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ABSTRACT

Scientific simulations running on HPC facilities generate massive
amount of data, putting significant pressure onto supercomputers’
storage capacity and network bandwidth. To alleviate this problem,
there has been a rich body of work on reducing data volumes via
error-controlled lossy compression. However, fixed-ratio compres-
sion is not very well-supported, not allowing users to appropriately
allocate memory/storage space or know the data transfer time
over the network in advance. To address this problem, recent ratio-
controlled frameworks, such as FXRZ, have incorporated methods
to predict required error bound settings to reach a user-specified
compression ratio. However, these approaches fail to achieve fixed-
ratio compression in an accurate, efficient and scalable fashion on
diverse datasets and compression algorithms.

This work proposes an efficient, scalable, ratio-controlled lossy
compression framework (CAROL). At the core of CAROL are four
optimization strategies that allow for improving the prediction ac-
curacy and runtime efficiency over state-of-the-art solutions. First,
CAROL uses surrogate-based compression ratio estimation to gener-
ate training data. Second, it includes a novel calibration method to
improve prediction accuracy across a variety of compressors. Third,
it leverages Bayesian optimization to allow for efficient training
and incremental model refinement. Forth, it uses GPU acceleration
to speed up prediction. We evaluate CAROL on four compression al-
gorithms and six scientific datasets. On average, when compared to
the state-of-the-art FXRZ framework, CAROL achieves 4X speedup
in setup time and 36X speedup in inference time, while maintaining
less than 1% difference in estimation accuracy.
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1 INTRODUCTION

The simulation of real-world phenomena is at the core of modern
research across a variety of scientific domains, such as particle
physics, climate modeling, weather prediction, drug discovery and
hydrodynamics, among others. The widespread adoption of Al has
led to an increased use of simulation also in commercial applica-
tions. For example, in the gaming industry, data generated through
simulation are used to aid in the training of video games for image
enhancing and video generation tasks. Compute-intensive simula-
tions have been well-supported by the continuous improvement
in computational capabilities of modern CPUs and GPUs. How-
ever, modern storage capacity, network and memory bandwidth
are ill-equipped to handle the massive amount of data produced by
many scientific simulations [6, 8, 10, 16]. For example, simulations
of baryonic gas and N-body treatment of dark matter (NYX [5]) can
generate petabytes of data.

As a result, data compression has been adopted as a solution
that trades certain computational throughput for better storage
and bandwidth utilization [9, 12, 18, 23]. Modern high throughput
compressors such as SZx [25] and cuSZp [11] can achieve 120GB/s
end-to-end compression and up to 200 GB/s kernel compression
throughput. High compression ratio solutions such as SPERR [17]
and SZ3 [20] can achieve compression ratios on the order of thou-
sands. In spite of their high performance, these compressors are
error-bounded and their compression ratio is not known in ad-
vance. Users would provide a tolerance level for the accuracy of
reconstructed data (error bound) and the compressor would try to
achieve the highest possible compression ratio that is within this
bound.

However, in practice, there are many situations where it is not
only preferable but also required for the compression ratio to be
determined ahead of time. Here, we present three common use
cases. Use case I: In research labs, scientists often share compute
and storage resources on supercomputers. If each scientist is as-
signed a maximum amount of storage, the ability to control the
amount of data each experiment produces becomes crucial to man-
aging shared storage. Use case 2: Need for preserving data quality
over a bandwidth-limited system. For example, black hole images
generated by the Event Horizon Telescope [1] are the result of a col-
laborative effort among scientists all over the world. These images
were constructed by analyzing telescope data from multiple loca-
tions. The first black hole image was generated from 5 petabytes



of data. Controlling storage and network requirements while pre-
serving data quality is crucial in scientific collaboration. Use case 3:
Large software pipelines require compressors to be compression
ratio-controlled. For example, the compression of activation data in
deep neural networks has proven an effective method to fit larger
models on GPU or training with larger batch sizes [7, 13]. Knowing
the compression ratio ahead of time enables adjusting the batch
size to the available GPU memory.

Due to the practical demands for fixed-ratio compressors, there
have been different works aimed to support fixed-ratio compres-
sion or compression ratio estimation. They can be machine learn-
ing based [22], surrogate based [15], or fixed-precision based [21].
These approaches come with their own trade-offs. A machine learn-
ing based model can offer high precision but incur large setup time.
A surrogate based model can have low setup time but high execu-
tion time, and can be challenging to extend support for multiple
compressors. A fixed-precision model can achieve high accuracy
and low execution time but suffer from significantly degraded com-
pression ratio or reconstructed data quality [24].

Amongst these approaches, FXRZ [22] is the first machine learn-
ing based framework to solve the fixed-ratio compression problem
for error-bounded compressors. FXRZ is a straightforward solution
that allows for achieving a desired compression ratio without com-
promising on data fidelity, and is easily extendable to support new
compressors. Users simply need to collect execution data from the
new compressor and retrain the model. In contrast, surrogate based
frameworks (e.g., SECRE [15]) require designing a new lightweight
compressor to mimic the new compressor’s behavior. However,
FXRZ has significant scaling issues that prevent it from large scale
deployment, including: (1) large data collection time, (2) large and
not scalable training time, and (3) large inference time. In addition,
FXRZ does not adapt well to applications such that the characteris-
tics of the data change over time. For example, consider the weather
simulation of hurricane Isabel [2]. An FXRZ model trained on the
initial time steps of the simulation can accurately perform predic-
tion for a few subsequent time steps. However, as the simulation
advances through time steps with diverse behaviors, FXRZ needs
to continually update itself to maintain accuracy. Unfortunately,
the current training approach used by FXRZ is not scalable.

In this work, we develop a highly efficient, scalable framework —
namely CAROL, that addresses FXRZ’s shortcomings while preserv-
ing data quality. CAROL is a machine learning based compression
ratio-controlled framework with low setup time, low estimation
cost and high prediction accuracy. It features a significantly higher
performance than FXRZ in both training and inference stages. In
particular, we make the following contributions:

e Through rigorous analysis, we identify scalability issues of the
existing work ([22]) with regard to data collection time, model
training time and inference/prediction time.

e We propose four novel optimizations to improve both setup time
(data collection, model training and inference time) and predic-
tion accuracy over state-of-the-art solutions. Specifically, CAROL:
(1) uses surrogate-based compression ratio estimation to gen-
erate training data, (2) includes a novel calibration method to
improve prediction accuracy across a variety of compressors, (3)
leverages Bayesian optimization to allow for efficient training
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and incremental model refinement, and (4) uses GPU acceleration
to speed up inference.

e We evaluate CAROL’s performance and estimation accuracy on
four state-of-the-art scientific lossy compressors: SZ3, SZx, ZFP
and SPERR, using simulation datasets from six scientific applica-
tions. We compare CAROL against state-of-the-art machine learn-
ing and surrogate based solutions. Our experiments show that,
on average, CAROL achieves a 4X speedup in setup time and a
36X speedup in inference time over FXRZ, while maintaining
estimation accuracy within 1%.

The remainder of the paper is organized as follows. Section 2
provides background on scientific lossy compression and state-of-
the-art compression ratio-controlled solutions. Section 3 formulates
our research problem and objectives. Section 4 presents CAROL’s
overall design. Section 5 details CAROL’s core contributions. Sec-
tion 6 presents the results and key takeaways of our experimental
evaluation of CAROL. Finally, Section 7 concludes our discussion.

2 BACKGROUND AND RELATED WORK

In this section, we provide background on state-of-the-art scientific
lossy compression and fixed-ratio frameworks.

2.1 Lossy Compression

Unlike lossless compression, which requires original and decom-
pressed data to be identical, lossy compression allows for the recon-
structed data to approximate the original ones. Most compressors
allow users to specify the acceptable data loss by providing a pa-
rameter called error bound. The error bound indicates the maximum
acceptable difference (in absolute value or as a percentage of the
value range) between any original data point and its reconstructed
value. The compressor uses this information to efficiently encode
the input data. There are multiple styles of lossy compression. In
general, lossy compression can be classified into three categories:

e Prediction-based compressors use prior input data points to
make prediction about later data points, and encode the differ-
ences between predicted and real data. The SZ family of compres-
sors [19, 20] fall under this category and use various prediction
techniques, such as Lorenzo predictor and spline interpolation.

¢ Transformation-based compressors leverage data transfor-
mation techniques from the image and signal processing domains
to group similar data points into a common location. Notable
compressors in this category include ZFP [21], which uses the
decorrelating linear transform, and SPERR [17], which relies on
the wavelet transform.

o Delta-based compressors primarily focus on byte-level differ-
ences between neighboring data points to quickly encode similar
data points. State-of-the-art delta-based compressors include
cuSZx [25] and cuSZp [11].

2.2 Compression Ratio-controlled Frameworks

The simplest method to control compression ratio ahead of com-
pression is fixed-rate compression, which sets the target number
of bits for each compressed data point. This technique controls the
compression ratio by changing the compression paradigm from
exploiting data similarities to setting the target compressed size.
ZFP [21] uses this technique in its GPU implementation. However,



fixed-rate compression suffers from very low compression ratio
compared with the error-bounding mode (as shown in prior work
[24]). Moreover, it cannot guarantee reconstructed data quality
since it does not take into account the values of the data points.

SECRE [15] is a framework to efficiently predict the compression
ratio by mimicking the compression operation/behavior on sampled
datasets. Currently SECRE supports four compressors: SZx, ZFP,
SZ3 and SPERR. The critical drawback of SECRE is that its design
is closely-coupled with the specific compression design, so that
it cannot be extended to other compressors easily. Moreover, its
estimation accuracy could be very low in some cases, in that it is
non-trivial to infer the compression ratios accurately based on only
sampled dataset especially because of complicated compression
modules (such as Huffman encoder and Zstd used in SZ3).

To simultaneously preserve data quality and control compression
ratio, the FXRZ [22] framework predicts the error bound that will
result in a given compression ratio, by leveraging machine learning
(ML) techniques. At a high level, FXRZ'’s design is motivated by two
critical observations: (1) In order to get a high compression ratio,
scientific lossy compression often relies on the regional smooth-
ness of data, which can be expressed by a set of key features. FXRZ
identifies five important features: value range, mean value, mean
neighbor difference, mean lorenzo difference and mean spline differ-
ence. (2) Scientific lossy compressors exhibit monotonic behavior.
In particular, when increasing the error bound, the compression
ratio will increase or stay the same. These two observations allow
estimating the relationship between compression ratio and error
bound. In particular, FXRZ consists of three major steps:

o Data collection: This step extracts the key features of the input
dataset and runs the dataset through a compressor multiple times
to establish its range of compression ratios and corresponding
error bounds.

o Model training: This step uses a random forest model to connect
the data features to the error bound/compression ratio relation-
ship.

o Model prediction: At inference time, the user provides the data
set and the desired compression ratio. FXRZ extracts the features
from the dataset, based on which it estimates the appropriate
error bound that will result in the target compression ratio.

As mentioned in the last section, the key issue of FXRZ is its low
scalability due to its limited parallel design and inferior estimation
accuracy across different scientific datasets.

3 PROBLEM FORMULATION

Here, we formulate the problem to address and research objectives.

3.1 Problem Formulation

FXRZ’s design suffers from three performance and scalability prob-
lems that prevent it from wide adoption.

o Expensive data collection: FXRZ’s training data are collected in
two steps. First, the features of the training datasets are extracted;
second, each dataset is compressed over a range of error bounds
and the corresponding compression ratios are collected. On high
ratio compressors (SZ3 and SPERR), data collection can take up
to 80% of the overall training time (i.e., multiple hours).
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Figure 1: Comparison between FXRZ’s and CAROL’s overall
design. CAROL’s core contributions are numbered 1 to 4.

e Large and non-scalable training time: FXRZ uses a naive grid
search algorithm to find the hyper-parameters for the underlying
random forest model. Due to the large hyper-parameter space,
FXRZ avoids an exhaustive search and performs a randomized
grid search aided by cross-validation. Not only does this method
provide an unstable solution (the hyper-parameters are selected
from a randomized grid search), but it also incurs large model
fitting times. Anytime new training data are generated, the search
must be performed again, invalidating any past training efforts.

e Large execution time: FXRZ’s execution consists of two steps:
(1) extracting the features from the input data, and (2) feeding
the features vector and the desired compression ratio into the
trained model for inference. While inference takes a relatively
short amount of time (a few milliseconds), features extraction
can be slower than the underlying compressor. This is especially
problematic when applying FXRZ to GPU compressors such as
SZx and cuSZp, where throughput is the primary objective.

3.2 Research Objectives

To achieve scalability and efficiency, CAROL’s design aims to satisfy
three non-trivial constraints:

o The framework should not compromise accuracy for throughput.
One could simply use a surrogate compressor or similar estima-
tion methods to quickly generate the error bound/compression
ratio data pairs required to train the model, achieving speedup
factors on the order of hundreds. However, doing so would sig-
nificantly reduce overall accuracy to the point of impracticality.

o The framework should not require more compute resources than the
original method. The data collection and model training processes
can be accelerated naively by running multiple instances of the
compressor or by fitting multiple hyperparameter configurations
in parallel. However, doing so will cause a significant increase in
the amount of compute resources required.

o The framework should run no slower than its underlying compressor.
If the compressor runs faster than the prediction model, one could
run the compressor multiple times and find the configuration
achieving the desired compression ratio using a linear search
and trial-and-error approach. The proposed framework must be
practical and beneficial also for high throughput compressors
such as SZx and cuSZp.



4 CAROL’S DESIGN OVERVIEW

Here, we present the design of CAROL, a scalable, ultra-fast ratio-
controlled compression framework. As illustrated in Figure 1, CAROL
makes four core contributions over FXRZ:

e Core contribution 1: We use the surrogate-based compression
ratio estimation method (SECRE) to generate training data. Recall
that SECRE includes lightweight versions of several state-of-the-
art lossy compressors (SZx, ZFP, SZ3 and SPERR) that can be
used to estimate the compression ratio achievable on an input
under a given error bound (see Section 2). Leveraging SECRE
allows us to significantly reduce the training data collection time
(compared with running the full compressor).

e Core contribution 2: Relying on lightweight compressors and
sampling of input data, SECRE may suffer from very high estima-
tion errors (in excess of 100%). We develop a calibration method
to correct the estimation error (to less than 5% in most cases). Our
calibration technique allows us to retain FXRZ’s training data
accuracy while enjoying SECRE’s high estimation throughput.

e Core contribution 3: We replace the randomized grid search
of hyper-parameters with a more targeted search leveraging
Bayesian optimization. Not only does this method reduce the
amount of fitting needed to create a new model, but it also allows
for scalable and incremental refinement of an existing model.

e Core contribution 4: We accelerate the feature extraction pro-
cess on GPU, allowing for faster inference time even when com-
paring to GPU compressors.

5 CORE CONTRIBUTIONS

5.1 Surrogate Estimation

FXRZ requires running each input dataset through the compressor
multiple times to estimate the relation between error bound and
compression ratio. We call this relation f(e), which expresses the
compression ratio f as a function of the error bound e. Given a sam-
ple of error bounds {ey,...en}, FXRZ will estimate f(e) by running
the compressor N times, each time with a different error bound e;,
and then interpolating the compression ratios f(e;) achieved on
the sample.

SECRE allows quickly estimating f'(e) without running the full
compressor. It does so by using a combination of sampling and a
lightweight compression pipeline that performs only a subset of
the steps of the original compressor. In addition, since the goal of
SECRE is to provide an estimate of the compression ratio, it does not
save compressed data. Table 1 summarizes the estimation method
used by SECRE for four compressors: SZx, SZP, SZ3 and SPERR.

e SZx [25] is a delta-based compressor with implementations for
both CPU and GPU. It splits data into blocks of 128 elements each,
and performs a byte-wise delta encoding customized for the IEEE
754 binary format. The lightweight version of SZx samples the
data blocks, selecting one block every 128. It then performs IEEE
754 delta encoding on the sampled data, and uses the results to
extrapolate the compression ratio for the entire dataset.

e ZFP [21] is a transform-based compressor. ZFP splits the data into
multi-dimensional blocks of 32-elements per dimension. It then
performs an orthogonal transformation to move data along the
block diagonals, and then performs bit-wise embedded encoding
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Figure 2: Estimated compression ratio (solid lines with left

axis) and runtime (dotted lines with right axis) of FXRZ and

SECRE on Miranda data (viscosity) with various compressors.
to reduce the block size. The lightweight version of ZFP samples
the multidimensional blocks, selecting one block every 32 along
all dimensions. It then performs full compression on the sampled
data to extrapolate the compression ratio for the entire dataset.

e 5Z3[20] is a predictor-based compressor. SZ3 looks at each indi-
vidual data point and performs spline interpolation along each
data dimension iteratively. The final result is passed through
a Huffman encoder to further improve compression ratio. The
lightweight version of SZ3 samples the input data, selecting one
data point every 5 along each dimension. It performs spline in-
terpolation at the last iteration (the most compute intensive one)
on the sampled data, but skips Huffman encoding.

e SPERR [17] is a transform-based compressor. SPERR splits the
data into multi-dimensional blocks of 128-element per dimension.
It first performs the CDF 9/7 transform to group high amplitude
values together, and then performs recursive SPECK encoding
to identify all the outlier data points. The outliers are stored in
compressed-sparse-row (CSR) format and compressed separately.
The result is passed through the lossless compressor zstd to
maximize compression ratio. The lightweight version of SPERR
samples the data by selecting one block every 128 along each
dimension. It performs Wavelet transform and SPECK encoding
on the sampled data, but skips the outliers encoding and zstd
compression passes.

Figure 2 compares the estimates of the compression function f(e)
obtained by running the full compressor (frxrz(e)) and SECRE
(fsecre(e)) on Viscosity data from the Miranda dataset. In both
cases, the estimations are done by performing linear interpolation
of the compression ratios obtained on 35 error bound values e;.
The figure also reports the estimation time using FXRZ and SECRE
(dashed line). As can be seen, SECRE can quickly estimate the
compression function. In addition, SECRE’s execution time is only a
fraction of FXRZ execution time . As explained, SECRE achieves this
speedup by: (1) using a lightweight compressor, (2) only performing
compression on a small fraction of the input dataset (between 5%
to 10%), and (3) not saving the compressed data.



Table 1: SECRE data sampling techniques and compression ratio estimation methods

Original SECRE
Compression Window | Compression Technique Sampling Estimation Technique
SZx Block-wise Delta Encoding Block-wise Delta Encoding
ZFP Block-wise Orthogonal Transform + Embedded Encd | Block-wise Orthogonal Transform + Embedded Encd
SZ3 Point-wise Spline Interpolation+ Huffman Point-wise Spline Interpolation
SPERR | Large Chunk Wavelet Transform + ZSTD Large Chunk | Wavelet Transform

We also observe that, for compressors such as SZx and ZFP (Fig-
ures 2a and 2b), SECRE’s estimation is close to FXRZ'’s estimation.
This is because, in these cases, the lightweight surrogate compres-
sor resembles the core encoding technique of the full compressor.
On the other hand, SECRE’s estimation of SZ3 and SPERR compres-
sion is inaccurate. SPERR and SZ3 apply their core compression
scheme in multiple iterations, while SECRE performs only the last
algorithm’s iteration.

5.2 Calibration

Given a sample of N error bounds e;, we define the estimation error
as:
;i
1
a=——
N

where a; represents the percentage estimation error for the ith
element in the sample:

1

|fsecre(ei) = f(ei)
f(es)

SECRE reports low estimation error on ZFP and SZx (1.7% and
0.16%, respectively), while incurring significant estimation error
(7% and 35%, respectively) on SPERR and SZ3. This large estimation
error introduces significant noise in the training data, making them
unsuitable for model construction. However, we note that, since the
runtimes of SZ3 and SPERR (about 6 sec and 2.5 sec per data point)
are larger than those of SZx and ZFP (about 0.2 sec per data point),
SECRE would offer the most performance benefits for the two
compressors incurring the highest estimation errors. We develop a
low overhead calibration method to correct the estimation error.
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Figure 3: Compression ratio (left axis) and estimation error
(right axis) on density (from Miranda) and duct (from Kla-
cansky) data using SPERR.
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Our calibration method attempts to predict the estimation error
from a few comparison data points, and then uses the predicted
estimation error curve to shift and scale the estimated compression
ratio to approximate the real compression ratio as accurately as
possible. This method is based on the following observations:

e For a given dataset, SECRE always underestimates or always
overestimates the true compression ratio.

o SECRE’s estimation is typically bi-modal. Each estimation error
curve has either a slow changing region and a fast changing one,
or an increasing region and a decreasing one.

Figures 3a and 3b show the estimation error curves of SECRE on
two datasets: Density from Miranda simulation and DUCT from
fluid simulation. As can be seen, Density’s estimation error exhibits
a fast decreasing region between error bounds 0 and 0.06, followed
by a slowly increasing region between error bounds 0.06 and 0.1,
while duct’s estimation error presents an increasing region between
error bounds 0 and ~3, followed by a decreasing region starting at
that error bound.

From these two observations, we conclude that, in order to cor-
rect SECRE’s estimation error, we need to identify: (1) if SECRE
is overestimating or underestimating the compression ratio, and
(2) the bi-modal regions. Our calibration method consists of three
steps:

e Step 1: Run the full compressor on additional data points (as
discussed in Section 6.3, we found three to four additional data
points to be sufficient in practice);

o Step 2: Compare the true and estimated compression ratio for
these additional data points to identify underestimation or over-
estimation;

o Step 3: Correct the compression ratio estimation using the fol-
lowing formulas:

o fsecre(ei)
Qverestimation : ej) = ——— 3
fearter) = HadEE ©

o fsecre(ei)
Underestimation : ej) = ———— 4
fear(ei) 100 + 4)

where fear (e;) represents the calibrated compression ratio esti-
mation for error bound e;.

Figures 3c and 3d show that our calibration method correctly
identifies whether SECRE overestimates or underestimates the com-
pression ratio and significantly reduces the estimation error. The
constructed estimation error (a’ lines) resemble the bi-modal re-
gions. Specifically, it reduces density’s estimation error from 9.4%
to 0.5%, and duct’s estimation error from 34.2% to 3.4%

5.3 Model Training

FXRZ uses a random forest regression model to correlate the error
bound/compression ratio function with the features of the training
data (average value, value range, mean Neighbor difference, mean



Lorenzo difference, and mean Spline difference). The result is a forest
of decision trees. Inference is performed in two steps: first, the
features of the input data are computed; second, the random forest
is traversed using those features and the desired compression ratio
to retrieve the corresponding error bound. Figure 4 is an example
of one such decision trees. For each node: the first line shows the
data feature being evaluated (e.g., mean spline difference, mean
Lorenzo difference, etc.); mse is the mean square error of the node;
samples are the number of training data points associated to the
node, and value is the output error bound (on a leaf node, the pre-
dicted error bound). The construction of this model is influenced by
a set of user-defined hyperparameters that determine the structure
of the random forest. The most notable hyper-parameters and the
corresponding value ranges are the following:

e n_estimators [90:1200]: number of decision trees;

o max_features [auto/sqrt]: number of features at every splits;

e max_depth [10:110]: maximum depth of a decision tree;

o min_sample_split [2,5,10]: minimum number of samples required
to split a node;

e min_sample_leaf [1,2,4]: minimum number of samples required
at each leaf node;

o bootstrapping [true/false]: whether to perform resampling with
replacement.

This hyperparameter space results in 396000 unique random for-
est configurations. An exhaustive search of all these configurations
to find the optimal random forest model is impractical. Instead,
FXRZ creates a small randomized set of unique configurations (cur-
rently 10). It then compares this set of configurations to find the
best performing one. To this end, FXRZ uses the “k-fold” cross-
validation method, which splits the training data into k groups
(called “folds”), and bundles them into different combinations of
training/testing data. The random forest model that performs the
best across the considered training/testing data combinations is se-
lected. This cross-validation method eliminates bias in the selection
of training/testing data.

At a high level, the randomized grid search with cross-validation
used is motivated by two observations: (1) in a hyper-parameter
search space, there exists an optimal configuration (absolute maxi-
mum/minimum), and (2) configurations that are close to each other
tend to perform similarly. FXRZ creates a set of configurations
that are randomly distributed across the hyper-parameter space
and performs training and validation to find the best among these
configurations. Empirically, this method has shown to result in a
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mse = 0.091

samples = 363
value = 0.929

mean-spline =< -1.366 mean-spline = 1.147
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samples = 155 samples = 208
value = 0.663 value = 1.134

mse = 0.022 mse = 0.00! mse = 0.011
samples = 39 samples = 116 samples = 151 samples = 57
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Figure 4: Example decision tree
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Figure 5: Analysis of training time and convergence of hy-
perparameters using bayesian optimization.

reasonably accurate model (estimation error below 10% for SZ2 and
20% for ZFP). However, it suffers from two major scalability issues:

e Some applications (e.g., Hurricane Isabel simulation) exhibit be-
haviors and data properties that change over time, requiring the
model to be progressively updated to maintain good prediction
accuracy as the features of the input data change. The random-
ized grid search method, however, is unsuitable for incremental
refinement of an existing model. As new data are generated,
FXRZ would require refitting the model from scratch to adapt to
changes in compression behavior, since it would need to generate
a new set of randomized configurations and perform cross vali-
dation on them. Training would essentially start over, discarding
any progress made by past searches.

o The compute and memory requirements of the randomized grid
search method increase with the training data volume. As more
training data are collected, not only does the compute time of
each configuration increase, but its memory footprint also in-
creases. Typically, FXRZ maps the construction of a random forest
instance to a CPU core. As each instance’s memory footprint in-
creases, memory capacity can become a bottleneck, requiring
serial training of random forest instances. Figure 5a shows the
increase in training time (red line) as more data are added.

In order to reduce overall training time and allow for incre-
mental model refinement, we perform hyperparameter search us-
ing Bayesian optimization (rather than randomized grid search).
Bayesian optimization is an iterative method that performs targeted
searches in the hyperparameter space. It starts with a randomized
set of initial hyperparameter configurations, and constructs and
tests the corresponding random forests. Each configuration is evalu-
ated by a user-defined scoring function. After having computed the
initial score, the optimizer fits a curve to model the score behavior
and identify potential high performing regions. In each subsequent
iteration, it tries out new configurations and updates the scoring
curve. The set of configurations evaluated in each iteration is de-
termined by a combination of “exploitation” (configurations from
a high performing region according to the scoring curve) and “ex-
ploration” (configuration from a new region). Figure 5b shows how
the n_estimators hyperparameter (i.e., the number of decision trees)
changes over ten search iterations for six datasets. Initially, ten
configurations of this parameter are chosen. From this initial set of
configurations, the optimizer tries out values in a couple of regions,
leading to a wide range of configurations in iteration 1 to 5. From
this “exploration”, it identifies a region as high performing and tries
out multiple configurations from this region (“exploitation”) until



it settles to a final value. In figure 5b, this step happens between
iteration 5 to 10. The balance between exploration and exploitation
is determined by the size of the hyper-parameter space and the
number of search iterations.

Even though the Bayesian optimization process is inherently
sequential, its targeted search allows for convergence while evaluat-
ing fewer random forest configurations. Moreover, as new training
data are generated, the optimization process can start from the
current model’s hyperparameters and thus significantly reduce the
training time of any subsequent model retrain. In essence, Bayesian
optimization allows for “checkpointing” of the training process,
enabling scalable incremental model refinement. Figure 5a com-
pares the training time using randomized grid search with the
training time using Bayesian optimization. While the training time
increases with the training data volume in all cases, the random-
ized grid search time spikes at 120 thousand data points, whereas
the Bayesian optimization’s training time (with and without check-
pointing) continues to increase linearly. For randomized grid search,
at 120 thousand data points system memory cannot house all ran-
dom forest configurations, forcing some jobs to run sequentially.
Incremental model update through Bayesian optimization outper-
forms the other training methods, especially as the size of the
training data increases.

5.4 Parallel Feature Extraction
One of the key contributions of FXRZ is the identification of five

data features that can help predict a dataset’s compressibility, namely:

mean value, value range, mean neighbor difference (MND), mean
Lorenzo difference (MLD) and mean spline difference (MSD). Mean
value and value range represent a dataset’s overall amplitude and
value spread, while MND, MLD and MSD are related to its local and
spatial smoothness. Below are the formulas for calculating MND,
MLD and MSD for a data point d; j . in a 3D dataset.

MND; ik =d; jpAdi—1,jk+di j-1.6+dij k-1

()
+dipj ki ek j kr1)/6
MLD; k= diqjk+di j-1k+di jk—1+di—1j-1k-1 ©
—di -1k dio1j k-1 j—1k—1
1 9 9 1
spline; = ——di3+ —di—1 + —diy1 — —di 7
74 i 1613 6% 1 16 i+1 16 i+3 (7)

MSD; j i = |di — spline;| + |d; — splinej| + |di — splineg|  (8)

While these features are effective in modeling data compress-
ibility, they are expensive to collect. For example, Figure 6 shows
that extracting the features on a portion of the NYX dataset with
dimensions 512x512x512 on CPU takes 15 seconds, 2.5X to 3.75%X
the execution time of SZ3 (6 seconds) and SPERR (4 seconds). When
compared to high throughput compressors such as SZx (0.15 sec-
onds) and ZFP (0.15 seconds), feature extraction is about 100x
slower. While this cost is low when compared to the training and
data collection times, it is significant for the inference process.
FXRZ mitigates this issue by sampling the data using a stride of 4
(resulting in 1.5% of the data being sampled on a 3D dataset), and
computing the features on the sampled data alone.
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Figure 6: Feature extraction time on a 512MB portion of the
Nyx dataset using CPU implementation without and with
sampling (Serial-Full and Serial-Sampled), and GPU imple-
mentation (Parallel). For comparison, we show SZx, SZ3 and
SPERR compression time. The experiments are run on the
system of Section 6.

Feature extraction on sampled data for the same NYX dataset
takes about 0.25 seconds on CPU. This is significantly lower than
the original cost and 20-60X faster than the considered CPU com-
pressors (SZ3 and SPERR). However, compared to GPU compressors
such as SZx and cuSZp, the feature extraction cost is still signif-
icant. To tackle this problem, we perform GPU parallelization of
feature extraction. To make the extraction process amenable for
GPU execution, we make the following implementation choices.

e We do not perform feature extraction on the data points on the
“surface” of the data set. We note that the MND, MLD and MSD
of a data point are calculated based on its neighboring values,
which vary in number depending on whether the data point is
located on the surface region. In practice, discarding these data
points saves conditional statements in the code, avoiding branch
divergence on GPU.
To facilitate memory coalescing on GPU, we perform block-wise
sampling instead of point-wise sampling. Specifically, we use
D-dimensional blocks (D being the dimensionality of the dataset)
with 32 elements per dimension, we sample 1 block every 4, and
we perform feature extraction based on all the data points in the
sampled blocks.
e We use shared memory for intermediate results (i.e., running
feature values).

As shown in Figure 6, for NYX dataset, GPU parallelization (right-
most bar) brings feature extraction time down to about 5 ms, about
50 faster than FXRZ’s serial feature extraction and about 30 faster
than the execution of SZx, a high throughput GPU compressor.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Hardware Setup. We perform our experiments on the Bebop and
Swing supercomputers at Argonne National Laboratory. The Bebop
system has 284 nodes, each comprising an Intel Xeon Phi 7230 CPU
with 64 cores, 96 GB DDR4 and 16GB MCDRAM. The Swing system
has 6 compute nodes, each equipped with 8 Nvidia A100 GPUs.

Datasets. We evaluate CAROL on four widely used datasets from
the SDRBench benchmark [26] and two from the Klacansky data
collection [3]. Specifically, we use the following datasets:



Table 2: Dataset summary

#Fields | Dimension Size Domain
Miranda 7 256X84X384 1GB Turbulence
NYX 6 512Xx512x512 | 3.1GB Cosmology
CESM 77 18003600 1.9GB Climate
Hurricane | 48x13 100X500%500 | 58.1GB | Weather
HCCI 1 560%560x560 | 0.7GB Autoignition
MRS 1 512X512X512 | 512MB | Magnetic

e Miranda [4]: 3D hydrodynamics data obtained from turbulence
simulations. The data contain 7 fields: density, diffusivity, pres-
sure, velocity (X,Y,Z) and viscosity;

o NYX [5]: Data from 3D cosmological hydrodynamics simulations.
Each snapshot contains 4 fields: baryon density, dark matter
density, temperature, and velocity-X;

o Hurricane ISABEL [2]: The data contain 48 snapshots, each in-
cluding 13 fields;

o CESM [14]: Data from climate simulations generated by the Com-
munity Atmosphere Model;

e Klacansky [3]: Data from homogeneous charge compression ig-
nition (HCCI), isotropic turbulence (IT), jet in crossflow (JIC),
and magnetic re-connection simulations (MRS).

Table 2 summarizes the main characteristics of these datasets.

Baseline and target Compressors . We use the state-of-the-art com-
pression ratio controlled framework FXRZ [22] as our baseline and
four lossy compressors: SZx, SZ3, SZP and SPERR as reference.

6.2 Overall Performance

We compare the end-to-end performance - in accuracy and execu-
tion time - of CAROL and FXRZ. Recall that these machine learning-
based frameworks consist of three steps: (1) data collection, (2) model
training and (3) compression ratio prediction. The first two steps are
one-time setup operations, while compression ratio prediction is
a recurring step that consists of features extraction from the input
data and model inference through a random forest traversal.

6.2.1 End-to-end Accuracy. CAROL aims to maintain the accuracy
of FXRZ while lowering the execution time of all three phases:
data collection, model training and compression ratio prediction.
FXRZ mainly targets single domain use cases, where the training
and testing data come from a single application. The experiments
presented in [22] are of two kinds: single field experiments, where
compression ratio estimation is performed across different time
steps for a single data field of an application, and multiple fields
experiments, where compression ratio estimation is performed
across different data fields of an application.

Single domain experiments: We conduct our experiments on four
fields of the NYX dataset: Baryon Density (BD), Dark Matter Density
(BDB), Temperature (Temp) and Velocity-X (V-X). For each field,

Table 3: Single domain experiments: estimation error () of
FXRZ and CAROL on 4 fields of the NYX dataset.

SZx ZFP SZ3 SPERR

FXRZ CAROL | FXRZ CAROL | FXRZ CAROL | FXRZ CAROL
BD 10.0% 8.5% 5.3% 4.6% 27.0%  26.0% 17.0% 18.3%
DMD 16.5% 17.0% 5.5% 8.0% 19.0% 18.8% 219% 21.8%
Temp 10.0% 10.0% 3.4% 4.2% 23.0% 24.0% 19.0% 17.8%
V-X 8.0% 10.0% 2.5% 2.5% 24.0% 25.0% 17.0% 18.2%
Average | 11.1% 11.4% 4.2%  4.8% 23.3% 23.5% 18.7% 19.0%
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Figure 7: Multiple domain experiments on Velocity-X data
from Miranda: requested compression ratio (f), and compres-
sion ratio achieved by FXRZ (frxrz) and CAROL (fcaror)

we use 6 time steps (3GB) as training data and one later time step
(0.5 GB) as testing data. Table 3 shows the estimation error (a) of
FXRZ and CAROL, computed using formula (1). On average, across
the four compressors considered, the accuracy achieved by our
framework is similar to that of FXRZ (less than 1% difference).
CAROL performs similarly to FXRZ or slightly better than it (up
to 2% better) on Baryon Density and Temperature, and similarly
or slightly worse (up to 2.5% worse) on Dark Matter Density and
Velocity-X. Like FXRZ, CAROL performs better (11.4% and 4.6%)
on the high throughput group (SZx and ZFP), while incurring a
higher estimation error (23.5% and 19%) on the high compression
ratio group (SPERR and SZ3). The main reason for this behavior
is that SZ3 and SPERR achieve compression ratios on the order
of thousands, and the limited amount of training data for single
domain experiments cannot adequately model the details of the
compression functions. However, we note that CAROL still meets
our objective of not degrading accuracy when compared to FXRZ.

Multiple domain experiments: To better assess the capabilities of
CAROL, we extend FXRZ’s single domain experiments to include
data from different datasets. We use 4 data fields from NYX, 5 data
fields from Miranda, and 2 independent simulations from Klacansky
(HCCI and MRS) as training data (for a total of 14.2GB) and 2 data
fields from Miranda (Velocity-X and Diffusivity) as testing data.
Figure 7 plots the compression function achieved by the compres-
sors (f(s)) (ground truth) along with the compression functions
estimated by FXRZ (frxrz(s)) and CAROL (fcaror (s)) when test-
ing with the Velocity-X field of the Miranda dataset. We reported
similar results on Miranda’s Diffusivity field. As can be seen, in
all cases the compression function estimations of CAROL and FXRZ
overlap completely and are close to the ground truth compression
function. In particular, CAROL achieves 10%, 1.5%, 7.8% and 5.8%
estimation error (a) for SZx, ZFP, SPERR, and SZ3, respectively.
The lowest estimation error is achieved on ZFP, which exhibits a
step-wise compression function such that multiple error bounds
result in the same compression ratio. In contrast, CAROL reports the
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Figure 9: Feature extraction time (in ms) of FXRZ and CAROL.
The forest traversal time is insignificant (~1ms). The num-
bers on top of the bars indicate speedup of CAROL over FXRZ.

highest estimation error on SZx. This is because SZx’s byte-level
delta-based compression algorithm is sensitive to changes in error
bound. CAROL’s predicted error bound is often within 2 decimal of
the ground truth error bound; however, the resulting compression
ratio is still on average 10% apart. We note that the observed estima-
tion error is lower for multiple domain experiments than for single
domain experiments, thanks to the model’s being trained with a more
diverse set of data. By allowing better scaling of the model training
time, CAROL facilitates the use of more training data.

6.2.2  Timing distribution. Figure 8 shows the execution time (in
minutes) of the model setup steps of FXRZ and CAROL on the four
considered compressors. For FXRZ ,data collection is the dominant
step, taking between 65% (SZx) and 85% (SPERR) of the total runtime.
Our framework was able to speedup data collection by 6 to 26 times
(on SZ3 and ZFP, respectively), from an average of 153 minutes to
21 minutes. In addition, CAROL reduced the model training time by
20% (for SZ3) to 45% (for SZx), from an average of 28 minutes to 21
minutes. Overall, CAROL reduced the setup time by 4.1 times. We
noted that CAROL was able to achieve this speedup while utilizing
only 1 CPU core, whereas FXRZ used all 36 cores.

Figure 9 shows that feature extraction time (in milliseconds) of
FXRZ and CAROL. As noted before, model inference takes insignif-
icant time (about 1 ms), so we only compare feature extraction
time. Feature extraction time depends on the size of the input data
(and is indepedent of the compressor). As can be seen across our
benchmark datasets, CAROL’s feature extraction is about 36X faster
than FXRZ’s. For large datasets like NYX, CESM and Klacansky,
FXRZ’s features extraction takes between 310 ms and 500 ms, while
CAROL maintains feature extraction time lower than 10 ms in all
cases. Low features extraction time allows for lower inference time.
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6.3 Calibration and Estimation Accuracy

Our end-to-end evaluation demonstrates that CAROL achieves accu-
racy similar to FXRZ while only taking 1/4 of the setup time and
1/40 of the inference time (using a single CPU core). In this section,
we discuss the main sources of speedup and prediction accuracy.

6.3.1 Secre Timing. Table 4 measure the time for the compressor
to run and the time for SECRE to estimate the compression ra-
tio. On the high throughput compressors, SECRE achieves a 14.8x
and 15.8X speedup over SZx and ZFP true compression time, re-
spectively. This speedup mainly comes from SECRE’s sampling
method: recall that SECRE performs compression on =1% of the
data and uses those sampled data to extrapolate the compression
ratio for the entire dataset. On the high throughput compressors,
SECRE achieves 50.7x and 22.2Xx speedup over SZ3 and SPERR com-
pression time, respectively. This more significant speedup comes
from the fact that SECRE’s surrogate compressor skips some key
compression steps, such as outliers encoding for SPERR and zstd
compression for SZ3. However, this speedup comes at the price of
a higher estimation error. While SZx’s and ZFP’s estimation errors
are less than 1%, SPERR’s and SZ3’s estimation errors can be as
high as 60%. This large error introduces significant noise into the
model.

6.3.2 Calibration Timing and Accuracy. One of the design parame-
ters of CAROL is the number of calibration points, i.e., the number
of additional runs of the compressor to collect calibration data used
to correct SECRE’s estimation. Table 5 compares the performance
and accuracy when running SECRE without calibration and with
calibration, using 3, 4 or 5 calibration points. Specifically, we show
the speedup reported over running the full compressor and the
percentage estimation error a. We only show the results for SZ3
and SPERR because SZx and ZFP have estimation errors below 1%
and do not need calibration.

The results from Table 5 show that SECRE incurs a 23% and a 47%
estimation error on SZ3 and SPERR, respectively, while allowing
for a 22.9% and a 48.8% speedup over running the full compressors.
CAROL’s calibration method using 3 additional data points reduces
the estimation error to 1.8% and 7.5% while maintaining a 7.5x and
9.34X speedup over running the full compressors. As the number of
calibration points increases to 4 and 5, the estimation error further
decreases at the cost of a longer data collection time. From these
results, we conclude that, for SPERR, three calibration points are
sufficient to achieve good accuracy gains for both compressors,
while 4 calibration points are enough to significantly limit the
estimation error while maintaining good performance gains.

Figure 10 plots the real compression ratio, the compression ratio
estimated by SECRE and the compression ratio calibrated by CAROL.

As can be seen, in all cases CAROL is able to correctly determine
Table 4: Training data collection time (in seconds) using full

compressor (full) and SECRE surrogate estimation (est).

SZx ZFP SZ3 SPERR

Full | Est | Full | Est | Full Est | Full Est
Miranda 59 5.2 95 9 1407 27 683 27
NYX 1038 | 65 2243 | 139 | 17357 | 336 | 13956 | 632
Hurricane | 54 5.4 43 4.2 | 1328 28 640 29
CESM 145 11 295 16 4462 94 2560 116
Klacansky | 73 5.45 | 126 9.1 1923 37 1074 46
Speedup | 14.8x 15.8% 50.7X 22.2X
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Figure 10: Compression ratio of SECRE and full compressor on viscosity data from Miranda.

Table 5: Effectiveness of calibration: speedup (S) over run-
ning the full compressor and estimation error () in percent-
age terms.

SZ3
. . Estimation with Calibration
Estimation - - <
3 points 4 points 5 points

S a S a S a S a
Miranda 50% 27.2% | 94X  2.4% 6.1x 14% | 52X 1.2%
NYX 51X 56.9% | 9.4x 15.5% | 6X 58% | 5.2X  4.5%
Hurricane | 46X 60% 9.2X  3.26% | 6X 25% | 51X 2%
CESM 47X 36.8% | 9.3X  4.3% 6X 2% 51X 1.4%
Klacansky | 50x 54.6% | 9.4x 11.8% | 6.1X 6.6% | 52X 5.4%
Average 48.8x 47.1% | 9.3X 7.5% | 6X 3.6% | 52X 2.9%
SPERR

. . Estimation with Calibration
Estimation , . -
3 points 4 points 5 points

S a S a S a S a
Miranda 25.1x  7.24% | 7.8X 2% 54X  0.5% | 47X 0.5%
NYX 23X 38.6% | 7.3X  2.7% 52X  0.6% | 45%x 0.5%
Hurricane | 21X 16% 72X 0.4% 51X 0.2% | 45X 0.2%
Klacansky | 22.7x  31.3% | 75X 2.1% | 53X 0.7% | 46X 0.5%
Average 229x  23.2% | 7.5X 1.8% | 53X 0.5% | 4.6X 0.4%

if SECRE overestimates or underestimates the compression ratio
and correctly fix the estimation error. When running SZ3 (figure
10e,10f, and 10g), using a 4 point calibration allows us to correct
the unstable prediction of SECRE.

7 CONCLUSION AND FUTURE WORK

In this work we propose CAROL, a fixed-ratio compression frame-
work that significantly improves execution time over state-of-the-
art solutions. We evaluate our framework on four compressors
and five real-world scientific datasets. Our results show that CAROL
achieves significant improvements over state-of-the-art solutions
while maintaining or improving prediction accuracy. Bellow are
key insights from our work:

e Performance: Data collection is the most time-consuming step.
Thus, its acceleration has the most impact on performance.
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o Compressor Behavior I: High compression ratio compressors (e.g.,
SPERR and SZ3) tend to incur higher estimation errors, and re-
quire calibration to achieve good estimation accuracy.

o Compressor Behavior 2: High throughput compressors (e.g., SZx
and ZFP) tend to incur low estimation error (less than 1%), making
calibration not necessary to achieving good accuracy.

o Compressor Behavior 3: When a surrogate model is not available,
CAROL is still a viable solution, especially for high throughput
compressors. In this case, full compression will be first performed
on sampled data, and then our proposed calibration method will
be used to reduce the estimation error. The key to an accurate
estimation is that the sampling method has to match the target
compressor’s compression window (Table 1).

e Model Accuracy: FXRZ’s randomized grid-search and CAROL’s
Bayesian optimization produce models with similar prediction
accuracy (less than 1% difference on average).

e Model Training Time and Prediction Accuracy: Overall prediction
accuracy is dependent on the quality and the diverseness of the
training data. Bayesian Optimization allows for scalable training
time and incremental model improvement while limiting the
computational needs.

o Feature Extraction: To maintain low prediction time, the data
sampling method used must be tailored to the hardware platform.

Future extensions to CAROL include utilizing different machine learn-
ing models and designing a feedback loop enabling on-the-fly model
improvement.
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