
CAROL: Significantly Improving Fixed-Ratio Compression
Framework for Resource-limited Applications

Tri Nguyen
North Carolina State University

Raleigh, NC, USA
tmnguye7@ncsu.edu

Md Hasanur Rahman
University of Iowa
Iowa City, IA, USA

mdhasanur-rahman@uiowa.edu

Sheng Di
Argonne National Laboratory

Lemont, IL, USA
sdi1@anl.gov

Michela Becchi
North Carolina State University

Raleigh, NC, USA
mbecchi@ncsu.edu

ABSTRACT

Scientific simulations running on HPC facilities generate massive

amount of data, putting significant pressure onto supercomputers’

storage capacity and network bandwidth. To alleviate this problem,

there has been a rich body of work on reducing data volumes via

error-controlled lossy compression. However, fixed-ratio compres-

sion is not very well-supported, not allowing users to appropriately

allocate memory/storage space or know the data transfer time

over the network in advance. To address this problem, recent ratio-

controlled frameworks, such as FXRZ, have incorporated methods

to predict required error bound settings to reach a user-specified

compression ratio. However, these approaches fail to achieve fixed-

ratio compression in an accurate, efficient and scalable fashion on

diverse datasets and compression algorithms.

This work proposes an efficient, scalable, ratio-controlled lossy

compression framework (CAROL). At the core of CAROL are four

optimization strategies that allow for improving the prediction ac-

curacy and runtime efficiency over state-of-the-art solutions. First,

CAROL uses surrogate-based compression ratio estimation to gener-

ate training data. Second, it includes a novel calibration method to

improve prediction accuracy across a variety of compressors. Third,

it leverages Bayesian optimization to allow for efficient training

and incremental model refinement. Forth, it uses GPU acceleration

to speed up prediction. We evaluate CAROL on four compression al-

gorithms and six scientific datasets. On average, when compared to

the state-of-the-art FXRZ framework, CAROL achieves 4× speedup

in setup time and 36× speedup in inference time, while maintaining

less than 1% difference in estimation accuracy.

ACM Reference Format:

Tri Nguyen, Md Hasanur Rahman, Sheng Di, and Michela Becchi. 2024.

CAROL: Significantly Improving Fixed-Ratio Compression Framework for

Resource-limited Applications. In The 53rd International Conference on Par-

allel Processing (ICPP ’24), August 12ś15, 2024, Gotland, Sweden. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3673038.3673092

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’24, August 12ś15, 2024, Gotland, Sweden

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673092

1 INTRODUCTION

The simulation of real-world phenomena is at the core of modern

research across a variety of scientific domains, such as particle

physics, climate modeling, weather prediction, drug discovery and

hydrodynamics, among others. The widespread adoption of AI has

led to an increased use of simulation also in commercial applica-

tions. For example, in the gaming industry, data generated through

simulation are used to aid in the training of video games for image

enhancing and video generation tasks. Compute-intensive simula-

tions have been well-supported by the continuous improvement

in computational capabilities of modern CPUs and GPUs. How-

ever, modern storage capacity, network and memory bandwidth

are ill-equipped to handle the massive amount of data produced by

many scientific simulations [6, 8, 10, 16]. For example, simulations

of baryonic gas and N-body treatment of dark matter (NYX [5]) can

generate petabytes of data.

As a result, data compression has been adopted as a solution

that trades certain computational throughput for better storage

and bandwidth utilization [9, 12, 18, 23]. Modern high throughput

compressors such as SZx [25] and cuSZp [11] can achieve 120GB/s

end-to-end compression and up to 200 GB/s kernel compression

throughput. High compression ratio solutions such as SPERR [17]

and SZ3 [20] can achieve compression ratios on the order of thou-

sands. In spite of their high performance, these compressors are

error-bounded and their compression ratio is not known in ad-

vance. Users would provide a tolerance level for the accuracy of

reconstructed data (error bound) and the compressor would try to

achieve the highest possible compression ratio that is within this

bound.

However, in practice, there are many situations where it is not

only preferable but also required for the compression ratio to be

determined ahead of time. Here, we present three common use

cases. Use case 1: In research labs, scientists often share compute

and storage resources on supercomputers. If each scientist is as-

signed a maximum amount of storage, the ability to control the

amount of data each experiment produces becomes crucial to man-

aging shared storage. Use case 2: Need for preserving data quality

over a bandwidth-limited system. For example, black hole images

generated by the Event Horizon Telescope [1] are the result of a col-

laborative effort among scientists all over the world. These images

were constructed by analyzing telescope data from multiple loca-

tions. The first black hole image was generated from 5 petabytes

845

of data. Controlling storage and network requirements while pre-

serving data quality is crucial in scientific collaboration. Use case 3:

Large software pipelines require compressors to be compression

ratio-controlled. For example, the compression of activation data in

deep neural networks has proven an effective method to fit larger

models on GPU or training with larger batch sizes [7, 13]. Knowing

the compression ratio ahead of time enables adjusting the batch

size to the available GPU memory.

Due to the practical demands for fixed-ratio compressors, there

have been different works aimed to support fixed-ratio compres-

sion or compression ratio estimation. They can be machine learn-

ing based [22], surrogate based [15], or fixed-precision based [21].

These approaches come with their own trade-offs. A machine learn-

ing based model can offer high precision but incur large setup time.

A surrogate based model can have low setup time but high execu-

tion time, and can be challenging to extend support for multiple

compressors. A fixed-precision model can achieve high accuracy

and low execution time but suffer from significantly degraded com-

pression ratio or reconstructed data quality [24].

Amongst these approaches, FXRZ [22] is the first machine learn-

ing based framework to solve the fixed-ratio compression problem

for error-bounded compressors. FXRZ is a straightforward solution

that allows for achieving a desired compression ratio without com-

promising on data fidelity, and is easily extendable to support new

compressors. Users simply need to collect execution data from the

new compressor and retrain the model. In contrast, surrogate based

frameworks (e.g., SECRE [15]) require designing a new lightweight

compressor to mimic the new compressor’s behavior. However,

FXRZ has significant scaling issues that prevent it from large scale

deployment, including: (1) large data collection time, (2) large and

not scalable training time, and (3) large inference time. In addition,

FXRZ does not adapt well to applications such that the characteris-

tics of the data change over time. For example, consider the weather

simulation of hurricane Isabel [2]. An FXRZ model trained on the

initial time steps of the simulation can accurately perform predic-

tion for a few subsequent time steps. However, as the simulation

advances through time steps with diverse behaviors, FXRZ needs

to continually update itself to maintain accuracy. Unfortunately,

the current training approach used by FXRZ is not scalable.

In this work, we develop a highly efficient, scalable framework ś

namely CAROL, that addresses FXRZ’s shortcomings while preserv-

ing data quality. CAROL is a machine learning based compression

ratio-controlled framework with low setup time, low estimation

cost and high prediction accuracy. It features a significantly higher

performance than FXRZ in both training and inference stages. In

particular, we make the following contributions:

• Through rigorous analysis, we identify scalability issues of the

existing work ([22]) with regard to data collection time, model

training time and inference/prediction time.

• We propose four novel optimizations to improve both setup time

(data collection, model training and inference time) and predic-

tion accuracy over state-of-the-art solutions. Specifically, CAROL:

(1) uses surrogate-based compression ratio estimation to gen-

erate training data, (2) includes a novel calibration method to

improve prediction accuracy across a variety of compressors, (3)

leverages Bayesian optimization to allow for efficient training

and incremental model refinement, and (4) uses GPU acceleration

to speed up inference.

• We evaluate CAROL’s performance and estimation accuracy on

four state-of-the-art scientific lossy compressors: SZ3, SZx, ZFP

and SPERR, using simulation datasets from six scientific applica-

tions. We compare CAROL against state-of-the-art machine learn-

ing and surrogate based solutions. Our experiments show that,

on average, CAROL achieves a 4× speedup in setup time and a

36× speedup in inference time over FXRZ, while maintaining

estimation accuracy within 1%.

The remainder of the paper is organized as follows. Section 2

provides background on scientific lossy compression and state-of-

the-art compression ratio-controlled solutions. Section 3 formulates

our research problem and objectives. Section 4 presents CAROL’s

overall design. Section 5 details CAROL’s core contributions. Sec-

tion 6 presents the results and key takeaways of our experimental

evaluation of CAROL. Finally, Section 7 concludes our discussion.

2 BACKGROUND AND RELATED WORK

In this section, we provide background on state-of-the-art scientific

lossy compression and fixed-ratio frameworks.

2.1 Lossy Compression

Unlike lossless compression, which requires original and decom-

pressed data to be identical, lossy compression allows for the recon-

structed data to approximate the original ones. Most compressors

allow users to specify the acceptable data loss by providing a pa-

rameter called error bound. The error bound indicates the maximum

acceptable difference (in absolute value or as a percentage of the

value range) between any original data point and its reconstructed

value. The compressor uses this information to efficiently encode

the input data. There are multiple styles of lossy compression. In

general, lossy compression can be classified into three categories:

• Prediction-based compressors use prior input data points to

make prediction about later data points, and encode the differ-

ences between predicted and real data. The SZ family of compres-

sors [19, 20] fall under this category and use various prediction

techniques, such as Lorenzo predictor and spline interpolation.

• Transformation-based compressors leverage data transfor-

mation techniques from the image and signal processing domains

to group similar data points into a common location. Notable

compressors in this category include ZFP [21], which uses the

decorrelating linear transform, and SPERR [17], which relies on

the wavelet transform.

• Delta-based compressors primarily focus on byte-level differ-

ences between neighboring data points to quickly encode similar

data points. State-of-the-art delta-based compressors include

cuSZx [25] and cuSZp [11].

2.2 Compression Ratio-controlled Frameworks

The simplest method to control compression ratio ahead of com-

pression is fixed-rate compression, which sets the target number

of bits for each compressed data point. This technique controls the

compression ratio by changing the compression paradigm from

exploiting data similarities to setting the target compressed size.

ZFP [21] uses this technique in its GPU implementation. However,

2

846

fixed-rate compression suffers from very low compression ratio

compared with the error-bounding mode (as shown in prior work

[24]). Moreover, it cannot guarantee reconstructed data quality

since it does not take into account the values of the data points.

SECRE [15] is a framework to efficiently predict the compression

ratio bymimicking the compression operation/behavior on sampled

datasets. Currently SECRE supports four compressors: SZx, ZFP,

SZ3 and SPERR. The critical drawback of SECRE is that its design

is closely-coupled with the specific compression design, so that

it cannot be extended to other compressors easily. Moreover, its

estimation accuracy could be very low in some cases, in that it is

non-trivial to infer the compression ratios accurately based on only

sampled dataset especially because of complicated compression

modules (such as Huffman encoder and Zstd used in SZ3).

To simultaneously preserve data quality and control compression

ratio, the FXRZ [22] framework predicts the error bound that will

result in a given compression ratio, by leveraging machine learning

(ML) techniques. At a high level, FXRZ’s design is motivated by two

critical observations: (1) In order to get a high compression ratio,

scientific lossy compression often relies on the regional smooth-

ness of data, which can be expressed by a set of key features. FXRZ

identifies five important features: value range, mean value, mean

neighbor difference, mean lorenzo difference and mean spline differ-

ence. (2) Scientific lossy compressors exhibit monotonic behavior.

In particular, when increasing the error bound, the compression

ratio will increase or stay the same. These two observations allow

estimating the relationship between compression ratio and error

bound. In particular, FXRZ consists of three major steps:

• Data collection: This step extracts the key features of the input

dataset and runs the dataset through a compressor multiple times

to establish its range of compression ratios and corresponding

error bounds.

• Model training: This step uses a random forest model to connect

the data features to the error bound/compression ratio relation-

ship.

• Model prediction: At inference time, the user provides the data

set and the desired compression ratio. FXRZ extracts the features

from the dataset, based on which it estimates the appropriate

error bound that will result in the target compression ratio.

As mentioned in the last section, the key issue of FXRZ is its low

scalability due to its limited parallel design and inferior estimation

accuracy across different scientific datasets.

3 PROBLEM FORMULATION

Here, we formulate the problem to address and research objectives.

3.1 Problem Formulation

FXRZ’s design suffers from three performance and scalability prob-

lems that prevent it from wide adoption.

• Expensive data collection: FXRZ’s training data are collected in

two steps. First, the features of the training datasets are extracted;

second, each dataset is compressed over a range of error bounds

and the corresponding compression ratios are collected. On high

ratio compressors (SZ3 and SPERR), data collection can take up

to 80% of the overall training time (i.e., multiple hours).

Figure 1: Comparison between FXRZ’s and CAROL’s overall

design. CAROL’s core contributions are numbered 1 to 4.

• Large and non-scalable training time: FXRZ uses a naïve grid

search algorithm to find the hyper-parameters for the underlying

random forest model. Due to the large hyper-parameter space,

FXRZ avoids an exhaustive search and performs a randomized

grid search aided by cross-validation. Not only does this method

provide an unstable solution (the hyper-parameters are selected

from a randomized grid search), but it also incurs large model

fitting times. Anytime new training data are generated, the search

must be performed again, invalidating any past training efforts.

• Large execution time: FXRZ’s execution consists of two steps:

(1) extracting the features from the input data, and (2) feeding

the features vector and the desired compression ratio into the

trained model for inference. While inference takes a relatively

short amount of time (a few milliseconds), features extraction

can be slower than the underlying compressor. This is especially

problematic when applying FXRZ to GPU compressors such as

SZx and cuSZp, where throughput is the primary objective.

3.2 Research Objectives

To achieve scalability and efficiency, CAROL’s design aims to satisfy

three non-trivial constraints:

• The framework should not compromise accuracy for throughput.

One could simply use a surrogate compressor or similar estima-

tion methods to quickly generate the error bound/compression

ratio data pairs required to train the model, achieving speedup

factors on the order of hundreds. However, doing so would sig-

nificantly reduce overall accuracy to the point of impracticality.

• The framework should not require more compute resources than the

original method. The data collection and model training processes

can be accelerated naïvely by running multiple instances of the

compressor or by fitting multiple hyperparameter configurations

in parallel. However, doing so will cause a significant increase in

the amount of compute resources required.

• The framework should run no slower than its underlying compressor .

If the compressor runs faster than the predictionmodel, one could

run the compressor multiple times and find the configuration

achieving the desired compression ratio using a linear search

and trial-and-error approach. The proposed framework must be

practical and beneficial also for high throughput compressors

such as SZx and cuSZp.

3

847

4 CAROL’S DESIGN OVERVIEW

Here, we present the design of CAROL, a scalable, ultra-fast ratio-

controlled compression framework. As illustrated in Figure 1, CAROL

makes four core contributions over FXRZ:

• Core contribution 1: We use the surrogate-based compression

ratio estimation method (SECRE) to generate training data. Recall

that SECRE includes lightweight versions of several state-of-the-

art lossy compressors (SZx, ZFP, SZ3 and SPERR) that can be

used to estimate the compression ratio achievable on an input

under a given error bound (see Section 2). Leveraging SECRE

allows us to significantly reduce the training data collection time

(compared with running the full compressor).

• Core contribution 2: Relying on lightweight compressors and

sampling of input data, SECRE may suffer from very high estima-

tion errors (in excess of 100%). We develop a calibration method

to correct the estimation error (to less than 5% in most cases). Our

calibration technique allows us to retain FXRZ’s training data

accuracy while enjoying SECRE’s high estimation throughput.

• Core contribution 3: We replace the randomized grid search

of hyper-parameters with a more targeted search leveraging

Bayesian optimization. Not only does this method reduce the

amount of fitting needed to create a new model, but it also allows

for scalable and incremental refinement of an existing model.

• Core contribution 4: We accelerate the feature extraction pro-

cess on GPU, allowing for faster inference time even when com-

paring to GPU compressors.

5 CORE CONTRIBUTIONS

5.1 Surrogate Estimation

FXRZ requires running each input dataset through the compressor

multiple times to estimate the relation between error bound and

compression ratio. We call this relation 𝑓 (𝑒), which expresses the

compression ratio 𝑓 as a function of the error bound 𝑒 . Given a sam-

ple of error bounds {𝑒1,..,𝑒𝑁 }, FXRZ will estimate 𝑓 (𝑒) by running

the compressor 𝑁 times, each time with a different error bound 𝑒𝑖 ,

and then interpolating the compression ratios 𝑓 (𝑒𝑖) achieved on

the sample.

SECRE allows quickly estimating 𝑓 (𝑒) without running the full

compressor. It does so by using a combination of sampling and a

lightweight compression pipeline that performs only a subset of

the steps of the original compressor. In addition, since the goal of

SECRE is to provide an estimate of the compression ratio, it does not

save compressed data. Table 1 summarizes the estimation method

used by SECRE for four compressors: SZx, SZP, SZ3 and SPERR.

• SZx [25] is a delta-based compressor with implementations for

both CPU and GPU. It splits data into blocks of 128 elements each,

and performs a byte-wise delta encoding customized for the IEEE

754 binary format. The lightweight version of SZx samples the

data blocks, selecting one block every 128. It then performs IEEE

754 delta encoding on the sampled data, and uses the results to

extrapolate the compression ratio for the entire dataset.

• ZFP [21] is a transform-based compressor. ZFP splits the data into

multi-dimensional blocks of 32-elements per dimension. It then

performs an orthogonal transformation to move data along the

block diagonals, and then performs bit-wise embedded encoding

(a) SZx (b) ZFP

(c) SZ3 (d) SPERR

Figure 2: Estimated compression ratio (solid lines with left

axis) and runtime (dotted lines with right axis) of FXRZ and

SECRE onMiranda data (viscosity) with various compressors.
to reduce the block size. The lightweight version of ZFP samples

the multidimensional blocks, selecting one block every 32 along

all dimensions. It then performs full compression on the sampled

data to extrapolate the compression ratio for the entire dataset.

• SZ3 [20] is a predictor-based compressor. SZ3 looks at each indi-

vidual data point and performs spline interpolation along each

data dimension iteratively. The final result is passed through

a Huffman encoder to further improve compression ratio. The

lightweight version of SZ3 samples the input data, selecting one

data point every 5 along each dimension. It performs spline in-

terpolation at the last iteration (the most compute intensive one)

on the sampled data, but skips Huffman encoding.

• SPERR [17] is a transform-based compressor. SPERR splits the

data into multi-dimensional blocks of 128-element per dimension.

It first performs the CDF 9/7 transform to group high amplitude

values together, and then performs recursive SPECK encoding

to identify all the outlier data points. The outliers are stored in

compressed-sparse-row (CSR) format and compressed separately.

The result is passed through the lossless compressor zstd to

maximize compression ratio. The lightweight version of SPERR

samples the data by selecting one block every 128 along each

dimension. It performs Wavelet transform and SPECK encoding

on the sampled data, but skips the outliers encoding and zstd

compression passes.

Figure 2 compares the estimates of the compression function 𝑓 (𝑒)

obtained by running the full compressor (𝑓𝐹𝑋𝑅𝑍 (𝑒)) and SECRE

(𝑓𝑆𝐸𝐶𝑅𝐸 (𝑒)) on Viscosity data from the Miranda dataset. In both

cases, the estimations are done by performing linear interpolation

of the compression ratios obtained on 35 error bound values 𝑒𝑖 .

The figure also reports the estimation time using FXRZ and SECRE

(dashed line). As can be seen, SECRE can quickly estimate the

compression function. In addition, SECRE’s execution time is only a

fraction of FXRZ execution time . As explained, SECRE achieves this

speedup by: (1) using a lightweight compressor, (2) only performing

compression on a small fraction of the input dataset (between 5%

to 10%), and (3) not saving the compressed data.

4

848

Table 1: SECRE data sampling techniques and compression ratio estimation methods

Original SECRE
Compression Window Compression Technique Sampling Estimation Technique

SZx Block-wise Delta Encoding Block-wise Delta Encoding
ZFP Block-wise Orthogonal Transform + Embedded Encd Block-wise Orthogonal Transform + Embedded Encd
SZ3 Point-wise Spline Interpolation+ Huffman Point-wise Spline Interpolation
SPERR Large Chunk Wavelet Transform + ZSTD Large Chunk Wavelet Transform

We also observe that, for compressors such as SZx and ZFP (Fig-

ures 2a and 2b), SECRE’s estimation is close to FXRZ’s estimation.

This is because, in these cases, the lightweight surrogate compres-

sor resembles the core encoding technique of the full compressor.

On the other hand, SECRE’s estimation of SZ3 and SPERR compres-

sion is inaccurate. SPERR and SZ3 apply their core compression

scheme in multiple iterations, while SECRE performs only the last

algorithm’s iteration.

5.2 Calibration

Given a sample of 𝑁 error bounds 𝑒𝑖 , we define the estimation error

as:

𝛼 =

∑
𝑖 𝛼𝑖

𝑁
(1)

where 𝛼𝑖 represents the percentage estimation error for the 𝑖𝑡ℎ

element in the sample:

𝛼𝑖 = 100 ∗
|𝑓𝑆𝐸𝐶𝑅𝐸 (𝑒𝑖) − 𝑓 (𝑒𝑖) |

𝑓 (𝑒𝑖)
(2)

SECRE reports low estimation error on ZFP and SZx (1.7% and

0.16%, respectively), while incurring significant estimation error

(7% and 35%, respectively) on SPERR and SZ3. This large estimation

error introduces significant noise in the training data, making them

unsuitable for model construction. However, we note that, since the

runtimes of SZ3 and SPERR (about 6 sec and 2.5 sec per data point)

are larger than those of SZx and ZFP (about 0.2 sec per data point),

SECRE would offer the most performance benefits for the two

compressors incurring the highest estimation errors. We develop a

low overhead calibration method to correct the estimation error.

(a) Miranda-Density (b) Klacansky-duct

(c) Miranda-Density Calibrated (d) Klacansky-duct Calibrated

Figure 3: Compression ratio (left axis) and estimation error

(right axis) on density (from Miranda) and duct (from Kla-

cansky) data using SPERR.

Our calibration method attempts to predict the estimation error

from a few comparison data points, and then uses the predicted

estimation error curve to shift and scale the estimated compression

ratio to approximate the real compression ratio as accurately as

possible. This method is based on the following observations:

• For a given dataset, SECRE always underestimates or always

overestimates the true compression ratio.

• SECRE’s estimation is typically bi-modal. Each estimation error

curve has either a slow changing region and a fast changing one,

or an increasing region and a decreasing one.

Figures 3a and 3b show the estimation error curves of SECRE on

two datasets: Density from Miranda simulation and DUCT from

fluid simulation. As can be seen, Density’s estimation error exhibits

a fast decreasing region between error bounds 0 and 0.06, followed

by a slowly increasing region between error bounds 0.06 and 0.1,

while duct’s estimation error presents an increasing region between

error bounds 0 and ∼3, followed by a decreasing region starting at

that error bound.

From these two observations, we conclude that, in order to cor-

rect SECRE’s estimation error, we need to identify: (1) if SECRE

is overestimating or underestimating the compression ratio, and

(2) the bi-modal regions. Our calibration method consists of three

steps:

• Step 1: Run the full compressor on additional data points (as

discussed in Section 6.3, we found three to four additional data

points to be sufficient in practice);

• Step 2: Compare the true and estimated compression ratio for

these additional data points to identify underestimation or over-

estimation;

• Step 3: Correct the compression ratio estimation using the fol-

lowing formulas:

𝑂𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 : 𝑓𝐶𝐴𝐿 (𝑒𝑖) =
𝑓𝑆𝐸𝐶𝑅𝐸 (𝑒𝑖)

100 − 𝛼𝑖
(3)

𝑈𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 : 𝑓𝐶𝐴𝐿 (𝑒𝑖) =
𝑓𝑆𝐸𝐶𝑅𝐸 (𝑒𝑖)

100 + 𝛼𝑖
(4)

where 𝑓𝐶𝐴𝐿 (𝑒𝑖) represents the calibrated compression ratio esti-

mation for error bound 𝑒𝑖 .

Figures 3c and 3d show that our calibration method correctly

identifies whether SECRE overestimates or underestimates the com-

pression ratio and significantly reduces the estimation error. The

constructed estimation error (𝛼 ′ lines) resemble the bi-modal re-

gions. Specifically, it reduces density’s estimation error from 9.4%

to 0.5%, and duct’s estimation error from 34.2% to 3.4%

5.3 Model Training

FXRZ uses a random forest regression model to correlate the error

bound/compression ratio function with the features of the training

data (average value, value range, mean Neighbor difference, mean

5

849

Lorenzo difference, and mean Spline difference). The result is a forest

of decision trees. Inference is performed in two steps: first, the

features of the input data are computed; second, the random forest

is traversed using those features and the desired compression ratio

to retrieve the corresponding error bound. Figure 4 is an example

of one such decision trees. For each node: the first line shows the

data feature being evaluated (e.g., mean spline difference, mean

Lorenzo difference, etc.); mse is the mean square error of the node;

samples are the number of training data points associated to the

node, and value is the output error bound (on a leaf node, the pre-

dicted error bound). The construction of this model is influenced by

a set of user-defined hyperparameters that determine the structure

of the random forest. The most notable hyper-parameters and the

corresponding value ranges are the following:

• n_estimators [90:1200]: number of decision trees;

• max_features [auto/sqrt]: number of features at every splits;

• max_depth [10:110]: maximum depth of a decision tree;

• min_sample_split [2,5,10]: minimum number of samples required

to split a node;

• min_sample_leaf [1,2,4]: minimum number of samples required

at each leaf node;

• bootstrapping [true/false]: whether to perform resampling with

replacement.

This hyperparameter space results in 396000 unique random for-

est configurations. An exhaustive search of all these configurations

to find the optimal random forest model is impractical. Instead,

FXRZ creates a small randomized set of unique configurations (cur-

rently 10). It then compares this set of configurations to find the

best performing one. To this end, FXRZ uses the łk-foldž cross-

validation method, which splits the training data into 𝑘 groups

(called łfoldsž), and bundles them into different combinations of

training/testing data. The random forest model that performs the

best across the considered training/testing data combinations is se-

lected. This cross-validation method eliminates bias in the selection

of training/testing data.

At a high level, the randomized grid search with cross-validation

used is motivated by two observations: (1) in a hyper-parameter

search space, there exists an optimal configuration (absolute maxi-

mum/minimum), and (2) configurations that are close to each other

tend to perform similarly. FXRZ creates a set of configurations

that are randomly distributed across the hyper-parameter space

and performs training and validation to find the best among these

configurations. Empirically, this method has shown to result in a

Figure 4: Example decision tree

(a) Training time when varying

the training data size.

(b) Changes in the number

of decision trees (n_estimator)

over 10 search iterations.

Figure 5: Analysis of training time and convergence of hy-

perparameters using bayesian optimization.
reasonably accurate model (estimation error below 10% for SZ2 and

20% for ZFP). However, it suffers from two major scalability issues:

• Some applications (e.g., Hurricane Isabel simulation) exhibit be-

haviors and data properties that change over time, requiring the

model to be progressively updated to maintain good prediction

accuracy as the features of the input data change. The random-

ized grid search method, however, is unsuitable for incremental

refinement of an existing model. As new data are generated,

FXRZ would require refitting the model from scratch to adapt to

changes in compression behavior, since it would need to generate

a new set of randomized configurations and perform cross vali-

dation on them. Training would essentially start over, discarding

any progress made by past searches.

• The compute and memory requirements of the randomized grid

search method increase with the training data volume. As more

training data are collected, not only does the compute time of

each configuration increase, but its memory footprint also in-

creases. Typically, FXRZmaps the construction of a random forest

instance to a CPU core. As each instance’s memory footprint in-

creases, memory capacity can become a bottleneck, requiring

serial training of random forest instances. Figure 5a shows the

increase in training time (red line) as more data are added.

In order to reduce overall training time and allow for incre-

mental model refinement, we perform hyperparameter search us-

ing Bayesian optimization (rather than randomized grid search).

Bayesian optimization is an iterative method that performs targeted

searches in the hyperparameter space. It starts with a randomized

set of initial hyperparameter configurations, and constructs and

tests the corresponding random forests. Each configuration is evalu-

ated by a user-defined scoring function. After having computed the

initial score, the optimizer fits a curve to model the score behavior

and identify potential high performing regions. In each subsequent

iteration, it tries out new configurations and updates the scoring

curve. The set of configurations evaluated in each iteration is de-

termined by a combination of łexploitationž (configurations from

a high performing region according to the scoring curve) and łex-

plorationž (configuration from a new region). Figure 5b shows how

the n_estimators hyperparameter (i.e., the number of decision trees)

changes over ten search iterations for six datasets. Initially, ten

configurations of this parameter are chosen. From this initial set of

configurations, the optimizer tries out values in a couple of regions,

leading to a wide range of configurations in iteration 1 to 5. From

this łexplorationž, it identifies a region as high performing and tries

out multiple configurations from this region (łexploitationž) until

6

850

it settles to a final value. In figure 5b, this step happens between

iteration 5 to 10. The balance between exploration and exploitation

is determined by the size of the hyper-parameter space and the

number of search iterations.

Even though the Bayesian optimization process is inherently

sequential, its targeted search allows for convergence while evaluat-

ing fewer random forest configurations. Moreover, as new training

data are generated, the optimization process can start from the

current model’s hyperparameters and thus significantly reduce the

training time of any subsequent model retrain. In essence, Bayesian

optimization allows for łcheckpointingž of the training process,

enabling scalable incremental model refinement. Figure 5a com-

pares the training time using randomized grid search with the

training time using Bayesian optimization. While the training time

increases with the training data volume in all cases, the random-

ized grid search time spikes at 120 thousand data points, whereas

the Bayesian optimization’s training time (with and without check-

pointing) continues to increase linearly. For randomized grid search,

at 120 thousand data points system memory cannot house all ran-

dom forest configurations, forcing some jobs to run sequentially.

Incremental model update through Bayesian optimization outper-

forms the other training methods, especially as the size of the

training data increases.

5.4 Parallel Feature Extraction

One of the key contributions of FXRZ is the identification of five

data features that can help predict a dataset’s compressibility, namely:

mean value, value range, mean neighbor difference (MND), mean

Lorenzo difference (MLD) and mean spline difference (MSD). Mean

value and value range represent a dataset’s overall amplitude and

value spread, while MND, MLD and MSD are related to its local and

spatial smoothness. Below are the formulas for calculating MND,

MLD and MSD for a data point 𝑑𝑖, 𝑗,𝑘 in a 3D dataset.

𝑀𝑁𝐷𝑖, 𝑗,𝑘 = 𝑑𝑖, 𝑗,𝑘 -(𝑑𝑖−1, 𝑗,𝑘+𝑑𝑖, 𝑗−1,𝑘+𝑑𝑖, 𝑗,𝑘−1

+ 𝑑𝑖+1, 𝑗,𝑘+𝑑𝑖, 𝑗+1,𝑘+𝑑𝑖, 𝑗,𝑘+1)/6
(5)

𝑀𝐿𝐷𝑖, 𝑗,𝑘 = 𝑑𝑖−1, 𝑗,𝑘+𝑑𝑖, 𝑗−1,𝑘+𝑑𝑖, 𝑗,𝑘−1+𝑑𝑖−1, 𝑗−1,𝑘−1

− 𝑑𝑖−1, 𝑗−1,𝑘 -𝑑𝑖−1, 𝑗,𝑘−1-𝑑𝑖, 𝑗−1,𝑘−1
(6)

𝑠𝑝𝑙𝑖𝑛𝑒𝑖 = −
1

16
𝑑𝑖−3 +

9

16
𝑑𝑖−1 +

9

16
𝑑𝑖+1 −

1

16
𝑑𝑖+3 (7)

𝑀𝑆𝐷𝑖, 𝑗,𝑘 = |𝑑𝑖 − 𝑠𝑝𝑙𝑖𝑛𝑒𝑖 | + |𝑑 𝑗 − 𝑠𝑝𝑙𝑖𝑛𝑒 𝑗 | + |𝑑𝑘 − 𝑠𝑝𝑙𝑖𝑛𝑒𝑘 | (8)

While these features are effective in modeling data compress-

ibility, they are expensive to collect. For example, Figure 6 shows

that extracting the features on a portion of the NYX dataset with

dimensions 512×512×512 on CPU takes 15 seconds, 2.5× to 3.75×

the execution time of SZ3 (6 seconds) and SPERR (4 seconds). When

compared to high throughput compressors such as SZx (0.15 sec-

onds) and ZFP (0.15 seconds), feature extraction is about 100×

slower. While this cost is low when compared to the training and

data collection times, it is significant for the inference process.

FXRZ mitigates this issue by sampling the data using a stride of 4

(resulting in 1.5% of the data being sampled on a 3D dataset), and

computing the features on the sampled data alone.

Figure 6: Feature extraction time on a 512MB portion of the

Nyx dataset using CPU implementation without and with

sampling (Serial-Full and Serial-Sampled), and GPU imple-

mentation (Parallel). For comparison, we show SZx, SZ3 and

SPERR compression time. The experiments are run on the

system of Section 6.

Feature extraction on sampled data for the same NYX dataset

takes about 0.25 seconds on CPU. This is significantly lower than

the original cost and 20-60× faster than the considered CPU com-

pressors (SZ3 and SPERR). However, compared to GPU compressors

such as SZx and cuSZp, the feature extraction cost is still signif-

icant. To tackle this problem, we perform GPU parallelization of

feature extraction. To make the extraction process amenable for

GPU execution, we make the following implementation choices.

• We do not perform feature extraction on the data points on the

łsurfacež of the data set. We note that the MND, MLD and MSD

of a data point are calculated based on its neighboring values,

which vary in number depending on whether the data point is

located on the surface region. In practice, discarding these data

points saves conditional statements in the code, avoiding branch

divergence on GPU.

• To facilitate memory coalescing on GPU, we perform block-wise

sampling instead of point-wise sampling. Specifically, we use

D-dimensional blocks (D being the dimensionality of the dataset)

with 32 elements per dimension, we sample 1 block every 4, and

we perform feature extraction based on all the data points in the

sampled blocks.

• We use shared memory for intermediate results (i.e., running

feature values).

As shown in Figure 6, for NYX dataset, GPU parallelization (right-

most bar) brings feature extraction time down to about 5 ms, about

50× faster than FXRZ’s serial feature extraction and about 30× faster

than the execution of SZx, a high throughput GPU compressor.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Hardware Setup. We perform our experiments on the Bebop and

Swing supercomputers at Argonne National Laboratory. The Bebop

system has 284 nodes, each comprising an Intel Xeon Phi 7230 CPU

with 64 cores, 96 GB DDR4 and 16GB MCDRAM. The Swing system

has 6 compute nodes, each equipped with 8 Nvidia A100 GPUs.

Datasets. We evaluate CAROL on four widely used datasets from

the SDRBench benchmark [26] and two from the Klacansky data

collection [3]. Specifically, we use the following datasets:

7

851

Table 2: Dataset summary

#Fields Dimension Size Domain

Miranda 7 256×84×384 1GB Turbulence
NYX 6 512×512×512 3.1GB Cosmology
CESM 77 1800×3600 1.9GB Climate
Hurricane 48×13 100×500×500 58.1GB Weather
HCCI 1 560×560×560 0.7GB Autoignition
MRS 1 512×512×512 512MB Magnetic

• Miranda [4]: 3D hydrodynamics data obtained from turbulence

simulations. The data contain 7 fields: density, diffusivity, pres-

sure, velocity (X,Y,Z) and viscosity;

• NYX [5]: Data from 3D cosmological hydrodynamics simulations.

Each snapshot contains 4 fields: baryon density, dark matter

density, temperature, and velocity-X;

• Hurricane ISABEL [2]: The data contain 48 snapshots, each in-

cluding 13 fields;

• CESM [14]: Data from climate simulations generated by the Com-

munity Atmosphere Model;

• Klacansky [3]: Data from homogeneous charge compression ig-

nition (HCCI), isotropic turbulence (IT), jet in crossflow (JIC),

and magnetic re-connection simulations (MRS).

Table 2 summarizes the main characteristics of these datasets.

Baseline and target Compressors . We use the state-of-the-art com-

pression ratio controlled framework FXRZ [22] as our baseline and

four lossy compressors: SZx, SZ3, SZP and SPERR as reference.

6.2 Overall Performance

We compare the end-to-end performance - in accuracy and execu-

tion time - of CAROL and FXRZ. Recall that these machine learning-

based frameworks consist of three steps: (1) data collection, (2)model

training and (3) compression ratio prediction. The first two steps are

one-time setup operations, while compression ratio prediction is

a recurring step that consists of features extraction from the input

data and model inference through a random forest traversal.

6.2.1 End-to-end Accuracy. CAROL aims to maintain the accuracy

of FXRZ while lowering the execution time of all three phases:

data collection, model training and compression ratio prediction.

FXRZ mainly targets single domain use cases, where the training

and testing data come from a single application. The experiments

presented in [22] are of two kinds: single field experiments, where

compression ratio estimation is performed across different time

steps for a single data field of an application, and multiple fields

experiments, where compression ratio estimation is performed

across different data fields of an application.

Single domain experiments: We conduct our experiments on four

fields of the NYX dataset: BaryonDensity (BD), DarkMatter Density

(BDB), Temperature (Temp) and Velocity-X (V-X). For each field,

Table 3: Single domain experiments: estimation error (𝛼) of

FXRZ and CAROL on 4 fields of the NYX dataset.

SZx ZFP SZ3 SPERR

FXRZ CAROL FXRZ CAROL FXRZ CAROL FXRZ CAROL

BD 10.0% 8.5% 5.3% 4.6% 27.0% 26.0% 17.0% 18.3%

DMD 16.5% 17.0% 5.5% 8.0% 19.0% 18.8% 21.9% 21.8%

Temp 10.0% 10.0% 3.4% 4.2% 23.0% 24.0% 19.0% 17.8%

V-X 8.0% 10.0% 2.5% 2.5% 24.0% 25.0% 17.0% 18.2%

Average 11.1% 11.4% 4.2% 4.8% 23.3% 23.5% 18.7% 19.0%

(a) SZx (b) ZFP

(c) SZ3 (d) SPERR

Figure 7: Multiple domain experiments on Velocity-X data

fromMiranda: requested compression ratio (𝑓), and compres-

sion ratio achieved by FXRZ (𝑓𝐹𝑋𝑅𝑍) and CAROL (𝑓𝐶𝐴𝑅𝑂𝐿)

we use 6 time steps (3GB) as training data and one later time step

(0.5 GB) as testing data. Table 3 shows the estimation error (𝛼) of

FXRZ and CAROL, computed using formula (1). On average, across

the four compressors considered, the accuracy achieved by our

framework is similar to that of FXRZ (less than 1% difference).

CAROL performs similarly to FXRZ or slightly better than it (up

to 2% better) on Baryon Density and Temperature, and similarly

or slightly worse (up to 2.5% worse) on Dark Matter Density and

Velocity-X. Like FXRZ, CAROL performs better (11.4% and 4.6%)

on the high throughput group (SZx and ZFP), while incurring a

higher estimation error (23.5% and 19%) on the high compression

ratio group (SPERR and SZ3). The main reason for this behavior

is that SZ3 and SPERR achieve compression ratios on the order

of thousands, and the limited amount of training data for single

domain experiments cannot adequately model the details of the

compression functions. However, we note that CAROL still meets

our objective of not degrading accuracy when compared to FXRZ.

Multiple domain experiments: To better assess the capabilities of

CAROL, we extend FXRZ’s single domain experiments to include

data from different datasets. We use 4 data fields from NYX, 5 data

fields fromMiranda, and 2 independent simulations from Klacansky

(HCCI and MRS) as training data (for a total of 14.2GB) and 2 data

fields from Miranda (Velocity-X and Diffusivity) as testing data.

Figure 7 plots the compression function achieved by the compres-

sors (𝑓 (𝑠)) (ground truth) along with the compression functions

estimated by FXRZ (𝑓𝐹𝑋𝑅𝑍 (𝑠)) and CAROL (𝑓𝐶𝐴𝑅𝑂𝐿 (𝑠)) when test-

ing with the Velocity-X field of the Miranda dataset. We reported

similar results on Miranda’s Diffusivity field. As can be seen, in

all cases the compression function estimations of CAROL and FXRZ

overlap completely and are close to the ground truth compression

function. In particular, CAROL achieves 10%, 1.5%, 7.8% and 5.8%

estimation error (𝛼) for SZx, ZFP, SPERR, and SZ3, respectively.

The lowest estimation error is achieved on ZFP, which exhibits a

step-wise compression function such that multiple error bounds

result in the same compression ratio. In contrast, CAROL reports the

8

852

Figure 8: Training timing of FXRZ and CAROL. The numbers

on top of the bars indicate the speedup of CAROL over FXRZ.

Figure 9: Feature extraction time (in ms) of FXRZ and CAROL.

The forest traversal time is insignificant (∼1ms). The num-

bers on top of the bars indicate speedup of CAROL over FXRZ.

highest estimation error on SZx. This is because SZx’s byte-level

delta-based compression algorithm is sensitive to changes in error

bound. CAROL’s predicted error bound is often within 2 decimal of

the ground truth error bound; however, the resulting compression

ratio is still on average 10% apart. We note that the observed estima-

tion error is lower for multiple domain experiments than for single

domain experiments, thanks to the model’s being trained with a more

diverse set of data. By allowing better scaling of the model training

time, CAROL facilitates the use of more training data.

6.2.2 Timing distribution. Figure 8 shows the execution time (in

minutes) of the model setup steps of FXRZ and CAROL on the four

considered compressors. For FXRZ ,data collection is the dominant

step, taking between 65% (SZx) and 85% (SPERR) of the total runtime.

Our framework was able to speedup data collection by 6 to 26 times

(on SZ3 and ZFP, respectively), from an average of 153 minutes to

21 minutes. In addition, CAROL reduced the model training time by

20% (for SZ3) to 45% (for SZx), from an average of 28 minutes to 21

minutes. Overall, CAROL reduced the setup time by 4.1 times. We

noted that CAROL was able to achieve this speedup while utilizing

only 1 CPU core, whereas FXRZ used all 36 cores.

Figure 9 shows that feature extraction time (in milliseconds) of

FXRZ and CAROL. As noted before, model inference takes insignif-

icant time (about 1 ms), so we only compare feature extraction

time. Feature extraction time depends on the size of the input data

(and is indepedent of the compressor). As can be seen across our

benchmark datasets, CAROL’s feature extraction is about 36× faster

than FXRZ’s. For large datasets like NYX, CESM and Klacansky,

FXRZ’s features extraction takes between 310 ms and 500 ms, while

CAROL maintains feature extraction time lower than 10 ms in all

cases. Low features extraction time allows for lower inference time.

6.3 Calibration and Estimation Accuracy

Our end-to-end evaluation demonstrates that CAROL achieves accu-

racy similar to FXRZ while only taking 1/4 of the setup time and

1/40 of the inference time (using a single CPU core). In this section,

we discuss the main sources of speedup and prediction accuracy.

6.3.1 Secre Timing. Table 4 measure the time for the compressor

to run and the time for SECRE to estimate the compression ra-

tio. On the high throughput compressors, SECRE achieves a 14.8×

and 15.8× speedup over SZx and ZFP true compression time, re-

spectively. This speedup mainly comes from SECRE’s sampling

method: recall that SECRE performs compression on ≈1% of the

data and uses those sampled data to extrapolate the compression

ratio for the entire dataset. On the high throughput compressors,

SECRE achieves 50.7× and 22.2× speedup over SZ3 and SPERR com-

pression time, respectively. This more significant speedup comes

from the fact that SECRE’s surrogate compressor skips some key

compression steps, such as outliers encoding for SPERR and zstd

compression for SZ3. However, this speedup comes at the price of

a higher estimation error. While SZx’s and ZFP’s estimation errors

are less than 1%, SPERR’s and SZ3’s estimation errors can be as

high as 60%. This large error introduces significant noise into the

model.

6.3.2 Calibration Timing and Accuracy. One of the design parame-

ters of CAROL is the number of calibration points, i.e., the number

of additional runs of the compressor to collect calibration data used

to correct SECRE’s estimation. Table 5 compares the performance

and accuracy when running SECRE without calibration and with

calibration, using 3, 4 or 5 calibration points. Specifically, we show

the speedup reported over running the full compressor and the

percentage estimation error 𝛼 . We only show the results for SZ3

and SPERR because SZx and ZFP have estimation errors below 1%

and do not need calibration.

The results from Table 5 show that SECRE incurs a 23% and a 47%

estimation error on SZ3 and SPERR, respectively, while allowing

for a 22.9× and a 48.8× speedup over running the full compressors.

CAROL’s calibration method using 3 additional data points reduces

the estimation error to 1.8% and 7.5% while maintaining a 7.5× and

9.34× speedup over running the full compressors. As the number of

calibration points increases to 4 and 5, the estimation error further

decreases at the cost of a longer data collection time. From these

results, we conclude that, for SPERR, three calibration points are

sufficient to achieve good accuracy gains for both compressors,

while 4 calibration points are enough to significantly limit the

estimation error while maintaining good performance gains.

Figure 10 plots the real compression ratio, the compression ratio

estimated by SECRE and the compression ratio calibrated by CAROL.

As can be seen, in all cases CAROL is able to correctly determine
Table 4: Training data collection time (in seconds) using full

compressor (full) and SECRE surrogate estimation (est).

SZx ZFP SZ3 SPERR

Full Est Full Est Full Est Full Est

Miranda 59 5.2 95 9 1407 27 683 27

NYX 1038 65 2243 139 17357 336 13956 632

Hurricane 54 5.4 43 4.2 1328 28 640 29

CESM 145 11 295 16 4462 94 2560 116

Klacansky 73 5.45 126 9.1 1923 37 1074 46

Speedup 14.8× 15.8× 50.7× 22.2×9

853

(a) SPERR-Hurricane (b) SPERR-Klacansky (c) SPERR-Miranda (d) SPERR-NYX

(e) SZ3-Hurricane (f) SZ3-Klacansky (g) SZ3-Miranda (h) SZ3-NYX

Figure 10: Compression ratio of SECRE and full compressor on viscosity data from Miranda.

Table 5: Effectiveness of calibration: speedup (S) over run-

ning the full compressor and estimation error (𝛼) in percent-

age terms.

SZ3

Estimation
Estimation with Calibration

3 points 4 points 5 points

S 𝛼 S 𝛼 S 𝛼 S 𝛼

Miranda 50× 27.2% 9.4× 2.4% 6.1× 1.4% 5.2× 1.2%

NYX 51× 56.9% 9.4× 15.5% 6× 5.8% 5.2× 4.5%

Hurricane 46× 60% 9.2× 3.26% 6× 2.5% 5.1× 2%

CESM 47× 36.8% 9.3× 4.3% 6× 2% 5.1× 1.4%

Klacansky 50× 54.6% 9.4× 11.8% 6.1× 6.6% 5.2× 5.4%

Average 48.8× 47.1% 9.3× 7.5% 6× 3.6% 5.2× 2.9%

SPERR

Estimation
Estimation with Calibration

3 points 4 points 5 points

S 𝛼 S 𝛼 S 𝛼 S 𝛼

Miranda 25.1× 7.24% 7.8× 2% 5.4× 0.5% 4.7× 0.5%

NYX 23× 38.6% 7.3× 2.7% 5.2× 0.6% 4.5× 0.5%

Hurricane 21× 16% 7.2× 0.4% 5.1× 0.2% 4.5× 0.2%

Klacansky 22.7× 31.3% 7.5× 2.1% 5.3× 0.7% 4.6× 0.5%

Average 22.9× 23.2% 7.5× 1.8% 5.3× 0.5% 4.6× 0.4%

if SECRE overestimates or underestimates the compression ratio

and correctly fix the estimation error. When running SZ3 (figure

10e,10f, and 10g), using a 4 point calibration allows us to correct

the unstable prediction of SECRE.

7 CONCLUSION AND FUTUREWORK

In this work we propose CAROL, a fixed-ratio compression frame-

work that significantly improves execution time over state-of-the-

art solutions. We evaluate our framework on four compressors

and five real-world scientific datasets. Our results show that CAROL

achieves significant improvements over state-of-the-art solutions

while maintaining or improving prediction accuracy. Bellow are

key insights from our work:

• Performance: Data collection is the most time-consuming step.

Thus, its acceleration has the most impact on performance.

• Compressor Behavior 1: High compression ratio compressors (e.g.,

SPERR and SZ3) tend to incur higher estimation errors, and re-

quire calibration to achieve good estimation accuracy.

• Compressor Behavior 2: High throughput compressors (e.g., SZx

and ZFP) tend to incur low estimation error (less than 1%), making

calibration not necessary to achieving good accuracy.

• Compressor Behavior 3: When a surrogate model is not available,

CAROL is still a viable solution, especially for high throughput

compressors. In this case, full compression will be first performed

on sampled data, and then our proposed calibration method will

be used to reduce the estimation error. The key to an accurate

estimation is that the sampling method has to match the target

compressor’s compression window (Table 1).

• Model Accuracy: FXRZ’s randomized grid-search and CAROL’s

Bayesian optimization produce models with similar prediction

accuracy (less than 1% difference on average).

• Model Training Time and Prediction Accuracy: Overall prediction

accuracy is dependent on the quality and the diverseness of the

training data. Bayesian Optimization allows for scalable training

time and incremental model improvement while limiting the

computational needs.

• Feature Extraction: To maintain low prediction time, the data

sampling method used must be tailored to the hardware platform.

Future extensions to CAROL include utilizing differentmachine learn-

ingmodels and designing a feedback loop enabling on-the-flymodel

improvement.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of Energy,

Office of Science, Advanced Scientific Computing Research (ASCR),

under contract DE-AC02-06CH11357, and by the National Science

Foundation under grants OAC-2003709, OAC-2104023, OAC-2311875

and CCF-1907863. We acknowledge the computing resources pro-

vided on Bebop (operated by Laboratory Computing Resource Cen-

ter at Argonne).

10

854

REFERENCES
[1] [n.d.]. Event Horizon Telescope. https://eventhorizontelescope.org/. Accessed:

2023-12-11.
[2] [n.d.]. Hurricane Isabel. http://vis.computer.org/vis2004contest/data.html. Ac-

cessed: 2023-12-11.
[3] [n.d.]. Klacansky. https://klacansky.com/open-scivis-datasets/category-all.html.

Accessed: 2023-12-11.
[4] [n.d.]. Miranda application. https://wci.llnl.gov/simulation/computer-codes/

miranda. Accessed: 2023-12-11.
[5] [n.d.]. NYX simulation. https://amrex-astro.github.io/Nyx. Accessed: 2023-12-11.
[6] Ioannis Alagiannis, Renata Borovica-Gajic, Miguel Branco, Stratos Idreos, and

Anastasia Ailamaki. 2015. NoDB: efficient query execution on raw data files.
Commun. ACM 58, 12 (nov 2015), 112ś121. https://doi.org/10.1145/2830508

[7] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael
Mahoney, and Joseph Gonzalez. 2021. Actnn: Reducing trainingmemory footprint
via 2-bit activation compressed training. In International Conference on Machine
Learning. PMLR, 1803ś1813.

[8] Yu Cheng and Florin Rusu. 2014. Parallel in-situ data processing with spec-
ulative loading. In Proceedings of the 2014 ACM SIGMOD International Con-
ference on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 1287ś1298. https:
//doi.org/10.1145/2588555.2593673

[9] Jack Dongarra, Bernard Tourancheau, Franck Cappello, Sheng Di, Sihuan Li,
Xin Liang, Ali Murat Gok, Dingwen Tao, Chun Hong Yoon, Xin-Chuan Wu,
Yuri Alexeev, and Frederic T Chong. 2019. Use cases of lossy compression for
floating-point data in scientific data sets. Int. J. High Perform. Comput. Appl. 33,
6 (nov 2019), 1201ś1220. https://doi.org/10.1177/1094342019853336

[10] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and
Gerd Heber. 2005. Scientific data management in the coming decade. SIGMOD
Rec. 34, 4 (dec 2005), 34ś41. https://doi.org/10.1145/1107499.1107503

[11] Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cappello.
2023. cuSZp: An Ultra-Fast GPU Error-Bounded Lossy Compression Frame-
work with Optimized End-to-End Performance. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC’23). Association for Computing Machinery, Denver, CO, USA.
https://doi.org/10.1145/3581784.3607048

[12] Yafan Huang, Shengjian Guo, Sheng Di, Guanpeng Li, and Franck Cappello. 2022.
Mitigating silent data corruptions in HPC applications across multiple program
inputs (SC ’22). IEEE Press, Article 17, 14 pages.

[13] Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan, Guanpeng Li,
Shuaiwen Leon Song, and Dingwen Tao. 2021. COMET: a novel memory-efficient
deep learning training framework by using error-bounded lossy compression.
Proc. VLDB Endow. 15, 4 (dec 2021), 886ś899. https://doi.org/10.14778/3503585.
3503597

[14] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. C.
Bates, G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque, D.
Lawrence, K. Lindsay, A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani,
and M. Vertenstein. 2015. The Community Earth System Model (CESM) Large
Ensemble Project: A Community Resource for Studying Climate Change in the
Presence of Internal Climate Variability. Bulletin of the American Meteorological
Society 96, 8 (2015), 1333 ś 1349. https://doi.org/10.1175/BAMS-D-13-00255.1

[15] ArhamKhan, Sheng Di, Kyle Chard, Ian Foster, and Franck Cappello. 2023. SECRE:
Surrogate-based Error-controlled Lossy Compression Ratio Estimation Frame-
work. In 2023 IEEE 30th International Conference on High Performance Computing,
Data, and Analytics (HiPC).

[16] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello.
2020. Towards End-to-end SDC Detection for HPC Applications Equipped with
Lossy Compression. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER). 326ś336. https://doi.org/10.1109/CLUSTER49012.2020.00043

[17] Shaomeng Li, Peter Lindstrom, and John Clyne. 2023. Lossy Scientific Data
Compression With SPERR. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1007ś1017. https://doi.org/10.1109/IPDPS54959.
2023.00104

[18] Xin Liang, Sheng Di, Franck Cappello, Mukund Raj, Chunhui Liu, Kenji Ono,
Zizhong Chen, Tom Peterka, and Hanqi Guo. 2023. Toward Feature-Preserving
Vector Field Compression. IEEE Transactions on Visualization and Computer
Graphics 29, 12 (2023), 5434ś5450. https://doi.org/10.1109/TVCG.2022.3214821

[19] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-Controlled Lossy CompressionOptimized
for High Compression Ratios of Scientific Datasets. In 2018 IEEE International
Conference on Big Data (Big Data). 438ś447. https://doi.org/10.1109/BigData.
2018.8622520

[20] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M. Gok, Jiannan
Tian, Junjing Deng, Jon C. Calhoun, Dingwen Tao, Zizhong Chen, and Franck
Cappello. 2023. SZ3: A Modular Framework for Composing Prediction-Based
Error-Bounded Lossy Compressors. IEEE Transactions on Big Data 9, 2 (2023),
485ś498. https://doi.org/10.1109/TBDATA.2022.3201176

[21] Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014), 2674ś2683.
https://doi.org/10.1109/TVCG.2014.2346458

[22] Md Hasanur Rahman, Sheng Di, Kai Zhao, Robert Underwood, Guanpeng Li,
and Franck Cappello. 2023. A Feature-Driven Fixed-Ratio Lossy Compression
Framework for Real-World Scientific Datasets. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). 1461ś1474. https://doi.org/10.1109/
ICDE55515.2023.00116

[23] Seung Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Weikeng Liao,
and Alok Choudhary. 2014. Data Compression for the Exascale Computing
Era - Survey. Supercomput. Front. Innov.: Int. J. 1, 2 (jul 2014), 76ś88. https:
//doi.org/10.14529/jsfi140205

[24] Robert Underwood, Sheng Di, Jon C. Calhoun, and Franck Cappello. 2020. FRaZ:
A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific
Floating-point Data. In 34th IEEE International Parallel and Distributed Processing
Symposium. IEEE, New Orleans.

[25] Xiaodong Yu, Sheng Di, Kai Zhao, Jiannan Tian, Dingwen Tao, Xin Liang, and
Franck Cappello. 2022. Ultrafast Error-Bounded Lossy Compression for Scientific
Datasets (HPDC ’22). Association for Computing Machinery, New York, NY, USA,
159ś171. https://doi.org/10.1145/3502181.3531473

[26] Kai Zhao, ShengDi, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen,
and Franck Cappello. 2020. SDRBench: Scientific Data Reduction Benchmark for
Lossy Compressors. In 2020 IEEE International Conference on Big Data (Big Data).
2716ś2724. https://doi.org/10.1109/BigData50022.2020.9378449

11

855

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Lossy Compression
	2.2 Compression Ratio-controlled Frameworks

	3 Problem Formulation
	3.1 Problem Formulation
	3.2 Research Objectives

	4 CAROL's Design Overview
	5 Core Contributions
	5.1 Surrogate Estimation
	5.2 Calibration
	5.3 Model Training
	5.4 Parallel Feature Extraction

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 Calibration and Estimation Accuracy

	7 Conclusion and Future work
	Acknowledgments
	References

