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Abstract

We prove the existence of nonconstant harmonic maps of optimal regularity from an
arbitrary closed manifold (M", g) of dimension n > 2 to any closed, non-aspherical
manifold N containing no stable minimal two-spheres. In particular, this gives the
first general existence result for harmonic maps from higher-dimensional manifolds
to a large class of positively curved targets. In the special case of the round spheres
N =Sk, k > 3, we obtain a distinguished family of nonconstant harmonic maps
M — S* of index at most k + 1, with singular set of codimension at least 7 for k
sufficiently large. Furthermore, if 3 < n < 5, we show that these smooth harmonic
maps stabilize as k becomes large, and correspond to the solutions of an eigenvalue
optimization problem on M, generalizing the conformal maximization of the first
Laplace eigenvalue on surfaces.

1 Introduction
1.1 Existence of harmonic maps

A map u: M — N between Riemannian manifolds (M, g) and (N, k) is said to be
harmonic if it is a critical point for the Dirichlet energy

1 2
E(u) = 3 /M |du|g,h dvg

on the space of maps from M to N. Generalizing classical questions about the exis-
tence of closed geodesics in a given Riemannian manifold, existence and regularity
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714 M. Karpukhin, D. Stern

problems for harmonic maps between higher-dimensional manifolds have played an
important role in the development of geometric analysis over the past sixty years (see,
e.g. [56, Sect. 3]).

One natural strategy for producing harmonic maps is to minimize energy in a ho-
motopy class of maps from M to N. For targets N of nonpositive sectional curvature,
this was carried out successfully by Eells and Sampson in the landmark paper [5].
Indeed, combined with subsequent work of Hartman [18], the results of [5, Sect. 11]
give a complete picture of the space of harmonic maps from a general closed manifold
(M", ) to aclosed target (N*, i) of nonpositive sectional curvature: every homotopy
class contains a nonempty, connected set of smooth harmonic representatives, all of
which minimize energy in the class. Moreover, if N has strictly negative sectional
curvature, then the harmonic representative of each homotopy class is unique.

For general target manifolds N, the situation is quite different. For general higher-
dimensional domains M" and targets N*, there often exist nontrivial homotopy
classes of maps which admit no energy-minimizing representative even in a weak
sense, as distinct path components of C!'(M, N) may merge in the weak or strong
topologies on the space W!2(M, N) of finite-energy maps between the manifolds.
On the other hand, as in the study of closed geodesics, in many cases one can produce
interesting non-energy-minimizing harmonic maps M — N via Morse-theoretic or
min-max methods. In the influential paper [48], Sacks and Uhlenbeck developed a
Morse-theoretic approach to the study of harmonic maps from the 2-sphere to gen-
eral targets, obtaining existence results that later saw elegant applications to other
classical problems in differential geometry, notably in the work of Siu—Yau [52] and
Micallef—-Moore [41]. The essential analytic insight of [48] is that the failure of strong
compactness for harmonic maps and approximations thereof on surfaces M> — N
can be accounted for by “bubbling” along harmonic maps from S* — N, so that
variational methods for the energy functional do give rise to a finite collection of
harmonic maps M?> — N and S* — N, which together inherit relevant bounds on
energy and Morse index.

While the work of Sacks-Uhlenbeck led to major improvements in the existence
and compactness theory for harmonic maps from surfaces, the space of harmonic
maps from manifolds of dimension n > 3 into general targets remains rather poorly
understood, due in part to the presence of singularities in harmonic maps arising from
variational methods on higher-dimensional domains (see, e.g., [49]), and—perhaps
more seriously—the more complicated higher-dimensional counterpart of bubbling
for families of harmonic maps and approximations thereof (see [35]); indeed, even
sequences of smooth harmonic maps can degenerate along (n — 2)-rectifiable sets,
and energy loss cannot be neatly accounted for by a finite collection of “bubbles”
as in dimension two. In particular, compactness for harmonic maps and Palais-Smale
sequences for the energy functional fails more dramatically in dimension > 3, making
it difficult to implement min-max constructions in any generality.

The first result of the present paper establishes existence of nontrivial harmonic
maps from arbitrary closed manifolds M" of dimension n > 3 into a large class of
targets N k via min-max methods. In what follows, recall that a map u € WI'Z(M ,N)
is said to be a stationary harmonic map if it is a critical point for the energy functional
in the following strong sense: in addition to solving the weak Euler-Lagrange equa-
tions for E(u), u satisfies ;117 ‘t:O E (u;) = 0 for inner variations u; = u o ®;, where
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t = @, is a smooth family of diffeormorphisms of the domain M, see Sect. 2 for de-
tails. Moreover, recall that the Morse index indg (1) of a harmonic map u : M — N
refers to the index of the second variation E”(u)(v, v) as a quadratic form on com-
pactly supported sections v of the pullback bundle u*T N, and u is said to be stable
if indg (u) = 0; some care is needed in these definitions when u is singular, again see
Sect. 2 for details.

Theorem 1.1 Let (N¥, h) be a closed Riemannian manifold containing no stable min-
imal two-spheres, and suppose wy(N) # 0 for some £ > 3. Then for any closed man-
ifold (M", g) of dimension n > 3, there exists a nonconstant stationary harmonic
map

u: (M", g) — (N*, h)

of Morse index indg(u) < £+ 1 as a critical point of E, smooth away from a set
Y C M" of dimension dim(X) < n — 3. Moreover, if for some m > 3, N¥ admits no
nonconstant stable 0-homogeneous harmonic map v: R"~' — N¥_ then the singular
set ¥ = Sing(u) has dimension dim(X) <n — m.

Here, the condition that N admits no stable minimal two-spheres is meant in the
sense of branched minimal immersions; equivalently (cf. [6]), there exists no non-
constant stable harmonic map S*> — N. In [35], Lin showed that stationary harmonic
maps into targets N carrying no minimal two-spheres satisfy strong compactness and
partial regularity properties (cf. [35, Theorems A and D]); however, it follows from
[48, Theorem 5.8] or [41, Theorem 2] that such targets must be aspherical, and there-
fore unlikely to support a wealth of variational constructions beyond minimization
with respect to a prescribed action 1 (M) — w1 (N) on fundamental groups. By con-
trast, the only obvious topological constraint following from the assumption that N
admits no stable minimal two-spheres is the vanishing of the second homotopy group
m2(N), since [48, Theorem 5.9] shows that m(N) is generated by stable minimal
spheres up to the action of 7 (N).

The significance of the condition that a target N admit no stable harmonic maps
from S? was first noticed by Hsu [22], who observed that stable stationary harmonic
maps to such targets enjoy strong compactness properties and, as a byproduct, opti-
mal partial regularity results analogous to those obtained by Schoen—Uhlenbeck for
energy-minimizing maps [49]. In the special case of maps to S¥ with k > 3, similar
observations were made by Hong-Wang [21] and Lin-Wang [38]. Theorem 1.1 rests
largely on the observation that, under the same assumptions on the target manifold N,
the same compactness and partial regularity results hold for the space of stationary
harmonic maps M — N satisfying a uniform Morse index bound, and similarly for
maps critical for suitable relaxations of the Dirichlet energy—namely, the Ginzburg—
Landau-type energies considered in [2] and [36]. With these analytic ingredients in
place, the harmonic maps of Theorem 1.1 are obtained from a min-max construction
generalizing those studied in [27, 45, 46, 53, 54].

For examples of targets satisfying the hypotheses of Theorem 1.1, note that the
results of [41] show that there are no stable minimal two-spheres in a manifold N kof
dimension k > 4 with positive isotropic curvature. The same is true for 3-manifolds
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N3 of positive Ricci curvature: it is well-known that such manifolds admit no sta-
ble immersed minimal surfaces with trivial normal bundle [51], and consequently no
stable minimal immersions S> — N, since any such immersion can be lifted to one
S? — N with trivial normal bundle on a double cover of N if N is nonorientable.
That the same holds for branched minimal immersions can be seen by a straight-
forward application of the log cutoff trick near branch points, cf. [40, Sect. 3] for
related observations. In particular, while the existence theory for harmonic maps into
negatively curved targets has been well understood since the 1960s [5], Theorem 1.1
and its proof show that the existence theory for harmonic maps into targets satisfying
certain curvature positivity conditions can be fruitfully explored via Morse-theoretic
methods.

Remark 1.2 The simplest example of a target failing to satisfy the hypotheses of
Theorem 1.1 is the standard 2-sphere N = S?, for which any holomorphic or
anti-holomorphic self-map ¢ : S* — S? is stable—indeed, homotopically energy-
minimizing, giving the case of equality in the universal lower bound E(¢) >
47| deg(¢)|. In particular, we note that the methods of the present paper cannot be
used in a direct way to advance the min-max theory for harmonic maps S* — S?
considered by Riviere in [45, 46]. More generally, the complex projective spaces
N = CP™ represent an interesting borderline case where the compactness results on
which Theorem 1.1 relies fail, though the space of stable minimal 2-spheres in N is
well-understood (see, e.g. [52]).

1.2 Harmonic maps to spheres

Of particular interest to us is the case of maps to the standard spheres N = S¥ of di-
mension k > 3. In particular, taking N = S¥ and £ = k in Theorem 1.1 and appealing
to the regularity results of [38] for stable stationary harmonic maps to spheres, we
obtain the following result, giving existence of a canonical family of sphere-valued
harmonic maps from every closed Riemannian manifold.

Corollary 1.3 For any closed manifold (M", g) of dimension n > 3 and any k > 3,
there is a nonconstant stationary harmonic map

up: M" — Sk
of Morse index indg (uy) < k41, smooth away from a closed set ¥ C M of dimension
dmX)<n—-k—-1 if 3<k<S5,
dm(Z)<n—-6 if 6<k<9,
or
dm(Z)<n—-7 if k=10

In particular, if 3 <n <5, then uy: M" — Sk is smooth for all k > n.
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Harmonic maps in higher dimensions 717

A natural question to ask is how these maps u; depend on the dimension k of the
target sphere. The following proposition provides a partial answer, which plays an
important role in applications.

Proposition 1.4 For any closed manifold (M", g) of dimension 3 < n < 5, there exists
ko(M, g) € N such that for any k > ko and any harmonic map u: M — S¥ with

indg(u) <k +1,

there exists a totally geodesic subsphere S0 C S* of dimension ko such that u(M) C
Sho,

1.3 Applications to eigenvalue optimization
1.3.1 Motivation and overview

Let (¥, g) be a closed Riemannian surface and denote by
0=21(Z,8) <A(Z,9) <

its (positive) Laplacian eigenvalues. Fixing a conformal class [g] = {2“g, w €
C°° (%)}, consider the normalized eigenvalue functionals

I (2, 8) i=An(Z, g) Area(X, g).

According to the foundational results of Nadirashvili [42] and El Soufi-Ilias [9], met-
rics critical for A, (¥, g) within the conformal class [g] correspond to harmonic maps
from (X, [g]) to spheres. In recent decades, this observation has proved to be a crucial
tool in the study of the suprema

Am(Z,[8]) = sup in (X, h),
helg]

see e.g. [24, 27, 29, 30, 43, 44]. In particular, 2-dimensional counterparts of Corol-
lary 1.3 and Proposition 1.4 were used in [27] to establish existence and regularity of
metrics achieving A1(2, [g]). These results have since found application to the study
of the Steklov maximization problem on surfaces with boundary [27, 28], and stabil-
ity phenomena for the A|-maximization problem [31]. It is then natural to ask whether
Corollary 1.3 and Proposition 1.4 themselves can be used to study some eigenvalue
optimization problem on higher-dimensional manifolds. Below we describe such a
problem.

A natural way to generalize A, (%, [g]) to higher-dimensional manifolds (M", g)
is to once again maximize appropriately normalized eigenvalues in a fixed conformal
class, studying the suprema

A (M",[g]) := sup Ay (M", h):= sup /\m(M”,g)Vol(M”,g)%.
helgl helg]

However, as is shown in [26], critical metrics for this problem correspond to n-
harmonic maps, the conformally invariant analog of classical harmonic maps, which
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suggests that applications of classical harmonic maps lie elsewhere. The key lies in
reformulating the conformal maximization problem on surfaces. Given a smooth pos-
itive function § > 0 consider the eigenvalues

0=20(X,g.8) <r(X.g. ) <---

associated to the problem

Agf =2Bf,

i.e., the eigenvalues of the weighted Laplacian 8! A ¢- Conformal covariance of the
Laplacian on surfaces implies that if 7 = ¢*“g € [g] and f is a Aj-eigenfunction,
then

Agf =e* Apf =2re*f,

so that A, (X, h) = A (2, g, ez"’) for all m. Therefore, one has that for any surface
3,

An(Z.(gh= sup {Am(z,g,mfzﬂdvg}. (L.1)

0<BeC>®(X)

Moreover, it follows from [14, Proposition 5.1] that one can relax the condition in the
rhsto0< B, B#0.

On manifolds M" of dimension n > 3, the Laplacian is no longer conformally
covariant and equality (1.1) fails. Thus, we introduce the quantities

Vn(M",g)=  sup {)»m(M",g,ﬂ)/Mnﬁdvg}, (1.2)

0 peC>(M™)

which generally differ from A, (M", [g]).

Our first observation is that the quantities V,,,(M", g) in many ways behave sim-
ilarly to A,, (2, [g]). For example, by a well-known result of Korevaar [33] one has
Ap(Z,[g]) < Cm on a surface X. The same method of proof gives V,,(M", g) <
Cm%, see [15, Theorem 5.4]. Another example is the classical Hersch’s inequal-
ity [19] stating that the round metric gg» achieves A1 (S?, [gs2]). We show below that
essentially the same proof can be used to show that V; (S", gs») is achieved by a con-
stant density function. Furthermore, the Laplacian with density appears naturally as
a homogenization limit of the Steklov problem, see [13]. This feature is independent
of dimension and has been used in [13, 14, 28] to relate optimization problems for
Steklov and Laplace eigenvalues on surfaces. Below we outline generalizations of
these results to V,, (M", g). Finally, and most importantly to us, we prove in Proposi-
tion 4.13 that densities critical for A,,(8)[|B||;1 are precisely the energy densities of
classical sphere-valued harmonic maps (M, g) — S¥. This observation provides the
bridge between the results of Sect. 1.2 and the study of the quantities V,,(M", g).
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1.3.2 Existence and regularity of maximizers for V; (M, g)

On a closed surface (X, g), it is shown in [27] that, for the harmonic maps
ui: (T, g) — S given by the two-dimensional analog of Corollary 1.3, the corre-
sponding conformal metrics g = %|duk|§,g maximize A (Z, g) in [g] provided k
is sufficiently large, i.e. A1(X,[g]) = Mz, gi). The following theorem is a direct
generalization of these results to higher dimensions < 5.

Theorem 1.5 On any closed Riemannian manifold (M", g) of dimension 3 < n <5,
for k > k(M, g) sufficiently large, the energy densities e(uy) = |duk|§, of the smooth
harmonic maps uy, constructed in Corollary 1.3 realize V1(M, g). Namely, the com-
ponents of uy are A\ (M", g, e(uy))-eigenfunctions, Ay (M", g, e(ur)) = 1 and

Vi(M, g) =2E (u).

In addition to establishing the existence of smooth densities realizing V1 (M), our
methods also imply that the maximization problem is unchanged if one considers
non-negative densities B € L%(M), or even certain “admissible” measures u for
which the map Wh2(M,g) - L*(M, ) is compact. Furthermore, we are able to
generalize the regularity result of [27] by showing that any maximal admissible mea-
sure has to be smooth, see Theorem 4.6 for details.

1.3.3 Examples and relation to A{(M", [g])

The following theorem provides a basic tool for computing V; (M", g) for some spe-
cial manifolds (M", g).

Theorem 1.6 Let (M", g) be a closed Riemannian manifold, n > 3. Assume that there
exists a minimal immersion u: M" — SK such that the induced metric g, = u* g €
[g]. Then for any density 0 < B € C*°(M") one has

2 n=2
MM", g, B) | Bdvg <n(Vol(M,gy))r Vol(M, g) = .
M"

If (M", [g]) # (SF, [gsk]) or if u is not a conformal automorphism of S¥, then equality
occurs iff the components of u are ,i(M", g,)-eigenfunctions, g = ag, for some
constant a € (0,00), and B =b € (0, 00) is constant. If (M", [g]) = (S, [gsk]) and
u is a conformal automorphism, then equality holds iff g = ag, for some a € (0, 00)
and a (possibly different) conformal automorphism v’ of S¥, and g =b € (0, 00).

Since the identity map Id: S* — S" is a minimal immersion by first eigenfunc-
tions, Theorem 1.6 implies that

Vi(S", gsr) =n Vol(§", gsn),

and the supremum in the left hand side is achieved only for a constant density func-
tion. This is a direct generalization of Hersch’s inequality for the 2-sphere [19].
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720 M. Karpukhin, D. Stern

Furthermore, the same assumption that g, € [g] for some minimal immersion
u: M" — sk by the first eigenfunctions was used in [8] to study A1 (M", [g]), where
it is shown that

A1(M. [g]) =n (Vol(M. g,))7 .

generalizing results of [34] from the two-dimensional setting. Combining this with
Theorem 1.6 we obtain that for each g € [g,]

Vi(M., g) < A1(M. [g,]) Vol(M, g) "7 (1.3)

Finally, we remark that in addition to the identity map on the sphere there are many
other examples of minimal immersions by first eigenfunctions, see [3]. Inequal-
ity (1.3) gives the value V| (M, g,) for the corresponding metrics.

1.3.4 The Steklov problem

One fascinating feature of Laplace eigenvalue optimization on surfaces is its interac-
tion with the optimization of Steklov eigenvalues, see e.g. [13, 14, 27, 28]. Below we
present some analogous results on higher-dimensional manifolds.

Let (2", g) be a compact Riemannian manifold with boundary and 0 < p €
C°(02"). Consider the weighted Steklov eigenvalues

0:00(911’ 8, 10) < O—I(Qnag’ P) <
corresponding to the weighted Dirichlet-to-Neumann problem
Agu=0 in ;
o, =opu on JL2.
Similarly to (1.2) we define
V,‘Z(Q", g) = sup {Gm(Q", g p)/ pdsg} .
0L peC>® (") Q"

If n =2, the problem of finding V,?l (2", g) is equivalent to the classical confor-
mal maximization problem on surfaces, see [26]. For n > 3 this is no longer the
case, but many well-known properties of the 2-dimensional problem continue to hold
for V,% (2", g). For example, in Proposition 4.19 we show that densities critical for
om(p)|lpll ;1 naturally correspond to free boundary harmonic maps. This is a direct
generalization of the 2-dimensional result due to Fraser-Schoen [11], see also [26].
Furthermore, it follows from [14, Theorem 1.12 and Theorem 5.2] that

Vn(M",8)= sup VI(Q", )
S'ZIICMYI

and it follows from our Theorem 4.6 that if 2" C M" and 3 <n < 5 then

VIQ", g) <Vi(M", g),
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which are higher-dimensional counterparts of [14, Corollary 1.5] and [27, Theorem
1.5] respectively.

1.3.5 Negative eigenvalues of Schrodinger operators

The quantities V,,(M, g) can be equivalently defined using the following family of
estimates introduced by Grigor’yan-Netrusov-Yau [15] and refined by Grigor’yan-
Nadirashvili-Sire [16]. On a closed Riemannian manifold (M", g) of dimension n >
3, consider the class of Schrédinger operators Ly of the form

Ly=Ag—V=dd—V,

where V € L% (M). In [15], it was shown that for nonnegative potentials V > 0, the
number of negative eigenvalues \V'(V) is bounded from below by the L!-norm of the
potential, raised to a suitable power; in [16], this was extended to arbitrary potentials,
showing that

N(V)i > C(M, g)/ V dvg (1.4)
M

forany V € L*(M).

In particular, it follows that there is a uniform upper bound on the integral
/, vV dvg of the potential for all Schrédinger operators Ly on (M, g) with a given
upper bound on the index N (V). We show in Proposition 4.1 that

Vin (M, g) := sup { / Vdvg| N(V) < m} )

M
This formulation has some advantages over (1.2), mainly related to the fact that there
is no restriction on the sign of the potential V, see Sect. 4. Thus, all the results de-
scribed above can be equivalently reformulated on the language of Schrodinger op-
erators, see e.g. Theorem 4.6.

1.4 Ideas of the proofs

The harmonic maps of Theorem 1.1 arise from a min-max construction generalizing
those considered in [27, 45, 46], roughly along the lines suggested in the last para-
graph of [53, Sect. 7.1]. More precisely, fixing an isometric embedding N C R of
the target manifold into some Euclidean space R, we consider a Ginzburg—Landau
type perturbation E. : W?(M, RL) — R of the harmonic map problem as in [2] and
[36], and show that there exist nonconstant critical maps u. € C*(M, RE) of Morse
index indg, (ue) < £+ 1 for E,, realizing a min-max energy

Ec(M,g):= inf max E.(uy).
(M, g) P e(uy)

Here, I" denotes the collection of strongly continuous families of maps B! 5 y
uy € W1'2(M , ]RL) parametrized by the closed (£ + 1)-ball B! such that the re-
striction to the boundary sphere S* = dB‘*! has the form

SeayHu},Ef(y)eN,
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for some homotopically nontrivial map f: S* — N. Building on the analysis of [36],
we establish lower-semicontinuity properties of the Morse index for critical points
of E. in the limit ¢ — 0, and argue that if N has no stable minimal two-spheres,
then no energy is lost in the limit, and the min-max critical points u. of the perturbed
functionals converge strongly in W2 as € — 0 to stationary harmonic maps u €
Wh2(M, RL) of Morse index indg (1) < £ + 1. Observing that these harmonic maps
u must be locally stable near each point, we then appeal to the results of [22] to obtain
the refined partial regularity statement for these maps.

The proof of Theorem 1.5 shares many features with the proof of the analogous
result for surfaces in [27]. As in the 2-dimensional setting [27], the bound V| (M, g) <
2E((uy) follows in a fairly straightforward way from the min-max characterization
of the maps u; in Corollary 1.3, so to establish the equality Vi (M, g) = 2E (uy),
the main challenge lies in showing that the Schrodinger operator A — |d uk|§ has
only one negative eigenvalue for k sufficiently large. And as in [27], to prove that
N (|duy |§) = 1, we first argue that the maps stabilize as k becomes large, in the sense
of Proposition 1.4.

The key difference in the higher-dimensional setting is in the formulation and
proof of Proposition 1.4. While the two-dimensional stabilization result relies only
on the uniform energy bound sup; E (u;) < 0o as k — oo, the stabilization on higher
dimensional domains follows from the Morse index bound indg (u;) < k + 1. In par-
ticular, by combining and refining arguments of [7, 50], and [38], we show under the
assumptions of Proposition 1.4 that the harmonic maps uy : M" — SF satisfy L gra-
dient bounds ||dui| ;¢ < C independent of k, giving rise to compactness properties
on the space of associated Schrédinger operators, from which the desired stabilization
follows.

1.5 Discussion

In view of the connection to harmonic maps, it would be interesting to understand
the existence theory for densities achieving V), (M, g) with higher index m > 2. For
m = 2, one can approach the question by extending the min-max construction of [27,
Sect. 4] to higher-dimensional manifolds; indeed, for n > 3, it is not difficult to show
that this construction gives rise to harmonic maps uy: M" — Sk with 2E (ug) >
W2(M, g) and index indg (ux) < 2k + 2 (in contrast to dimension n = 2, where a
priori the min-max construction gives rise to a bubble tree for each k). However, the
stabilization arguments from the proof of Theorem 1.5 rely heavily on the asymptotic
behavior limsupy_, ., mdg% < 1 of the Morse index, and therefore do not carry
over in a straightforward way to the case m = 2. Indeed, it is quite possible that in
general there is no density realizing V,, (M, g) for m > 2, generalizing non-existence
phenomena for conformal maximizers of higher Laplace eigenvalues 1, on surfaces.

More generally, with the basic analytic ingredients from the proofs of Theorems
1.1 and 1.3 in place, one can begin to ask more sophisticated questions about the
space of harmonic maps from an arbitrary closed manifold into higher-dimensional
spheres and other targets containing no stable minimal two-spheres. For instance,
how many geometrically distinct harmonic maps can one find between a given closed
manifold and the standard sphere S¥ of dimension k > 3? Under what conditions on
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Harmonic maps in higher dimensions 723

the domain M and target N can the a priori partial regularity of the maps in Theo-
rem 1.1 be improved? And to what extent can one relate the existence of harmonic
maps with low Morse index from higher-dimensional manifolds into certain targets
N to other interesting geometric or topological features of N, as has been done for
harmonic maps from the 2-sphere [41, 52]?

2 Existence and partial regularity of min-max harmonic maps

Let (M", g) be a closed Riemannian manifold of dimension n > 3 and let (N*, h)
be another closed manifold of dimension k£ > 3. Appealing to Nash’s embedding
theorem, we fix an isometric embedding

N Cc R,

identifying N henceforth with a submanifold of some high-dimensional Euclidean
space RZ. Denote by Il the (vector-valued) second fundamental form for N  RE,
defined by the convention

Iy (X,Y)=(DxY)",
where D is the usual Levi-Civita connection on R and X, Y are tangent fields X, Y €
I['(TN).

A smooth map u: M — N is said to be harmonic if it is a critical point of the
energy functional

1 2
E):= B /M |du|gdvg

within the space of maps C*°(M, N). Equivalently, u € C°°(M, N) is harmonic if
and only if it satisfies the equation

Agu + (T(u), du*du) =0, @.1)

where we write

L
du*du = Zdui Qdu',

i=1

and denote by A, the positive Laplacian A = d*d. An important consequence of
(2.1) for u € C*°(M, N) is the fact that the stress-energy tensor

1
T, := E|du|§,g —du*du
is divergence-free, or equivalently

1
/M 3 |du|3div(X) — (du*du, DX) dvg =0 (2.2)
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724 M. Karpukhin, D. Stern

for every tangent vector field X € I'(T M). Variationally, the condition (2.2) derives
from the criticality of u for E with respect to variations of the form u; = u o &,
where @, € Diff(M) is a family of diffeomorphisms with ¢ = Id.

The second variation of energy E”(u) at a harmonic map u: M — N defines a
quadratic form on the space

TW*TN)={veC®M,R) [v(x) € T,,)N}

of sections of the pullback bundle of T N. There are several ways to write E”(«) in
terms of the extrinsic or intrinsic geometry of N C R%; for our analytic purposes in
this section, we simply note that

E"(u)(v,v) = / ldv|*> — ((Iy (), du*du), My (u) (v, v)) dvg. (2.3)
M

In general, harmonic maps arising from variational constructions may be non-
smooth, so it is necessary to extend these notions to maps which a priori lie only in
the Sobolev space

WL2(M,N) :={ue W2 (M, RY) | u(x) € N forae. x € M}.

A map u € WH2(M, N) satisfying (2.1) weakly is said to be weakly harmonic. Im-
portantly, the maps we construct in this section will also satisfy the inner variation
equation (2.2); a map u € wi2(Mm, N) satisfying both (2.1) and (2.2) in the weak
sense is known as a stationary harmonic map to N.

For a weakly harmonic map u € W12(M, N), the second variation (2.3) remains
a well-defined quadratic form on the vector space

V(u) :={v e [W'2 N LM, RE) [v(x) € Ty N ae. x € M},

which we can view as a closed subspace of (W12 N LM, RE). We define the
Morse index ind g (1) of a weakly harmonic map u: M — N to be the index of E” (u)
as a quadratic form on V(u); i.e.,

indg (1) :=max{dimV | V C V(u), E”(u) negative definite on V}.

It is sometimes convenient to refer to the index indg (u; €2) of u on a given domain
Q C M; by this we simply mean the index of E” (i) restricted to variations supported
in Q-i.e.,

indg (u; Q) == max{dim V | V C V(u) N W, *(2,RE), E" )|y <O0}.

A harmonic map u: M — N is said to be stable if indg (1) = 0, and we say that u is
stable in a given domain 2 C M if indg(u; Q2) = 0. We will say thatu: M — N is
locally stable if every point p € M has a neighborhood U > p on which u is stable.
For smooth harmonic maps, note that we can replace V(u) with the space of smooth
sections ['(u*T N) in all these definitions, since in that case any v € V(u) can be
approximated in W'-? by smooth maps v ;€ C®(M, RL), to which we can apply the
projection Pr, N Vj (x) to obtain smooth approximations v; € I'(u*T N) for which
E"(u)(¥;,0;) = E"(u)(v,v) as j — oo.
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2.1 Theregularized min-max construction

The proof of Theorem 1.1 is based on a min-max construction generalizing those
studied in [27, 45, 46, 53]. As in those cases, rather than attempting to apply
variational methods directly to the Dirichlet energy on the highly nonlinear space
W1’2(M , N), we consider a regularized construction based on the Ginzburg-Landau
type functionals studied in [2, 36], whose definition we recall below.

We continue to view our target (N*, i) as an isometrically embedded submanifold
N C R” in some large-dimensional Euclidean space. Fix a positive number 8o(N) >
0 such that the squared distance to N

d%: Bs,(N) > R
is smooth on the §y-neighborhood Bj,(N) C R’ and the nearest point projection
IT: Bs,(N) —> N

is smooth and well-defined. Let Ry > do be a large radius such that N C Bg(0).
Now, fix a smooth potential function W : RE — [0, o0) such that

W (a) = d3 (a) for a € Bs,2(N),
W (a) = |a|* for a € RE\ Bg,(0),
and

82
+ SW(@ < RG on Bry(0)\ Bsy o (V).

Note that we then have

Wi(a)
TSy

< Cq for some constants 0 < ¢; < C| < 00. 2.4)

Following [2], we then define a family of energy functionals
Ec: W' (M, R - R
by

1 W(u)
Ecw):= | =|du)?>+ —=dv,, 2.5
() /Mz' o+ g g 2.5)

whose critical points satisfy the Euler-Lagrange system

DW ()

Au +
€2

0. (2.6)

For potentials W (1) of the form given above, it is easy to check that weak solutions
u € Wh2(M, RL) of (2.6) are always smooth.
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Now, given a homotopically nontrivial map f: S¢* — N, we define a collec-
tion I'y C COBH, wl-2(M, RL)Y) of continuous families of maps in wi2(Mm,RL
parametrized by the closed unit (£ + 1)-ball by

Fpi= (B! 5 Yy uy € wh2(Mm, Ry | uy= f(y)forye s4).
Then define the associated min-max energy

Ere:= inf max E.(uy).
(uy)ely yeBt+!

It is straightforward to check that £¢ =&y . if f >~ f’, so that the construction de-

pends on f only through its homotopy class—and, it should be noted, maps of distinct

homotopy types can also give rise to the same min-max construction. In what follows,

it is convenient to fix f € C*°(S¢, N) to be a smooth representative of its homotopy

class (which can always be obtained, e.g., by perturbing a given C? representative to

a smooth RZ-valued map and composing with nearest-point projection to N).
Observing that £ is a decreasing function of €, we define

Er(M, g) 1=€1ig})5f,e(M, g)=sup&rc(M,g).

e>0

As a first step to ensure that £7(M, g) could be realized as the energy of some non-
constant harmonic map, we need to check that 0 < £¢(M, g) < oo.

Lemma 2.1 The limiting energy £ =lim._,o £y, satisfies the lower bound

Er(M, ) > %50(1\7)2 Vol(M)A (M, g) > 0. Q.7

Proof Given a family B‘*! > y > u, € WH2(M,RL) in ', observe that the map
o: B 5 RE

given by taking averages

1
ay) = Vol (M) /M uydvg

cannot have image contained in the tubular neighborhood Bs,(N). Indeed, if we did
have a(B‘t!) Bs,(N), then by postcomposing with the nearest-point projection
Iy : Bs,(N) — N, we would obtain a map

l'INoa:IB%lH—)N

continuously extending the map f = a|ge: St — N to the ball B!, violating the
assumption that f is homotopically nontrivial.
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Thus, for any family (u,) € "7, there must be some y € B‘*! for which

1
=— d Bsy(N).
a(y) VO](M)_/Muy Ug¢ 50 (N)
For this y, the triangle inequality gives the pointwise inequality

8o <dn(a(y)) <dn(uy) + luy —a(y)l,

and integrating over M gives

8o(N) Vol(M) < /MdN(uy)dvg + /M luy —a(y)|dvg
12
< Vol(M)'/2 ( / dN<uy>2dvg) + Vol(M) ' uy — (3 2

1/2
< Vol(M)'/? (f C]W(uy)dvg> + Vol(M)' 20 (M, &)~V |\ dul 2,

where in the final line we’ve used (2.4) and the Poincaré inequality
MM, Q) luy — a7, < lldull7,.
Recalling the definition of E, we then see that
1/2 1/2 1/2 -1/2 1/2
So(N) Vol(M)'/= < C\""€Ec(uy) /> + 11 (M, 8)~ /7 (2Ec(uy)) ",

and since the family (u,) € I' f was arbitrary, it follows that

So(N) Vol (M) /2 < (Cll/ze 2/ M, g)) £}z,

Squaring both sides and taking the liminf as € — O then gives

2

So(N)2Vol(M) < ——— &,
o(N)” Vol(M) (M. 2) f

as desired. O

Lemma 2.2 There exists C > 0 independent of € > 0 such that
gf,é (Mv g) < C

forall e € (0, 1). In particular, Er (M, g) < 00.

Proof To prove the desired upper bounds, it suffices to produce a single family (i) €
I"  for which the energy E. is uniformly bounded independent of ¢, i.e., a continuous
assignment B! — W1-2(M, N) satisfying u, = f(y) for y € dB*"!. Note that the
existence of such a family requires n > 3 and £ > 2, and such a continuous family
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cannot exist in the C° topology on C°(M, N), since evaluating at a point p € M
would then give an extension B‘+! 5 y uy(p) € N of f to B!, contradicting
[f]# 0. There should be many ways to construct such a family; here we follow a
construction similar to that of [54, Sect. 3], beginning with the following claim.

Claim 2.3 Let F : M" — R be a Lipschitz map such that
Vol(F~'(Bs(y)) < €8 2.8)

for all 8 € (0,1) and y' € R\, Then, defining py : R*! — St by py(2) :=
+=lyD~y
lz+(1—[yD~ Tyl
vy = py o F defines a continuous family in COBEL, wl2(m, SY).

for |yl <1 and py(z) =y when |y| =1, the assignment B! 5 y >

Proof First, since F : M" — R*! is a fixed Lipschitz map and p, defines a smooth
map on REF1\ {y’}, where y" := —(1 —|y|) !y, the composition vy = py o F defines
a locally Lipschitz map on M \ F~'{y’}, and the chain rule

dvy =dpy(F)-dF

holds on M \ F~'{y’} both in the weak sense and pointwise almost everywhere. In
particular, on M \ F -1 {y’}, it follows that

ldvy| < Lip(F)|dpy(F)| < Lip(F) - |[F —y'| ™!,

while (2.8) and an application of the layercake formula gives

o0
/ |F—y’|‘1’=/ pt P Wol({|F — y'| < t))dt
M\F~1{y"} 0

1 o0

< / Cpt>~ P~ ldr + / pt P WVol(M)dt
0 1

<Cp

for all p €[1, 3), so that
/ ldvy|P < C,Lip(F)P.
M\F~1{y}

By another application of (2.8), one can observe that dvy, € L?(M) globally—that is,
the distribution dv, has no singular component supported in F ~1{y'}. To see this,
note that for any Lipschitz R¢*!-valued vector field X on M, we can decompose

X=Xi+Xo:=y(F -y DX+ (A -y(F -y)HX

where v (t) =1 fort <§/2, % =0 fort > 8, and |'| < C/8. Since X is supported
in M\ F~'{y’} with 1 X2l Lamy < X Lacam), it follows from the preceding obser-
vations that

/ <vy7diU(X2)> < ”de”LI’(M\F—l{y})”X”Lp’(M)
M
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where p’ is Holder conjugate to p; meanwhile, since X is supported in F~1(B;s(y")),
we can use (2.8) to see that

/ (vy, div(X1)) </ loy (W' (IF = y'DLip(F)[1X| + |div(X)])
M F=1(Bs(y))

ClIX Iy VOl (F (Bs(y))) - (67" + 1)

<
<X |lyr.082,

so summing the preceding estimates gives

/M (vy, div(X)) < ldvy Lo p-1 o IX Lt agy + CIX e 82,
and taking § — O gives the desired global estimate
ldvyllLrmy < CpLip(F) (2.9)

for every p € [1, 3).

Now, fix yo € B!\ S, and consider a sequence yj —> Yo; fixing a small § >
0, on the complement of F~1(Bs (y(’))), it’s easy to see that vy, — vy, in C° and
dpy; o F — dpy, o F in CY, so that dvy; — dvy, in an L sense. Combining this
observation with (2.8), (2.9), and the fact that |v, | = 1, this gives us the estimate

: 2 2
hmsup/ [vy; — vyol” + [dvy; —dvy|” =
M

j—o0
limsup/ lvy; — vyol2 + lim sup/ ldvy; — dvyo|2 <
F=L(Bs(yp)) F=L(Bs(yp))

4Vol(F~ (Bs(y)))) + lldvy, — dvyy 1752 - Vol (F ' (Bs(yp)))'/° <

C18% 4+ 83,

and taking § — 0, we conclude that vy, — vy, in wl2(M,SY), giving the desired
W1-2_continuity of the family y vy in the interior of B

In the case where y; — yo with [yo| = 1, simply observe that py, — yo in
C 110 . (R, and since F(M) c R**! is a compact set, it follows immediately that
py; o F'— py, o F =yoin Lip(M, SY), and therefore in W12(M, St) as well, com-
pleting the proof of the claim. g

Now, fixing f € C*(S*, N) a smooth representative of the nontrivial homotopy
class in question, given a map F € Lip(M, R**1) satisfying the hypotheses of Claim
2.3, it follows that the family

B sy uy=fopyo Fe WM, N)
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defines a W!-2-continuous family such that uy = f(y) fory e S¢. In other words,
(uy) € IT'yp, with W(uy) =0, so that

Ere(M,g) < max Ec(uy) = max / lduy|? < oo,
yeBH'l yeIB%“’l M
and taking € — 0 gives £7(M, g) < oo.

It remains to show the existence of a Lipschitz map F : M — R‘*! satisfying
the hypotheses of Claim 2.3, namely the volume bounds (2.8). By classical results
on triangulations (see, e.g., [55]), there exists a finite simplicial complex K in some
Euclidean space R™ (take m > £ + 1, without loss of generality) and a bi-Lipschitz
map

®: M — |K|

from M to the underlying space || of K. Note that for a given n-dimensional sub-
space V C R™ and a generic (¢ 4+ 1)-dimensional subspace IT C R", the projection
P: V — IT has full rank dim(P (V)) = min{n, £ 4 1}. In particular, for the finite sim-
plicial complex /C, by projecting onto a generic (£ + 1)-dimensional subspace of R™,
we can find a linear map

P:R"™ — R

such that the restriction of Pp := P|a to each n-simplex A € X has maximal rank
min{n, £ + 1}. For n < £ 4 1, this means Pa has the form of an injective linear map,
from which we easily deduce that

H'(P~H(Bs(y) N A) < C(A)S" < C(A)S,

since n > 3. For n > £ + 1, that P has rank £ + 1 implies that each fiber PA_I{y’} is
given by the intersection of A with a (n — £ — 1)-dimensional subspace, and a simple
application of the (linear) coarea formula gives

H'(P~H(Bs(y) N A) < C(A)ST < C(A),

since £ > 2. In either case, summing over the finite collection of n-simplices in K,
we deduce that

H'(P~'(Bs(y) NIK]) < €8,
and letting
F:=Pod:M— RH!

be the composition of P : |K| — R‘*! with the bi-Lipschitz identifiation & : M —
|KC], it follows that F' satisfies the hypotheses of Claim 2.3, completing the proof of
the lemma. g

Next, to ensure that the energies £ (M, g) are actually achieved by critical points
of E, we observe that the energies E, are sufficiently regular functionals satisfying
a Palais-Smale condition.
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Proposition 2.4 The functionals E¢ : WL2(M,RLY - R are C2, with first and sec-
ond derivatives

(EL(u).v) = / (du,dv) + € HDW (u), v) dvg
M
and

E!u)(v,v) = / ldv|?> + € "2(D*W (u), v ® v) dvy,
M

where D*W denotes the Hessian of W . The operator associated to E " (u) is Fredholm
at any solution u of (2.6). Moreoever, E. satisfies the Palais-Smale compactness
condition: for any sequence uj € W2(M, RL) such that

supEc(uj) <oo and  lim |E ()|l w12 =0,
j J—00

there exists a subsequence converging strongly in WH2(M,RE).

Proof Most of the statements can be checked by direct computation; the proof of the
Palais—Smale condition, though standard, is less trivial, so we include it for the con-
venience of the reader. To verify the Palais—Smale condition, let u; € wh2(Mm,RL)
be a sequence satisfying E.(u;) < C and

'/ (duj,dv)+672(DW(uj),v)dvg <djllvllwez (2.10)
M

for some sequence §; — 0. Since the potential function W (a) agrees with |a 2 outside
of a compact subset of R”, it is easy to see that boundedness of E. (u;) implies
boundedness of ||u;|ly12, and therefore we can find a subsequence (unrelabelled)
and amapu € W1-2(M, RL) for which

u; — u weakly in WI’Z(M, R%) and strongly in L2(M, REY.

Since energy is lower semi-continuous under weak convergence, we have
lim / ld(u —u;)|* = lim / ldu|* + |du;|* — 2(du, du;)
J—>00 J—>00
< lim 2/(|duj|2 — (du,du;)),
J—0o0
so to show that u; — u strongly in W1-2(M, RL), it suffices to show that

lim [ |du;?> = (du,du)dvg =0. @2.11)

J=oo M

To this end, note that u; — u is bounded in wb2 so taking v =u; —u in (2.10) gives

lim | |du;|* — (duj,du) + e >(DW(u;), u; — u)dvy =0.

J=7o M
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Moreover, we know that DW (u ;) is bounded in L? and u; —u — 0 in L, so

lim [ e 2(DW(u;),u; —u)dvg=0

j—=oo Sy
as well, and (2.11) follows. Il

With the preceding ingredients in place, standard results in critical point theory
(see, e.g., [12, Chap. 10]) imply that the min-max energies £y, are indeed achieved
by critical points with Morse index bounded above by the number of parameters in
the construction.

Proposition 2.5 For each € > 0, there exists a critical point uc: M — RL for E, of
Morse index indg, (ue) <€+ 1 and

Ec(ue) :(‘,’f’e(M, g).

Note that nowhere in the preceding subsection have we invoked any assumptions
on the geometry of the target N, beyond the topological condition that m¢(N) #
0. The assumption that N admits no stable minimal two-spheres enters in the next
section, where it plays a crucial role in ensuring strong compactness as € — 0 for
families of critical points u, of E. like those given by Proposition 2.5.

2.2 Convergence to stationary harmonic maps

The goal of this subsection is to prove the following compactness result, showing
that families of critical points u. of E. like those given by Proposition 2.5 converge
strongly to stationary harmonic maps as € — 0, provided N satisfies the crucial hy-
pothesis that every stable harmonic map ¢: S*> — N is constant.

Theorem 2.6 Let (M", g) be a closed Riemannian manifold of dimension n > 3 and
N* c RL a closed manifold of dimension k such that every stable harmonic map
¢: S* — N is constant. Let u¢c: M — RE be a family of critical points for E. with
Ec(ue) < C <ooandindg, (ue) < Ip <00 as € — 0. Then u. converges strongly in
W2 t0a stationary harmonic map u: M — N of Morse index indg (u) < .

Under the stronger condition that N' admits 7o nonconstant harmonic maps S? —
N, we could appeal directly to [36, Theorem A, Corollary B] to deduce the strong
convergence of the critical points u, to a stationary harmonic map. In this case, how-
ever, my(N) = 0 for every £ > 3, so one cannot produce nontrivial families of critical
points via the methods of the previous section. To prove Theorem 2.6, we revisit the
analysis of [36] of possible energy concentration for the maps u., observing that the
added assumption of bounded Morse index allows us to rule out energy concentration
more generally in the absence of stable harmonic maps S* — N.

As in [36], the first ingredients needed to begin the blow-up analysis are the mono-
tonicity formula and a small-energy regularity theorem for solutions of (2.6), which
we recall below; here, e (1) = %|d u |2 + @ denotes the integrand in the definition
of Ec(u).
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Lemma2.7 Letu: M — RE be a critical point for E.. Then on geodesic balls B, (p)

of radius r < inj(M), we have
2 2 W ()
+ - 2 3
rJB.(p) €

d
—_ (eCrZVZn / eg (u)) > eCr2r27n /
dr B.(p) 3B, (p)

where v, denotes the gradient of the distance function dy to p, and C = C(n,k) is a
constant depending on the geometry of (M, g) only through the dimension n = dim M
and a sectional curvature bound k > |sec(M, g)|.

u
ovp

Lemma 2.8 There exist constants C(N,n, k) < 0o, no(N, n, k) > 0 depending only
on the target manifold N C REL, the dimension n = dim M, and a sectional curvature
bound |sec(M, g)| < k, such that ifu: B,(p) — N solves (2.6) on a ball By, (p) C M
with 2r < min{inj(M, g), 1}, and

r* " Ec(u; Bar (p)) < 1o,

then rzee(u) < 1on Byjpa(p).

Though both the monotonicity and small-energy regularity results are well-known
to experts—perhaps in a slightly different form—we include proofs in the appendix for
the convenience of the reader.

Next, we recall the main result of [36], which shows that families of critical points
ue of E¢ with bounded energy exhibit limiting behavior as € — 0 similar to that of
stationary harmonic maps, as described in [35]. Technically speaking, their results
don’t apply directly to the functionals E, as defined in the previous subsection, since
in [36] the potential W (a) is taken to be constant outside a tubular neighborhood of
N, while we choose to set W (a) = |a|? outside of a compact set (simply for conve-
nience in formulating the Palais-Smale property); however, it is easy to check that
this has no effect on the analysis, since the potentials W (a) agree on a tubular neigh-
borhood of N.

Theorem 2.9 (Lin, Wang [36, 37]) If uc: M — R is a family of critical points for
E. with Ec(u¢) < C, then there exists a weakly harmonic map u € WbL2(M,N) and
a closed, (n — 2)-rectifiable set ¥ C M such that, after passing to a subsequence,

Ue —> U in Cﬁi(M \ ) and uc — u weakly in wbh2(M,RL), and the discrepancy
measure

1
v:=lim ec(ue)dvg — —|du|2dvg
e—0 2
has the form
v=0x)H" 2| =.

Remark 2.10 More precisely, after passing to a subsequence €; — 0 for which we
have the weak convergence ue — u in W2 and e, (ue)dvy —* %|du|2dvg + v in
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(C%*, T is defined as the set of points x € M for which
2—n 1
hm 1nf11m 1nfr E.(u; B, (x)) > 770,

where 1o > 0 is the constant from Lemma 2.8.

The analysis of [36, pp. 406—408] shows that if v 7 0, then one can find xg €
spt(v) C X, a sequence of scales sc — 0 (corresponding to r; - §; in the notation of
[36]), and a sequence of points x, — xg (corresponding to xo + r; - (y;, p;) in [36])
such that (after passing to a subsequence) the rescaled maps

iic: R" — RE
given by
Ue(y) = e (expxe (y/s€))

converge in Cj (R") to amap it: R" — N of the form (up to rotations)

u(xy, ..., xp) =¢(x1,x2),

where ¢: R* — R’ is a smooth map satisfying one of the following: if £ — 0,

then ¢ : R> — N is a nonconstant finite-energy harmonic map; if < — €0 >0, then
€

¢ : R? — RL is a nonconstant finite-energy critical point for E,; and if é — 00,

then ¢ : R?> — R is a nonconstant L-tuple of finite energy harmonic functions. The
third case is obviously impossible by the classical Liouville theorem for harmonic
functions, and the second case is also easy to rule out by an application of Lemma
5.2 (cf. [36, p. 403]).

Thus, in this situation we must have £ — 0, and ¢ : RZ — N is a nonconstant
finite-energy harmonic map, which by the classic removable singularities theorem
[48, Theorem 3.6] can be identified with a smooth harmonic map ¢ : S> — N up to
stereographic projection.

In addition to the analysis of [36], another key ingredient required to prove The-
orem 2.6 is the following lemma, establishing lower semi-continuity of Morse index
for a family of critical points u. of E satisfying the hypotheses of Theorem 2.6.
Note that the two-dimensional analog of this result in the case N = S* [27, Lemma
3.6] plays an important role in the min-max characterization of extremal eigenval-
ues on surfaces, while the analog for Sacks-Uhlenbeck perturbations of the harmonic
mapping problem features crucially in Micallef-Moore’s proof of the sphere theo-
rem [41]. Recently, there has been also been progress on the problem of upper semi-
continuity of Morse index in the context of bubble-converging sequences of maps on
surfaces, see [4, 20].

Lemma2.11 Letu. € C®(M,RL) be a family of critical points for E. with Ec(u.) <

C and indg, (ue) < Io. Then the weakly harmonic map u € WL2(M, N) in the con-
clusion of Theorem 2.9 has Morse index indg (u) < Iy, in the sense that any vector
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subspace
VCwelW'2NL®|(M,RE) | v(x) € TN for ae. x € M)

on which
E"(u)(v,v) = / |dv]? — (M () (du(e;), du(e), Uy () (v, v)) dvg
M
is negative definite must have dimension dim(V') < Iy.

Proof Letu € W2(M, N) be the weakly harmonic map arising as the weak limit of
the critical points u. € C*°(M, RL), and let

VCive[W2NL®)(M,RE) | v(x) € TyN forae. x € M)

be a finite-dimensional subspace on which E”(u) is negative definite. Since V is
finite-dimensional, we can then find 8 > 0 such that

E"(u)(v,v) < —B([[v]7 + ldv]|3,) forall v e V. (2.12)

By Theorem 2.9, there exists a closed, (n — 2)-rectifiable set ¥ C M such that
the convergence u — u is C* on any compact subset of M \ X. We argue next
that without loss of generality the space V of energy-decreasing deformations can be
taken to have support in M \ X. To see this, first note that by a standard application
of the Vitali covering lemma, the r-neighborhood B, (X) of ¥ can be covered by a
collection of balls Bs,(x1), ..., Bs,(x¢) such that the balls {B, (xl-)}f: | are disjoint;
by the characterization of X described in Remark 2.10, we have

@ n—2

/ ec(ue) = r s
Br(x) 2

for € sufficiently small, which together with the disjointness of the balls B, (x;) im-
plies that

4
-2 Z/ ee(ite) < Eeue) < C.
i (%)
i=1

Hence, ¢ < %—grz’”, and it follows that
Vol(B,(£)) <Y Vol(Bs,(x;)) < LCr" < C'r?. (2.13)

j=1

Using (2.13), for any é € (0, 1), standard computations show that the logarithmic
cutoff function ¢ supported in Bs(X) given by

¢s =1o0n By (X)
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and
log(disty (x)/8)
py(0) = DEISEDO) g5\ Bp(s)

log(é)

satisfies an estimate of the form
Cc(X®)
desll?, < : 2.14
ldgsll; 2 Togo] (2.14)

Writing Y5 = 1 — ¢s, define
Vs:={ysv|veV}

so that supp(v) C M \ Bs2(X) for every v € Vs. Since V is finite-dimensional and
Ys — 1 as § — 0, it is easy to see that dim(Vs) = dim(V) for § sufficiently small.
Moreover, for every v € V, we have

E"(u) (Y50, Y5v) — E"(u) (v, v) <

</ |v|2|d¢s|2+2|dv||v||d¢>s|dvg+||11N||ioo(m/ |du|?|v]* dvg
M Bs(%)

||v||Loo||dv||Lz+C||v||%mf \dul? dv,.
Bs (%)

< et
S —— ||V 0 ppy——
[logs| " "*7 " (/Tlogd]

Now, since u € W12, certainly lims_, ¢ fB,g(E) |du|2 =0, and it follows from the pre-
ceding computation that

E" @0, Y50 < E" @0, 0) + 5 (ol + vl

for all v € V for § > O sufficiently small. Together with (2.12), this gives
" _ é 2 2
E"(u)(v,v) < > (lvllzee + lldvll; ) for all v € Vs (2.15)

for § > 0 sufficiently small. For the remainder of the proof, let us fix some § > 0 for
which (2.15) holds.

On the domain 2 = M \ Bs (%), we have smooth convergence of the maps u. €
C>®(2, RL) to the strongly harmonic map u € C*($2, N). For € > 0 small enough, it
follows that, on €2, u, takes values in a tubular neighborhood of N where the potential
W is given by dy (-)2, so that

DW (ue) =2dn (ue)(Ddy) (ue) (2.16)
and, by Lemma 5.1 in the appendix,
|D*W (ue) — 2P (ue) + (2dn (ue)(Ddy) (ue), B(ue))| < CW (u). 2.17)

Here we use the notation of Sect. A.1, where P (i) € End(R%) denotes the projection
onto the tangent space Trjy )N C RE of the nearest point Ty (u¢) to ue in N,
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PL(uc) =1 — P(u.) denotes the projection onto the complement, and B(u.) is the
RZ-valued two-tensor given by

B(ue)(v, w) := Iy (I (ue)) (P (ue)v, Plud)w).
Define now a linear map 7¢: Vs — (W12 N L] (M, RE) by setting
(Tev) (x) = ve (x) := P(ue(x))v(x)

(and ve = 0 on By (X)), where the purpose of applying the projection P (u¢) is to
annihilate the P (u.) term in (2.17) when computing E (u)(ve, ve). Since v(x) €
Tu)N fora.e. x € M, it’s easy to see that

ve — vin [W'? N L®| (M, RE)
as € — 0, and the space

Vs,e =Te(Vs)

has dimension

dim(Vs,¢) = dim(Vs) = dim(V)

for € sufficiently small.
For every ve = T, v in V; ¢, we clearly have PL(u)ve =0, s0 by (2.16) and (2.17),

|D>W () (ve, ve) + (DW (ue), B(ue)(ve, ve))| < Cdy (u)?|ve .
In particular, it follows that
E/ (1) (ve, ve) = /Q (dve? + €2 D*W (ue) (ve, ve) dvg

_ dy (ue)?
g/ (|dve|2_<€ 2DW(ue),B(ue)(ve,ve))) dvg+/ cN 26 |v€|2dvg
Q Q €

dy (ue)?
</ (1dve? + (Aue, B we, vo)) dvg+C||ve||%oo/ T dug,
Q Q €

where in the last inequality we have used the fact that u. solves
Auc+ € 2DW(u.) =0.

By the smooth convergence u¢ — u on 2, the W12 N L> convergence v, — v and
harmonicity of u, it follows that

lim E/ (ue) (ve, ve) <
e—0

d 2
</(|dv|2+<Au,HN(u)(v,u)>)dvg+C||u||ioo lim/ N(”f) dv,
Q e—0Jq €
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=/Q(|dv|2— (Iy (u)(du(e;), du(e;)), Uy (u) (v, v))) dvg

2
+Clvl3e hm/ v 6) dv,
2
= E"(u)(v,v) + C|v[|2= llm/ N(ue) dvg
B N(u )?
<- (||v||Loo+||v||W12)+C||v||Loo lim < dv,

Finally, observe that
2¢ 2dy(ue) = le 2DW (ue)| = |Auc|

on €2, and since u — u in C°(2), it follows that

d 2 1
limf N (ue) :limf —dy(ue)| Aue| =0
€2 e—0Jq 2

e—=0Jq

Thus, for € > 0 sufficiently small, we must have

g
E{ ) (ve, v) < = (IvelFo + el )

forall v e Vy.
In other words, for € sufficiently small, E” (u.) is negative definite on the space
Vs.e, and therefore

dim V =dim Vs =dim V5 < indg, (),
from which the desired index bound

indg (1) < hm 1nf1ndE (ue)

follows. O

Remark 2.12 Like the analysis of [36], Lemma 2.11 can easily be localized. In par-
ticular, let Q" be a compact manifold with boundary, with a smoothly converging
family of metrics g — g, and consider a family of critical points u: (2, g¢) — RE
for E¢ g, with E¢ g, (ue) < C and indg, e (ue) < Iy (where the index is defined with
respect to compactly supported variations in €2). Then the maps u, converge weakly
in W2 to a weakly harmonic map u € WI’Z(Q, N) of Morse index indg (1) < I
with respect to compactly supported variations in €2.

The final ingredient needed to prove Theorem 2.6 is the following observation,
showing that the harmonic maps S*> — N arising along the energy concentration set
as in Remark 2.10 must be stable if the maps u. have (locally) bounded index as
critical points of E. This should be compared with the main observation of [22],
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where a similar conclusion is reached in the setting of stable stationary harmonic
maps.

Lemma 2.13 Let ¢: R?2 — N be a finite-energy harmonic map such that, for some
n > 3, the harmonic map u: R* — N given by u(xy, ..., x,) = ¢ (x1, x2) has finite
Morse index. Then ¢: R* — N is stable, and in particular can be identified with a
stable harmonic map ¢: S* — N.

Proof Identifying R? with S? \ {p} via stereographic projection, suppose, to the con-
trary, that the harmonic map ¢: S? — N is unstable. Then there exists a smooth,
nonzero vector field v € C®(S2, RL) with v(x) € Ty (x)N for which E” (¢) (v, v) <O0.
As in the proof of Lemma 2.11, we can use a logarithmic cutoff function (with p
playing the role of X) to perturb v to a new field v € C2° (S%\ {p}, RL) for which the
second variation E”(¢) (¥, ) remains negative.

In particular, it follows that ¢: R?> — N is unstable with respect to compactly
supported perturbations, so in what follows we may select some v € C° (R2,RE)
with v(x) € Tg(x)N such that

E"(¢)(v,v) < —/3/ v]? dx
RZ

for some 8 > 0.
Now, forn > 3, let u: R” — N be the harmonic map given by

UX, ... Xn) =@ (x1,x2).

For any ¥ € C°(R"~2), we obtain a field vy, € CX(R", RE) with vy (x) € Ty)N
by setting

Uy (X) = Y (x3, ..., X)) U(x1, X2).
Direct computation then gives

E"(u)(vy, vy) =

2
=/Rn [d@)I* =Y Y Iy (@) d(ei), dg(ei), Ty (§) (v, v)) dx

i=1

=(/ wz) E”<¢)<v,v>+</ |v|2)f dy P dx
Rn—z RZ Rn—2

2 2 2 2
<—- :8 ” v“LZ(]RZ) ” Iﬁ ”LZ(R”’Z) + ” v ||L2(]R2) ||d1/f ”LZ(R"’Z) .

Now, on R"~2, one can easily find a nonzero compactly supported function ¥ €
o0 rone2r ey 1AV

CP(R"*4) with L
L2

function in C2° with a suitable dilation of R" 2 In particular, we can find a function

arbitrarily small, for instance by precomposing any given
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Yo € C°(R"2) with

ldyol, < §||wo||iz, (2.18)

so that the computation above gives

B
E" @) (vyq, vgo) < =2 Ioll 2 0l 72 < 0.
Choosing R > 0 such that ¥y € CZ°(Bg(0)), and setting
C := Span({o(x 4+ 2Ra) | a € Z"2}) C CP(R"™3),

we see that C gives an infinite dimensional space of test functions satisfying (2.18),
and consequently

{vy | eC}

gives an infinite dimensional space of variation vector fields on which E” (u) is neg-
ative definite. In particular, indg (1) = oo. Il

We now have all the ingredients we need to complete the proof of Theorem 2.6.
Proof of Theorem 2.6 Let u.: M — R’ be a family of critical points for E. with
Ec(ue) < C and indg, (ue) < Io.

By Theorem 2.9, we can pass to a subsequence to obtain a weakly harmonic map
u e Wh-2(M, N) such that

ue — u weakly in Wl’z,

and the failure of strong convergence is captured by the discrepancy measure
. 1 2
V= 6121})65 (ue)dvg — 3 |du|gdvg.

Once we’ve shown that v = 0, strong convergence will follow, as will the station-
arity of the limit map u: M — N, since in that case it follows that

1
/ E|du|2div(X) — {du*du, DX) = lim [ ec(ue)div(X) — (du?duc, DX)
=0

for any smooth vector field X € I'(T M)—using the fact that every critical point u. of
E. is smooth and, thus, automatically satisfies

div(ec(u)g — dulduc) =0.
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The index bound indg (u) < Iy follows immediately from Lemma 2.11. Thus, to com-
plete the proof, all that remains is to show that v = 0.

Suppose, to obtain a contradiction, that v # 0. By Remark 2.10, it follows that
there exists a sequence of points x. — x and a sequence of scales r. > 0 with é —-0
such that the rescaled maps

Uue(y) =ue(expy (y/re))

converge in C; (R") to a harmonic map u: R" — N of the form (up to rotations)

ﬁ('x17 e ,Xn) =¢(x]5x2)7

where ¢: R* — N is a smooth, nonconstant, finite-energy harmonic map.

For any fixed compact subset 2 C R" and € > 0 sufficiently small, we see that i,
defines a critical point for E g with respect to the metric g, := ®} g obtained by
pulling back g via ®.(y) = expxF (y/re). Moreover, it is easy to check that for € > 0
sufficiently small,

indg 1, (te; ) <indg, (ue) < o,
re \8e

SO Since ge¢ — gEyc in Cloooc (R™), it follows from Lemma 2.11 and Remark 2.12 that
the harmonic map u has

indg (u; Q) < Io
In particular, since this holds for any compact subset 2 C R”, we have
indg () < Io

with respect to all compactly supported variations on R”. But then Lemma 2.13 im-
plies that the harmonic map ¢: R*> — N can be identified with a nonconstant stable
harmonic map ¢: S* — N, which cannot exist by the key hypothesis for N. Thus,
we arrive at a contradiction, and deduce that v = 0, as desired. O

2.3 Partial regularity for the min-max harmonic maps

For locally energy-minimizing harmonic maps u: M — N, the foundational re-
sults of Schoen and Uhlenbeck [49] show that the singular set has dimension
dim(Sing(u)) < n — 3, and this can be improved to dim(Sing(«#)) < n — m in cases
where N admits no 0-homogeneous energy-minimizing maps R”~! — N for some
m > 4.

Without an energy-minimizing assumption, the results of [1] imply that a station-
ary harmonic map u: M" — N is in general smooth away from a singular set Sing(u)
with vanishing (n — 2)-dimensional Hausdorff measure 'H"‘Z(Sing(u)) =0, but it
remains a challenging open problem to improve on this estimate (most optimisti-
cally, showing that dim(Sing(u#)) < n — 3 in general). The key difficulty in extending
Schoen and Uhlenbeck’s regularity theory to general stationary harmonic maps is the
noncompactness of stationary harmonic maps in W12 in particular, the sequence of
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harmonic maps obtained by rescaling a given harmonic map at a singular point may
not converge strongly to a homogeneous “tangent map”, making it impossible a priori
to carry out Schoen and Uhlenbeck’s dimension reduction argument.

Fortunately, the harmonic maps constructed in Theorem 2.6 have more structure
than general stationary harmonic maps. Namely, they are harmonic maps of finite
Morse index taking values in a target N admitting no stable harmonic 2-spheres.
Indeed, since N admits no stable harmonic 2-sphere, we can use ideas of Hsu [22],
showing that locally stable harmonic maps to N satisfy a partial regularity theory
comparable to that of energy-minimizers.

Theorem 2.14 (Hsu [22]) Let u: M — N be a locally stable stationary harmonic
map to a compact Riemannian manifold N for which every stable harmonic map
S? — N is constant. Then u is smooth away from a singular set Sing(u) of dimension
dim(Sing(u)) < n — 3. Moreover, dim(Sing(u)) < n —m if N admits no stable 0-
homogeneous harmonic map v : R"~1 — N for some m > 4.

As stated, [22, Theorem 1.2] only asserts that dim(Sing(u#)) < n — 3, but the
second assertion in Theorem 2.14 also follows readily from the proof (cf. [22, pp.
2810-2811]), which shows that H* (Sing(u)) > 0 implies the existence of a stable 0-
homogeneous harmonic map R*1 — N. The proof of Theorem 2.14 rests primarily
on the observation that the nonexistence of stable harmonic maps S> — N rules out
energy concentration for sequences of stable harmonic maps to N [22, Lemma 2.2],
by the same mechanism exploited in the proof of Theorem 2.6 above. In particular, the
sequences of harmonic maps obtained by rescaling around a singular point converge
strongly in Wllo’c2 to a homogeneous tangent map, allowing one to apply the same di-
mension reduction techniques used by Schoen—Uhlenbeck in the energy-minimizing
case.

We observe next that harmonic maps of finite Morse index are locally stable near
every point, allowing us to apply Theorem 2.14 to deduce the regularity of these
maps.

Lemma 2.15 Let u € W“2(M, N) be a weakly harmonic map of finite Morse index.
Then for every x € M, there exists some ry > 0 such that u is stable in the ball B, (x).

Proof We begin with a standard trick (cf. e.g. [17, Lemma 3.9]), showing that for
every point x € M there exists a radius r(x) > 0 such that u is stable on any annulus
Ag 1 (x) == Bi(x) \ Bs(x) with 0 < s <t < r(x). Indeed, if this were not the case,
then we could find an infinite sequence of radii #; > s; > fp > s2 > --- such that u is
unstable on the annuli Ay, ;, (x); but since the annuli Ay, ;, (x) are pairwise disjoint,
this would violate the assumption that indg (1) < oo.

Now, with r = r(x) > 0 as above, we wish to show that u is stable on B, (x)-i.e.,
the second variation E” (u) is nonnegative definite on the space

V(u; B (x)) = {v € [Wy > N L¥I(B,(x)) | v(y) € Tu(y)N ae. y € By (x)}.
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To this end, let v € V(u; B,(x)), and for § € (0, r(x)), let 5 € C°°(M) be a cutoff
function satisfying

o)
@s =1on M\ Bys(x), ¢ =0o0n Bs(x), and |[des| < 3

so that
ldgsll7, < C8" 2.

Since @sv is supported on the annulus A;s ,(r)(p), on which u is stable by our choice
of r(x), it follows that

E" (u)(psv, gsv) > 0.

On the other hand, note that

E"(u)(v,v) — E" ) (gsv, 95v) = /B ( )(|dv|2 — |d(gsv)|*) dvg
- /B ( )(1 — @)y () (du(e;), du(e;)), My (u) (v, v)) dvg
=/B ( )(1 — o) dv]* —2(v @ dgs, psdv) — [v|*|des|* dv,

—/B ( )(1 — o) Ty () (du(e;), du(en)), Ty (u) (v, v)) dvg

—2vlizelldvl 2 lldesll 2 — Ve Ide@sl?
_”IIN ”LOO(N) ”v”LOO ”du”L2(32 ([7))

Since v € W2 N L™ and ldes || C8" 2, itis easy see that the final lower bound
in the preceding string of 1nequa11tles vanishes as § — 0, and since E” (u) (@sv, psv) >
0, it follows that

E"(u)(v,v) > 0forall v e V(u; B, (x)),

as desired. O

Combining Lemma 2.15 with Theorem 2.14, we arrive immediately at the follow-
ing sharp partial regularity result for stationary harmonic maps to N of finite Morse
index.

Theorem 2.16 Let u: M — N be a stationary harmonic map of finite Morse index
to a compact Riemannian manifold N for which every stable harmonic map S* —
N is constant. Then u is smooth away from a singular set Sing(u) of dimension
dim(Sing(u)) < n — 3. Moreover, dim(Sing(u)) < n — k if N admits no stable 0-
homogeneous harmonic map v: RE=1 — N for some k > 4.
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Remark 2.17 In [23], compactness and regularity results are given for harmonic maps
u: M — N with bounded Morse index indg (1) < Iy when the target N is assumed
to admit no nonconstant harmonic map ¢: S* — N with matching index bound
indg (¢) < Ip. The simple observation that-by virtue of Lemma 2.13-the hypothe-
sis on N can be weakened to the absence of stable harmonic 2-spheres is critical for
applications to variational constructions like the one considered here, allowing us to
obtain compactness and regularity results for harmonic maps obtained from multi-
parameter min-max constructions.

Finally, by combining Proposition 2.5, Theorem 2.6, and Theorem 2.16, we arrive
at the following existence result, from which Theorem 1.1 clearly follows.

Theorem 2.18 In the setting of Sect. 2.1, if there exist no nonconstant stable harmonic
maps S* — N, then there exists a stationary harmonic map u: M" — N of Morse
index indg(u) < £+ 1, with

Eu)=E&p(M,g) > 0.

Moreover, u is smooth away from a (possibly empty) singular set Sing(u) of dimen-
sion

dim(Sing(w)) <n—m <n—3,

where m is the smallest dimension for which there exists a nonconstant stationary
0-homogeneous map ¢ : R™ — N stable under compactly supported deformations.

3 Improved regularity and stabilization in the sphere-valued case

For any k > 3, we can take N = Sk, ¢ =k and f=1d: S* — S* in Theorem 2.18 to
deduce the existence of a nonconstant stationary sphere-valued harmonic map

up: M" — sk

of Morse index indg (ux) < k + 1, from any compact manifold (M", g) of dimen-
sion n > 3. Note that [7, Theorem 2.4] shows that any non-constant harmonic map
u: M" — S* must have indg(u) >k — 2, so these maps have the lowest possible
index to leading order as k — co. For energy-minimizing maps to spheres S* of di-
mension k > 3, Schoen and Uhlenbeck obtained a refined partial regularity theory
[50], showing in particular that such maps have singular set Sing(u) of Hausdorff
dimension dim(Sing(u)) < n — 7 for k sufficiently large. Their results were later ex-
tended to the case of stable harmonic maps by Hong-Wang [21] and further refined
by Lin and Wang [38], yielding the following partial regularity result.

Theorem 3.1 (Lin, Wang [38]) Let u: M" — SF be a locally stable stationary har-
monic map. Then u is smooth away from a singular set Sing(u) of Hausdorff dimen-
sion

dim(Sing(u)) <n—k—1 for 3<k<5,
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dim(Sing(v)) <n—6 for 6<k<9,
and
dim(Sing(u)) <n—7 for k> 10.

Since Lemma 2.15 shows that stationary harmonic maps of finite Morse index
are locally stable near each point, it follows that the same regularity result holds in
the finite Morse index case. In particular, combining this with the existence result
obtained by applying Theorem 2.18 with £ = k and N = S, we obtain the following.

Theorem 3.2 On any compact Riemannian manifold (M", g) of dimension n > 3,
and for any k > 3, there exists a nonconstant stationary harmonic map uy: M —
Sk of Morse index indg (uy) < k + 1, smooth away from a singular set Sing(u) of
dimension

dim(Sing(ux)) <n—k—1 for 3<k<S5,
dim(Sing(ug)) <n—6 for 6<k<9,
and
dim(Sing(ug)) <n—7 for k> 10.

Note that in the low-dimensional cases n = dim(M) = 3, 4, 5, it follows in partic-
ular that these min-max harmonic maps

up: M" — sk

are smooth as soon as k > n. In the remainder of this section, we upgrade this qualita-
tive regularity statement to a priori gradient estimates independent of k, which allow
us to show that the maps uy stabilize as k becomes large—in the sense that the image
uy (M) lies inside some equatorial subsphere Sko = Sk of dimension ko(M, g) fixed
independent of k. As in [27], this stabilization result is the key analytic ingredient
that allows us to relate these min-max harmonic maps to eigenvalue optimization
problems, as described in the next section.

3.1 A priori gradient estimates for low-index harmonic maps to spheres
Let u: M" — SF be a smooth harmonic map, and let 2 C M be a domain. As in

[21, 38, 50], our estimates begin with the observation that, when the index indg (u; €2)
is small, testing the second variation of energy E” (1) against variations of the form

Va =V - (a — (u,a)u) € T(u*(TS"))

fora e S¥ gives rise to useful estimates in terms of scalar test functions ¢ € C°(RQ).
Note that the linear map R¥*! 5 a > v, is injective unless u = a for some a € S*
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on the support of 1—in which case all the estimates presented below hold trivially—

so we may henceforth assume that the collection {v, | a € Rt} gives a (k + 1)-

dimensional space of variation fields to test against the second variation of energy.
In particular, recalling that

E”<u><v,v>=f dv|* — |du|?|v|* dv,,
M

and computing
|dval? =¥ (ulldul® + |dua|*) + (1 — u)|dyr | = 29 {d Y, uaduy)
and
lval® =921 —up),

where we’ve set u, := (u, a), it follows that
E" () (va va) = f V22 1du + 1dual?) + (1 = u2)d ¥ P — 29(d, tadua)
M
—/ duP(1 — i)y
M
= / Y(2u2 — 1ldul* + |dug|?) + (1 — ud)ldy|* — 2y (d ¥, ugdug) dv,
M

=/ Y2Gu2 — Dldul® + (1 — u?)|dy|> — 4y (dy, ugdug) dvg,
M

where the third inequality follows from the harmonic map equation Au, = |du|*ug
via the identity

Vi dug|? = div(yPuadug) — 200 dyr, uadug) + ¥ug Aug.

Now, fixing an arbitrary ¢ € C2°(2), let ay, ..., ax+1 € S¥ be an orthonormal
basis for R¥*! diagonalizing the quadratic form

ar> E"(u)(vq, va),

and write v; = v,;. Summing the preceding identity for E”(u)(vj, v;) over j =
1,...,k+1, we see that

k+1
> E'w) (). v)) =/ Y22 —k)|dul* + kldy|* dv,. (3.1)
M

j=l1
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On the other hand, if indg (u; Q) < m < k — 2, then we must have E” (1) (v;, v;) >0
fori > m, and so-writing u j = u,;—we see that

k+1 m
Y E' @)=Y E'w) (), v))
j=1 j=1

=Z/M Y2 Bus — Dldul® + (1 —ud)|dy|> — 4y (dyr, ujdu) dvg
j=1

=) /M Y2 Guf = Dldul® + (1 = up)ldy® — dW?), dw))) dvg
j=l1

=Z/M W2 Bus — Dldul® + (1 = u)ldy > + 29> (du |* — u3|dul*) dv,
j=1

>—m/ |du|2¢2dvg+(m—1)/ ldyr|? dvg.
M M

Combining this with (3.1), it then follows that

k—2— m)/ ldu|*y? dvg < (k —m + 1)/ ldyr | du,.
M M
In other words, we’ve established the following.

Lemma3.3 Letu: M" — SK be a smooth harmonic map, and let @ C M be a domain
in M. If

inde(u; Q) =k—2—p<k-2,
then

p / 2,2 2
—— | ldul|"y“dv </ |[dyr|* dv (3.2)
P+3Ju £ ¢
for every ¥ € W01’2(§2).
Next, we argue along the lines of [50] and [38], combining Lemma 3.3 with the
Bochner identity for S¥-valued harmonic maps, testing (3.2) against certain powers

¥ = |du|® of the energy density. For a harmonic map u: M — S¥, recall that the
Bochner identity gives

1
—§A|du|2 = |Hess(u)|*> + (Ricy, du*du) — |du|*

n
= |Hess(u)T|? + Z (du(e;), du(e;))* + (Ricy, du*du) — |dul*,
ij=1
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where in the second inequality we decomposed the R¥*+!-valued Hessian
Hess(u) = Hess(u)” — u ® du*du

into components tangential and normal to T'S¥. It is easy to check that

n

1

> " (du(e)). du(e;))* > ~|dul*,
n

i,j=1

and [38, Proposition 2.3] (originally stated for M = S”, but the domain geometry
plays no role in the proof) gives us the refined Kato inequality

[Hess()” 2 > ——|d|dull”.

Similar to [38], we then combine these estimates with the Bochner identity to deduce
that

1 n . n—1
—~Aldul* > ——|d|dul)* — |IRicpy |l o |du|* — ——|dul* (3.3)
2 n—1 n

for any smooth harmonic map u: M" — S¥. And as a consequence, for any o > 2,
we have

1
— —Aldul® >
o

—1
> <L1 ta- 2) \du|*~2|d|dul? — [Ricy || dul® — —— |du|**®
n— n

4 n . n—1
== (— +o— 2) |d|dul*’?? — |[Ricy |l g |dul® — ——|dul**®.
as \n—1 n

Setting

4
Q(’La)fl :E<ni1 +Ol—2>,

for any test function ¢ € C°(€2), it then follows that
1
f |d (¢ldul®/?)|* dvg = / |du|“|d<o|2+5<d(<o2),d|du|“>+<p2|d|du|“/2|2dvg
M M
1
< / (dul®|dP? + 3 (d(?), dldul) dvg+
M
2 n — 1 2ta . o 1 o
+0,@) | ¢ ( ——Idul™* + [Ricyl| o |dul — —Aldu|* ) dvg
M

=/ \du|® (|d<p|2 £ C(M,n,0)¢? + C(n,a)A«pz)) dvg+
M

n—1

+ 00, a) / 2 ldu> du,.
M

n

@ Springer



Harmonic maps in higher dimensions 749

Combining these computations with Lemma 3.3, taking ¥ = ¢|du| % as the test func-
tion, we arrive at the following key lemma.

Lemma 3.4 Let u: M" — S* be a smooth harmonic map, such that u has Morse
index

indp(u; Q) <k—2—p<k—2

on some domain Q C M. Then for a € [2, 00) and any ¢ € CX° (), we have
p
(— - P(n, a)) / *dul* dvg < Collldgl® + ol Apl [ / |du|® dv,,
p+3 Q Q
where C,, is a constant depending on o and the geometry of M, and

(n—1)%a?

.
Pn,a):= Q) T dnln—Da+2—n]

Of particular importance are the cases o = 2 and o = 4. It is straightforward to
check that

P(n,2) = (n—1)? forn <5
n, \— orn
2 25
while
4(n—1)2 64
Py =D < P forn<s
n(3n —2)

With Lemma 3.4 in hand, we can now prove the following a priori L% gradient esti-
mate for low-index harmonic maps u: M" — S¥ with n < 5 and k large.

Proposition 3.5 Let u: M" — S¥ be a smooth harmonic map where n < 5, and let
By (p) C M be a geodesic ball of radius 2r. If k > 202 and

indg (u; Bar(p)) < k —2—200,
then

ldullS <CMyr—*dul;,

(Brp2(p)) (B2 (p))°

Proof By assumption, the hypotheses of Lemma 3.4 hold with Q = B, (p) and p =

200, so that ? = %8(3)’ and the lemma gives

200

(ﬁ - P “>> / ¢ ldul*T* < Callldgl® + lpl| Agl 1> / dul®
Bar(p) 2 ()

for any ¢ € C2°(Ba,(p)). Taking o = 2 and noting that

200 200 16
P(n,2)2—=—-->0,

203 203 25
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it follows that

/ so2|du|4dvg<C|||dso|2+|¢||Ago|uLoof |dul* dv,.
BZr(p) BZr(p)

Choosing ¢ € C2°(By,(p)) such that ¢ =1 on B, (p), |dy| < %, and |Ag| < r%, we
deduce in particular that
/ du|* dv, < C(M)r_2/ |du|* dv,. (3.4)
Br(p) BZr(p)

Next, we apply Lemma 3.4 again, this time with Q = B, (p), p =200, and o =4,
and since (for n < 5)

200 200 64 8
L PmAy=""—Pn.4)> -

e )
p+3 203 203 65 (203)-65

the lemma yields an estimate of the form

f <p2|du|6dvg<C|||d¢|2+|¢||Ago|||Loof |du|* dv,
B-(p) B (p)

for any ¢ € C2°(B,(p)). As before, we choose ¢ such that
C C
¢ =1lonB(p). ldol < - and [Ag| < 7.,

obtaining the estimate

C
/ |du|6dvg < —2/ |du|4dvg.
By2(p) "= JB(p)

Combining this with (3.4) then gives the desired estimate. O
3.2 Stabilization for S¥-valued harmonic maps of index « 2k

Armed with the local estimates of Proposition 3.5, we next establish global L0 esti-
mates for the min-max harmonic maps u: M" — Sk given by Theorem 3.2, when
n =3,4,5. More generally, the following arguments apply to any family of smooth
harmonic maps ux: M” — S¥ with limsupy_, o E) <2,

First, we observe that a smooth nonconstant harmonic map u: M" — Sk , Where
n = 3, must have index > k — 2 on the complement of any small ball.

Lemma 3.6 Let n > 3. There exists §(M) > 0 such that for any nonconstant smooth
harmonic map u: M" — S¥ and any geodesic ball Bs(p) C M of radius 8,

indg(u; M\ Bs(p)) > k —2.

@ Springer



Harmonic maps in higher dimensions 751

Proof Suppose, to the contrary, that indg (u; M \ Bs(p)) < k — 3. Then by Lemma
3.3, it follows that

1 242 2
7 [ dulytdvg < | jdy Py, 3.5)
M M

for any y € Wy 2(M \ Bs(p)). Choosing € Wy>(M \ Bs(p)) such that ¥ = 1 on
M \ Bas(p) and |dy/| < § on Bas(p) \ Bs(p)., we see that

/ ldyr? dvg < C8" 2,
M

which together with (3.5) gives
/ ldu|* dv, < C8" 2, (3.6)
M\ Bys(p)

On the other hand, by the well-known energy-monotonicity properties of station-
ary harmonic maps, we have an estimate of the form

f |du|? dv, < C(M)S"_Z/ |du|? dv,.
Bos(p) M

Provided é > 0 is small enough that §"2C(M) < %, this estimate can be combined
with (3.6) to give

/ |du|? dvy < C'(M)8" 2. (3.7)
M

However, by Proposition 5.5 in the appendix, there is a universal lower bound
B(M) > 0 independent of k such that

1
B = [ 1dul>p
2Jm
for any nonconstant harmonic map u: M — S*. Thus, taking
1
$(M):= (B/C" (M),
we get a contradiction with (3.7), completing the proof. |

We can now combine Lemma 3.6 with Proposition 3.5 to arrive at global L% gra-
dient estimates when indg (ux) < k + 1 and & is sufficiently large.

Lemma 3.7 Let 3 <n <5 and k > 205, and let u: M — S* be a smooth harmonic
map of index indg (u) < k + 1. Then there exists a constant C(M) < oo independent
of u and k such that

ldullpspry < C(M) (3.8)
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and
Idu|? w12 < C(M). (3.9)

Proof By Lemma 3.6, there exists §(M) > 0 such that for every ball Bs(p) C M of
radius 8§, we have

indg(u; M\ Bs(p)) 2k —2.
Since M \ Bs(p) and Bs(p) are disjoint, it follows in particular that
indg (u; Bs(p)) +k —2 <indg(u; Bs(p)) +indg (u; M\ Bs(p))
<indg(u; M) <k+1,
so that
indg (u; Bs(p)) <3
Now, since k > 203, it follows that on every ball Bs(p) C M of radius §, we have
indg (u; Bs(p)) <3 <k —2—200,

so the hypotheses of Proposition 3.5 hold with » = §/2, and we can apply the propo-
sition to deduce that

4
”d ||L6(B (p)) C(M)8 ||du||L2(Bg(p))

By a simple covering argument and Holder’s inequality, it follows that

iS5 ) < COD el < C' Ml 2.

) =

and dividing through by ||du ||%6 gives the desired uniform L° bound for |du]|.
With the L® bound in place, we can simply integrate (3.3) against |du|? to see that

/ \dldu2P dv, < C / (dul* + |dul®) dv,.
M

so the W2 norm of |du/|? is controlled by the L® norm, completing the proof. [

With the estimates of Lemma 3.7 in place, we can now argue by a contradic-
tion argument (similar in spirit to, but somewhat simpler than, that used in the two-
dimensional setting [27]) to arrive at the following stabilization result.

Proposition 3.8 For any Riemannian manifold (M", g) of dimension n € {3, 4,5},
there exists ko(M, g) € N such that for every smooth harmonic map u: M — S with

indg(u) <k +1,

there exists a totally geodesic subsphere S0 C S* of dimension ko such that u(M) C
Sho,
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Proof To obtain a contradiction, suppose that the conclusion does not hold: then we
can find a sequence of harmonic maps

up: M — S¥
with indg (ux) < k + 1 such that the space spanned by coordinate functions
Ce = {{e.u) [ e € REHT)
has dimension
my :=dimCy, — 00 (3.10)

as k — oo.
Denote Vj := |duy|*. Lemma 3.7 gives us—for k sufficiently large—an estimate of

the form || V| w12 < C independent of k. In particular, it follows from the Rellich-

Kondrachov theorem that Vj is precompact in L? for any p < % < ,127”2 Crucially,

we observe that since n < 5, we have % < nZTHZ’ and as a result, up to a choice of a

. . n
subsequence, we can assume that for some non-negative function 0 < V € L2 (M)
one has

Vi — Vin L2 (M). (3.11)

Note, moreover, that
/ Vdvg = lim / Vidvg = lim 2E(uy) =228 >0,
M k—o00 J g k—o0

by virtue of the energy bound E'(uy) > B from Proposition 5.5 in the appendix. Thus,
V #£0.
It follows from the defining equation

Auy = |dug|Pug

for sphere-valued harmonic maps that the coordinate functions of uj are eigenfunc-
tions of the problem

Af =x(Vi) Vi f.
with eigenvalue A(Vy) = 1. In particular, the multiplicity of that eigenvalue is at least
my. Itis shown in [14, Example 3.19] (see also Sect. 4.2 below) that for any 0 < W €
L2(M), W £ 0 the eigenvalues of the problem

Af =A(WWf

form a discrete sequence {)Lm(W)};'le with a unique accumulation point at +oo.
Furthermore, by [14, Proposition 5.1] one has that if Wy — W in % (M) forn > 3,
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then A, (Wy) — A, (W). In particular, A, (Vi) — A, (V). At the same time, by (3.10)
one has

N1(Vie) :=#{i, 2 (Vi) < 1} = my — o0
Convergence of eigenvalues implies that

M) > klim M (Vi) = +o0.

Therefore, V has infinitely many eigenvalues not exceeding 1, which contradicts the
fact that the only accumulation point of eigenvalues is +o00. O

4 Connections to spectral shape optimization
4.1 Descriptions of the optimization problem

Below, unless otherwise specified, (M, g) is a closed Riemannian manifold of dimen-
sion n > 3, and all function spaces on M are defined with respect to the metric g.

Given a function V € L*° (M), eigenfunctions of the Schrodinger operator A — V
satisfy

Agu —Vu=vu. “.1)
for some v € R. The corresponding eigenvalues form a sequence
vi(V) <m(V) <w(V) <... /oo,

where each number is repeated according to its multiplicity. The eigenvalues v,, (V')
can be equivalently defined variationally via

I |du|§ — Vu?dv,

v (V) =inf sup , “4.2)
K Fuuer,\0) Sy u* dvg
where F,,, C W2(M) is a m-dimensional subspace.
In the present section we introduce the quantity
Vin(M, g) = sup / Vduyg, “4.3)
V., Vmt1 (V)=0

and consider the associated maximization problem for potentials V with v, (V) >
0. To simplify notation, we let P, C L°°(M, g) be the set of all V such that
Vm+1(V) 2 0.

A version of this problem was studied in [16] in relation to the lower bound on the
number of negative eigenvalues of the operator Ay — V. Let NWV)=4#{i, v;(V) <0}.
Then for any V € L (M) with A'(V) =m one has V € P,,, so that

Vin 1
i > s | Ve
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Thus, Cyp; = infy, # is the optimal constant in the following inequality for V €
L>(M)

NV > cap,/ V dvg. (4.4)
M

An inequality of the form (4.4) for non-negative potentials V > 0 was proved in [15],
and was later shown to hold with the same constant for all L potentials in [16].
In particular, it follows from [15, 16] that C,p, > 0. In fact, we will see below that
potentials realizing V,,, (when they exist) arise as energy densities of harmonic maps
to spheres and are therefore non-negative.

There is an equivalent definition of V), in terms of Laplacian eigenvalues with den-
sities. Let 0 < 8 € L°°(M) be a non-negative density 8 = 0. Consider the weighted
problem

Ay f =ABf. 4.5)
The eigenvalues form a sequence
0=20(8) <A(B) <A2(f) <... /00,

where eigenvalues are written with multiplicity.
The eigenvalues A (8) admit the variational characterization

|du|? dv
dm—1(B) =inf sup g Il v

M%7 8 (4.6)
F ueFy\0) Jyy u? B dvg

where F,, ¢ W12(M) is a m-dimensional subspace. Comparing variational charac-
terizations (4.2) and (4.6), it is easy to see that V,, g = A,,,(B)B € Py,. Furthermore,

/ Vi dvg = hom (B) / B dv,.
M

which suggests the relation between V,, and maximizing the r.h.s over § € L°°. The
main difference between the two problems is the fact V,, g is always non-negative,
s0 {V,.g, B € L°} is a proper subset of P,,. Despite this, the following holds.

Proposition 4.1 One has

VM, g) = sup )\m(ﬂ)f Ideg
0<BEL™ (M) M

Proof In [16] it is shown that the maximizers of the auxiliary optimization problem

A sup / Vdvg
VEPm, IVIeo<N I M

exist and are non-negative for N sufficiently large. Since V,, = supy V,Q’ this is
enough to finish the proof. A detailed argument is carried out in [29, Sect. 2]. Note
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that the paper [29] is concerned with eigenvalues of surfaces, but the arguments in
Sect. 2 do not rely on the dimension of the manifold and thus can be repeated verba-
tim in our case. 0

4.2 Admissible measures

In many situations it is convenient to relax the regularity conditions on the potential
V or density 8. In dimension two, for example, this is an important ingredient in es-
tablishing the explicit link between optimization of Steklov and Laplace eigenvalues
on surfaces, see [13, 14, 27, 28].

Definition 4.2 (See [14]) A (positive) Radon measure 1 € CO(M)* is called ad-
missible if the identity map on C°°(M) can be extended to a compact operator
Wl2(M, g) - L*(n);ie., every sequence ¢; € C°°(M) with uniform W1-2-bounds
is precompact in L2(w).

One can then define variational eigenvalues A () by a formula similar to (4.6)

|du|? dv
Am—1(u) =inf sup fMizgg,
Fn ueFu\(0) [y u?die

where F,, C W'2(M) is a subspace with m-dimensional image in L2(w). Eigenval-
ues form a discrete sequence accumulating to infinity and there exist corresponding
eigenfunctions satisfying Ag f dve, = Af du in the weak sense, see [14].

Example 4.3 1t is shown in [14, Example 3.19] that u = B dv, is admissible pro-

vided0< B € L% (M). The eigenvalues A, (1) can be equivalently defined via equa-
tion (4.5). In particular, the eigenvalues A, (8) make sense for § € L2 (M).

Example 4.4 Assume that M # @. It is shown in [25, Lemma 3.3] that u = pds,
is admissible, where 0 < p € L1 (0M) and ds, is the volume measure of M. The
quantities A,, (i) are the eigenvalues of the Steklov problem with density

Agu=0 in M;
opu =Apu ondM.

Following the standard convention used for Steklov eigenvalues, we write o,,(p) :=
Am (0 ng).

One can also define the appropriate relaxation of the eigenvalue equation (4.1).
Namely, a signed Radon measure £ is called admissible if its total variation |&| is
admissible. One can then define eigenvalues of the Schrodinger operator A, — &
variationally as

|du|?dv, — [,, u*dE
v (§) =inf  sup Uy > Ju
Fn ueFy\(0) Sy w? dvg

3

where F,, ¢ W12(M) is an m-dimensional subspace.
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Example 4.5 According to Example 4.4 the measure § = v ds, is admissible as soon
asve L" 1 aMm). Quantities v, (§) are eigenvalues of the Robin problem

Agu=vu inM;

0,u = vu on oM.

We say v € V3 if v,,41(&) > 0.

In what follows, we denote by & (M, g) the energies E (u) of the harmonic maps
uy: M — S¥in Theorem 3.2. By construction, these energies have the min-max char-
acterization

Ek = lim & .,
e—>0
where

Ere= inf max Ec(uy),
(uy)elp (M) yeBk+1

Tp(M) = (B 5y s uy e WH2(M, R | uy =y for y e ¥},

and E.: WI2(M, R*!) — R is a Ginzburg-Landau-type functional as described in
Sect. 2. With this notation in place, we can now state the main theorem of this section.

Theorem 4.6 Let (M, g) be a closed Riemannian manifold of dimension 3 < n < 5.
Then

(1) There exists kg = ko(M, g) such that &, = & for all k > ko. Furthermore,
Vi(M, g) =2E(M, g).
(ii) There exists a smooth potential V with v2(V) = 0 such that V| = fM Vdvg. In
particular, there exists a smooth density p > 0 such that V1 = 11 (B) fM Bdvg.
(iii) For any admissible signed measure & with vy(§) > 0 one has v(M) < V) with
equality iff v2(§) =0 and & = |du|§, dvg, where u: (M, g) — Sk is a smooth
harmonic map. In particular, for any admissible non-negative measure | one
has A () (M) < V1 with equality iff A (L) = |du|§ dvg, whereu: (M, g) —

Sk is a smooth harmonic map.

We conclude this section with the following proposition, which is one of the main
ingredients in proving Theorem 4.6.(iii)

Proposition 4.7 Let u: (M,g) — S* be a weakly harmonic map such that p =
|du|§ dvg is an admissible measure. Then u is smooth.

Proof The admissibility of the energy density measure pu = |du|2dvg is evidently

equivalent to the statement that, for any bounded sequence ¢; € W12(M, g) satisfy-
ing p; = 0in W2 as j — oo, we have

lim [ @}ldul*dvg =0.

J=70JIM
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Now, for an arbitrary sequence of points p; € M and a vanishing sequence of radii
rj — 0, consider a sequence ¢; € C2°(Bar;(p;)) such that ; =1 on B, (p;) and
ldo;| < rgj; then it is easy to see that

f @idv, < C(M)rl} and / ldg;jl3dvg < C(M)r;’_z.
M M

2—n
2

In particular, setting ¥ ; :=r i wj.we obtain a sequence V/; € W12(M) with

l¥j 117, < C(M)r and |dy;])7, < C(M),

so that v; is bounded in W1-2(M) and ¥ — 0 as j — oo. Hence, by the admissibil-
ity of |du|§dvg, we have

lim /lﬂ]z|du|§dvg =0.
j—o00

In particular, since 7 = rjz,*”@jz. = rjzfn on B, (p;), it follows that

lim r]?*" / |du|ydvg =0
Brj (Pj)

J—>00

for every sequence p; € M and r; — 0. In other words, we have

lim sup rz_"/ |du|§dvg =0. 4.7
=0 pem B,(p)

Finally, it follows from work of Riviere-Struwe [47, Theorem 1.1] that any weakly
harmonic map u: M — N satisfying (4.7) must indeed be smooth, giving the desired
result. 0

4.3 Spectral index

Letu: (M, g) — SF be a harmonic map. Consider the associated Schrodinger opera-
tor L, = Ag — |dul}.

Definition 4.8 The spectral index indg(u) of u is the number of negative eigenvalues
of £,. Similarly, the spectral nullity nulg(u) of u is the dimension of the kernel of
Ly.

The proof of the following proposition is analogous to the case dim M = 2 covered
in [24, Propositions 1.7 and 3.11].

Proposition 4.9 For any smooth harmonic map u: (M, g) — SK one has

. indg (u)
d > .
indg(u) 1
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Furthermore, let iy Sk < S¥ be a totally geodesic embedding. Then iy j o u is
harmonic, indg (ix p» o u) = indg(u) and

indg (ix x ou) =indg (u) + (k" — k) indg (). (4.8)
4.4 Proof of Theorem 4.6

The general strategy is the same the one employed in the proofs of [27, Theorems 1.3
and 1.4].

Proposition 4.10 For any k > 3 and any signed admissible measure & satisfying
V2 (&) > 0 there exists a map u € WH2(M, S¥) such that Eq(u) <& and

fu¢0dvg =0,

where @q is a vi(§)-eigenfunction.
In particular,

E(M) <2E4(u) < 2&, (4.9)

with equality iff v2(§) = 0, u is a smooth harmonic map of spectral index 1 and
£ = |dul; dv,.

Proof If f %0 dvg = 0, then one can take u to be a constant map. Otherwise we can

choose ¢y so that [, ¢odv, = 1. For each & > 0 let (B¥™! 5 y u3) € 'y be a
family such that sup,, E, (u‘;) < e + €. Define the map

I1(y) :=/ u;goodvg.
M
Since uj, =y for y € ABKt! = Sk, the restriction of I to dB**! is the identity map. A

standard application of Brouwer fixed point theorem yields the existence of y, € B!
such that 7 (y,) = 0. Setting u, := uis e wh2(Mm, Rk+l), we then have

[ wsondug =0, EGu) < Eutu) < e e &
M
/ dgk(u,g)2 dvg < achlEg(ug) — 0,
M
where ¢ is the constant in (2.4). Furthermore,

/ lue|? dvg </ max(W (ue), R3) dvg < ?E¢(ug) + R3 Vol(M, g),
M M

which implies that [lug|l 2.y, 2 is bounded. Thus, there exists a subsequence ug;
which converges weakly in W12(M, R*t!) and strongly in LZ2(M,R¥1) to u
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WL2(M, R, Since g9 € W12(M) one has
/ ugodvg = 0. (4.10)
M
Since dg (u)? = |1 — |u]|> <2(|1 — |ug||> + |ue — u|?), one also has
/ dsi (u)? dvg =0,
M

and, therefore, u € WI’Z(M Sk ). Since the energy is lower-semicontinuous with re-
spect to weak convergence in W!-2 one has

Eu) < lim E(u;) < &.
e—0

In particular, by (4.10) the components u’ of u can be used as test-functions for

v2(§),
/ ' dvg / W PdE > va(€) >0,
M M
Summing overi =1, ...,k + 1 yields
S(M)</|du|§,dvg=2E(u). 4.11)
The equality occurs iff v2(£) = 0 and u’ are v, (£)-eigenfunctions. It then follows that

for any v € C°°(M) one has

k+1

fMudg =/M vlul*dg = ;/Muu",d(uiv))dvg =

|du|*v + (dv ld|u|2>dv = [ v|du|?dv
W B ) g = g g

ie. &= |du|§dvg, which implies that Agu = |du|f,u in the weak sense, i.e. u is a
weak harmonic map. Since & is admissible by assumption, Proposition 4.7 implies
that u is smooth. d

Note that Proposition 4.10 implies the bound V| < 2& forall k > 3 and any n > 3,
taking & = Vduv, for any V € L°°(M). To prove the opposite inequality, assume
3<n<Sandletuy: (M, g) — S* be a smooth harmonic map given by Theorem 3.2,
so that

E(up) =& indg (uy) <k +1.

Clearly, the maps uy satisfy the conditions of Proposition 3.8. Let ko be as in Propo-
sition 3.8 and let k > 2ko + 1, then uy = i, x o v for some harmonic v. By (4.8) one
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has
1
k+1 > indE(uk) > (k — ko) inds(uk) > E(k + l)inds(uk).

Since indy is a positive integer, this implies indg(ux) = 1. Thus, vo(|duk |§) =0, and
one has

260 =2E ) = [ dufpdvg < V1 <225,

which implies that all inequalities are equalities. In particular, V| = 2& for k > 2ko +
1 and |duy |§, € P1 is a smooth potential on which V) is attained. This completes the
proofs of Theorem 4.6.(i) and (ii).

Let £ be any admissible measure with v>(£) > 0 and such that £(M) = V. Let k
be large enough so that & = V)| and let u be the map given by Proposition 4.10. By
inequality (4.9) one has

Vi = E(M) < 2E(u) < & = V1.

Thus, all inequalities are equalities and Proposition 4.10 implies that v2(§) =0, u is a
smooth harmonic map with indg(x) =1 and & = |du|§, dvg. This completes the proof
of Theorem 4.6.(iii).

4.5 Relation with conformal volume

Particular examples of families B¥*! 5 y > uy such that uy, =y fory € Sk can be
obtained by post-composition of a given map with conformal automorphisms of S¥.
I—[v[2
P
diffeomorphism Sk > Sk Ifu= ug: (M, g) — S* is a conformal map, then it is
easy to check that u, := G, o ug extends to a weakly continuous family satisfying
uy=yforye Sk. This family is often referred to as the canonical family of ug. It
was used by Li and Yau [34] (see also [8]) to define the notion of conformal volume
as follows. One first defines conformal volume of the map u to be

Namely, for any y € int (B*™!) the map G, (x) = (x +y) + y is a conformal

Ve(k, u) = sup Vol(M, (uy)*gsx).
y

Taking the infimum over all conformal maps u gives the (k-)conformal volume of
(M, gD

The connection between conformal volume and minimal submanifolds is formulated
in the following theorem. It was proved by Li and Yau [34] for surfaces, by El Soufi
and Ilias [8] for higher dimensional manifolds.
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Theorem 4.11 (Li, Yau [34]; El Soifi-llias [8]) Let u: M — S* be a minimal immersion.
Assume WLOG that u is linearly full, i.e. the image u(M) spans R¥1. Then for any
y # 0 one has

Vol(M, (uy)*gsr) < Vol(M, (u)*gsr)
unless M =S¥ and u = Gy up to a rotation of R*tY. In particular,

Velk, M, [u*gsi]) < Vol(M, (u)* ggr).

Observe that for any canonical family {u,} one has

2
n n n—2
2E(u ):/ |duy |2 dv <n<nz/ |du,|”dv> Vol(M, g) " =
) R w8 (4.12)
2 n—
= n (VOI(M., (ity)*g5)) ™ Vol(M, g)"" .

where we first used Holder inequality and then conformality of u,. Taking the supre-
mum over y and then the infimum over all canonical families suggests the following
inequality

2 n=2
25(M, g) <n(Ve(k,M,[g])" Vol(M, g) = . (4.13)
However, note that the canonical family is only weakly continuous, so one can not
use it directly in the definition of & (M, g). Nevertheless, a mollification procedure

similar to that employed in the proof of Lemma 2.2 (see also [27, Proposition 3.3])
yields inequality (4.13). Combining Proposition 4.10 with (4.13) we obtain

2 n=2
VIM, g) <26(M, g) <n(Velk, M, [g])" Vol(M, g) ", (4.14)
which together with Theorem 4.11 gives the inequality in Theorem 1.6.
To study the equality case, assume that there is a minimal immersion u: M — S
such that u*ggr € [g], in particular,

Velk, M, [g]) < Vol(M, u™gg).

Assume that there exists an admissible signed measure & with vo(M, g, &) > 0 such
that there is an equality

Z n—
E(M) =n (Vol(M, u*9))" Vol(M, )’ =28 (M, g).
Hersch’s trick implies that there exists u, in the canonical family of u such that
components of u# are orthogonal to a vi(M, g, £)-eigenfunction. Similarly to (4.11)

one obtains

EM) < 2Eg(uy)
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with equality only if v2(§) = 0. Combining with (4.12) one obtains

) ne
26 (M, g) = (M) < 2E,(uy) < n (Vol(M, (uy)*gsk))% Vol(M, g)"+

/NERWNS)

2 n—
n (Vol(M, u* gg)) " Vol (M, g)"% = 26(M, ).

In particular, all inequalities are equalities. Equality in (D implies that uy is a har-
monic map of spectral index 1 and & = |duy|§dvg. Equality in @ (or, equiva-
lently, (4.12)) implies that |du y|§ is constant and, in particular, & = bdv, for some
b € R. Thus, u, is a conformal harmonic map with constant energy density, therefore,
a minimal immersion such that g = a(u,)*ggk. Since indg(uy) = 1, components of
uy are the first eigenfunctions. If (M, [g]) # (S, [gsk]) and u # G for some con-
formal automorphism G/, then equality in Q) implies y = 0. Otherwise, u, = G~
for some y” and the equality statement in Theorem 1.6 follows.

4.6 Critical potentials

In this section we collect results on critical points of functionals associated with the
optimization problems studied above. The techniques of the proofs are standard and
go back to the papers [9, 11, 42]. We also make use of computations in [26] which
allow for a concise proof.

Definition 4.12 Let 0 < 8 € C°°(M). We say that § is a critical density for the func-
tional

Fu(B) =)»m(ﬂ)fMﬂdvg (4.15)
if for any smooth deformation B(¢) > 0, 8(0) = B, t € (—¢, ¢) one has
Fu(B(t)) < Fin(B) +o(t) or Fu(B(t)) = Fin(B) + o(t) (4.16)
ast — 0.

Proposition 4.13 Let 0 < 8 € C*°(M) be a critical density for the functional (4.15).
Then there exists a smooth harmonic mapu: (M, g) — Sk such that m(B)B = |du|§,
and the components of u are A, (B)-eigenfunctions. In particular, inds(u) < m.

Conversely, let u: (M, g) — SK be a smooth harmonic map. Then |du|§ is a criti-
cal density for the functional (4.15) with m = indg(u).

Proof The general strategy of the proof for such results is the same. For a smooth
deformation B(¢) one first computes the derivative of (4.15) at a generic point ¢. For
critical B the derivative at ¢+ = 0 usually does not exist, but one can use criticality to
show that a certain quadratic form A(B’(0)) on A, (B)-eigenspace is sign indefinite
for all B/(0). After that, an application of Hahn-Banach separation theorem yields a
quadratic relation between elements of the eigenspace.
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764 M. Karpukhin, D. Stern

For the functional (4.15), this was essentially carried out in [26], where the same
functional is considered on a larger space: namely, the metric g is also allowed to vary
in the conformal class. In particular, the computation in the proof of [26, Theorem §]
gives that if | v B'(0)dvg =0, then the quadratic form

AB OB Y] = I (B) /M B/ (0)py dv,

is sign indefinite. Combining with [26, Lemma 1], we deduce existence of A, (8)-

eigenfunctions uy, ..., ur4+1 such that Zf‘:ll (u;)? =1. Setting u = (U1, ..., Uk+1)

one has
1
0= 2 Ag(lu?) = hm(B)Blul® — Iduly,
which shows that X, (8)8 = |du|§. Since B is smooth, u is smooth and, furthermore,

Agut = (B)Bu = |dulju,

i.e. u is a smooth harmonic map.
The proof of the converse is by now standard, we refer to [26] for details. O

We state the analogous theorem for potentials. This formulation has an advantage
that there is no restriction on the sign of potential and, for example, can be used to
study the functional (4.15) for 8 > 0. Note that the definition of a critical potential
has to be modified due to the fact that the space P,, is much more complicated than
C®°(M), so one has to allow one-sided deformations.

Definition 4.14 Let V € C*°(M) N'P,,. We say that V is a critical potential for the
functional

v.—>/ Vdv, 4.17)
M

in P, N C%° (M) if for any smooth deformation [0,€) 2t +— V(t) € P, N C®(M)
with V(0) = V, one has

/V(t)dng/Vdvg—i-o(t) (4.18)
ast — 0+.
Remark 4.15 By considering the deformation V () = V — ¢, it is easy to see that the
opposite of the inequality in (4.18) can never be enforced for arbitrary deformations
in P,.
Proposition 4.16 Let V € P, N C®(M) be a smooth potential critical for the
Sfunctional (4.17) in Py, N C®°(M). Then there exists a smooth harmonic map

u: (M, g)— Sk such that |du|f, =V and v,,(V) = 0. In particular, indg(u) < m.
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Conversely, let u: (M,g) — S* be a smooth harmonic map. Then |du|§, €
Pindsw) N C*(M) is a critical potential for the functional (4.17) in Pindgw) N
C®(M).

Proof Let V € P, N C®°(M) be critical. If v,, (V) > 0, then the deformation V (¢) =
V+1teP,NC®(M) for small ¢t > 0. For this deformation, condition (4.18) is not
satisfied and, thus, v, (V) = 0.

Let W € C*(M) be such that f W dv, = 0. Consider the deformation V(t) =
V+tWior0<t <0.Let

Vi 1(V) <0=v;(V)=---=v, (V)= =i (V) <vigpr1(V),

so that v, (V) has multiplicity p + 1. An application of Rellich-Kato perturbation
theory [32] (or [16, Lemma 3.2]) yields the following expressions for j =0, ... p

Vit j(V(0)) =yt 4 o(t),

where y; are eigenvalues of the quadratic form A(W) on v, (V)-eigenspace

AW, ¥l = — /M Wy do, .19)

arranged in the increasing order. If A(W) > 0, then for some small § > 0 one has
AW +6) > 0and, as aresult, V + t(W + §) € Py, for small r > 0. But

/V—I—Z(W—}—S)dvg:/ Vdvg+tVol(M,g)>/ V +o(t),
M M M

which contradicts (4.18). If A(W) < 0, then A(—W) > 0 and the same argument
yields a contradiction. Thus, A(W) is sign indefinite and the same application of
Hahn-Banach separation theorem as in the proof of Proposition 4.13 yields the
existence of v, (V)-eigenfunctions uy, ..., ur4+1 such that Zf;rll w)?=1. Setting
u=uy,...,urs+1) one has

1
0= 2 Ag(lu?) = Viul* = |dulg,
which shows that V = |du|§. Since V is smooth, u is smooth and, furthermore,

Agu=Vu= |du|§u,

i.e. u is a smooth harmonic map.

For the converse, let u be a harmonic map and let V = |du|§,. This implies that
the form A (W) is sign indefinite for all W such that fM W dvg, =0. Assume V is not
critical in Ping, (). Then there exists a deformation V (¢) such that

1
= — V') d 0
. Vol(M,g)/M ©)dvg >
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and V(1) € Pindg@)- The latter implies that A(V'(0)) > 0, therefore, A(V'(0) —a) =
A(V'(0)) +al > 0. At the same time, [ V'(0) — advg = 0 and, thus, A(V'(0) —a)
has to be sign indefinite, a contradiction. O

For the remainder of this section M has non-empty boundary and we study critical
points of optimization problems associated with Examples 4.4 and 4.5. It turns out
that they correspond to free boundary harmonic maps to the unit ball B¥*! | similarly
to the situation for Steklov eigenvalues on surfaces, see [11, 26].

Definition 4.17 A smooth map u: (M, g) — B**! is called free boundary harmonic
if u='(S¥) =M, Agu =0 in the interior of M and d,u L S.

Equivalently, u is a free boundary harmonic map if components of u are eigen-
functions of the problem

Agf=vf in M;
Onf =10ulf onoM

with eigenvalue v = 0. Note that this is exactly the problem from Example 4.5
with v = |d,u|. We say that inds(u) = m if |9,ul € P,le \77,(,’1, ie. vy (|0,ul) <
Vim+1(|0,u]) = 0. Similarly, u is a free boundary harmonic map if components of u

are eigenfunctions of the problem
A f=0 in M;
onf =o0logulf onoM

with eigenvalue o = 1. This is exactly the problem from Example 4.4 with p = |0, u|.
Then inds(u) = m iff 0,1 (|04u]) < o (|0nul) = 1.
The following definition is analogous to Definition 4.12.

Definition 4.18 Let 0 < p € C*(dM). We say that p is a critical density the func-
tional

Gm(p) =<7m(p)/ pdsg (4.20)
oM

if for any smooth deformation p(¢) > 0, p(0) = p, t € (—¢, €) one has

Gu(p(®) < Gm(p)+o() or  Gu(p(®)=Gnulp)+o()

ast — 0.

Proposition 4.19 Let 0 < p € C*(IM) be a critical point of the functional (4.20).
Then there exists a smooth free boundary harmonic map u: (M, g) — B! and
a positive constant such that o, (p)p = |0,u| and the components of u are o, (p)-
eigenfunctions. In particular, indg(u) < m.

Conversely, let u: (M, g) — B**t! be a smooth free boundary harmonic map.
Then |0,u| is a critical point of the functional (4.20) with m = indg(u).
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Proof The proof is similar to that of Proposition 4.13. The computation in the proof
of [26, Theorem 9] gives that the quadratic form

B (0D, Y] = —om(p) /a Oy ds,

on o, (p)-eigenspace is sign indefinite as long as fa y P'(0)dsg = 0. Combining
with [26, Lemma 1] we deduce the existence of o, (p)-eigenfunctions uy, ..., Ur+]
such that Zfill(ui)Z =1 on oM. Setting u = (u1,...,Uur+1) one has Ag(|u|2) =
—2|du|§, < 0, therefore, by the maximum principle |u#| < 1 with equality only on
oM. Furthermore, d,u = 0y, (p) pu = |d,ulu, so u is a free boundary harmonic map
and 0y, (0) o = |0y ul. 0

Finally, we state the corresponding result for potentials.

Definition 4.20 Let v € C°°(dM). We say that v is a critical potential for the func-
tional

V> / vdsg 4.21)
M

in P2 N C>(dM) if for any smooth deformation v(t) € P N C®(IM), v(0) = v,
0 <t < ¢ one has

/v(t)dsggfvdvg—i—o(t)
ast — 0+.

Proposition 4.21 Let v € 73,?1 be a smooth potential critical for the functional (4.21)
in 73,‘2,. Then there exists a smooth free boundary harmonic map u: (M, g) — BFt!
such that |0,u| = v and vy, (vdsg) = 0. In particular, inds (1) < m.

Conversely, let u: (M, g) — B**t! be a smooth free boundary harmonic map.
Then |0,| € Piaﬂds(u) is a critical potential for the functional (4.21) in Piids(u).
Proof The proof is completely analogous to the proof of Proposition (4.16). The only
difference is in the expression for the quadratic form (4.19). For deformations v ()
the eigenvalues vy, (v(¢) ds,) change according to the eigenvalues of

B (0)[¢, ¥]= —/ V' (0)py ds,.
oM

The same argument yields the fact that B is sign indefinite as long as |’ ap V(0 dsg =
0. One then concludes the existence of eigenfunctions uy,...,ux4+; such that
Zf:]l (u;)?> =1 on 9M. The end of the proof is the same as in Proposition 4.19. [J

Remark 4.22 The last two results suggest that it should be possible to develop ex-

istence theory for free boundary harmonic maps along the lines of what is done in
Sects. 2 and 3.
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Appendix
A.1 Properties of the distance function to a submanifold N c RE

As in Sect. 2, let N¥ be a closed manifold of dimension k embedded isometrically
N C RL in the Euclidean space RE. Let U = Bs,(N) C R be a tubular neighbor-
hood on which the nearest-point projection

My: U—- N
is smooth, and for every x € U, denote by P(x), P (x) € End(R%) the projections
P(x):= PTn(x>N onto TN
(viewing Trj(x)N as a subspace of RLY and
PL(x)=1—- P(x).

For x € N, denote by Iy (x) € Symz(TN ) ® TN the second fundamental form

Iy (x)(X,Y):=(DxY)" for X,Y e (TN),
and for general x € U, denote by B(x) € Symz(RL) ® RL the tensor

Bx)(X,Y) =lIy(TIy(x)(P(x)X, P(x)Y).

Since the nonlinear potential term in the energies E. defined in Sect. 2 coincides
with the smooth function %d%v in a neighborhood of N, it will be useful for us to

record the following estimate for Hess(d/%,). The following proposition is proved
in [39, Propositions 3.3, 3.5].

Lemma 5.1 (Mantegazza [39]) There is a constant C(N) such that on the tubular
neighborhood U = Bs,(N),

‘Hess (%di,) (X)X, Y) — (X, PE(0)Y) + dy(x)(B(x)(X,Y), Vdy (x))
< CdyIX|1Y|
forany x € U and X,Y € RL.

A.2 Proofs of monotonicity and small energy regularity for the Ginzburg-Landau
approximation

The energy monotonicity and small energy regularity results for functionals like those
defined in Sect. 2.1 above are well known to experts (see in particular [2]), but since
it is somewhat difficult to find a complete, correct proof for the small energy reg-
ularity statement in the literature, we include the arguments below for the reader’s
convenience.
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Lemma5.2 Letu: M — RE be a critical point for E.. Then on geodesic balls B, (p)

of radius r < inj(M), we have
2.2 / W (ue)
+ - 3 )
rJB.(p) €

d
—_ (eCr2r2—n/ ee(u)> > eCr2r2—n /
dr B, (p) 3B, (p)

where v, denotes the gradient of the distance function dp to p,and C = C(n, k) is a
constant depending on the geometry of (M, g) only through the dimension n = dim M
and a sectional curvature bound k > |Secyy|.

ol

vy

Proof The map u: M — RL is a critical point for E¢ if and only if it satisfies (2.6),
and it is straightforward to check that the two-tensor

Te(u) :=ec(ue)g — duldue
must be divergence-free for any map u solving (2.6), where we’ve set
1 , W)

Pairing the condition div(7¢(u)) = 0 against the vector field X (p) = %lez, on a
small geodesic ball B, (p), one finds

/ (Te(u),DX>=/ Te(u)(X, vp)zr/ Te@)(vp, vp).
B:(p) B (p) 9By (p)

It follows from the Hessian comparison theorem for the distance function d, that
IDX — g| < Cd% for some constant C(n, k) depending only on n = dimM and a
sectional curvature bound |Secys| < &, so the preceding identity yields

r/ Te(uxvp,vp»/ <Te<u>,g>—C’(n,k)r2f ec(u).
3B, (p) Br(p)

B, (p)

By definition of T, (1), we can rewrite the above as

2
r/ <ee(us) - ) =
By (p)

avp

W(M) / 2
> (n —2)ec(u) +2—— — C'(n, k)r ee(u),
By (p) € B, (p)
from which the desired monotonicity statement follows. g

Lemma 5.3 There exists a constant no(N,n, k) > 0 depending only on the target
manifold N C RL, the dimension n = dimM, and a sectional curvature bound
|Sec(M, g)| < k, such that ifu: B,(p) — N solves (2.6) on a ball By, (p) C M with
2r < min{inj(M, g), 1}, and

> 7" Ec(u; Bay () < no,

then r’ec(u) < 1 on B2 (p).
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Proof Here we follow essentially the same argument as in [2], taking care in our
computations to avoid some minor errors introduced in that paper. Note first that for
solutions of (2.6), the Bochner formula gives

—d*dec(u) =
D;W :
=|Hess(u)|* + (Ric(g), du*du) — (du, d Au) + div (jiz(u)du1>
€
S DW (u)|?
=[Hess(u)|* + (Ric(g), du*du) +2¢ "> D;W (u)(du’, du’) + %
€

By Lemma 5.1, we know that
Hess(d3) > —C(N)dyggtL

as quadratic forms on a tubular neighborhood of N C RE, so since W (u) = ld N (u)?
where dy (1) < 80/2, it follows that

D*W (u) > —C(N)|DW (u)|gpe where dy (u) < 80/2,
and it is straightforward to check that
|D*W (u)| < C(N)W (1) where dy (1) > 80/2,
so that
D*W(u) = —C(N) (IDW )| + W (u)) grr (5.1)

holds for any value of u.
Using (5.1) and a simple application of Young’s inequality, we see that

W)

2¢ DLW ) (du', dul) + —— >
. €

2
>— C(N)e > (IDWW)| + W) |dul* + M

IDW@)[> Ww? |DW@w?
ypm +

> — C(N)*|du|* — = -

> — C(N)?|dul* -

2
WO S ' (Nyectw?
€

Returning to the Bochner identity computation, we arrive at the following estimate.
—d*de.(u) = —C(n, k)ec(u) — C(N)eg(u)z. (5.2)
Now, define ¥ € C} (B, (p)) by
¥ () = dist(x, 0B, (p)) ee (1) (x),
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and suppose ¥ achieves its max at xo € B, (p). Setting oq := dist(xg, 0B, (p))/2 < 1,
observe that

1
dist(x, 0 B, (p)) = dist(xg, dB,(p)) — oo = gdist(xo, 9B, (p)) for all x € By, (x0),

and consequently
¥ (x)
dist(x, 3B (p))?

49 (x) A0
= dist(xg, 8B, (p))?  dist(xg, 3B, (p))?

ee(u)(x) =

< dee(u)(x0)

for all x € By, (p). In particular, on the ball B, (xo), it follows from (5.2) that
Aee(u) < C(n, k)ec(u) + C(N)ee(u)(xo)ee (). (5.3)

Next, for any smooth function f € C*°(M), standard computations give

d
- <Sl_n/ f> =
ds 9B, (x0)
st [ eadgra-ms [ pesn [ sy
9B (xp) 0By (x0) B (x0)

1 _
:—sl_”/ Af+s1—”/ (( n)—Adm),
By (x0) 2By(xp) \ dxg

while the Hessian comparison theorem gives

1—n

- Adxo 2 _C(n’ k)7

X0

so that we arrive at the mean value inequality

d
— <s1—"/ f) > —sl—"/ Af — C(n,k)sl—"/ f. (5.4)
ds 9B, (x0) By (x0) 9B, (x0)

In particular, taking f = e.(u) and applying (5.3) gives

d
— (sl”/ ee(u)> >
ds 9B, (x0)

> — C(N,n, k) (1 +ec(u)(x0))s' ™" /
B (x0)

ec(u) — C(n,k)sl_"/ ec(u)

9By (xo)

for all s € [0, 09).
For a suitable constant C = C(N, n, k), it follows that

d
— (sl‘”ec“/ ee(u)> > —C[1 +ee(u)(xo)]s1_”/ ec(u)
ds 3By (x0) By (x0)

@ Springer



772 M. Karpukhin, D. Stern

for all s € [0, 0p). Note, moreover, that for s € [0, og) we have

12 172
Sl_n/ ec(u) < (S_n/ ee(”)) (SZ—n/ €c (u)) <
Bs (x0) Bs (x0) Bs (x0)

1/2
(since ee (u) < dee (u)(x0)) < 2(ee(u)(x0))'/? (sz—" / ec <u>)
B

5 (X0)

At the same time, by Lemma 5.2, we have
st / ec(u) < C'(n, kyr*™" / ec(u) < C'(n, k)r* ™" Ec(u; B (po)).
By (x0) By (x0)

Thus, assuming that
r> 7" Ec(u; Bar(p) <1, (5.5)
we can combine the estimates above to arrive at an inequality of the form

d

— (sl—"ecf / eg(u)) > —C(N,n, k)[1 + ec(u)(xo)lec ) (x0) /*n'/?
ds 9By (x0)

for all s € [0, 09p).
In particular, for any o € [0, 0¢), upon integrating the preceding inequality over
s €0, 0), we see that

ee () (x0) < Co ™ Ec(u; By (x0)) + Con'/?[1 4 e (u) (x0)1y/ ec () (x0)
<Co(N.n, 0+ (0720 + o021 + ecw)(xo) Y ec)(x0))

Multiplying through by o2 and setting B(c) := o e (u)(xo), we can rewrite this
estimate as

B(@) < Co- (n+n" 1o+ B@IVB@)) (5.6)

Recall that
1 .
ﬂ(ffo)=<7§€e(u)(xo)=z max dist(x, d B, (p))*ec (u)(x),
x€B;(p)

so to complete the proof of the theorem, it suffices to show that
B(00) = o ec(u) (x0) < 1/16

provided n is sufficiently small. Indeed, if we assume that B(op) > 1/16, then there
must be some o € (0, o) for which

B(0) = oec(u)(x0) = 1/16.
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At this o € (0, og) C (0, 1), the inequality (5.6) gives

Leco-(ntn(1+4) 1 5.7)

TR 16)4) ‘
but clearly this cannot hold for n < n9(NV, n, k) given by Cy (770 + 17(1)/2) = 1(1)—0. This
completes the proof. U

Remark 5.4 Examining the proof of Lemma 5.3, one sees that just two properties of
ec(u) play an essential role: the elliptic inequality (5.2) and the energy monotonic-
ity stated in Lemma 5.2. Using the same proof, one can likewise argue that for any
nonnegative function 0 < f € C*° (M) satisfying

i (eA1r2r2—nf f) 20
dr B (p)

d*df < Ay(f + [

and

on M for some constants A1, Ao, there exists no(M, A1, A2) > 0 such that if

rz_"/ S <mno
BZV(P)

for some 2r < min{inj(M, g), 1}, then
1 ey ooy < /72
A.3 Universal lower bound on the energy of sphere-valued harmonic maps

In this subsection we prove the following proposition, which is needed for the proof
of Lemma 3.6.

Proposition 5.5 For any closed Riemannian manifold (M™, g), there exists a positive
constant (M) > 0 such that

E(u)=>p

for any nonconstant harmonic map u: M — S¥ to the unit sphere of any dimension
keN.

The main ingredient needed to prove the proposition is the following simple
lemma, observing that the constants in a simplified version of the small energy reg-
ularity theorem for sphere-valued harmonic maps—originally proved in [10]-do not
depend on the dimension k of the target sphere S¥.
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Lemma 5.6 On a closed Riemannian manifold (M",g), there exist constants
Bo(M) > 0 and C(M) < oo such that if u: M — S is a harmonic map to the unit
sphere of any dimension k € N of energy

E(u) < Bo,
then

ldull7 e pgy < CE ).

Proof Recall that for sphere-valued harmonic maps u : M — S¥, the Bochner identity
gives

1
—Ed*d|du|2 = |Hess(u)|? + (Ricy, du*du) — |dul*,
so in particular we have the inequality

d*d|du|* < Cy(|dul* + |dul®), (5.8)

where the dimension k of the target sphere S* plays no role. Likewise, the standard
monotonicity identity for harmonic maps gives

d
£ <eCM’2r2—"/ |du|2> >0, (5.9)
dr B (p)

where, as in Lemma 5.2, the constant C = C); depends only on the dimension n and
curvature bounds of the domain manifold (M", g).

In particular, per Remark 5.4, setting §3y = inj(M)/2, it follows that there exists
some 19(M) < 0 independent of k such that if

52*"/ |du)? < no, (5.10)
Bas(p)

then
dull oo Bs2(py) < 1/8.
Thus, if
E(u) < po,

where f := %8'1{,;27]0, then we can apply the preceding estimate on the ball Bs(p)
of radius 283, = inj(M) at every point p € M, obtaining

ldullpcary < C(M)=1/8y.

Returning to the Bochner formula for |du| and estimating |du|* < Cy|du|?, we
deduce that if E(u) < Bo, then

dd*|du|?® < Cj,|dul?.
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From here, we may apply the mean value inequality (5.4) with f = |du|?* to see that
for any xo € M and s € (0, inj(M)),

d
- (sl_"/ |du|2) > —cjws“"/ |du|*> — CMs‘—"/ |du)?,
ds 9B (x0) By (x0) 9B (x0)

whence
d
_(Sl—neCS/ |du|2)>_csl—nf |du|2
ds 3By (x0) B (x0)

for a suitable constant C = C (M) still independent of k. In particular, taking xo such
that |du|?(xg) = max ey |du 1>(p), a simple application of Holder’s inequality to the
preceding estimate gives

4 172
= (sl—"eCS / |du|2) >-C' (sz—" / |du|2) |du|(xo),
ds 3By (x0) Bs(x0)

while (5.9) gives
s*" / |du|* < CE(u),
By (x0)

so that

d
a <S1—;16Csf |du|2> > —CvE@)|du|(xp).
9B (xp)

ds

Choosing t € [831/2, Sp] such that

2 2 2 l
ldul? < = \du|? < C'(M)E )
9B, (x0) Sm JBs,, (xo)

and integrating the preceding inequality over s € [0, t), we find that
tl—”eC’/ ldu|? — Vol(S" Y |du|(x0)* = —Ct/E (u)|dul|(xo).
9Bt (x0)
Rearranging and recalling that ¢ € [§37/2, §pr], we obtain an estimate of the form
ldul(x0)* < Cyy (VE@du(xo)| + Ew))

and by a simple application of Cauchy-Schwarz to the term +/ E () |du|(xp), we arrive
at an inequality of the desired form

|dul*(x0) < CE(u),
completing the proof. 0

We can now complete the proof of Proposition 5.5.
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Proof of Proposition 5.5 Let u: M" — SF be a harmonic map of small energy
Eu) < fo,
where Sy is the constant from Lemma 5.6, so that
dul|Z oo (pr) < CE ).
Fixing any xp € M, it then follows that
Ju(x) = u(xo)| < CYEdist(x, xo)
for any x € M. In particular if
E(u) < B(M) :=min{fo, (Cdiam(M))_z},

writing ep := u(xg), it follows that
(u(x), eo) :
u(x), eg) > —
)

for all x € M. But it is easy to see that this forces u to be constant: if (u(x), eg) > %,
intregrating the harmonic map equation

Au = |du|2u

against the constant vector e gives

1
0=/|du|2<u,eo>>—/ \dul?.
2 Jm

This completes the proof. d
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