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Abstract

In the present paper, we study sharp isoperimetric inequalities for the first Steklov
eigenvalue o1 on surfaces with fixed genus and large number k of boundary com-
ponents. We show that as k — oo the free boundary minimal surfaces in the unit
ball arising from the maximization of o1 converge to a closed minimal surface in the
boundary sphere arising from the maximization of the first Laplace eigenvalue on
the corresponding closed surface. For some genera, we prove that the corresponding

areas converge at the optimal rate loik. This result appears to provide the first exam-

ples of free boundary minimal surfaces in a compact domain converging to closed
minimal surfaces in the boundary, suggesting new directions in the study of free
boundary minimal surfaces, with many open questions proposed in the present paper.
A similar phenomenon is observed for free boundary harmonic maps associated to
conformally constrained shape optimization problems.
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1. Introduction

1.1. Background

Since the eighteenth century, minimal surfaces have played a central role in geometry
and analysis, among other areas of mathematics and physics. While early investi-
gations focused on minimal surfaces in Euclidean space, the twentieth century saw
an increased interest in the study of minimal surfaces and higher-dimensional mini-
mal submanifolds in compact Riemannian manifolds, with a fundamental special case
being the study of minimal submanifolds in the sphere S”. Indeed, in addition to their
intrinsic geometric interest, minimal submanifolds in S” are an unavoidable object of
study for those investigating analytic aspects of minimal submanifolds, since cones
over minimal varieties in the sphere generate the blowup models for singularities of
minimal submanifolds in any ambient space.

In recent decades, the study of minimal submanifolds in spheres has been greatly
enriched by the discovery of an intimate link between minimal surfaces in spheres and
certain natural shape optimization problems for Laplacian eigenvalues. On a closed
Riemannian surface (M, g), denote by

OZAO(Mvg) <A1(M»g)§AZ(M1g) =< /—l—OO

the spectrum of the positive Laplacian Ag = §gd. Normalizing by the area, one
obtains a sequence of scale-invariant quantities, of which the most fundamental is
the first nontrivial normalized eigenvalue

MM, g) =1 (M, g) Areag (M).

About 50 years ago, Hersch observed in the influential paper [ 18] that A1(S2, g) < 87
for any metric g on S?, with equality only for round metrics. This paved the way for
the study of the maximization problem for A1(M, g) over metrics on a surface of fixed
topological type, and the associated maxima
A(M):= sup Ai(M,g).
gEMet(M)

Early key contributions were made by Yang and Yau [47], who showed that A1 (M) <
oo for orientable M (see [23] for the nonorientable case), and Li and Yau [34], whose
introduction of the conformal volume led to the characterization of the round metric
as the unique L-maximizing metric on RP?, among other important consequences.

In the 1990s, a significant breakthrough was made by Nadirashvili [39], who
realized that metrics maximizing the normalized Laplacian eigenvalues A1 (M, g) are
induced by branched minimal immersions to the unit sphere of area %Al (M)—an
observation which he used to confirm Berger’s conjecture that the flat equilateral met-
ric on T2 maximizes A;. The only other surfaces whose A -maximizing metrics have
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been identified are M = S2, RP?, the Klein bottle K (see [5], [7], [20]), and the ori-
entable surface of genus two (see [19], [40], [46]). By the work of Petrides in [43], for
general M , the supremum A (M) is achieved by a A;-maximizing metric—possibly
with conical singularities—provided that for any maximizing sequence of metrics
MM, g i) = A1(M), the sequence of conformal classes [g;] does not escape to
infinity in the moduli space. In [43], Petrides has shown that for orientable surfaces,
such topological degeneration does not occur provided a certain gap condition on the
value of Aj(M) is satisfied. The gap condition essentially amounts to strict mono-
tonicity of A in genus of M, as described in (2.3). He then observed that the gap
condition holds for infinitely many values of the genus, thus proving the existence of
A 1-maximizing metric for infinitely many topological types, and it is expected that the
gap condition holds for all surfaces M. The corresponding results for nonorientable
surfaces were obtained in [36]; see Section 2.5 for more details. Let us also remark
that the corresponding theory for higher eigenvalues has seen a lot of recent progress
(see [24], [27], [28], [44]). Moreover, it has been observed in [8] that the induced
metric on any minimally immersed closed submanifold in S” is a (typically non-
maximizing) critical point for one of the functionals Ai, soin principle all immersed
minimal submanifolds in the sphere may arise from variational methods for A;. In the
setting of surfaces with boundary (N, g), one finds a strong analogy between closed
minimal surfaces in the sphere and free boundary minimal surfaces—critical points
for the area functional among relative 2-cycles—in Euclidean balls. In recent years,
much activity in this direction has been stimulated by the work of Fraser and Schoen
[12], who demonstrated that metrics maximizing normalized Steklov eigenvalues

6;(N,g) = 0;(N, g)Length(N, g),

where o;(N, g) are eigenvalues of the Dirichlet-to-Neumann map C*°(dN) —
C®°(dN), are induced by free boundary minimal immersions to Euclidean balls. In
addition to solving several important problems related to optimal bounds for Steklov
eigenvalues, their work reinvigorated the study of free boundary minimal submani-
folds in general; see the survey [33] for a discussion of many results in this direction
obtained over the last decade. For the purposes of this paper, let us note that the
supremum

X1(N):=supaoi(N,g)
g

of the first nontrivial normalized Steklov eigenvalue over metrics on a surface with
boundary N is finite (see [10], [16], [37]). The existence theory for metrics achieving
¥1(N) is analogous to that for metrics achieving A(M). Namely, it is shown in
[45] that a 67-maximizing metric exists provided certain gap conditions are satisfied
(see (2.4) and (2.6)), and it follows from [30] that the gap conditions are satisfied for
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infinitely many N . More precisely, let M be a closed surface and let Nj be a surface
with boundary obtained by removing k disjoint disks from M, so that Ny is orientable
if and only if M is orientable, and N has k boundary components and the same genus
as M. According to [30], if the the gap condition for A;(M) holds (in the sense
of Definition 2.21), for example, if M = S?, RP?, T2, K, or an orientable surface of
genus 2, then gap conditions for 3; (V) are satisfied for an infinite set of values of k;
therefore, the ¢1-maximizing metrics and the corresponding free boundary minimal
surfaces exist. We refer to Section 2.5 for a more detailed description of those results.

In the present paper, we establish an explicit link—beyond the well-known
analogy—between the free boundary minimal surfaces in Euclidean balls arising
from maximization of 67 and the closed minimal surfaces in S” arising from maxi-
mization of /_\1. Namely, building on the recent results of [14], [15], [30], and [29],
for M satisfying the gap condition and any sequence k; — oo for which 67 (Nk;)-
maximizing metrics exist, we show that the free boundary minimal surfaces in B"*!
arising from maximization of 61 on Ny, converge subsequentially as k; — oo, in
the varifold sense, to a closed minimal surface in S” arising from maximization of
X1 on M. We also obtain sharp estimates for the rate at which their areas %21 (Nkj)
converge to %AI (M).

In particular, while the explicit maximizers for 6 are known only for the disk, the
annulus, and the Mdbius band (see [12]), our results provide an asymptotic descrip-
tion of the 0;-maximizing metrics on surfaces with many boundary components in
every case where the maximizing metric for A1 is known on the corresponding closed
surface (namely, at the moment, for M = S?, RIP’Z, T2, K, or the orientable surface of
genus 2). Moreover, to our knowledge, these results provide the first examples of fam-
ilies of compact free boundary minimal surfaces in a manifold with boundary limiting
to closed minimal surfaces in the boundary, suggesting a number of new questions and
lines of investigation in the study of free boundary minimal surfaces (see Section 1.5
below).

1.2. Convergence of 61-maximizing maps
Recall that for a closed surface M, we denote by Ny the compact surface with bound-
ary obtained by removing k disjoint disks from M . The following surprising identities
were recently established in [15] and [30]:

Z1(Ne) < A (M), (1.1)
Jim 21 (Ne) = A1 (M) (1.2)

(see also [14] for a more streamlined proof of (1.2)).
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Suppose that M satisfies the gap condition in the sense of Definition 2.21
and {k;} is a sequence such that 01-maximizing metric exists on Nj ;. Since the
corresponding free boundary minimal surfaces are of bounded area %El(Nkj) <
A1 (M) < oo in a ball B"*! of fixed dimension n, it follows that these minimal
surfaces must converge subsequentially in the varifold sense (see Section 2.7 below
for relevant definitions) to some limit varifold in B”*!, satisfying a weak version
of the free boundary stationary condition. By (1.2), we see that this limit varifold
must have area %AI(M ), and since closed minimal surfaces in S” satisfy the weak
definition of free boundary stationary varifolds in B”*1!, it is natural to expect that
these free boundary minimal surfaces converge as k; — oo to the closed minimal
surface in S” realizing A{(M). For M = S? this was posed as a conjecture in [15]. In
the first result of the present paper we resolve this conjecture for an arbitrary closed
surface M and prove the following theorem. (See Section 2.7 and Theorem 2.26 for

a more detailed statement.)

THEOREM 1.1

Let M be a closed surface satisfying the gap condition of Definition 2.2 1. Then, there
exists a sequence k; — oo such that 6-maximizing metrics on N, exist. Further-
more, for an appropriate n = n(M) € N and for any such sequence, the (branched)
free boundary minimal surfaces in B" ™1 inducing the &1-maximizing metrics on Ny,
converge, up to a choice of a subsequence, in the varifold sense to a closed (branched)
minimal surface in S", inducing the A\-maximizing metric on M. Moreover, as a
consequence, their supports converge in the Hausdorff distance, and the boundary
measures converge to twice the area measure of the limit surface.

Remark 1.2

The gap condition is known to hold on all surfaces for which the A1-maximization
problem has been solved, namely, S2, RIP’Z, T2, the Klein bottle K, and the oriented
surface of genus 2. Petrides observed in [43] that there are infinitely many closed,
oriented surfaces M satisfying the gap condition (see Section 2.5). Thus, the above
theorem gives infinitely many examples of sequences of free boundary minimal sur-
faces in the ball converging to a minimal surface in the boundary sphere. Moreover,
it is expected that all M satisfy the gap condition so that the convergence statement
holds for all closed surfaces M.

Remark 1.3
As is customary in the theory of varifolds, the surfaces in Theorem 1.1 should be
understood with the appropriate multiplicity (see Section 2.7). For example, if M =
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M, is the orientable surface of genus 2, then the limiting surface is S? with multiplic-
ity 2; see Open Question 6 below.

Remark 1.4

Note that one should not expect to improve the convergence statement far beyond var-
ifold convergence: in particular, note that a free boundary surface in B”*! cannot be
C! close to any surface in S” near its boundary, and it is clear from direct examina-
tion of the minimal surface equations in R”*! and S” that a minimal surface in B"*!
is nowhere close to a minimal surface in S” in a C? sense. Nonetheless, one can of
course ask for a more refined picture of the convergence given in Theorem 1.1; see
Section 1.5 below for some open questions in this direction.

If M is a sphere S?,a projective plane RP?, a torus T2, or a Klein bottle K, then
the branched minimal surface corresponding to A1(M)-maximal metric is unique up
to an isometry of R"*! (see, e.g., [5]). Since O(n + 1) is compact, the convergence
of Theorem 1.1 holds along the full sequence after applying a suitable element of
O(n + 1) to each member of the sequence. Moreover, in all these examples, the limit
surface and the value of n are known explicitly.

. If M = S?, then n = 2 and the limit surface is the whole sphere. Furthermore,
[12, Proposition 8.1] implies that all of these free boundary minimal surfaces
are embedded. In particular, we have the following corollary.

COROLLARY 1.5

For a sequence k j — 0o, maximization of 01 gives rise to an embedded free boundary
minimal surface in B> of genus 0 with k j boundary components, such that as j — oo,
these surfaces converge in the varifold sense to the boundary sphere S*> = B>,

Remark 1.6
Note that Corollary 1.5 and the relation (1.2) are in contradiction with [12, Theo-
rem 1.6]. We refer to the appendix in [15] for the explanation.

Remark 1.7

Approximate pictures of these free boundary minimal surfaces are obtained in [15]
and [42] using numerical computations. After our paper was completed, Kapouleas
and Zou [22] used gluing methods to construct other families of free boundary mini-
mal surfaces in B> converging to the boundary, which seem to be distinct from those
given by 01-maximization.

. If M = RP?, then n = 4 and the limit surface is the Veronese surface.
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i If M =K, then n = 4 and the limit surface is one of the minimal Klein bottles
constructed by Lawson in [32], in his notation 73,;. Note that the same surface
is conjectured to be the Klein bottle with the smallest Willmore energy.

. If M = T?, then n = 5 and the limit surface is the so-called Bryant—Itoh—
Montiel-Ros torus. It is characterized by the fact that the induced metric is the
flat metric corresponding to the equilateral lattice.

We remark that, using arguments similar to those in [12, Proposition 8.1],
it is possible to show that the free boundary immersions corresponding to M =
RIP’Z, K, T? are unbranched as soon as they are linearly full, that is, not contained in a
proper linear subspace of R”*!, However, embeddedness seems to be a more subtle
issue; see Open Question 3.

In Section 2.8 below, we observe that a variant of the phenomenon described in
Theorem 1.1 also holds for the conformally constrained )_kl—maximization and 01-
maximization problems under certain natural assumptions, in which case one finds a
sequence of free boundary harmonic maps on domains 25 C M converging to a har-
monic map u: M — S" associated to the conformally constrained A1-maximization
problem.

1.3. Refined asymptotics for 31 (Ng)

In our second result we provide a sharp rate of convergence for the limit (1.2); namely,

we identify lolfk as the decay rate of the correction term.

THEOREM 1.8

Let M be a closed surface for which there exists a A -maximizing metric, and let Ny
be a compact surface with boundary obtained by removing k disjoint disks from a
closed surface M. Then the following holds.

(1) There exists a constant C = C(M) > 0 such that for all k > 0 one has

logk
k

Zi(Nk) =z (M) - C - (1.3)

2) Let M be a sphere S?, a projective plane RP?, a torus T2, or a Klein bottle
K. Then there exists a constant ¢ = c(M) > 0 such that for all k > 0 one has

logk
zl(Nk)fAl(m—cO;f . (1.4)

Remark 1.9

If, furthermore, there exists a 1-maximizing metric on Ng, then in terms of the free
boundary minimal immersion wuy : Ny — B"*! realizing X;(Ny) and the minimal
immersion u: M — S" realizing A1(M), this tells us that the areas satisfy
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logk

Area(u(M)) — Area(ug (Ni)) < C(M) e

(15)
and this convergence rate is sharp for M = S2, RP?, T2, or K.

Remark 1.10

The proof of (1.4) is based on a refinement of the quantitative stability of A1-maximal
metrics as defined in [29], and the surfaces listed in the assumptions are precisely
those for which quantitative stability is verified in [29]. However, it is interesting to
note that the results of [29] alone do not suffice to establish the sharp bound (1.4); see
the discussion in Section 5.1.

Remark 1.11

Inequality (1.4) is a quantitative improvement over (1.1). The only other known result
of this type is [14, Theorem 1.8], where the correction term decays exponentially
with k. We note that a variant of (1.3) also holds for the conformally constrained
maximization problem (see Proposition 4.2), and the corresponding variant of the
upper bound (1.4) holds for many nonmaximizing conformal classes, for example,
for any conformal class admitting a minimal immersion to S” by first eigenfunctions
(see Remark 5.5).

1.4. Ideas of the proofs

For the remainder of the introduction we write k instead of k ; to simplify the notation.
To prove Theorem 1.1, we begin by applying uniformization results of [35] and [17]
to identify 61-maximizing metrics (Ng, gx) on Ni conformally with a domain 2 C
(M, gi) given by removing disjoint geodesic disks from a constant curvature metric
gr on M. Combining (1.2) with the stability results of [29], we are able to deduce
that the the conformal classes [gx] converge subsequentially to [g], and the boundary
length measures dsg, of 92 converge in W~12(M, g) to the area measure dvg,,
of a A1-maximizing metric gmax € [g] on M.

We then show that there exists a metric ¢ on M with respect to which the har-
monic extension 7ix: M — B"*! of the branched free boundary minimal immer-
sions uy : (Ng,gx) — B"*! by o1(Ng, gx)-eigenfunctions have vanishing energy in
the complement M \ €2, and use the strong W12 convergence dsz, — dvg,, to
deduce that the maps iy converge strongly (subsequentially) in W12 (M, g) to a min-
imal immersion (M, gmax) — S” by first eigenfunctions of A, . The convergence of
the associated varifolds then follows by standard arguments from the strong conver-
gence 1y — u and the vanishing of the energy fM\Qk |dﬁk|§,k — 0.

The proof of the lower bound (1.3) in Theorem 1.8 is constructive; namely, we

produce a metric on Nj satifying 61 > A (M) — C loik. As in [15], we begin by
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removing several small geodesic disks—of radius k™ for « sufficiently large—with
respect to a constant curvature metric conformal to a )_Ll—maximizing metric gmax, to
produce a domain 23 C M diffeomorphic to Ni. We then choose a conformal metric
&k on this domain with the property that the pairing (g, @) of the resulting length
measure iy = dsg, of 0Q2; with a smooth function ¢ € C*°(9€2) is given by the
integral |, % ¢ dvg, . of the harmonic extension ¢ over Q2; with respect to gmax.

To show that the resulting metric (R, gx) satisfies 01(QR,8x) = A1(M) —
C lolfk, we first argue that the restriction to d€2y of the first eigenfunctions for A
are, in an appropriate sense, approximate eigenfunctions, that is, quasimodes, of the

& max

Dirichlet-to-Neumann map for (¢, gx), with the normalized eigenvalue lying in
[A;=C lolg(k AN+ C lolg(k ]. Denoting by m the multiplicity of the first eigenvalue of
Ag. .., we then deduce that there must exist at least m Steklov eigenvalues in [A; —
C 1o§k AL+ C lolgck], and we employ a contradiction argument to conclude that the

first normalized Steklov eigenvalue (2, gx) must liein [A; —C %, A +C lolfk],
as desired.

To prove the upper bound (1.4) in Theorem 1.8, we need to show that if M =
S2,RP2, T2, or K, then every metric g on Ny must satisfy &1 (Ng,g) < A (M) —

c 1o]%k . To this end, we again begin by identifying a given metric (N, g) conformally

with the complement of geodesic disks for some constant curvature metric on M.
Building on the techniques of [29], we then show that for any such domain 2 with
conformal metric g, there exists a )_tl—maximizing metric gmax on M such that the
gap A1(M) — 01(R2, &) is bounded below by Areag (M \ Q) and the square
of the W™12(M, gmax)-distance between the length measure dsgz, of 9Q and an
appropriate multiple of the area measure dvg,, . The area bound Areag, (M \ Q) <
C(A1(M)—051(R2k, g)) is then used to show that a certain test function ¢ (related
to the logarithm of the distance to the centers of the disks comprising the complement
M \ Q) satisfies

logk - (pk.dsg, —dvg,..)
k7 Nerllwi2,gme

E || dsgk - dvgmax ” W_I’Z(Msgmax) ’
from which the desired bound follows.

1.5. Discussion and Open Questions
Item (2) of Theorem 1.8 immediately suggests the following question.

OPEN QUESTION 1
Does the inequality (1.4) hold for all closed surfaces M ?

One of the ways to resolve this question would be to prove an appropriate quanti-
tative stability result relating the difference A1 (M) —a1(R2, &) for a domain Q@ C M



1566 KARPUKHIN and STERN

to the W™12(M, gmax) difference between the measures dvg,, and dsg and the
area of M \ Q with respect to some )_Ll-maximizing metric gmax on M. It could
be illuminating to investigate this problem first for surfaces of genus 2, where the
A1-maximizing metrics are known but do not meet the criteria needed to apply our
methods of proof for (1.4).

It is also natural to ask to what extent the estimates of Theorem 1.8 can be sharp-
ened. In this direction, the following question is an obvious place to begin.

OPEN QUESTION 2
Does the limit

(A1(M) = Z1(Ny))

lim —
kLoo logk

exist? If so, then find its value.

An explicit answer to this question will likely go hand in hand with a sharper
geometric picture of the associated ¢;-maximizing metrics; see Question 4 below.

There are many natural questions concerning the limiting behavior of the free
boundary minimal surfaces realizing X;(Ng). From the perspective of geometric
measure theory, one of the first questions one might pose concerns the persistence
of singularities of these surfaces in the limit as k — oo.

OPEN QUESTION 3

If the limiting minimal surface in S" realizing A1(M) is embedded, does it neces-
sarily follow that the free boundary minimal surfaces in B" ! realizing X1(Ny) are
embedded for k sufficiently large?

Remark 1.12

Note that the standard persistence-of-singularities result for stationary varifolds in a
fixed domain does not hold for families of free boundary stationary varifolds in B"*!
approaching a stationary varifold in S”. For an elementary counterexample, note that
the boundary of an inscribed regular k-gon in the 2-dimensional unit disk B? gives
a singular free boundary stationary geodesic network which approaches the (smooth,
multiplicity one) boundary circle as k — oo. However, it is straightforward to check
that the embededdness of the limit surface in S”—by Allard regularity and standard
monotonicity results—rules out the possibility of singularities with density larger than
2 in nearby free boundary minimal surfaces in B”*!; moreover, these free boundary
minimal surfaces must look roughly conical at all small scales (though perhaps with
different cones at different scales) near a singularity of density equal to 2, so the
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conditions under which singularities could disappear in the limit appear to be quite
restrictive.

The following question is inspired by Corollary 1.5 and concerns a finer structure
of free boundary minimal surfaces corresponding to 7 (/Ng)-maximal metrics. We
formulate the question for M = S2, but, of course, similar problems can be posed for
other closed surfaces.

OPEN QUESTION 4

Let Q. C B3 be an embedded free boundary minimal surface of genus 0 with k

boundary components corresponding to a 61-maximizing metric. Prove or disprove

the following.

(1) Qp is unique up to isometries of B3.

2) All boundary components are approximately of the same size. In particular, let
Lk, j =1,....k be the lengths of boundary components of Qy; then there
exist ¢,C > 0 such that for all j, k,

| QO

<Ljx=<

o

More precisely, show that

. Lk 1
lim sup =, =
koooy<j<k 3 Lix K

3) The boundary 092y is dense on the scale ﬁ inside S?; that is, there exists

C > 0 such that the %-tubular neighborhood of 3 contains S?.

4) For large k, each boundary component is close to a half-catenoid; that is,
the blowups of boundary components on the scale % converge to the unique
rotationally symmetric free boundary minimal surface in the half-space.

The numerical examples of [15] and [42] point to the fact that the topology of Q2
alone does not guarantee uniqueness for free boundary minimal surfaces in B3. For
example, numerical computations of [15] suggest that for k = 8,20, there exist free
boundary minimal surfaces of genus 0 and k-boundary components with the symme-
try group of cube and dodecahedron, respectively. At the same time, the computa-
tions in [42] indicate that these surfaces are not Steklov maximizers and that, instead,
the boundary components of the maximizers are distributed more irregularly. This
resulted in the observation in [42, Section 5] that centers of mass of boundary com-
ponents form a solution to a point distribution problem—in particular, the Thompson
problem was suggested as a candidate. While the sample size in [42] is too small to
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formulate an exact open question, the possibility is too tantalizing to ignore. Thus, the
following question is purposefully open ended.

OPEN QUESTION 5
In the notation of Question 4, show that the centers of mass of the boundary compo-
nents of Q. are located according to a solution of some k-point distribution problem

of S2.

Another special case which merits further study is the genus 2 setting. When M
is the orientable surface of genus 2, then A;(M) = 167, there is a continuous family
of A1(M)-maximal metrics, and the corresponding branched minimal immersions are
simply branched covers of S? with the location of branch points varying within the
family (see [19], [40], [46]). The most symmetric member of the family is the so-
called Bolza surface with branch points at the vertices of an octahedron. At the same
time, the fact that the limiting map is a cover of S? does not mean that n = 2 in Theo-
rem 1.1, although it seems reasonable to suggest that the immersion corresponding to
N, could be a double branched cover of 2 defined in Question 4, at least for large
k. If the answer to the latter question is positive, it would be interesting to understand
the location of the branch points, even though it is likely such covers are not unique,
similarly to the closed case. We collect these thoughts below.

OPEN QUESTION 6

Let M be an orientable surface of genus 2, and let Ny be a surface with boundary

obtained by removing k disjoint disks from M. Let uy be a branched free boundary

immersion corresponding to a 61 (N )-maximizing metric.

(1) Is the map uy unique, up to isometries of R"*1? What are the possible limits
of uy ? For example, is it true that the Bolza cover is the only accumulation
point of {uy}?

(2) Is it true that for large enough k the image of uy, is contained in B3 ?

3) More specifically, is it true that for large enough k the maps u,y are branched
covers over surfaces Qy defined in Question 4? If so, then what are the loca-
tions of branch points?

4 Similarly, is there any relation between uyy 1 and the surfaces 2 ?

Finally, let us close by posing a question which should be of general interest to
the minimal surface community, independent of any connections to spectral geometry.

OPEN QUESTION 7
Given a smooth, convex domain P C R**! and a minimal submanifold M C oP in



FROM STEKLOV TO LAPLACE 1569

dP, does there exist a family of free boundary minimal surfaces in P approaching M
in a varifold sense? As a special case, do there exist free boundary minimal hyper-
surfaces in P approaching dP in the varifold sense? (Note that Corollary 1.5 gives a
positive answer in the case P =B3.)

Remark 1.13
Naively, one might hope to approach this via novel gluing methods, or perhaps some
variational scheme.

2. Preliminaries

2.1. Uniformization theorems for surfaces
Recall the notation used in the introduction, where Nj is a compact surface obtained
by removing k disjoint disks from a closed surface M .

Uniformization theorems are concerned with choosing a canonical metric in each
conformal class of metrics. For example, the classical uniformization theorem states
that given a conformal class € on M there exists a unit area metric g € € of constant
Gauss curvature. Furthermore, if M # S2, then such a metric is unique, whereas on
S? it is unique up to a conformal automorphism. We denote by Met.,, (M) the space
of metrics of unit area and constant Gauss curvature on M.

The most commonly used uniformization theorem for surfaces with boundary
states that for any conformal class € on N there is a unit area metric g € € with
constant Gauss curvature and geodesic boundary (see, e.g., [41]). In the present paper
we use another, perhaps lesser-known, uniformization result.

THEOREM 2.1 ([17], [35])
Let (Ni, €) be a compact surface with k boundary components endowed with a con-
formal class €. Then there exists a closed Riemannian surface (M, g) of unit area and
constant curvature, a collection B; C M, i = 1,...,k of embedded open nonempty
geodesic disks with disjoint closure, and a conformal diffeomorphism F: (N,€) —
(R, g), where Qi = M \ Ule B;. Moreover, for any two such conformal diffeo-
morphisms F: (N,€) — (2. g), F': (N,€) — (..g'), there exists a conformal
automorphism G : (M, g) — (M’,g") suchthat Go F = F'.

In other words, (N, €) can be (uniquely) conformally identified with a comple-
ment of k geodesic disks in a closed surface endowed with a metric of constant cur-
vature.

Remark 2.2
Theorem A in [35] as originally stated provides a biholomorphism of the interior of
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Ny, onto the complement of closed disks, but standard results on boundary regularity
of biholomorphisms imply that this extends to a diffeomorphism up to the boundary.
For example, one can refer to the introduction of [1], where it is explained how the
classical boundary regularity for the Riemann mapping theorem implies the analogous
result for multiply connected planar domains. In particular, any biholomorphism of
open annuli extends to a diffeomorphism of their closures—a result which we can
apply to small annuli near the boundary circles of Ny.

As written, the original statement of Theorem A in [35] applies only to Riemann
surfaces, but it is straightforward to extend it to the nonorientable case, as follows.
Given a nonorientable compact surface N with boundary, let 7 : N — N be the ori-
ented double cover, with free antiholomorphic involution s : N — N such that s2 = id
and 7w o s = . By Haas and Maskit’s results for orientable surfaces, we know that
there exists a closed surface (M , &) of unit area and constant curvature, and geodesic
disks B; C M with disjoint closures, such that N admits a conformal diffeomorphism

F:(N,©)—(Q,2)

onto the complement Q=M \ U B;. Moreover, observe that the composition Fo
st (N, €)= (Q, g) with the antiholomorphic involution s gives another conformal
diffeomorphism, so by the uniqueness part of Maskit’s theorem, there must exist a
conformal diffeomorphism G : (M, g) — (M, g) such that F o s = G o F. Without
loss of generality, we may assume that G is an isometry of (M, g); if M # S2, this
is automatic, while if M = S?, this may be achieved by replacing F with ®o F fora
suitable conformal automorphism ®: S? — S2.

Evidently, this isometry G: (M, g) — (M, g) preserves the image Q = M \
| Bi, reverses orientation, and satisfies G? =1id on Q; hence G2 =id on M , by
unique continuation. Moreover, since s has no fixed points on N, G cannot have
fixed points in Q. We claim now that G has no fixed points in M . Indeed, if G fixes
a point x € M \ €, then x must lie in the interior of one of the disks B; C M \ Q,
and since G fixes the disjoint union |_J B;, we see that the restriction G |§ must then
act as an antiholomorphic diffeomorphism of the closed disk B;. However, it follows
from the standard classification of holomorphic automorphisms of the closed disk that
any antiholomorphic automorphism G of B; must have fixed points on the boundary
dB; C 92, which cannot occur since G acts freely on Q.

We therefore see that the isometry G: (M,g) — (M,g) is an orientation-
reversing involution acting freely on M, from which we obtain a smooth quotient
surface

p:(M.g)— (M.g):=(M.g)/G
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of constant curvature (and area %), such that the conformal diffeomorphism F:
(N,€) — (Q, g) descends to a conformal diffeomorphism

F:(N,€)—(Q.,8) C(M.g),

where Q := p(Q) = M \ p(| B;). Evidently, the image p(Uf-;l B;) of the geodesic
disks under the 2-fold covering map p is a union of k/2 geodesic disks in (M, g),
so that F' gives the desired uniformization of (N,€). Uniqueness of F up to con-
formal diffeomorphisms likewise follows from uniqueness in the orientable case and
the observation that any such uniformization (N, €) — (€2, g) lifts to an orientable
uniformization (N, €) — (2, g).

2.2. Eigenvalues of measures

In recent years, it has been observed that the study of variational problems for Laplace
and Steklov eigenvalues fits into a useful, more general framework, based on assign-
ing certain natural spectra to Radon measures on Riemann surfaces. To be precise, let
N be a compact surface with boundary (possibly empty), and let € be a conformal
class on N. Given a Radon measure p on N, one can define the variational eigenval-
ues

V f|2dv
A(N.€,p) = inf  sup M

, (2.1
Ekt+10£f€Erq fN f2du

where g € € is any representative of the conformal class and Ej; ranges over all
(k + 1)-dimensional subspaces of C®°(N) N L2(N, j1); one then defines the mass-
normalized eigenvalues

Ae(N€, 1) = Ak (N, €, ) (N,

We say that the measure w is admissible (see [14], [30], [31]) if the identity map
on C*®(M) can be extended to a compact map W12(M, g) — L?(u), g € €. This
definition does not depend on the choice of g € € and essentially guarantees that the
eigenvalues A (N, €, i) behave similarly to the classical eigenvalues of the Laplacian
(see, e.g., [14]). While many examples of admissible measures lead to interesting
eigenvalue problems (see [14, Section 4]), the following are the only examples used
in the present paper.

Example 2.3

Let ON = @, p be a volume measure of a smooth metric g € €, ;t = dvg. Then the
Rellich—Kondrachov compactness theorem implies that y is admissible. In fact, then
A (N, €, ) = A (N, g) corresponds to the kth nontrivial eigenvalue of the Laplacian
Ag.
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Example 2.4

Let N = @, u = f dvg, where g € € is a smooth metric and f > 0 with zeroes of
finite order at isolated points of N. Then p is a volume measure of the metric fg,
which is a smooth metric outside of finitely many conical singularities. The variational
eigenvalues A (N, €, ) coincide with the eigenvalues of the Friedrichs extension of
A r¢, and we continue to write Ax (N, fg) = Ak (N, €, ).

Example 2.5

LetON A0, u= dsgN be the boundary length measure of a metric g € €. Then the
Sobolev trace embedding implies that u is admissible and A (N, €, u) = ox (N, g).
In particular, the Steklov eigenvalues o (N, g) depend only on the conformal class
[g] and the restriction of g to the boundary dN .

Example 2.6

Let (M, g) be a closed surface, and let 2 C M be a smooth domain. Let  be the
boundary length measure of 0Q, n = dsgsz. Consider Q@ C M as a manifold with
boundary; then one has Ay (2, [g], u) = 6% (2, g). Furthermore, the definition (2.1)
easily implies that

ok (Q2.8) = A (R [g] 1) < Ak (M, [g], ). (2.2)

Remark 2.7 (Invariance under diffeomorphisms)

Let N be a compact surface, g € Met..,(N), and let u be an admissible measure on
N.If ®: N — Nj is a diffeomorphism, then it is easy to see that A1 (N, [g], n) =
A1 (N1, [(®@71)*g], @y ). Furthermore, if f is an eigenfunction on Ny, then ®* £ is
an eigenfunction on N with the same eigenvalue. In particular, this induces the action
of Diff(N) on the set of pairs (g, 1) by

P (g.pu) = ((@H)*g, Dupr),

which preserves the variational eigenvalues.

Finally, we endow the space of all admissible measures with the topology induced
by the Wg_l’z(M )-norm. Namely, for any Radon measure y, we define

w—12(M,g) = )
[l sup | udp
u JM

where the supremum is over all smooth functions u, satisfying [[u[ly1.2(pr,¢) = 1. It
is easy to see that any admissible y has finite W~12(M, g)-norm.
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2.3. Geometric characterization of maximal metrics: Laplacian
In the next two sections we recall some key results on the connection between eigen-
value optimization problems and minimal surfaces, starting with the Laplace eigen-
values of closed surfaces.

Given a closed surface M, consider again the supremum

A1(M) =supAi(M, g)
g

of the normalized first eigenvalue over all metrics on M, as well as the conformally
constrained supremum

A1(M,[g]) = sup A1(M.h),
helg]

where in the second quantity one can always assume g € Met.,,(M ). For any con-
formal class [g], the supremum is achieved by some metric, smooth up to a finite
number of conical singularities (see [27], [30], [43]); the existence theory for A (M)
is more subtle and is discussed in Section 2.5 below. Furthermore, these singular-
ities have integer angles: in particular, if 4 is such a metric, then & = fg, where
g € Met.,n(M) and f € C*°(M) is given by the energy density of a harmonic map
M — §", with f > 0 outside of finitely many branch points corresponding to the
singularities of & (see Example 2.4). If the metric /& (possibly with isolated coni-
cal singularities) is such that A, (M, h) = A (M) (or A;(M,h) = A1(M,[g])), then
we say that & is a )_Ll-(conformally) maximal metric. Additionally, keeping in mind
Example 2.4, we also say that dvy, is a )_L] -(conformally) maximal measure. We denote
by Meto(M) C Met.,, (M) the subset of unit-area, constant curvature metrics corre-
sponding to )_Ll—maximal conformal classes; that is,

Meto(M) := {g € Metcan (M) | Al(Ms [g]) = AI(M)}

Recall that amap u: (M, g) — S" is called harmonic if the R”-valued Laplacian
Agu satisfies

Agu = |du|§u,

which holds precisely when u is a critical point for the energy

1
By =3 [ ldufdvg

among S”-valued maps. This equation is conformally invariant on surfaces; that is, u
is harmonic with respect to any other metric in the conformal class [g]. In particular,
setting g, = %|d u|§ g, one obtains Az, u = 2u so that the components are the eigen-
functions of Ag, with eigenvalue 2. If, furthermore, A1 (M, g,,) = 2, then we say that
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u is of spectral index 1 and write inds(#) = 1. Note that du = 0 only at isolated
points of M, which correspond to conical singularities of g,.

THEOREM 2.8 ([8], [11])
Let g be a Ai-conformally maximal metric. Then there exists n > 0, a harmonic map

u: (M,[g]) = S" of spectral index 1 and o > 0 such that g = agy. In particular,
Ar(M,[g]) = 2E (u).

Remark 2.9

Note that 7 is bounded by the multiplicity of the first eigenvalue of Ag, but is not
necessarily equal to it (see [5, Remark 1.4]). The multiplicity bounds of [2], [4], and
[38] imply that n is bounded from above only in terms of the topology of M .

Conversely, for any harmonic map u: (M, g) — S” of spectral index 1 satisfying
2E¢(u) = A1(M, [g]), the metric gy, is ;ll—conformally maximal. We say that such a
map u is a )_Ll—conformally maximal map.

A map u: (M,g) — (P,h) is called weakly conformal if u*h = g,,. On sur-
faces, any weakly conformal harmonic map is a branched minimal immersion and
vice versa. The branch points of the immersion correspond to the singularities of g,.

THEOREM 2.10 ([8], [11], [39])
Let g be a A1-maximal metric. Then there exists n > 0, a branched minimal immersion

u: M — S" of spectral index 1 and a > 0 such that g = au*gsn. In particular,
A1(M) =2 Area(u(M)).

Conversely, for any branched minimal immersion u: M — S” of spectral index
1 satisfying 2 Area(u(M)) = A1(M,[g]), the metric u*gsn is A1-maximal. We say
that such a map u is a A;-maximal map.

2.4. Geometric characterization of maximal metrics: Steklov
The variational theory for normalized Steklov eigenvalues is to a large extent parallel
to that of the Laplacian.

Given a connected compact surface with boundary N, we consider again the
supremum

X1(N) =supa1(N,g)
8

of the first nontrivial (length-normalized) Steklov eigenvalue over all metrics on N,
as well as the conformally constrained supremum



FROM STEKLOV TO LAPLACE 1575

Z1(N.[g]) = sup 61 (N.h).
helgl
As was mentioned in the introduction, X (N) < oo for any surface N. We discuss
the existence of metrics achieving X1 (N) in Section 2.5 below; for the conformally
constrained supremum, one has the following.

THEOREM 2.11 ([45])
Assume that ¥1(N, [g]) > 27. Then the supremum is achieved by a smooth metric.

Remark 2.12
It is expected that 3 (N, [g]) > 27 for N # D and for any conformal class [g], but as

of this writing, this has only been verified for some conformal classes on the annulus
(see [26]).

If the metric g is such that 61 (N, g) = X1(N) (or 61(N, g) = Z1(N,[g])), then
we say that g is a 01-(conformally) maximal metric. Additionally, keeping in mind
Example 2.5, we also say that dsgN is a 01-(conformally) maximal measure. Note
that by Example 2.5, if g is a 01-(conformally) maximal metric, then any 4 € [g] with
dszN = dsgN is also a d1-(conformally) maximal. For that reason, in the following
we predominantly refer to 61 -(conformally) maximal measures as opposed to metrics.

Recall that a map u: (N,g) — B"*! is called free boundary harmonic if
u(dN) C S* = oB* ! and

Agu=0 inN,
dyu||u ondN,

where vg is the outer unit normal. Its energy satisfies

1 1
Eg(u) = 5/1v |dul} dvg = E/zw |0y u| dsg .

Similar to the harmonic maps, this definition only depends on the conformal class
[¢] in our 2-dimensional setting. In particular, setting jt,, = [0, u|dsg, one obtains
that the components of u are Steklov eigenfunctions associated with the measure ji,,,
whose eigenvalue is equal to 1. If, furthermore, A1 (N, [g], 1) = 1, then we say that
u is of spectral index 1 and write indg (1) = 1.

THEOREM 2.13 ([11], [26])

Let p be a o1-conformally maximal measure. Then there exists n > 0, a free boundary
harmonic map u: (N, [g]) — B"*! of spectral index 1 and o > 0 such that i = ajiy,.
In particular, £1(N, [g]) = 2E¢ (u).
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Remark 2.14
Similarly to Remark 2.9, the number 7 is bounded only in terms of the topology of
N (see [12], [21], [25]). Furthermore—and crucially for the purposes of the present

paper—the upper bound does not depend on the number of boundary components of
N.

Conversely, for any free boundary harmonic map u: (N, g) — B"*! of spectral
index 1 satisfying 2E, (u) = Z1 (N, [g]), the measure i, is 1-conformally maximal.
We refer to such maps u as 01-conformally maximal maps.

THEOREM 2.15 ([11], [26])
Let u be a 61-maximal measure. There exists n > 0, a free boundary branched mini-

mal immersionu: N — B"*! of spectral index 1 and o > 0 such that i = « dsyx g -
In particular, ¥1(N) = 2 Area(u(N)).

For any free boundary branched minimal immersion u: N — B"*! of spectral
index 1 satisfying 2 Area(u(N)) = X1(N), the measure ds;”,y( gon) is 61-maximal. We
say that such a map u is 61 -maximal.

2.5. Existence of maximal metrics

In this section we review the existence theory for A1 and 01-maximizing metrics
established in [43] and [45], following the discussion in [30, Section 5.2]. We start
with orientable surfaces, where the results are easier to state. Let M), be an orientable
surface of genus y, and set A1(y) := A1(M,), and A(—1) := 0 for convenience.
Similarly, if N, x is an orientable surface of genus y with k boundary components,
we set Zy(y, k) := Z1(Nyx) and X1 (—1,k) = Z1(y,0) :=0.

THEOREM 2.16 ([43], [45])
Suppose that

Ar(y)>A(y —1). (2.3)

Then there exists a /_ll—maximizing metric on My, possibly with isolated conical sin-
gularities.
Similarly, if

1(y.k) > max{Z;(y.k — 1), Z1(y — L.k + 1)}, (2.4)

then there exists a 01-maximizing metric on Ny k.
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It is known that (2.3) holds for y = 0, 1, 2, and Petrides observed in the introduc-
tion to [43] that it holds for an infinite sequence of genera (see also [30, Section 5.2]).
Furthermore, a similar result can be proven for gap conditions (2.4).

PROPOSITION 2.17 (Theorem 5.9 in [30])
Let y > 0 be such that the gap condition (2.3) is satisfied. Then there is a sequence
k;j — oo, such that for y and those k ; the inequality (2.4) is satisfied.

We now pass to nonorientable surfaces. Let M, y be a closed nonorientable surface
of genus y, that is, such that its orientable double cover has genus y, and set A 1(y) =
Al(]\//[\y), 7\\1(—1) := 0. Similarly, if [/\f\y,k is an orientable surface of genus y with k
boundary components we set /2\1()/, k) := El(]/\f\y,k), /il(—l,k) = /E\l(y, 0):=0.

THEOREM 2.18 ([36])
Suppose that

Kl(y)>maX{Kl(y—1),A1(LgJ)}. (2.5)
Then there exists a ;Xl-maximizing metric on ]\/4\},, possibly with isolated conical sin-

gularities.

We remark that in [36], the genus of a nonorientable surface is defined as y + 1
in our notation, so that (2.5) has a different form in [36]. As far as we are aware,
the analogue of the gap condition (2.4) for nonorientable surfaces has not appeared
explicitly in the literature. However, the analysis of degenerating sequences of con-
formal classes has been performed in [37], and it can be shown using these techniques
that the following holds.

THEOREM 2.19
Suppose that

$102K) > max{S1 (k= 1. S1(r = L&), S1(r =2,k + 1),
y—1 14
=i (|5 k)= 3]0 26
Then there exists a 01-maximizing metric on ]’\7,,’1(.

Furthermore, the following result can be proven in the same way as [30, Theo-
rem 5.9].
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PROPOSITION 2.20
Let y > 0 be such that the gap condition (2.5) is satisfied. Then there is a sequence
k; — oo, such that for y and those k ; the inequality (2.6) is satisfied.

We summarize our discussion as follows.

Definition 2.21

We say that a closed orientable surface of genus y satisfies the gap condition if (2.3)
holds. Similarly, we say that a closed nonorientable surface of genus y satisfies the
gap condition if (2.5) holds.

Combining Propositions 2.17 and 2.20, we obtain the following.

PROPOSITION 2.22

Suppose that M is a closed surface satisfying the gap condition in the sense of Def-
inition 2.21, and Ny is a surface with boundary obtained by removing k disjoint
disks from M. Then there is a sequence kj — oo such that for all j there exists a
01-maximizing metric on Ni;.

2.6. Convergence of X1 (N)
In the present section we explain the ideas behind the identities (1.1) and (1.2).

In [30], the following regularity/rigidity result for conformally A1-maximal mea-
sures is obtained as a byproduct of a new characterization of A;(M, [g]) via the min-
max theory of harmonic maps.

THEOREM 2.23 (Regularity of maximal measures, [30])
Let M be a closed surface, and let € be a conformal class on M. Then for any
admissible measure L on M one has

A1(M,€, 1) < A1 (M,E) (2.7)

with equality if and only if | is a )_tl-conformally maximal measure, that is, L = dvg,
where g is a Ay-conformally maximal metric.

The meaning of this theorem is as follows: even after relaxing the optimization
problem for il (M, g) to include (admissible) measures, the set of maximizers (and,
as a result, the optimal value) does not change. Now, let 2 C M be a smooth domain.
Combining (2.2) with (2.7) (and noting that the length measure realizing X; cannot
coincide with a smooth A -maximal measure) gives

T1(R,6) < A1 (M, 6),
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where we abuse notation slightly by letting € denote the conformal class on
induced by the inclusion Q C (M, €). Taking the supremum over all conformal
classes € yields (1.1).

The relation (1.2) follows from the following theorem.

THEOREM 2.24 ([15])
For any closed surface (M, g) there exists a sequence of domains Qi C M, such that

61(Q, 8) > M(M, g) (2.8)

as k — oo. The domains Q. are obtained by removing many small disks from M .

As in the introduction, let M be a closed surface, and denote by N the compact
surface with boundary obtained by removing k disjoint disks from M. It is easy to
see that the sequence X1 (N ) is nondecreasing; thus, taking the supremum over all g
in (2.8) yields

lim 2;(Ng) > A1 (M),
k—o00

which combined with (2.7) yields (1.2).
For convenience, we formulate the following corollary of the proof of Theo-
rem 2.24.

PROPOSITION 2.25
For any closed surface (M, g), there exists a sequence of domains Qi C M such that

Jim Z1(Q [g]) = A1 (M. [g]).

2.7. Varifold convergence of 01-maximal maps

Let us recall some basic notions from the theory of varifolds, following [6, Chap-
ter 3]. Let 7 : G»(n + 1) — R™T1 denote the bundle of (tangent) 2-planes over R”*+1,
A 2-varifold T is a Radon measure on §,(n + 1). The weight measure of T is the
pushforward vr := m,(T). Given a Sobolev map v € W12(N,R"*1) from a sur-
face (N, g) (possibly with boundary) to R**!, one defines the associated 2-varifold
Ty € CQ(%2(n + 1))* by

/ FdT, = / £ (o). dvo(TeN)) o (x) dvg.
Gr(n+1) NN{Jy(x)>0}

where J, (x) denotes the Jacobian determinant

Jy(x) = \/detg(dv; dvy) = \/detg(v*anJrn)(x).
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Note that, while J,(x) and dvg depend on the metric g, their product does not, and
in the case where v: N < R"*! is a smooth embedding, the preceding definition is
equivalent to setting

T,(U) = Area(U N Tv(N)),

by the area formula. Similarly, if v is a branched d -sheeted covering over the image,
then

T,(U) = d Area(U N Tv(N)).

A sequence of varifolds Ty is said to converge to T if they weak-* converge as
measures. A sequence of surfaces N; C R"*! (possibly with multiplicity) arising as
images of branched conformal immersions is likewise said to converge to M C R"*+!
in the varifold sense if the corresponding varifolds converge.

Recall now the setup from Section 2.6: M is a closed surface, and Ny is the com-
pact surface with boundary obtained by removing k disjoint disks from M. Assume
that M satisfies the gap condition as in Definition 2.21; then there is a A1-maximal
metric realized by a branched minimal immersion u: M — S" to the sphere, with
associated varifold 7. Let k; — oo be a sequence for which a 61-maximal metric
exists on Ni; (as provided by Proposition 2.22). To simplify notation we often omit
the index j in the following. Choose a 61-maximal map uy : Ny — B***1 While
in principle the dimension of the ball n; + 1 does depend on k, Remark 2.14 guar-
antees that ny are bounded independent of k. Thus, without loss of generality, one
can assume ny = n. This allows us to define the 2-varifolds Ty in B**! c R**!
associated to uy . Thus, the exact statement of Theorem 1.1 is as follows.

THEOREM 2.26

Assume that M satisfies the gap condition of Definition 2.2 1, and consider a sequence
k; — oo for which there exist G1-maximal metrics on Nkj. Then there exists a /_\1—
maximal map u: M — S" such that, up to a choice of a subsequence, the varifolds
Ty ; associated to 61(Ng ; )-maximal maps uy ; converge to the varifold T' associated
with u.

We record several consequences of the varifold convergence, which may paint a
clearer picture for readers unfamiliar with varifolds.

COROLLARY 2.27

Along the converging subsequence Ty —* T one has

(1) the free boundary branched minimal surfaces uy (Ny) C B* ™1 converge to the
branched minimal surface u(M) C S" in the Hausdorff distance;
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2) the boundary length measures of ux (Ny) converge to twice the area measure
of u(M).

Proof

To prove (1), assume the contrary, that is, there exists a further subsequence, § > 0
and a point x; € ug (Ng) at a distance > § from support of the limit varifold sp¢(T) =
u(M ). Passing to yet another subsequence, we may assume that x; converges to some
point y = limg_, oo X a distance > § from u(M).

Now, let 0 < f € CJ(B"*!) be equal to 1 on the ball of radius §/2 around y
and 0 outside the ball of radius §. Let vx and v be the weight measures of 7 and
T, respectively. If y lies in the interior of B”*!, then we may assume without loss
of generality that Bs(y) C B"*!, and the monotonicity formula for minimal surfaces
(see, e.g., [0, Proposition 1.12]) implies that vi (f) > ”T’Sz. If instead y € S”, we may
argue similarly, using a well-known boundary variant of the monotonicity formula for
free boundary minimal surfaces (cf., e.g., [3] for the sharpest version in the unit ball)
to deduce that v (f) > ¢82 > 0 in that case as well. At the same time, the varifold
convergence yields

82 <ve(f) = v(f) =0,

which is a contradiction.
To show (2), let f € CQ(R"*1) and consider the vector field X(x) = fx on
R”*+1 Then the first variation formula implies

[y TR )
Ouy (Ng) ug (Ni)

Define F € CQ(&2(n + 1)) by F(x,II) = (x, VI £(x)), where VI f(x) is the pro-
jection of V f(x) onto IT. Then the varifold convergence implies

f <x,V”k‘Nk)f)=/Fdi_>/FdT=/ (x, V¥ £y — 0,
ug (Ni)

u(M)

since x L T'S™ D Tu(M). At the same time, since vy —* v one has

/ 2f — 21,
ug (Ni) u(M)

which completes the proof. O

2.8. Convergence of 61-conformally maximal maps

Let (M,€) be a closed surface with a fixed conformal class €. Consider domains
2 C M with the restricted conformal class, which we denote by the same letter €.
By Proposition 2.25 there exist sequences 2 C M satisfying
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Zl(Qk,ﬁ) — AI(M, f)

In particular, since A;(M,€) > 8x, Theorem 2.11 implies that for large enough
k there exist a 61(Qk, €)-conformally maximal map uy: (Q,€) — B"<T1 By
Remark 2.14, we can assume np = n is independent of k. The following theorem
describes convergence properties of the sequence {uy}.

THEOREM 2.28
Let (M, €) be a closed surface with a fixed conformal class, g € €. Let Qp C M be
a sequence of domains such that

21(Q. €)= A1 (M., E). (2.9)

Assume further that the 61(Qy , €)-conformally maximal maps uy : (Q, €) — B* 1
admit an extension 1y, € ng’z(M, B" 1) such that

lim Eg(iig: M \ Q) =0. (2.10)
k—o00

Then there exists a A1(M,€)-conformally maximal map u: (M,€) — S",= such
that, up to a choice of a subsequence, iy — u in Wy > (M, B"+1),

Remark 2.29
It is plausible that the condition (2.10) is superfluous, that is, it could be a consequence
of (2.9).

3. Convergence of 61 -maximal maps

3.1. Qualitative stability of A1-maximal metrics
A key ingredient in the proof of Theorem 2.26 is the following qualitative stability
result for globally A;-maximizing measures (see [29, Theorems 1.2 and 1.14]).

THEOREM 3.1 ([29])

Suppose that M satisfies the gap condition as in Definition 2.21. Let [y be a sequence
of admissible probability measures on M, and let gy € Metey, (M) be a sequence of
constant curvature metrics such that

A (M, [gk]. k) = A1 (M)

as k — oo. Then there exist . € Diff(M), g € Meto(M), and a A1-maximal proba-
bility measure [y such that, up to a choice of a subsequence, the pairs

8k i) := Pp - (gk» i)



FROM STEKLOV TO LAPLACE 1583
satisfy

lgx — g”Cl(g) + Ak — /’Lmax“W—l’z(g) — 0. (3.1

If M = S?, then one can additionally choose Ly = d Ug.

Remark 3.2
The gap condition on M ensures that the sequence of conformal classes [g ] does not
escape to infinity in the moduli space of conformal classes.

Remark 3.3

For a closed surface M # S? one has jim.x = f dvg, f € C%°(M) and the set of Ai-
maximal measures is compact (up to the action by diffeomorphisms). In particular,
Il flloo < C, where C only depends on M. The last statement of the theorem implies
that the same inequality can be used on S2.

For technical reasons, we find it convenient to replace the W ~!2(g) distance
in the conclusion (3.1) with a slightly different (but equivalent) one, which has the
advantage of being conformally invariant, in addition to simplifying some computa-
tions.

Definition 3.4
Let v and u be two probability measures on M, and let g be a metric on M . Then we
set

v = wlly—12(g) = sup{/M fd(u—v)| feC®M).|df |12 = 1},

Extended to measures of arbitrary mass, this definition would yield a pseudomet-
ric; for probability measures, however, we have the following.

LEMMA 3.5
For any probability measures [, v on M, one has

1
v —ullw=12¢5) < IV —M||W—l.2(g) = ‘I 1+ m”v — mllw-1.2(g)-

Proof
Recall that the W~12(g) norm is given by

o= tllw-rai=sun{ [ fdu=v)| 1 ec=n),

Fliwiag =1}
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where the W 1-2(g) norm of a function f is given as usual by
1 131200 = 1 122y + 147 122 -

In particular, comparing with the definition of W~1:2(g) and noting that ||df || 2 (¢) <
[/ lw1.2(¢) holds trivially, the first inequality

v = sllw—120) < v = illyr1.20

is immediate.
For the latter inequality, note that since v and p are probability measures, one
has

/ fd(u—v)=/ (f +0)d(u—v)
M M

for any constant c; as a consequence, one can equivalently characterize the W~1-2(g)
metric via

”U_/‘L”W—I,Z(g)

- sup{[M fdi—v)| £ ec®n),

Af |12 = 1,/ fdvg =o}.
M
But for f € C*®(M) satisfying [,, f dvg =0, we of course have

MM S By < 147 22 g)-

so that || fllw12g) < /1 + " (1:/1 o and the desired bound follows easily from defi-

nitions. O

Lemma 3.5 implies that in the conclusion of Theorem 3.1 one can replace W12
by W~12-distance, that s,

lfx — Mmax”W—l.Z(g) — 0. (3.2)

A result similar to Theorem 3.1 holds in a fixed conformal class (see [29, The-
orem 1.9]). We assume that M # S?, since in that case there is only one conformal
class, and the result is already covered by Theorem 3.1.

THEOREM 3.6
Assume M # S?. Let g € Meteo,(M) and jui be a sequence of admissible probability
measures such that

A1(1‘41 [g]v /-'Lk) - Al(Mv [g])
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Then there exists a conformally A1-maximal probability measure in [g] such that, up
to a choice of a subsequence, jLg — fmax in W™12(M, g).

Note that by the discussion above, the W ~1-2-distance can be replaced by W ~1:2-
distance.

3.2. Proof of Theorem 2.26
In this section we work under the assumptions of Theorem 2.26, that is, that M satis-
fies the gap condition as in Definition 2.21, and k; — oo is a sequence for which
there exist 01(Ng,)-maximal metrics, whose existence is guaranteed by Proposi-
tion 2.22. In the following we omit the subscript j to simplify the notation. Let Ay
be a 61-maximal metric on Nj so that ¥, (Ny) = 61(N, hy), normalized to have
Length(dNg, hg) = 1. By Theorem 2.1 (Ng, hx) can be conformally identified with a
domain Q4 C (M, gi), where gi € Meteyn(M).

Denote by y the pushforward F (dsZijk) of the boundary length measure dsZivk
by the conformal embedding F : (N, hx) — (M, gx). By Remark 2.7 and relation
(1.2), we obtain admissible probability measures i supported on 0€2; satisfying

Z1(Nk) = A1 (. [8x]. k) = A (M)

as k — oo. By inequality (2.2), one further has that A; (M, [gk], ux) — A1 (M) and,
therefore, the measures py satisfy the conditions of Theorem 3.1. It turns out that
the biggest challenge in proving Theorem 2.26 is showing that the 6, -maximal maps
corresponding to /; have a small energy extension to M. This is item (2) of the
following proposition, whose proof we postpone to the next subsection.

PROPOSITION 3.7

For every k in the subsequence there exist gy € Metean (M) and a smooth domain

Qr C (M, gi) such that

(D) The o1-maximal metrics hy on Ny are conformally equivalent to the domain
(. 8K) C (M, gk);

2) The corresponding (branched) free boundary minimal immersions uy : Qj —
B* 1 admit an extension i, € W12(M,B"*1; g) such that

Egk(ﬁk;M \ Qk) —0

as k — oo;

3) There exist g € Meto(M) and a Ay-maximizing probability measure [imay SO
that A1(M., [g], [tmax) = A1(M), for which g — g in C'(g) and ||k —
/'Lrnax“W—l.z(g) — 0.

In particular, items (2) and (3) imply that Eg (lig; M) — %Al(M).
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Item (3) is a direct consequence of item (1) and Theorem 3.1, since by Remark 2.7
we can assume without loss of generality that ®; = id. Note that we do not explicitly
require here that the domains €2; are complements of geodesic discs, although the
full power of Theorem 2.1 is used in the proof of item (2) in Section 3.3 below (and
again in Section 5). For now, let us show how Proposition 3.7 implies Theorem 2.26.

For the remainder of the section we work with the metric g; in particular,
W L2(M) refers to the Sobolev space with respect to g. Items (2) and (3) imply that
the sequence iy is uniformly bounded in W1:2(M,B"*+1). Therefore, up to a choice
of a subsequence, 7i; converges weakly to a map u € W12(M,B"t1).

LEMMA 3.8

The limit map u is a weakly conformal harmonic map (i.e., a branched minimal
immersion) to the sphere M — S" = dB"t!, whose components are Ai(M,[g],
Imax )-eigenfunctions. Furthermore, iy — u strongly in W12(M,B"+1).

Proof

Since |#ix|? < 1 are uniformly bounded in W !-2(M), up to a choice of a subsequence,
we may assume that |ily|? converge to |u|?> weakly in W12(M), and since i €
W=12(M), it follows that

[ 0= ) s = i [ (1= 142 di
M k—oo J M

Moreover, since [ty — fimax in W™12(M) and [ig|? are uniformly bounded in
W 12(M), one further has

k—o00

tim [ (1~ i) s = fim [ (1= 14?) dpi =
M k—oo JM

where in the last step we used that |iix|?> = 1 on supp(ux) C Q. Recalling that
(1 —|u|?) > 0, we obtain u € W12(M,S").
Next, for any v € C®(M,R"*1) one has

/M(du,dv)dvg = lim (dig,dv)dvg

k—oo J M

(since Eg(fig; M \ Q) — 0) = lim (dug,dv)dvg

k—o00 JQ,
(since gx — g in C'(g)) = kli)ngo/g (dug,dv)dvg, .
k

In particular, since the components of the maps uy : Qr — B"*! are Steklov
eigenfunctions corresponding to the eigenvalue A;(Q2,[gx]. ux) = X1(Ng), and
limg 00 21 (Ng) = A1(M) by (1.2), this gives
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f (du,dv)dve = lim X;(Ng) (ug,v) dug
M k—o0 o

(since supp(ug) C 0Q2%) = A(M) lim [ (dg,v) dp.
k—oo JM

In particular, since djy — djtmax in W12 and || {fig, v)||y1.2 < C, and using
the fact that (fix,v) — (u,v) weakly in W12, we deduce that

| tawavydvg =p00) fim [ (i, v) b,
M k—oo Jpm

= AI(M) /M (u, U) dlimax-

As a result, since A1 (M, [g], max) = A1(M), the components of u are A{(M, [g],
Mmax)-€igenfunctions. In particular, since fimax = dvyg,,, for the maximizing metric
Zmax € [g], this implies

0= Ag,, (Ju?) =2A1(M) —2|dul?_ .

that is, Ay, u = |dul? u, which implies that u € W'2(M,S") is harmonic.
Now, since

Emax

1 A(M
i By s M) = 3 A1) = 25 [l dia
k—o00 2 2

1
= E/M |du|*dvg = Eg(u; M),

we see that there is no energy drop in the limit, and iy — u strongly in W12(M,
Bn-ﬁ-l)'

Finally, using the facts that 7y — u strongly in W12(M,B"*!), ¢ — g in
C'(g), Eg, (lix; M \ Q) — 0, and the branched free boundary minimal immersions
uy, are conformal on (2, gx), we have the L! convergence of the stress-energy ten-
sors

1 VU I
du' du — - |dulgg = lim dit die — 5 |dielg, g

) 1
= kll)n;o(du;c duy — Elduklz,kgk) g,
=0,
confirming that u is weakly conformal and hence a branched, minimal immersion
u: M — S" by A1(M, [g], max)-€igenfunctions, as desired. O
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The varifold convergence statement of Theorem 2.26 now follows by fairly stan-
dard arguments.

PROPOSITION 3.9
Up to a choice of a subsequence, the 2-varifolds Ty associated to the branched free
boundary minimal immersions uy : Qi — B* T converge as varifolds

Tk —~*T
to the varifold T associated to the A-maximal map u : M — S".

Proof
It is well known that strong W 2-convergence of maps M — R”*! from a closed
surface M implies convergence of the associated varifolds in R+ gee, for example,
[6, Section 3.6], where a much stronger result is proved for maps from the sphere
M = S? (easily adapted to maps from any closed surface). Thus, as a consequence
of Lemma 3.8, we see that the varifolds fk associated to the maps iy : M — B"+!
converge as varifolds f”k —* T to the varifold T associated with the limiting Ai-
maximal map u : M — S".

Moreover, since Eg (iix; M \ Q) — 0 as k — oo, letting Ty denote the varifolds
associated to the free boundary (branched) minimal immersions uy : Q; — B" !, we
see that, for any f € C%(&(n + 1)),

(i Te =[G i (Ted) T, 51|

Lo
<fleo [ 5l dvg
M\Qy

—0 ask — oo.

Thus, the varifold limit of the sequence 7} coincides with that of fk, giving us the
desired convergence Ty —* T. U

3.3. Small energy extension

In this section we prove item (2) of Proposition 3.7 using items (1), (3), and Theo-
rem 2.1. We first observe that by Theorem 2.1 we can assume that the complement of
Qp is a collection of geodesic disks in the metric gx, which we denote by

k
M\ = Bjx.
j=1
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where By = By, (pjk;&k) is the disk of radius r;x > 0 and center pjx € M in
the metric g . Recall moreover that item (3) of Proposition 3.7 gives

”/’Lk - /’Lmax“W—l,Z(g) — 0. (33)

We argue now that the radii r;; of the disks B;; must vanish as k — 0o, as does
the contribution of each individual boundary component 9B to the total length

i (082k).

LEMMA 3.10
One has
lim max r;r =0 (3.4)
k—ool1<j<k
and
lim max ,u,k(BBJ k) = (3.5)
k—ool1<j<k
Proof

We first observe that, given a sequence of radii r, and points p, € M with
Mmax (Br, (Pn:g)) — 0, one has r, — 0. Indeed, otherwise there exists a sequence
rn > p>0and p, — p € M such that ptmax (B, (pn; g)) — 0. Then for large enough
n one has B;, (pn;g) D Bp/2(p:g). As aresult, o (B, 2(p; g)) = 0, which con-
tradicts the fact that pima = dvg,, = f dvg, where f > 0 has only finitely many
zZeroes.

Let us now prove (3.4). Recall that g — g in C!(g), and therefore

By /2(Pjk:8) C Bk

for k sufficiently large. Consider the Lipschitz functions

1 if distg (x, pji) < L&,
Sik(x)=10 if distg (x, pjx) > ’/ k
_ Adiste(Pj) therwise
Tj.k .

By direct computation, it is easy to see that ||df} k| 12(g) < C for C independent of
J and k, and therefore ||df;k|l12(g,) < C’ independent of j and k as well, since
gk — g in C!. At the same time, since f i k vanishes on the support of (i, one has

/ fj,k d(/meax - H'k) = /Lmax(Brj!k/4(pj,k; g))

Combining these estimates, one obtains
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0< Mmax(Brj_k/4(pj,k; g)) =< / fj,k d(max — k)
= Ntk = Bemaxllyir =12, 147 7,0l L2g0)
<Clpx — :UvmaXHW—IQ(gk) -0

as k — oo, which implies (3.4) by the observation at the beginning of the proof.
To prove (3.5), note that

Bj,k - B2rj,k (pj,k; g)

for large enough k. Consider the function

1 if distg (x, pjx) <2rjk,
fik(x)=140 if distg (x, pjx) > 47k,
2— 7d13tg2(:fll: 1) otherwise.
Js

Once again, it is easy to see that ||d];;'jk”L2(gk) < C. Furthermore, fimax = f dvg <
C dv, for large enough k; therefore,

[ it s = 00| 2 15 0B 1) = € Areag (B, (90 9))
Thus,
11k (B k) — C Areag (Bar; , (Pjk:8)) < Cllttk — Bmaxllyir—1.2(g,) = 0
as k — oo, and since, by (3.4),

max Areag (Bar; , (pjx:g)) < C'maxr}, —0
J ' 77

as k — oo, it follows that

limsup max 1z (Bjx) < C lim max Areag (Bar, , (pjk:8)) = 0.
J k—oo j ’

k—o00

as desired. O

Recall that if uy : Qi — B"T! is the 6, -maximal map corresponding to /i, then
the induced boundary length measure dsgiz("é ) coincides with X1 (Ng)pug. Thus,
k\oRN

identity (3.5) can be equivalently stated as

lim max Length(uy(dB;x)) = 0.

k—ool1<j<k
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LEMMA 3.11
There exists an extension tiy € W2(M,B" ™) of uy € WH2(Qp,B" 1) such that

lim Area(iix (M \ Qi)) =0.
k—00

Proof
The argument is standard, but we recall it here for completeness. Consider the curve

. . +1
Yik ‘=UklaB, , : 0Bjx — B"

of length
L= [ 1yl ds = SN0 08,0.

The diameter diam(C; ) of the image C; x = y; k(0B k) clearly satisfies
1
diam(Cjx) < Elj’k’

so there exists a point z; x € B"*! such that Cix C B;j'k/z(zj,k) (indeed, one can
take any z; x € C; ).

We then define the extension #ix on Bjj to be the cone over C;  centered at
Zj k; that is, in geodesic polar coordinates centered at p; ; we set

R r
up(r,0) =zx + ﬁ(“k(rf’k’ 6) = zjk).
J»

1
“Lk one has

Since |u(r;k,0) —

=73
27 Tk
Area(iix (B x)) fC/(; /0 |u(rjk 0) — zjx||ue(rjx.0)| drdo
jk

Cl:. [27 CI?
< 41”‘[ o (rjae. 0| d6 = —*.
0

As a result,

C CX ( Ni)
Area(iig (M \ Qi) < Z Z lj = - i (982 ) lfsnj?‘;(k ljje—0,

since g is a probability measure and X1 (Ng) — A1 (M). O

The final obstacle is that the extensions constructed in the previous lemma could
be far from being conformal and, thus, the area bound does not imply the energy



1592 KARPUKHIN and STERN

bound. However, this can be easily remedied by changing the metric g in the interior
of the holes.

LEMMA 3.12
There exists a metric 8 on M such that g = g on Q. and

lim Eg, (lg; M\ Qi) =0.
k—o00

Proof
Fix j, k. It is sufficient to construct a metric & on B such that h = g near 0B i
and

1
En(iig: Byx) < C(Area(ak(Bj,k)) + ﬁ) (3.6)

We construct a metric satisfying (3.6) and then arrange it to agree with g near the
boundary. First, one can approximate iy € Lip(B,, R"*!) by a smooth map v (see,
e.g., [9, p. 251]) arbitrarily close in Lipschitz norm, which in turn can be approximated
by a smooth immersion to R"*t! x R?. Indeed, if v € C® (B, x,R"*1), then vy (x) :=
(v(x),ex) is obviously an immersion for any & > 0 (where B x is identified with the
unit disk so that B ; C R?). Setting o = v} geuc for small enough & > 0, we obtain
a metric satisfying (3.6).
Let § > 0 be such that

. 1
Egk (Mk; B.iak \ Brj,k—s (pj,k)) =< k_2

Define a discontinuous metric /11 to be gx on Bjx \ By, ,—s(pj k) and ho otherwise;
then /i satisfies the requirements of the claim. Then a suitable mollification of /;
yields the desired smooth metric 4. U

As a final step of the proof we apply the uniformization theorem for closed sur-
faces to the pair (M, g;) to replace a smooth metric g by gx € Mete,,(M). This
completes the proof, up to a slight abuse of notation g + gg.

3.4. Proof of Theorem 2.28

The proof of Theorem 2.28 follows the same ideas, but is substantially simpler. We
outline the main steps. One applies the conformal qualitative stability of Theorem 3.6
to obtain an analogue of Proposition 3.7. However, since the small energy extension
is an assumption (2.10) of Theorem 2.28, we do not need to prove item (2). After that,
using the same arguments as in Lemma 3.8 with only minor modifications completes
the proof.
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4. Lower bounds for X, (Ny)
In this section, we prove the lower bound (1.3) for X;(Ng) given in Theorem 1.8
by producing a metric on Ny whose first normalized Steklov eigenvalue is within

C 10,%" of the maximal normalized Laplacian eigenvalue A{(M). The bound is a con-

sequence of the following more general result.

THEOREM 4.1

Let (M, go) be a closed surface of unit area and constant curvature Kgq, =
2 x(M). Then for any k € N we can find a collection of disjoint geodesic disks
By, (p1), ... By, (pr) in the metric go such that the domain

k
Qo:=M\J B (p))
j=1

satisfies the following. For any A > 0 and any metric g € [go] smooth up to a finite
number of conical singularities with integer angles, there exist C = C(M, g, A) and
&k € [go] such that

C
Length(092, &%) > Area(M, g) — =R
and for any i > 0 such that A; (M, g) < A one has

- logk
|07 (., &) — A (M, )| < C ,f .

Applying this theorem to a unit area /_Xl-conformally maximal metric in the con-
formal class [go] one obtains the following conformally constrained version of the
bound (1.3).

PROPOSITION 4.2
Let (M, go) be a closed surface of unit area and constant curvature K g, = 2w y(M).
Then there exists C = C(M, go) such that for any k € N we can find Qi C M and
&k € [go] satisfying

logk

01(Q. &k) = A1 (M. [go]) — C c

Note that the lower bound (1.3) of Theorem 1.8 is an immediate corollary of
Proposition 4.2, simply by taking [go] to be a maximizing conformal class, so that
A1(M,[go]) = A1(M). The remainder of this section is therefore devoted to the
proof of Theorem 4.1.
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To begin, we observe that without loss of generality one can assume that
Area(M, g) = 1. Then we write

g = fgo,

where f € C°°(M) is a nonnegative function with isolated zeroes of finite order.
Denote by V;, C C*°(M) the A-eigenspace for Ag, that is,

Vii={p € C®(M) | Agop = Af 9},
and for any given A < oo, let

VOS/\,SA = @ VA
0<A<A

Even when f vanishes at some finite collection of points so that g is not a classical
Riemannian metric, it is still easy to see that Vp< < is a finite-dimensional subspace
of C*®°(M). Indeed, smoothness of solutions to Ag,¢ = A f¢ follows from standard
elliptic regularity theory (see, e.g., [13, Chapter 8]), while finite-dimensionality fol-
lows from the bound

Idolz, <Allgl2, <l fllcoAldll;,  forallg € Vocaza,
£0 g g0

which together with Rellich’s compactness theorem implies that the W 12-unit ball in
Vo<a<a 1s compact. As a consequence, any two norms on Vp<y<a must be equiva-
lent, and since ||d¢||;> + | [ ¢ dvg| defines such a norm, it follows that there exists
some C(M, g, A) such that

I$he> = (Iaghz + | [ pav)

for all ¢ € Vo<p<a. In particular, if ¢ € V, for A > 0, then [ ¢ dv, = 0 so that
I¢llcz = C(M.g.A)|[dgll>  forall g € V) 4.1)

forall¢ € V) withO <A < A.

Remark 4.3

Throughout this section, all function spaces and associated norms (Wh2, LP, C k,
etc.) will be defined with respect to the constant curvature metric g¢ unless otherwise
indicated.

Before beginning the proof of Proposition 4.2 in earnest, we find it useful to
record the following elementary estimates for the areas and boundary lengths of
geodesic disks.
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LEMMA 4.4

Let (M, go) be a closed surface of unit area and constant curvature K, = 21 y (M),
and injectivity radius inj(M). Then there is a constant ro(y(M)) > 0 such that for
any geodesic disk Br(x) C M with r < min{rg,inj(M)}, we have

3 5
1 -27r < Length(3B,(x)) < 2 2rr 4.2)
and

3 5
anz < Area(B,(x)) < anz. 4.3)

Proof
Since (M, go) has curvature Kg, = 27 y(M), standard computations (e.g., applying
the Gauss—Bonnet formula to geodesic disks) show that the length function

L(t) := Length(dB;(x))
satisfies the equation
L") +2ny(M)L(t) =0

when ¢ < inj(M), with L(0) = 0 and L’(0) = 27. In particular, for ¢ < inj(M), it

follows that
L(1) = "Ix?ilj\[l)lsmh( 2| x(M)|t)  when x(M) <0,

L(t)y=2nt if y(M) =0,

and

2,
L(t) = NW sin(y/2mx(M)t) when x(M) > 0.

The estimate (4.2) for r < min{ro(y(M)),inj(M)} follows by direct inspection of
these functions. Likewise, since % Area(B,(x)) = L(r) for r <inj(M), the estimate
(4.3) follows by integration of (4.2). O

4.1. Choosing the domain 2y,

To prove Theorem 4.1, we first select the desired domain €2; in a manner similar to
the construction in [15], by removing several small disks centered at a collection of k
maximally separated points.
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LEMMA 4.5
For k > ko(M, go) sufficiently large, there exist points p1,..., px € M and universal
constants 0 < co < Cy < 00 such that

. Co . .
dist(p;, pj) > —= wheni # j,
vk

and
k
M <\ Beyyie).
Jj=1
Proof
The proof follows elementary covering arguments, but we give it here for complete-
ness. Given
1
0<R< 3 min{ro()((M)), inj(M)},
let Br(x1),..., Br(x¢(g)) be a maximal disjoint collection of disks of radius R. By

maximality, we see that

£(R)

M c ) Bar(x)).
j=1

and since (by Lemma 4.4) the area of a geodesic disk B;(x) with ¢ < min{ro, inj(M)}
satisfies

3 5
T”tz < Area(B;(x)) < Tntz, 4.4)
it follows that

L(R)

1 = Area(M, go) < Z Area(Bar(x;))
j=1

< Z(R)STH4R2 = {(R)57R>.

1

V5mk

In particular, taking Ry = for k > ko(M, go) sufficiently large, we see that

Ly = @(Rk) > k.

For each T' € (R, min{ro,inj(M)}), let S C {x1,...,x¢, } be a maximal sub-
collection such that {Br(x;) | x; € St} is disjoint. It follows from disjointness and
Lemma 4.4 that
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1 = Area(M, go) > Z Area(Br(x))

xeSr
3
> |S7]- TTZ

4
3xT2"

so that the number of points |S7| in S7 is bounded above by
: __2
taking Ty, = N Ti have

In particular,

my .= |STk| <k.

Writing S7,, = {X1,...,Xm; } C{X1,....,Xg, }, note that the maximality in the defini-
tion of S7, implies that dist(x, S7, ) < 2T} for all 1 < j < {, and consequently

Ly

my
LJ B27k+2Rk(xj):D LJ Bsz(Xj):D M
j=1 j=1

Thus, since my < k < {j, we can arbitrarily extend S7, C Sg, to a set of k points
ST CAXL o X CHXLL oy X )y

which necessarily satisfy

2
dist(x;,x;) > 2Ry = fori # j
o 5k
and
k k
M C | Bawy+10(x)) € | By yzmz(x))

j=1 j=1

so that the conclusion of the lemma is satisfied by {pi,..., px} = {x1,..., Xk} with
=1 —_8

co—ﬁandCo—ﬁ. O
Now, fix a collection of points {pi,..., pr} satisfying the conclusions of

Lemma 4.5. Since dist(p;, p;) > % > 4k=3/2 for k > ko, the disks B,;—3/2(p1),
..y Byr—3/2(py) are disjoint, and we can consider the domain

k
Qi =M\ | By-32(p)). (4.5)
j=1

In what follows, we will make use of the following simple lemma, stating that the
norm of the harmonic extension operator W12(Qy) — WL2(M \ Q) is bounded
independent of k.
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LEMMA 4.6
There exists a constant Cy < oo such that for k > ko, any y € W12(Qy), the har-
monic extension § € W12(M \ Qi) to M \ Qy satisfies

ld Xl 2y = Cilldxll L2, (4.6)

Proof
Denote by Cy any constant such that the harmonic extension operator

W12(D2(0)\ D1(0)) 3 x = 1 € W'2(D1(0))
from the Euclidean annulus D, (0) \ D;(0) in R? to D(0) satisfies

IdlL2pyy < ColldxllL2(Dy\Dy)-

For example, for a coarse bound, fix some function {» € C*°(D;(0)) with ¢ = 1 near
0Dy and ¥ =0 on D;/5(0), so that any y € W12(D, \ D) admits an extension
7 € WH2(D1(0)) via j(z) = ¥(2) x(z/|z|?). Then clearly

ld 220y < 1 X 2oy < CO Il L2(po\Dy) + Xl L2(Do\D))-

and by the Poincaré inequality on D, \ D1, we can find ¢ = ¢(y) € R and some con-
stant C” for which ||y —c||z2 < C”|ldy| 12, so that applying the preceding inequality
with y —c and ¥ —¢ = 7 — ¢ in place of y gives

ld 212 = CWIC" + DlldxllL2 = Colldxll2-

By the conformal invariance of the Dirichlet energy in dimension 2, it follows
that

ld 7l L2, 0)) < Colldx|lL2(Ds, 0)\D»(0)) 4.7)

for any r > 0.

Using the exponential map, it is straightforward to extend this inequality to
(M, go) for r > 0 small (see, e.g., [15, Lemma 3.4]). The desired statement then
follows from the fact that the balls B,;—3/2(p;) are disjoint. O

Remark 4.7

The choice of k~3/2 as the radius of the holes in the definition (4.5) is somewhat
arbitrary. Any sufficiently large (fixed) power of % would suffice, and determining
the optimal such power (perhaps k~!, as in [15]) could be an important step toward
answering Open Question 2 in the introduction.
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4.2. Choosing the metric gy
Having chosen our domain 23 C M, we next need to produce a conformal metric g .
To this end, define ¥ € C°°(2y) to be the unique solution of

AgoVk =d*dy =—f in Qp and Y |pq, =0, (4.8)
where f is the conformal factor g = fgo. Setting
(423
KR

Bk == € C*(0Qk),

we then see that
[ ebrdsi= [ o5 dvg, (49)
Q2 Qs

for all ¢ € C*° (92 ) with harmonic extension ¢ € C*°(2g).
By definition of 8z and the strong maximum principle (e.g., Lemma 3.4 in [13]),
we see that

Br >0 ondQ,

and applying (4.9) with ¢ =1 gives

Br dsg, Z/ S dvg,
Flop Q

= Area(M, g) — Z/ S dvg,
B, _3/2(pj)

Z l—C(M,g)k'k_T,

so that

C
1 =Area(M, g) = ,Bkdsgzl_—2

(4.10)
a0y k

We set g = ,BA,zgo, where ﬁAk is an arbitrary positive extension of S to C*°(M). In
particular, the inequality (4.10) implies the first property of gx,

Length(02g, gx) > Area(M, g) — 2

In what follows, we argue that the Steklov eigenvalues of (2, ﬂ% go) in the interval

[0, A] must lie within O(]O}%k) of the Laplace eigenvalues of (M, g). As a first step,
we record the following L? estimate for the function v solving (4.8).
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LEMMA 4.8
Let Y. € C°°(Q2) be the unique solution of (4.8). Then

logk

Vil L2, = C(M, g) X (4.11)
Proof
Foreachi =1,...,k, let
Ui := Bcg—1/2(pi) \ Bi—3/2(pi)
so that
k
Q. C U U;.
i=1
For any x € M, we note that the quantity
N(x):=#{i €{l,....k} | x € U}
satisfies a uniform bound
N(x) < Ny (4.12)

independent of k. Indeed, if
xeUN---NUy CBeg-172(p1) N+ N Beop—12(pr),

then since Lemma 4.5 guarantees dist(p;, p;) > % fori # j, it follows that the disk

B(C 4co)k—1/2(x) contains at least N = N(x) disjoint disks of radius 2%, so that

2 2
N(x)% < C/@,

from which (4.12) follows.
Now, since ¥ vanishes on 9y, we may trivially extend v to a function v/, in
Lip(M) by setting

Vilana, =0.

Now, for each i = 1,...,k, define a function & € Lip(Bcg-1/2(0) \ By-3/2(0)) by
setting

& =V 0exp,,,
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and note that

Willzw,) < Cligillz. Ndéille < Cldvil 2w, (4.13)

for a constant C = C(M, go) (which could be taken arbitrarily close to 1 for k suffi-
ciently large).

Then a direct computation (which the reader may prefer to apply to a smooth
approximation of &) gives, for ¢ € [k=3/2,Ck~1/2],

d /1 / 2 2/ 0&;
(= 2) < ==
dt (I 3B, (0) Et ) Tt 3)3[(0)g av

1 A2 /1 A\ 1/2
(by Cauchy—Schwarz) 52(— / &) (— / |d&;| ) :
t JaB, (0) t JoB,(0)

or equivalently,

d /1 1/2 1 1/2
=(; fa v = /3 N

Since &i[p, 5, (0) = 0, integrating the above over ¢ € [k=3/2 5] gives

1 1/2 s 1/2
GL @)y <[ () aap)
S JaBs(0) k—3/2 0B (0)
K} 1 1/2 N 1/2
(by Cauchy—-Schwarz) < (/ - dt) (/ / |d & |2dl>
k—=3/2 1 k—3/2 J3B;(0)
1/2
= Viogts/ k= ag )",

Bs(0)\B;.—3/2(0)

which we can rearrange to see that

/ £ < slog(sk*?) dEi 2
9B (0) Bs(0)\B;,—3/2(0)

< Cslog(k) /B &2,

cx—1/2(0\B; _3/2(0)
Integrating once more over s € [k~3/2, Ck™1/?] gives
/ P Cloe® a2
Bey—1/20\B, 3,00 2k Bpy—1/2(0\B,_3/2(0)
and using (4.13), it follows that

—2 logk _
/ Y dvg, < C(M, go) lf / Idlﬂklz,odvgo.
U; U;
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Summing overi = 1,...,k and applying (4.12), we then conclude that
logk
YZdvg, <C — |d Y|, dvg,- (4.14)
Qx Qe

On the other hand, by (4.8) (and the fact that || f ||c2 < C(M, g)), we have
[ anPavg == [ fudug < e ol
k k

so that

logk logk
Wilia@ < C = | 1avilg, dv < €25 Wl ey,
k

from which the desired estimate follows. O

Remark 4.9
Note that the proof of the preliminary estimate (4.14) does not require that Yy is a
solution of (4.8), and only uses that v € WOI’Z(Q ). Thus, we see that

logk

2 2

- dvg, <C |do|5. dv
[k 80 k . g0 g0

holds for any ¢ € WOI’Z(Qk).

In the proof of Proposition 4.2, the following L*° estimate for {7, will also be
useful.

LEMMA 4.10
The function Yy € C*°(Q) given by (4.8) satisfies a bound of the form

logk

[YillLee =C

for some constant C = C(M, g).

Proof

We proceed by a Moser iteration-type argument. For any ¢ € WOI’Z(Q k), We may
extend ¢ to all of M by setting ¢ =0 on M \ Q, and apply the Sobolev embedding
theorem for W11 (M, g¢) — L?(M, g¢) to the square ¢? to see that

o222 < Cll* 1 + C |d@®) ] .

=Cf <p2+2cf|<plld¢|
M
< C(llel3 + llel2lldel 12).
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Moreover, using Remark 4.9 to bound the ||¢|| ;2 terms, it follows that

log
lel7.<C ldel7, (4.15)
1,2
for all ¢ € Wy " ().
Now, for each integer p > 1, recalling that A|y| = —Ay = f, we compute
2
| lawpP = [ sl - —/ (9P, d 1)
Q Q
P’ 2p-1 P’
= p— A =
s [, P st = 5

i sz

2 1
<Ly )22 Area(M) 5
2p—1

which together with (4.15) (taking ¢ = y() yields

logk _
1Wel 7%, < Copyf ==Vl 55" (4.16)

=)

We know from Lemma 4.8 that gg > 2 (for k > ko(M, go) sufficiently large), and

Next, set

4o :=sup{q < (1.00) | [Vl =

ogk

if go = oo, then it follows that ||V ||z = limg—oo Vil Le < , giving the
desired estimate. Thus, we can assume without loss of generality that there is a finite
qo € [2,00) such that

logk logk
Iicllzao = /= and  [[Yllre >/ —— forallg>go.
Now, taking p = ¢ /2 for g > q¢ in (4.16) gives
Coq log Coq
1Vel]2q < > Ivellfa' < ==yl
In particular, taking the gth root of both sides gives
¥kl 20 < (Coq /2" 1Yl e (4.17)

for all ¢ > qo, and the standard iteration argument starting at ¢ = ¢go then gives, for
all j eN,
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-1

19l 2ty < (H(cozf '0) 70 ) [ o (4.18)

Taking the logarithm of the product term on the right-hand side of (4.18), we see that

-1

log(l_[ [Co2” 1 o] . @0 )

j=0

_ ‘i log(Co) + log(qo) + (j — 1) log(2)

J
i=o 2740

log(Z) Z J— 1

1 1
< _-(10g(Co) + log(4o)) Z o+

_ 2(log(Cp) + log(go)) <C
q0 -

where in the final inequality we used the fact that gy > 2 and the boundedness of logx

over 1 <x < oco. Returning to (4.18), it follows that

logk
Wil 2ty = e il = €1/ 22X,
and taking £ — oo yields || |[Loo < e€14/ 1°,§k as desired. O

4.3. Proof of Theorem 4.1
With Lemma 4.8 in place, we next show that the restriction to d€2; of the A-
eigenspace, A < A, for A,

={pecC®(M)|Agyp =Af}

are 0(10g )-quasimodes of the Dirichlet-to-Neumann operator on (2, gx) with
eigenvalue A, and we use this to deduce the existence of at least dim(}') Steklov
eigenvalues on (2, g ) in the range [A — C logk A+ C %].

For convenience, we consider the norm adapted to the Steklov problem on
(R, & ): for any harmonic y € W12(Qy), we set

Ixlles = Xl 2200080 + 14X 2204 g0)-

LEMMA 4.11

For any ¢ € Vj, and any harmonic function y € W12(Qy), there is a constant C =
C(M, g, \) such that
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logk
[ woan=n [ purs| < 1aglnaplrle, @19
Q AR
Moreover, for any ¢ € V, we have

logk
k

4800y = (4 C=5) | Bt (4.20)

In particular, (4.19) can be rewritten as

logk
[ pan=n [ Burg| =000 161 2gn ol 2l @20
Qe A

Proof
Given ¢ € V, let y € W12(Qy) be harmonic, and let § € W !2(M) be the harmonic
extension to M \ €. Recall that

by Lemma 4.6; moreover, applying, for example, [30, Theorem 3.15] with L(y) :=
m Ja, 1dvg, we see that

<Cl Nz MRl L2, qury
which together with the estimate above gives
”)?ngl(-)?(M) = C/“X”W;sz(gk)' (4.22)

Next, note that

[ (as.an=ison)|

-|[ div(xdqs)) - )/mxg—d)

=| /M\Qk —Af67)

In particular, by (4.1) and (4.22) and the fact that

<C(M, g, M)|pllct M\ Q"I Rllw12a1)-

k
Area(M \ Q) < ZArea(Bk_3/2(pj)) < Ck1_§ =
j=1

C
k_27

it follows that
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C
/ () =21 90)] = L1912 7 (423)

Next, recalling the definition (4.8) of ¥ and B = %, and keeping in mind that y

is harmonic, we compute
_ Vi
L o= ter
— [ aver+ [ lav.dep)
Q Q
= [ arex+ [ weawn
Q Qi

- /\f¢x+/ Yi(Afpx —2(do,dy))

Qp Qe

so that
[ prox= [ ared <] [ wetusor—2ias.an)]

< Clviliz@pllicr (1dxll L2 + Xl L2, .0))-

To relate the right-hand side to the £ -norm, we write

112 =[ fx2=—/ xzawk=[ ﬂkx2+2/ Vildxl?.
L2(Q.0) Qe Qe Q% Qe

As a result, Lemma 4.10 implies that ||)(||L2(Q oS C||)(||2 Combining with
(4.23), (4.1), and Lemma 4.8, this implies that

[ {d.dx) 2 [ Beor| = C gl zan Ixle,  @29)
k

for any harmonic y € W12(Qy), as desired.
To prove (4.20), first note that

146120y = [ £9° —A/ warf

Oy 1) =2 [ 187 4 Ll ArealM \ 1)
k

M\Qy

1
Y R
973

so that
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(1= )11 <[ 1o

On the other hand, we see that

2= —A 2
[ 1o /ﬂk( Voo

=/Q (div(g® dyi) — (dvk. d(9?)))

=/mk81/”‘¢ —/ VeA@?)

[Qk f¢2—/mk ﬂk¢2=—/ﬂk Ve A@?)

< ClvrlL2@p l#llga,

so that

and by (4.1) and Lemma 4.8, it follows that
NG </ Bd” + € gl

Combining this with the preceding estimates, we deduce that

C/ 2 2 ,lng
(1=l <A [ Ao+

1461122 00

and consequently

(1= ) gl <2 / Bed?,

from which (4.20) readily follows. O
Now, denote by

OZUO(kagk) <01(Qk’gk) =

the Steklov spectrum of (g, gx), and let ¢g, @1, ... be an associated collection of
eigenfunctions, normalized so that

/ Brpipj = 8ij.
o

For any A € Spec(Ag) N (0, A] and 1 > 0, consider the space
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Wy p:=Span{g; |A —n<0i <A +n}

spanned by all Steklov eigenspaces of (2%, &%) corresponding to eigenvalues in [A —
1, A + n]. Using the preceding lemma, we can prove the following.

LEMMA 4.12
There exists a constant Co(M, g, A) such that

dim(VV)L Cz%) >dim V).
Proof
Fix n € (0,1), and let
X_Tlfamf"‘fam—l—lfk‘l‘rl

be the portion of the Steklov spectrum of (2, gx) lying in [A — 5, A + n]. Consider
the projection map

Iy Vi — Wi,y

given by

m+{

My := ;(faszk ﬂk¢<pi)s0i.

Suppose that ¢ € ker(I1) is an element of the kernel. The harmonic extension q{A) =
Y a;ip; of plaq, to Qi can be written

¢=¢-+dy = Z aig;i + Z aigi,

oj<A—n o;>A+n
where a; =0if A —n <o0; <A + 1. Setting
I+ :={i eNU{0} | £(0; — A) > n},

one then has

[ 1agsP =2 [ B = | @ -0

iely

2 min{£(0i = 1)} ) af 2nlé< 17260, 4
i€l

(4.25)
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At the same time, since $+ 1 (;3_ in L2(382, gx), one has

fgk (dp.d ) =/Qk (d.ds) zfgk sl

Therefore, Lemma 4.11 implies that

‘/Szk(d¢,d¢gi)—)t/39k,3kq3¢i|=‘/ |d<]3j:|2—/\/ ﬂkflgi‘

10g

<C Il 2200, 20 10+ 12 -

Combining this with (4.25) and adding up the inequalities for 434__ yields

812200, 00 = € e 191203 0 I (426)
Finally, the inequality (4.20) gives that

||d¢||L2(Qk) 1doll L2y < Cllol L2002, .5,

which together with (4.26) implies

" ng
77||¢||L2(3Qk &) = <C ||¢||L2(852k &r)’

If ¢ # 0, dividing by ||¢||iz(mk,§k) on both sides yields n < C”%. In other words,

IT,: V) — W), must be injective whenever n > C” lol%k

C, =2C", it follows that

, so setting, for example,

dim(WA’Q%) >dim V),
as desired. O

Without loss of generality, we may assume that A ¢ Spec(Ag) (otherwise,
replace A by A + ¢ for small enough ¢). With Lemma 4.12 in hand, we argue finally
that all Steklov eigenfunctions of (2x, gx) with eigenvalues below A must lie in

some W.

2.0y ek for k > k¢ sufficiently large.

Proof of Theorem 4.1
Let C, = Cp(M, g, A) be the constant from Lemma 4.12. Let N be the total dimen-
sion of Ag-eigenspaces corresponding to the eigenvalues in (0, A), that is,

N= > dimV).
0<A<A
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It follows from Lemma 4.12 that there are at least N nontrivial Steklov eigenvalues
of (R, gx) in Cz%—neighborhood of Spec(Ag) N (0, A]. We define a set S C N
by saying that k € S if there are other nontrivial Steklov eigenvalues in the inter-
val (0, A], that is, if there are at least N + 1 such eigenvalues in (0, A]. To prove
Theorem 4.1, it is sufficient to show that S is finite. To achieve this, we show that
0i(R2k, &) converge to A; (M, g); thus, if S were infinite, there would be at least
N + 1 eigenvalues of Ag in (0, A], contradicting the definition of N.

To be precise, assume by contradiction that S is infinite. Denote by ¢k 1, ...,
¢k, N+1 the corresponding Steklov eigenfunctions, normalized so that

/ Br®k,iPk,j = 8ij»
FIon

and let ¢ ; € W12(M) denote the harmonic extension into M \ €; note then that

9k.illwi2ary < Cllerillwrz@,) < Cs (4.27)

by Lemma 4.6.
Since S is infinite, we can pass to a subsequence k; € S such that

Gr;i — @i € W2A(M)

weakly in W12 and strongly in L? as k; — oo. (In what follows, we write k; = k
for simplicity.) For any y € C°° (M), we note then that

[ taoidn =@z [ fouir]
M M
<|[ tdorsdn-oi@u [ o
Qi Qp
[ (i) = o 80 S i)
M\Qy

SUi(th’k))/ Bi ki x —/ f(ok,iX‘
Q2 Qx
+ Cllxllcr 1x.i w2 Area(M \ )"/,
In particular, since
C
Area(M \ Q) < 2 -0

ovk

as k — oo and, by definition of B = —-&,



FROM STEKLOV TO LAPLACE 1611

ﬂk(/’k,i)(_/g f‘Pk,iX‘z /Q (de,d(Xsok,i))‘

‘ Q%

= Ve A(x¢k,i)
Qp

= fg Vi (pr,i Ax — 2(d x. d oy ;)
k

= Clvlzlixlic2ller.illwiz =0

as k — oo by Lemma 4.8, it follows that

k—o00

tim | [ (@csnd) ~oi(@ego) [ fonin =0
M M

for any y € C°°(M). Thus, the weak limit ¢; of ¢ ; along the subsequence k; € S
satisfies

Agog?)i =0; f @i, (4.28)
where
6; := lim 0; (Qp, gx) < A. (4.29)
k—o0

Moreover, we see that

[ rosi-si|<|[ so0i- [ Broion
M Q A%
+ Cli e 16,120 Area(M \ )

+’/ ffpk,ifﬂk,j—/ B Pri k., j
Qe Q%
C

191l l195 12 - -

< [ FIGi6s — orivh,
Qe

and in view of the (strong) L? convergence ¢k,i - 1o, — @i, it follows that

V feig; —51'," < lim ‘ SO0, j —/ ,Bk‘/’k,i(/’k,j‘
M k—oolJQ, A
k—o00

= lim ‘/ I/ka(Qﬂk,i‘Pk,j))
Qp

(since Agis =0) =2 fim | [ vildows.dow)|
k—o00 Qi

< C lim [Yllzeo \/0i (. 2)0; (- 1)
k—o00
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logk

(by Lemma 4.10) < C lim
k—o00

so that the functions {¢; }* 4! are orthonormal in L?(M, g).
Similarly, since ka Sori = fmk Biwki =0, it is easy to see that

/ £ = lim / Fors =0
M k—o00 Qx

so that each ¢; is likewise orthogonal to the constant functions in L?(M, g). Putting
all this together, we see that {¢; fv= Jql gives an L?(M, g)-orthonormal collection of
eigenfunctions for Ag, corresponding to eigenvalues in (0, A] by (4.29). But there are
only N such eigenfunctions, a contradiction. O

5. Upper bounds for X (Ny)
In this section, we complete the proof of Theorem 1.8 by proving the upper bound
(1.4), which we reformulate as the following proposition.

PROPOSITION 5.1

Let M = S2, R]P’Z, T2, or the Klein bottle K, and let Ny, be the compact surface with
boundary given by removing k disjoint disks from M. Then there exists a constant
c(M) > 0 such that for any metric g on N,

logk

01(Nk.8) = Ar(M) —c(M) -

(5.1)

As discussed in the introduction, it is quite possible that the estimate holds for all
closed surfaces M, not just those listed here. From the arguments below, it follows
that the upper bound (1.4) holds for all M, satisfying the hypotheses of [29, Theo-
rem 6.1]; that is, all those M for which the minimal surfaces in S” realizing A (M)
have maximal possible Morse index n + 1 + dim(M (M )) as critical points of the area
functional, where M (M) denotes the moduli space of conformal structures on M.

5.1. Refined quantitative stability for Steklov-maximizing metrics

As an important first step toward proving Proposition 5.1, we need to refine the
quantitative stability results of [29] for nearly A -maximizing metrics. The difference
between the results of [29] and those below is that here we are interested in obtaining
lower bounds on the gap

AI(M)_/_XI(Q’[g]’M)

between the maximum A;(M) and the normalized first eigenvalue restricted to a
domain Q C M for a measure p supported on 2 C M, whereas the results in [29]
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provide lower bounds for the gap A1 (M) — A1(M, [g], ). While the proofs are quite
similar, we note that the refinement is necessary to obtain the sharp upper bound, as

a direct application of the results in [29] seems to yield at best the nonsharp bound
Ti(Ne) = Ai(M) — £
We begin with the following straightforward adaptation of Lemma 2.1 in [29].

LEMMA 5.2
Let Q C M be a smooth domain in a closed Riemannian surface (M, g), and let i be
an admissible measure supported in 2 with the first nontrivial eigenvalue

o1 :=A1(R.[g]. ).

Ifu € Wh°(M,S") is a sphere-valued map such that

/ udu =0,
M

lovi — |dul} dvg |2 ”?Wll(ﬂ,g))* < ||u||%,1'oo(g)(2Eg(u;Q) —o1u(M)). (5.2)

then

Proof
Denote by V C W12(Q,R"*1) the subspace of maps v:  — R"*! for which

/vdu:O,

and consider the quadratic form Q on V given by

Q(v,v):z/ |dv|§,dvg—01[ lv|? dpu.
Q Q

By definition of o7, it is clear that Q is nonnegative definite on V', and therefore the
Cauchy—Schwarz inequality for the associated bilinear form gives

[ (auwavigavg =1 [ woyde| < VOwwVOE.  63)
Q Q

Now, let u € V. N WL (M,S"), as in the hypotheses of the lemma. Then since
|u| =1, we have

Q(u.u) = 2E¢ (1) — o1 ju (M),

and for any v € W12(Q,R"*1), applying (5.3) to u and the map

1
vp=v——— | vdu,
w(M) Jo
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we see that

‘/ﬂ(du,dv)gdvg—Gl/ﬂ(u,v)du‘= ‘/ﬂ(du,dvl)gdvg—ol/gm,vl)cm‘
= V01 1) 2B, (u:2) — o1 (M)

< vl () 2B (u: Q) — 01 (M),

In particular, taking v = @u for some ¢ € W1-2(Q), and recalling that (du, d(¢u)) =
@|du|? since |u| = 1, it follows that

[ plautz ave —or [ pau] = a2y 2 = i),
In particular, since
2
ld(ew)| ;2 =/Qs02|du|§ +uPldol; dvg < [ullfy1co@ 1013120 0):

it follows that

(g, |du|2 dvg — o1 )]
lellw2@.q)

< Nl 1.ooe) y 2B (43 2) = 010 (M),
which is precisely what we wanted to show. O

As an immediate consequence, for surfaces of genus 0, we have the following sta-
bility estimate, which, combined with uniformization and the standard Hersch trick,
will suffice for our purposes in the genus 0 case.

PROPOSITION 5.3
Let Q C S? be a domain in the round unit sphere (S?, go) C R>, and let § € [go] be a
conformal metric such that the identity map I : S* — R3 satisfies

/ Idu=0,
S2

where [ is the length measure . = dsg of 0Q2. Then for the first nontrivial Steklov
eigenvalue o1 = 01(R2, &), we have

0112 = 2dvg0 |22y 1 2(g goyye + 6 Areag, (M \ 2) =3(87 —51(2.2). G4
Proof

Applying Lemma 5.2 with p = J€$ |02 and the identity map u = I, for which
|a’u|§0 =2and 2E,,(u; 2) = 2 Areag,(2), we see that (5.2) gives
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o1 —2dvg, 2| < 3(2Areag, () — 61(2, )

2
(W1.2(2,g0)*
= 3(87 — 2 Areag, (M \ Q) —51(R2, §)),

from which the desired estimate immediately follows. O

To obtain analogous estimates in the cases where M = RP?, T2, or the Klein
bottle K, we combine Lemma 5.2 with the techniques of [29, Section 6]. The case of
M = RP>—which carries only one conformal structure—is in principle simpler, but
we group it with the others for convenience.

PROPOSITION 5.4

Let M be a closed surface homeomorphic to R]P’z, T2, or the Klein bottle K, and
let g1 € Metean (M) be a unit-area, constant curvature metric on M. There exist con-
stants C(M),§1(M) € (0, 00) such that the following holds. If @ C M is a smooth
domain in M with a conformal metric g € [g1] such that

01(2,8) = Ai(M) — 64,

then there exists a )_Ll-maximal metric gmax conformal to some go € Mete,n(M) such
that

lgo = 811131 (g < C(A1(M) = 51(2,8)) (5.5)

and the length measure |1 = dsg of 02, normalized by 01 = 01(£2, &), satisfies

1 2@gey- + ATeg, (M \ 2) < C(A1(M) = 51(2.2)).
(5.6)

||O’1/L — A1(gmax) dvgmax

Proof

The proof follows closely that of [29, Theorem 1.17], with Lemma 5.2 replacing [29,
Lemma 2.1] at the final step. As discussed in [29, Section 6], the minimal immersions
u: M — S" that induce the )_kl—maximizing metrics on M = RP?, T2, and K all
have maximal Morse index as critical points of the area functional, in the sense that
indg(u) =n + 1 4 dim(Mo(M)), where Mo(M) = Metc,(M)/Diffo(M) denotes
the Teichmiiller space of conformal structures on M. In particular, these minimal
immersions satisfy the hypotheses of [29, Lemma 6.5].

Following the proof of [29, Theorem 6.1], let €.y C Mo(M) denote the
set of (equivalence classes of) conformal structures (g) achieving the maximum
A1(M,[g]) = A1(M). By [29, Lemma 6.5], there exist a neighborhood U of €,y in
Mo(M) and a family of maps
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Ust> F, e C®(M,S") (5.7)

such that the constant curvature metric g, conformal to F}(gs») liesin v € Mo(M);
for every (go) € Cmax the map Fig,y = uo is a minimal immersion inducing the A1-
maximizing metric, and denoting by

B"*! 54+ G, € Conf(S")

the canonical family of conformal dilations, and for every (a,7) € B**! x U such
that

1
Area(Gg 0 Fr) = Z[A1(M) = 8o (M)], (5.8)
for a small constant §o(M) > 0, we have
e — 8ol (gy) + 1Ga © Fe —wol22gy) < COM[AL(M) — 2 Area(Gy o Fy)].
(5.9

for some (go) € Cmax With ug = Fg).
Now, let 2 C M and g € [g1] be as in the hypotheses of the proposition, with
u =dsg. It follows from (2.2) that

A(M) =81 <51(R.8) < A1(M.[g1]. n). (5.10)
Theorem 3.1 then implies that for §; = §; (M) > 0 sufficiently small, one has
(g1) e U,

where U is the neighborhood of €, given above. Assume now that (5.10) holds,
and let F; = Fig,) be the map associated to (g;) as in (5.7). We know then that
Fio®: (M,g,) — S" is conformal for some diffeomorphism ® € Diffy(M ), and
since the desired estimates (5.5)—(5.6) are invariant under the change

(2.2.81.80) = (271(R), 2*Z. D" g1, " g0)
for any diffeomorphism & € Diff(M ), we may assume without loss of generality that
Fi: (M, g1)—>S"

is conformal.
By the standard Hersch trick (see, e.g., [34]), there must exist a conformal dilation
G, € Conf(§") for which the map

Uy .= GaoFl
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satisfies
/ urdp =0eR"H!
Q
Therefore, by the definition of o}, we see that
2 Area(uy(M)) =2Eg, (u1(M)) > 0 [ lu2du = 61(R, %),
so that, by (5.10),
1
Area(ul(M)) > E(AI(M) - 81).

In particular, taking 6, (M) < §o(M), we see that (5.8) is satisfied, so there exists a
minimal immersion u#g: M — S” inducing a A;-maximizing metric gn.x and a unit-
area constant curvature metric go € [gmax] Such that

g1 —go||zcl(g0) + flur — uo||?;z(go) <C(A1(M)—2Area(u1(M))) < C5;(M).
(5.11)

As an immediate consequence, we have

”gl _gOHél(go) = C(AI(M)_é-l(Qag))7

giving the first desired estimate (5.5).
Now, by Lemma 5.2, we have that

_ -1/2
HOIV« — |duy |§1 dvgl LQH [W;l‘z(Q)]* < [lus ||W1s°°(g1)(2Eg1 (u1;2) — 01 (Qvg))

< C(2Area(u1 (Q)) —01(2, g))l/z,

where in the last line we used the conformality of u; and the fact that [[u1 | c1(g,) <
2|luollc1(gyy < C'(M) for 8;(M) sufficiently small, by (5.11). Furthermore, it fol-
lows from (5.11) that

%H Nwrz@gy = lviz@.gons =21 lawr2@.g1))*
provided §; (M) is sufficiently small, so that
o —Iduy [}, dvg, |2 W12 .50 = C (2 Area(u1(R2)) — 61 (Q,g))l/z. (5.12)
Repeatedly using (5.11), we also see that

[1durlg, dve, —lduolz, dvg, || y12q gy < € (A1 (M) = ZAfea(ul(M)))l/z’
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and recalling that |du |§0 dvg, =2dvg,, , we can combine this with the preceding
estimate to find that

o —2dvg,. |l C'[A1(M)—2Area(uy(M))]

W12@. g0 =
+ C'[2 Area(u; (Q)) — 51(2, 8)]
=C'[A1(M)—51(22,8)] —2C" Area(u (M \ Q));
that is,
+2C" Area(u; (M \ Q)) < C'(A1(M) —61(2.)).
(5.13)

2
||O'1/.1/ - 2dvgmax ||(W1.2(Q’g0))*

Finally, it follows from (5.11) that

8max = uz(gSn) = 2MT(gS")’

provided §; (M) is sufficiently small, and we know that
80 = C(M)gmax
since the maximizing metrics on RP2, T2, and K are smooth. Hence, we have
Areag (M \ Q) < C Area(u; (M \ Q)),

and combining this with (5.13), we arrive at the desired estimate (5.6). U

Remark 5.5

Using the techniques of [29, Section 2.3] in place of [29, Section 6], it is straightfor-
ward to prove a simpler, conformally constrained version of the preceding lemma for
those conformal classes induced by (nonbranched) minimal immersions M — S” by
first eigenfunctions on any closed surface M. Combining this with the estimates of
Section 5.2 below, one can easily prove a conformal analog of Proposition 5.1 for such
conformal classes. Namely, if (M, [g1]) is a conformal class arising from a minimal
immersion M — S" by first eigenfunctions, then for any g € [g1] and any domain
Qy C M with k boundary components, one has

logk
.

512 8) = M (M. [g1]) — ¢(M.[g1]) (5.14)
5.2. Structure of nearly 61-maximizing metrics with many boundary components
We collect now some of the key estimates which, together with Propositions 5.4 and
5.3, yield the proof of Proposition 5.1.



FROM STEKLOV TO LAPLACE 1619

Let g1 € Met.,,(M) be a unit-area metric of constant curvature K = 2wy (M) on
the closed surface M, with injectivity radius

inj(M, g1) > to > 0.
In particular, there exists C = C(i9) > 0 such that for any ¢ € W12(M, g), one has

lellwizarg) < CUldell2arg,) + 10lL1ar.g1))- (5.15)

Given a collection of disjoint geodesic balls By, (p1),..., B (px) in (M, g1),
set

B:= By (p1)U---UBy (pr)
and
Q:=M\ B.
For some small § > 0, suppose that
Areag, (B) <§. (5.16)

Let i be an admissible measure supported on d$2, and let 0 < p € C*°(Q2) be a
nonnegative function such that

2
|<§0y0—dﬂ_pdvg1)| 58“(/)”%[/1,2(9,&) (517)

for every ¢ € W12(Q) and some constant o > 0. For the application we have in mind,
one should think of ¢ as the the first eigenvalue of y on €2, thatis, 0 = A1 (2, [g1], 1).

By Lemma 4.4, we know that there exists ro(y(M)) depending only on the
curvature of (M, g1) such that a geodesic ball B;(x) of radius t < to(y(M), 1) =
min{tg, 7o} in (M, g1) has area

3 5
T”tz < Areag, (B;(x)) < Tntz.

In particular, provided

3
§< Tntg
in (5.16), it follows that
3 5
T E r; < Areag, (B) <§. (5.18)
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Denote by S the collection S := {p1,..., px} of all centers of the disks B;; (p,),
and consider the subset

V8 } (5.19)

S’::{piES’riZm
It follows from (5.18) that
, 4
S| < —Vk, (5.20)
3

and it is of course possible that S’ = &. In general, we have the following.

LEMMA 5.6
Let (M, g1), 2, i, and p be as above satisfying (5.16)—(5.17) with

8 < «/L]; < lo(X(M),L()).

Then

on( U Br(p)) =C(1+ lpllzoe)s' 2k

ijS/

for some constant C = C(y(M), tp).

Proof
Let y € C*°(R) be a smooth, decreasing function such that

x@) =1 fort <

xt)=0 fort>2

and
| < 10
X<—.
V3
Denoting by ds’ € Lip(M) the distance function
ds/(x) = min{distg, (x, p;) | pi € S'},
let

@:=yxods.
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Since each rj < 4/ % by (5.18), it follows from the definition of ¢ that
g=1 on |J B, (p)).
pj eSS’
and consequently
M( U B, (Pj)) < {p.p).
Dj es’

10

On the other hand, since 0 < ¢ < 1, |do¢| < 75

Upj_ es' B sies737(pj) by construction, we see that

lollLr gy < Y, Areag, (B yiesyzm(py)) < CIS'[8

ijS’
and
2 100 /! !/
1o 2y = 5 D Areag, (B iz () < C'IS].
ijS'

In particular, combining this with (5.15) and (5.20), it follows that
lell1 2.4, < CIS'I < CVE
and
| podve, = Cllolimls's = C'lpl=8E:
putting this together with (5.21) and (5.17), we find that

O’,bL( U Brj(Pj)) < {ou,9)

ijS/
< |{op — pdvg,.¢)| +/Qp<pdvgl

<V8lelwizq.gy + ClplliLesvk
< C(8"2kM* + |Ipll Lo Vk).

1621

(5.21)

and ¢ is supported on

Finally, recalling that §+/k < 1 by assumption, we have that §+/k < §'/2k1/#, and the

desired estimate follows.

O
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LEMMA 5.7
Let (M, g1), 2, i, and p be as above, satisfying (5.16)—(5.17) with

1
5§ < J_E < IO(X(M),lO).
Then we have
1 oo
ou(M) < c%(m + /Sklogk) (5.22)
0g
for some C = C(x(M),1p) < o0.

Proof
Denote by dg € Lip(M) the distance to the full set {py,..., px} of centers of the
geodesic disks By, (p1), ..., Br. (pk), and define a test function ¢ € Lip(M) by

o(x) := max{log(v/§/ds(x)),0} if ds(x)> ‘/73

and

o(x):=logk) ifds(x)< g

On 0By, (p;), note that
¢ =log(v/8/r;) = log(k'/*).

Appealing to Lemma 5.6—and the nonnegativity of ¢—it then follows that

(o1 0) = logtk ™o | Br,(p)
p;ES\S/

= 10g(k1/4)(0,u(M) —Uﬂ( U By, (Pj)))

Dj eS’
= log(k"/*)op(M) — Clog(k'*)(1 + l|pll o) 8" 2k,

that is,

1
(o1, ¢) = J log(k) (op(M) = C (1 + [lplloe)8'2k1%). (523)
Next, writing

k
Ls(t):= ¢ (tds =13) = %' (| 9B:(p))).

j=1
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note that, since ¢ <7o(y(M), o) <min{ro(y(M)),inj(M)}, Lemma 4.4 gives

k
Ls() < 329 (9B(py) <k ot
j=1

By definition of ¢, we can then employ the coarea formula for dg to see that

/‘Pdvgl 5/ @ dvg,
Q M

V8/k NG
= logk/ Ls(t)dt +/ log(v/8/1)Ls(t)dt
0 V8 k

V8/k NE)
Sik(logk/ tdt +/ log(x/g/t)tdt)
2 0 0

S5 logk 1 S5
=R )=k

IA

. . . 2 _ _2
Similarly, since |dolg, = dg X{%sdssx/g}’ we can compute

V8

Vs 5 5
f |dol3, dvg, s[ —ZLS(t)dtf—ﬂk “dt = Zklogk.
Q Vo/kt 2 Jskt 2

In particular, since ¢ > 0 and §2k < 1, it follows from (5.15) that
10131 2(.g,) < Colk>8> + klogk) < Cok logk
and

/prdvgl = CollpllLooké.

From (5.17), we deduce that

(p.ou) < /prpdvgl +V8lollwia.e)

< Collp||Lockd 4+ Co~/8(k logk)/?
<Ci(1+ [lpllze) (k8 + v/Sk logk).

Finally, combining this with (5.23), we obtain
1
7 102(k) (o(M) = C (1 + |Iplloe) 82K 1%) < C (1 + lpll <) (k8 + /B logk).

and noting that logk - §1/2k'/* < C \/8k logk for k > 1, this in turn gives
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1 oo
ou(M) < C %(M + /Sklogk),
0g
which is the desired estimate (5.22). O

5.3. Proof of Proposition 5.1
With the results of Sections 5.1 and 5.2 in place, the proof of Proposition 5.1 is now
relatively straightforward.

Proof of Proposition 5.1
Let Ng be the compact surface with boundary given by removing k disks from M =
S?,RP?, T2, or K, and suppose that g is a metric on Ny for which

01(Nk, &) = A (M) —n. (5.24)

We wish to show that 1 > ck’,g(k for some constant ¢ = c¢(M) > 0.

By Theorem 2.1, we may identify (N, g) isometrically with a domain (2%, &)
satisfying the hypotheses of Proposition 5.3 or 5.4; that is, we may assume that
there exists a unit-area, constant curvature metric g; on M such that ¢ € [g;] and
Qr =M\ (ByU---U By), where {B; }f-‘=1 is a collection of disjoint geodesic disks
in (M, g1). Moreover, if M = S?, we may assume without loss of generality (by the
standard Hersch trick) that the length measure ux = dsg of 02 satisfies the balanc-
ing condition [ I dug =0.

If n < 81(M), it then follows from Proposition 5.3 or 5.4 that there exists a /_\1-
maximal metric gn,x on M conformal to some g € Metc,, (M) such that

lgo — &1l 1 (g, = C(M)n (5.25)

and the length measure p; = dsg of 9 satisfies

Holﬂk - kl(gmax) dvgmax ?Wl’z(ﬂ,go))* + Areago(M \ Qk) = C(M)'? (526)

In particular, for n < §, (M) sufficiently small, it follows from (5.25) that
. 1. .
inj(M, g1) = EIHJ(M,go) > co(M), (5.27)
and
1
78158 = 281,

so we can replace Areag, and (W12(2, go))* in (5.26) with Areag, and (W'2(Q,
g1))*, adjusting the constant C(M) on the right-hand side accordingly. Moreover,
writing
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A'1 (gmax) dvgmax =p dvgl ’

we see that
lpllLee < C(M). (5.28)
Assume now that
- lo]i;k

By (5.26) and the preceding observations, we then see that (M, g1), Qk, g, and
p satisfy the hypotheses of Lemma 5.7 for k > ko(M) sufficiently large, with o =
01(2,¢) and

§=C(M)n.

In particular, since in this case we have ||p||L < C(M) and inj(M, g1) > co(M), it
follows from Lemma 5.7 that

- .. CM
M) =0 = 51(0.8) = T Gon+ TRTog)

so that

1 kn kn , kn \1/2
M) = COn (o + o) < cron( ) (5.29)

using the assumption that n < l°,%k . Squaring both sides and rearranging, we obtain

HZ(AI(M) )2logk (5.30)

200M)) k

giving the desired bound. O
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