(5.6) are invariant under the change

.�; Qg;g1; g0/ 7!
�
ˆ�1.�/;ˆ� Qg;ˆ�g1;ˆ

�g0
�

for any diffeomorphism ˆ 2 Diff.M/, we may assume without loss of generality that

F1 W .M;g1/! Sn

is conformal.

By the standard Hersch trick (see, e.g., [34]), there must exist a conformal dilation

Ga 2 Conf.Sn/ for which the map

u1 WDGa ıF1



FROM STEKLOV TO LAPLACE 1617

satisfies
Z

�

u1 d	D 0 2 RnC1:

Therefore, by the definition of �1, we see that

2Area
�
u1.M/

�
D 2Eg1

�
u1.M/

�
� �1

Z
ju1j2 d	D N�1.�; Qg/;

so that, by (5.10),

Area
�
u1.M/

�
� 1

2

�
ƒ1.M/� ı1

�
:

In particular, taking ı1.M/ < ı0.M/, we see that (5.8) is satisfied, so there exists a

minimal immersion u0 W M ! Sn inducing a N�1-maximizing metric gmax and a unit-

area constant curvature metric g0 2 Œgmax� such that

kg1 � g0k2C1.g0/
C ku1 � u0k2C2.g0/

� C
�
ƒ1.M/� 2Area

�
u1.M/

��
� Cı1.M/:

(5.11)

As an immediate consequence, we have

kg1 � g0k2C1.g0/
� C

�
ƒ1.M/� N�1.�; Qg/

�
;

giving the first desired estimate (5.5).

Now, by Lemma 5.2, we have that

���1	� jdu1j2g1
dvg1

b�
��
ŒW

1;2
g1

.�/�� � ku1kW 1;1.g1/

�
2Eg1

.u1I�/� N�1.�; Qg/
�1=2

� C
�
2Area

�
u1.�/

�
� N�1.�; Qg/

�1=2
;

where in the last line we used the conformality of u1 and the fact that ku1kC1.g1/
�

2ku0kC1.g0/
� C 0.M/ for ı1.M/ sufficiently small, by (5.11). Furthermore, it fol-

lows from (5.11) that

1

2
k � k.W 1;2.�;g1//� � k � k.W 1;2.�;g0//� � 2k � k.W 1;2.�;g1//� ;

provided ı1.M/ is sufficiently small, so that

���1	� jdu1j2g1
dvg1

b�
��
.W 1;2.�;g0//�

� C
�
2Area

�
u1.�/

�
� N�1.�; Qg/

�1=2
: (5.12)

Repeatedly using (5.11), we also see that

��jdu1j2g1
dvg1

� jdu0j2g0
dvg0

��
.W 1;2.�;g0//�

� C
�
ƒ1.M/� 2Area

�
u1.M/

��1=2
;
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and recalling that jdu0j2g0
dvg0

D 2dvgmax
, we can combine this with the preceding

estimate to find that

k�1	� 2dvgmax
k2
.W 1;2.�;g0//�

� C 0�ƒ1.M/� 2Area
�
u1.M/

��

CC 0�2Area
�
u1.�/

�
� N�1.�; Qg/

�

D C 0�ƒ1.M/� N�1.�; Qg/
�

� 2C 0 Area
�
u1.M n�/

�
I

that is,

k�1	� 2dvgmax
k2
.W 1;2.�;g0//�

C 2C 0 Area
�
u1.M n�/

�
� C 0�ƒ1.M/� N�1.�; Qg/

�
:

(5.13)

Finally, it follows from (5.11) that

gmax D u�
0.gSn/� 2u�

1.gSn/;

provided ı1.M/ is sufficiently small, and we know that

g0 � C.M/gmax

since the maximizing metrics on RP2, T2, and K are smooth. Hence, we have

Areag0
.M n�/� C Area

�
u1.M n�/

�
;

and combining this with (5.13), we arrive at the desired estimate (5.6).

Remark 5.5

Using the techniques of [29, Section 2.3] in place of [29, Section 6], it is straightfor-

ward to prove a simpler, conformally constrained version of the preceding lemma for

those conformal classes induced by (nonbranched) minimal immersions M ! Sn by

first eigenfunctions on any closed surface M . Combining this with the estimates of

Section 5.2 below, one can easily prove a conformal analog of Proposition 5.1 for such

conformal classes. Namely, if .M; Œg1�/ is a conformal class arising from a minimal

immersion M ! Sn by first eigenfunctions, then for any g 2 Œg1� and any domain

�k �M with k boundary components, one has

N�1.�k; g/�ƒ1
�
M; Œg1�

�
� c

�
M; Œg1�

� logk

k
: (5.14)

5.2. Structure of nearly N�1-maximizing metrics with many boundary components

We collect now some of the key estimates which, together with Propositions 5.4 and

5.3, yield the proof of Proposition 5.1.
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Let g1 2 Metcan.M/ be a unit-area metric of constant curvatureK D 2��.M/ on

the closed surface M , with injectivity radius

inj.M;g1/� �0 > 0:

In particular, there exists C D C.�0/ > 0 such that for any ' 2W 1;2.M;g1/, one has

k'kW 1;2.M;g1/
� C

�
kd'kL2.M;g1/

C k'kL1.M;g1/

�
: (5.15)

Given a collection of disjoint geodesic balls Br1.p1/; : : : ;Brk .pk/ in .M;g1/,

set

B WDBr1.p1/[ � � � [Brk .pk/

and

� WDM n B:

For some small ı > 0, suppose that

Areag1
.B/� ı: (5.16)

Let 	 be an admissible measure supported on @�, and let 0 � � 2 C1.�/ be a

nonnegative function such that

ˇ̌
h';� d	� �dvg1

i
ˇ̌2 � ık'k2

W 1;2.�;g1/
(5.17)

for every ' 2W 1;2.�/ and some constant � > 0. For the application we have in mind,

one should think of � as the the first eigenvalue of 	 on�, that is, � D �1.�; Œg1�;	/.

By Lemma 4.4, we know that there exists r0.�.M// depending only on the

curvature of .M;g1/ such that a geodesic ball Bt .x/ of radius t < t0.�.M/; �0/ D
min¹�0; r0º in .M;g1/ has area

3�

4
t2 � Areag1

�
Bt .x/

�
� 5�

4
t2:

In particular, provided

ı <
3�

4
t20

in (5.16), it follows that

3�

4

kX

jD1
r2j � Areag1

.B/� ı: (5.18)
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Denote by S the collection S WD ¹p1; : : : ; pkº of all centers of the disks Brj .pj /,

and consider the subset

S 0 WD
°
pi 2 S

ˇ̌
ˇ ri �

p
ı

k1=4

±
: (5.19)

It follows from (5.18) that

jS 0j � 4

3�

p
k; (5.20)

and it is of course possible that S 0 D ∅. In general, we have the following.

LEMMA 5.6

Let .M;g1/, �, 	, and � be as above satisfying (5.16)–(5.17) with

ı <
1p
k

� t0
�
�.M/; �0

�
:

Then

�	
� [

pj 2S 0
Brj .pj /

�
� C

�
1C k�kL1

�
ı1=2k1=4

for some constant C D C.�.M/; �0/.

Proof

Let � 2 C1.R/ be a smooth, decreasing function such that

�.t/� 1 for t �
r
4ı

3�
;

�.t/� 0 for t � 2

r
4ı

3�
;

and

j�0j � 10p
ı
:

Denoting by dS 0 2 Lip.M/ the distance function

dS 0.x/D min
®
distg1

.x;pi /
ˇ̌
pi 2 S 0¯;

let

' WD � ı dS 0 :
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Since each rj �
q
4ı
3�

by (5.18), it follows from the definition of ' that

' � 1 on
[

pj 2S 0
Brj .pj /;

and consequently

	
� [

pj 2S 0
Brj .pj /

�
� h';	i: (5.21)

On the other hand, since 0 � ' � 1, jd'j � 10p
ı

, and ' is supported onS
pj 2S 0 Bp

16ı=3�.pj / by construction, we see that

k'kL1.M;g1/
�

X

pj 2S 0
Areag1

�
Bp

16ı=3�.pj /
�

� C jS 0jı

and

kd'k2
L2.M;g1/

� 100

ı

X

pj 2S 0
Areag1

�
Bp

16ı=3�.pj /
�

� C 0jS 0j:

In particular, combining this with (5.15) and (5.20), it follows that

k'k2
W 1;2.�;g1/

� C jS 0j � C
p
k

and
Z

�

�' dvg1
� Ck�kL1 jS 0jı � C 0k�kL1ı

p
kI

putting this together with (5.21) and (5.17), we find that

�	
� [

pj 2S 0
Brj .pj /

�
� h�	;'i

�
ˇ̌
h�	� �dvg1

; 'i
ˇ̌
C

Z

�

�' dvg1

�
p
ık'kW 1;2.�;g1/

CCk�kL1ı
p
k

� C
�
ı1=2k1=4 C k�kL1ı

p
k

�
:

Finally, recalling that ı
p
k < 1 by assumption, we have that ı

p
k � ı1=2k1=4, and the

desired estimate follows.
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LEMMA 5.7

Let .M;g1/, �, 	, and � be as above, satisfying (5.16)–(5.17) with

ı <
1p
k

� t0
�
�.M/; �0

�
:

Then we have

�	.M/� C
.1C k�kL1/

logk
.kıC

p
ık logk/ (5.22)

for some C D C.�.M/; �0/ <1.

Proof

Denote by dS 2 Lip.M/ the distance to the full set ¹p1; : : : ; pkº of centers of the

geodesic disks Br1.p1/; : : : ;Brk .pk/, and define a test function ' 2 Lip.M/ by

'.x/ WD max
®
log

�p
ı=dS .x/

�
; 0

¯
if dS .x/�

p
ı

k

and

'.x/ WD log.k/ if dS .x/ <

p
ı

k
:

On @Brj .pj /, note that

' � log.
p
ı=rj /� log.k1=4/:

Appealing to Lemma 5.6—and the nonnegativity of '—it then follows that

h�	;'i � log.k1=4/�	
� [

pj 2SnS 0
Brj .pj /

�

D log.k1=4/
�
�	.M/� �	

� [

pj 2S 0
Brj .pj /

��

� log.k1=4/�	.M/�C log.k1=4/
�
1C k�kL1

�
ı1=2k1=4I

that is,

h�	;'i � 1

4
log.k/

�
�	.M/�C

�
1C k�kL1

�
ı1=2k1=4

�
: (5.23)

Next, writing

LS .t/ WD H
1
�
¹dS D tº

�
� H

1
� k[

jD1
@Bt .pj /

�
;
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note that, since t < t0.�.M/; �0/ <min¹r0.�.M//; inj.M/º, Lemma 4.4 gives

LS .t/�
kX

jD1
H
1
�
@Bt .pj /

�
� k

5�

2
t:

By definition of ', we can then employ the coarea formula for dS to see that

Z

�

' dvg1
�

Z

M

' dvg1

D logk

Z p
ı=k

0

LS .t/ dt C
Z p

ı

p
ı=k

log.
p
ı=t/LS .t/ dt

� 5�

2
k

�
logk

Z p
ı=k

0

t dt C
Z p

ı

0

log.
p
ı=t/t dt

�

D 5�

4
kı

� logk

k2
C 1

2

�
� 5�

4
kı:

Similarly, since jd'j2g1
D d�2

S �¹
p

ı

k
�dS �

p
ıº, we can compute

Z

�

jd'j2g1
dvg1

�
Z p

ı

p
ı=k

1

t2
LS .t/ dt � 5�

2
k

Z p
ı

p
ı=k

1

t
dt D 5�

2
k logk:

In particular, since ' � 0 and ı2k < 1, it follows from (5.15) that

k'k2
W 1;2.�;g1/

� C0.k
2ı2 C k logk/� C 0

0k logk

and
Z

�

�' dvg1
� C0k�kL1kı:

From (5.17), we deduce that

h';�	i �
Z

�

�' dvg1
C

p
ık'kW 1;2.�;g1/

� C0k�kL1kıCC0
p
ı.k logk/1=2

� C1
�
1C k�kL1

�
.kıC

p
ık logk/:

Finally, combining this with (5.23), we obtain

1

4
log.k/

�
�	.M/�C

�
1C k�kL1

�
ı1=2k1=4

�
� C

�
1C k�kL1

�
.kıC

p
ık logk/;

and noting that logk � ı1=2k1=4 � C
p
ık logk for k > 1, this in turn gives



1624 KARPUKHIN and STERN

�	.M/� C
.1C k�kL1/

logk
.kıC

p
ık logk/;

which is the desired estimate (5.22).

5.3. Proof of Proposition 5.1

With the results of Sections 5.1 and 5.2 in place, the proof of Proposition 5.1 is now

relatively straightforward.

Proof of Proposition 5.1

Let Nk be the compact surface with boundary given by removing k disks from M D
S2;RP2;T2, or K, and suppose that g is a metric on Nk for which

N�1.Nk ; g/�ƒ1.M/� �: (5.24)

We wish to show that �� c
logk
k

for some constant c D c.M/ > 0.

By Theorem 2.1, we may identify .Nk; g/ isometrically with a domain .�k ; Qg/
satisfying the hypotheses of Proposition 5.3 or 5.4; that is, we may assume that

there exists a unit-area, constant curvature metric g1 on M such that Qg 2 Œg1� and

�k DM n .B1 [ � � � [Bk/, where ¹BiºkiD1 is a collection of disjoint geodesic disks

in .M;g1/. Moreover, if M D S2, we may assume without loss of generality (by the

standard Hersch trick) that the length measure 	k D ds Qg of @�k satisfies the balanc-

ing condition
R
S2 I d	k D 0.

If � < ı1.M/, it then follows from Proposition 5.3 or 5.4 that there exists a N�1-

maximal metric gmax on M conformal to some g0 2 Metcan.M/ such that

kg0 � g1k2C1.g0/
� C.M/� (5.25)

and the length measure 	k D ds Qg of @�k satisfies

���1	k � �1.gmax/ dvgmax

��2
.W 1;2.�;g0//�

C Areag0
.M n�k/� C.M/�: (5.26)

In particular, for � < ı2.M/ sufficiently small, it follows from (5.25) that

inj.M;g1/� 1

2
inj.M;g0/� c0.M/; (5.27)

and

1

2
g1 � g0 � 2g1;

so we can replace Areag0
and .W 1;2.�;g0//

� in (5.26) with Areag1
and .W 1;2.�;

g1//
�, adjusting the constant C.M/ on the right-hand side accordingly. Moreover,

writing
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�1.gmax/ dvgmax
D �dvg1

;

we see that

k�kL1 � C.M/: (5.28)

Assume now that

� <
logk

k
:

By (5.26) and the preceding observations, we then see that .M;g1/, �k , 	k , and

� satisfy the hypotheses of Lemma 5.7 for k � k0.M/ sufficiently large, with � D
�1.�; Qg/ and

ı D C.M/�:

In particular, since in this case we have k�kL1 � C.M/ and inj.M;g1/� c0.M/, it

follows from Lemma 5.7 that

ƒ1.M/� �� N�1.M; Qg/� C.M/

logk
.k�C

p
�k logk/;

so that

1

2
ƒ1.M/� C.M/

� k�

logk
C

s
k�

logk

�
� C 0.M/

� k�

logk

�1=2
; (5.29)

using the assumption that � <
logk
k

. Squaring both sides and rearranging, we obtain

��
� ƒ1.M/

2C 0.M/

�2 logk

k
; (5.30)

giving the desired bound.
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