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Surface hydrophilicity promotes bacterial twitching motility
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ABSTRACT Twitching motility is a form of bacterial surface translocation powered by 
the type IV pilus (T4P). It is frequently analyzed by interstitial colony expansion between 
agar and the polystyrene surfaces of petri dishes. In such assays, the twitching motility 
of Acinetobacter nosocomialis was observed with MacConkey but not Luria-Bertani (LB) 
agar media. One difference between these two media is the presence of bile salts as a 
selective agent in MacConkey but not in LB. Here, we demonstrate that the addition 
of bile salts to LB allowed A. nosocomialis to display twitching. Similarly, bile salts 
enhanced the twitching of Acinetobacter baumannii and Pseudomonas aeruginosa in 
LB. These observations suggest that there is a common mechanism, whereby bile salts 
enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt 
lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory 
effect on twitching appears not to be related to a bacterial physiological response 
to stressors. Rather, it is due to their ability to alter the physicochemical properties 
of a twitching surface. We observed that while other detergents promoted twitching 
like bile salts, stresses applied by antibiotics, including the outer membrane-targeting 
polymyxin B, did not enhance twitching motility. More importantly, bacteria displayed 
increased twitching on hydrophilic surfaces such as those of glass and tissue culture-
treated polystyrene plastics, and bile salts no longer stimulated twitching on these 
surfaces. Together, our results show that altering the hydrophilicity of a twitching surface 
significantly impacts T4P functionality.

IMPORTANCE The bacterial type IV pilus (T4P) is a critical virulence factor for many 
medically important pathogens, some of which are prioritized by the World Health 
Organization for their high levels of antibiotic resistance. The T4P is known to propel 
bacterial twitching motility, the analysis of which provides a convenient assay for T4P 
functionality. Here, we show that bile salts and other detergents augment the twitch­
ing of multiple bacterial pathogens. We identified the underlying mechanism as the 
alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces like 
those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the 
requirement for detergents. The implication is that surface properties, such as those of 
tissues and medical implants, significantly impact the functionality of bacterial T4P as 
a virulence determinant. This offers valuable insights for developing countermeasures 
against the colonization and infection by bacterial pathogens of critical importance to 
human health on a global scale.

KEYWORDS twitching motility, Pseudomonas aeruginosa, Acinetobacter, bile salts, 
detergents, surface property, hydrophilicity

T witching motility is a form of non-flagellated bacterial locomotion that allows 
bacteria to move on or between solid surfaces (1–4). It is powered by the bacterial 

type IV pilus (T4P), which can be assembled and disassembled by the supramolecular 
T4P machinery (T4PM) (1, 5–7). The current model proposes that it is the recurrent cycles 
of T4P assembly and disassembly, or extension and retraction, that powers this form of 
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bacterial surface motility (8, 9). The T4PM assembles the long T4P filament that protrudes 
from a cell into its surroundings. When the tip of an extended T4P attaches to a solid 
substratum, the retraction of the T4P by the T4PM moves a bacterium toward the point 
of attachment. This translocation of bacterial cells on or between solid surfaces results in 
bacterial twitching motility.

Of relevance to human health, the T4P plays a crucial role in the pathogenesis of 
many important bacterial pathogens (10–15). These include Pseudomonas aeruginosa 
and Acinetobacter baumannii, both on the list of priority pathogens per the World 
Health Organization (WHO) (16). One of the primary functions of the T4P as a virulence 
factor is for adherence to human cells or tissues to initiate colonization and invasion 
(4, 17, 18). Acinetobacter nosocomialis, a close relative of A. baumannii, is an opportunis­
tic pathogen primarily causing nosocomial or hospital-acquired infections (19). The A. 
nosocomialis M2 strain has been used as a model for studies of Acinetobacter pathogen­
esis and T4P functionality (18, 20–22). Despite the lack of flagella and the acineto- or 
non-motile designation for this genus, many Acinetobacter species are, in fact, motile 
by T4P-dependent twitching motility (23–26). As such, the analysis of twitching motility 
provides a convenient assay for investigating the functionality of the bacterial T4P in 
these medically important pathogens.

Twitching motility is routinely analyzed by observing interstitial colony expansion 
between the lower surface of solidified nutrient agar and that of plastic petri dishes 
made of polystyrene (25, 27). Such stab assays involve the inoculation of the interstitial 
space by stabbing through the agar, and this method has been used for the identification 
of T4P or pil genes by the isolation of P. aeruginosa mutants that were defective in 
twitching motility (3). T4P genes encode the core components of the T4PM, and their 
functions in twitching motility are conserved among P. aeruginosa and many gram-neg­
ative and gram-positive bacteria (2, 10, 28–31). These include PilA, the major pilin, as 
well as PilB, the T4P extension ATPase, and PilT, the T4P retraction ATPase. Along with 
other T4P proteins, the PilB and the PilT ATPases polymerize and depolymerize pilins into 
or from the T4P filament, respectively. Bacterial translocation by twitching motility over 
distances longer than the length of an extended pilus depends on the dynamic nature of 
T4P assembly and disassembly coordinated by the T4PM (8, 9).

The regulation of bacterial motility by environmental cues has been studied most 
extensively in flagellated bacteria (32–35). Besides chemotactic responses (36), the 
biogenesis of bacterial flagella is modulated through gene expression and flagellar 
assembly by signals such as nutrient and surface availability (32–35). In addition, an 
alternative sigma factor, which is responsive to envelope and other environmental 
stressors, transcriptionally regulates the expression of flagellar genes in many bacteria 
(37–39). Although the T4P has been investigated to a lesser extent, there is clear 
evidence that its biogenesis and function are influenced by regulatory mechanisms and 
environmental factors. In many T4P or pil gene clusters, there are conserved two-com­
ponent systems, including PilS and PilR (2, 31). In selected organisms, these regulators 
have been demonstrated to affect the expression of T4P genes (40–43). Signals of both 
chemical and physical nature are known to influence T4P-mediated motility (44–46). 
For example, lactate can induce PilT-dependent T4P retraction in Neisseria meningitidis, 
whereas both temperature and blue light were shown to influence bacterial twitching 
motility (47, 48).

It was observed previously that A. nosocomialis exhibited significant twitching 
motility with MacConkey but minimum or severely diminished twitching with Luria-Ber­
tani (LB) agar media on polystyrene petri dishes (22, 49). In our current study, we 
investigated the underlying reasons for the observed differences in bacterial twitching 
between these two media. We determined that bile salts are the key component that 
allows A. nosocomialis to twitch in MacConkey media. This is because the addition of bile 
salts to LB allowed A. nosocomialis to twitch to a similar extent as with MacConkey. We 
also observed similar stimulatory effects of bile salts on the twitching of P. aeruginosa 
and A. baumannii. Bile salts are anionic detergents that can apply membrane stress to 
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bacteria (50–53). Our results further demonstrate that other detergents likewise can 
enhance bacterial twitching on polystyrene surfaces. Antibiotics, including the outer 
membrane-targeting polymyxin B, do not increase P. aeruginosa twitching motility. 
This suggests that the mechanism for the stimulatory effect of bile salts is unlikely 
related to a bacterial response to the presence of a general or envelope stressor. 
Instead, we suspected that bile salts and other detergents increased the hydrophilic­
ity of polystyrene surfaces, and it was this increase in hydrophilicity that promoted 
bacterial twitching. Indeed, we observed that glass surfaces, which are more hydrophilic 
than polystyrene, significantly promoted twitching motility. In contrast, increasing the 
hydrophobicity of glass surfaces with a hydrophobic coating attenuated twitching. Like 
glass, plasma treatment of polystyrene surfaces is known to increase their hydrophilicity 
for culturing tissues or cells. We observed that tissue culture (TC)-treated polystyrene 
surfaces significantly increased bacterial twitching. Moreover, the addition of bile salts no 
longer stimulated twitching on glass or TC-treated polystyrene surfaces. Our results here 
suggest that bacterial pathogens may have evolved mechanisms to differentially interact 
with surfaces that have varying physicochemical properties to optimize host recognition, 
colonization, and infections.

RESULTS

Bile salts enable Acinetobacter twitching motility in stab assays

It has been reported in the literature that A. nosocomialis displays significantly more 
twitching motility with MacConkey than with LB agar in stab assays (22, 49). In these 
assays, bacterial cells are stab inoculated through the agar to form an interstitial colony 
between the petri dish and the agar media (25, 27). After a period of incubation, the size 
of an interstitial colony can be measured to quantify twitching motility. As shown in Fig. 
1A, the A. nosocomialis M2 strain shows clear twitching with MacConkey but not with LB 
agar. In comparison with a pilA mutant as the negative control, M2 appeared to possibly 
twitch more than with LB (Fig. S1) (22, 49). However, under our experimental conditions, 
there is no statistical difference between these two strains. These results confirmed that 
MacConkey media allow A. nosocomialis to display quantitatively and qualitatively more 
significant twitching motility than LB as observed previously (22, 49).

We compared the composition of these two commonly used bacterial growth media 
(Table S1). Notwithstanding their commonalities, LB lacks peptone, lactose, and bile salts 
that are present in MacConkey. Peptone is a proteinous nutrient source, and lactose is a 
carbon and energy source. Bile salts are cholesterol derivatives with aliphatic side chains 
(51, 54) that regulate various biological processes in vertebrates and their microbiomes 
(50, 54–57). The amphipathic nature of bile salts allows them to interact with and disrupt 
membranes, resulting in envelope stress in bacteria as detergents (51, 52). Both gram-
positive and gram-negative bacteria can respond to the presence of bile salts, leading to 
changes in gene expression and cellular physiology (52, 58, 59). In the formulation of 
MacConkey, bile salts are included as a selective agent for enteric bacteria (60).

We supplemented LB agar with peptone, lactose, or bile salts at the same concentra­
tion present in MacConkey agar to determine if one of these could enable A. nosocomialis 
to twitch in LB. As shown in Fig. 1A, the addition of neither lactose nor peptone led to 
any discernible twitching motility in A. nosocomialis. In contrast, the supplementation of 
bile salts resulted in A. nosocomialis twitching motility in LB comparable to what was 
observed with MacConkey agar. These results indicated that bile salts are the component 
that specifically stimulates twitching motility of A. nosocomialis as analyzed by stab 
assays with polystyrene petri dishes.

Twitching motility has been observed in A. baumannii (24, 61), a closely related 
Acinetobacter species and a WHO priority pathogen (16). The twitching motility of this 
bacterium is similarly noted in MacConkey agar as analyzed by a similar assay (22, 49). 
However, variable motility phenotypes were observed with LB media for different clinical 
isolates (61), suggesting an effect of media composition on A. baumannii twitching. We 
tested two A. baumannii strains, AYE and AB0057 (62, 63), in LB supplemented with bile 
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salts in comparison with A. nosocomialis M2. As shown in Fig. 1B, while none of these 
strains displayed twitching motility with the LB agar, supplementation of bile salts 
elicited twitching motility of both A. baumannii strains similar to A. nosocomialis. These 
results suggest that the stimulatory effects of bile salts on twitching motility are a more 
general phenomenon in the Acinetobacter genus.

Bile salts stimulated P. aeruginosa twitching motility

The above observations prompted us to investigate if bile salts enhanced bacterial 
twitching in other bacteria. P. aeruginosa, another WHO priority pathogen (16), has been 
used as a model for studies of bacterial twitching (8, 64, 65). Its twitching motility has 
been routinely analyzed using stab assays with LB instead of MacConkey agar plates (66–
69). P. aeruginosa PAO1, a frequently used laboratory strain, exhibits twitching motility 
in LB agar (70, 71). However, the addition of bile salts to LB significantly increased 
its twitching motility (Fig. 2A). Furthermore, we examined the dose response of PAO1 
twitching to bile salts. As shown in Fig. 2B, the stimulation of twitching motility shows 
concentration dependency, with a plateau between 0.1% and 0.4% of bile salts. At higher 
concentrations, bile salts start to inhibit P. aeruginosa growth and reduce its twitching 
motility in this assay (data not shown). We additionally examined the twitching motility 
of PA14, another commonly used P. aeruginosa strain in the literature (72–74). It was 
observed that the twitching motility of PA14 was stimulated by bile salts in LB media like 
that of PAO1 (Fig. S1). These results demonstrate that the stimulatory effect of bile salts 
on twitching is applicable to both Acinetobacter species and P. aeruginosa isolates. For 
the remainder of this study, we primarily used P. aeruginosa PAO1 as the model organism 
to investigate the mechanisms by which bile salts stimulate bacterial twitching motility.

FIG 1 Bile salts enable Acinetobacter to twitch. (A) Bile salts allow A. nosocomialis M2 to twitch in LB 

media. The twitching motility of A. nosocomialis M2 was analyzed with MacConkey (MC) or Luria-Bertani 

media without or with 0.5% bile salts (+BSs), 1% lactose (+Lac), or 2% peptone (+Pep) with standard 

polystyrene petri dishes as described in Materials and Methods. Data shown are the averages from three 

biological experiments each performed in triplicate. Representative images of twitching motility are 

shown below their respective categories. (B) Bile salts provoke A. baumannii twitching in LB media. A. 

baumannii strains AB0057 and AYE were analyzed for twitching motility in LB agar without (−) or with (+) 

0.5% bile salts on standard polystyrene petri dishes with A. nosocomialis (M2) as a control. Data shown 

are from three biological experiments, represented by different symbols, each performed in triplicate. The 

violin plot shows the frequency distribution curves of the data, where the horizontal line indicates the 

median. Single, double, and quadruple asterisks indicate two values are statistically different with P < 

0.05, P < 0.01, and P < 0.0001, respectively.
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Detergents stimulate bacterial twitching

Bile salts, produced from cholesterol metabolism, are anionic detergents (50–52, 55). 
They are known to apply membrane or envelope stress in bacteria (51, 52, 75). It is 
possible that bile salts function as a detergent to apply envelope or general stress to 
cells, and it was the cellular stress response that underlies the stimulatory effects of 
bile salts on bacterial twitching motility. To examine this possibility, we investigated 
the effect of other detergents on the twitching motility of P. aeruginosa. To avoid 
the complications between growth inhibition and twitching motility, we determined 
the maximum non-inhibitory concentrations of detergents experimentally (Table S2) 
to guide their use in our twitching motility assays. For this experiment, we supplemen­
ted the LB media with the anionic detergent sodium dodecyl sulfate (SDS) or the 
non-ionic detergents Triton X-100 and Triton X-114 (Table S2). As shown in Fig. 3A, 
all the detergents examined, whether anionic or non-ionic, significantly stimulated the 
twitching motility of P. aeruginosa much like bile salts. These results support the notion 
that the promotional effects of bile salts on twitching are related to their amphipathic 
properties as detergents.

The stimulatory effects of bile salts and other detergents on twitching motility could 
be explained by a physiological response of a bacterium to envelope stress applied by 
these amphipathic molecules (51, 52, 75, 76) or a general stress response to various 
environmental stressors (77). To investigate this, we tested antibiotics with different 
modes of action at their maximum non-inhibitory concentrations as stressors. These 
included ampicillin, gentamicin, and ciprofloxacin, which target cell wall biosynthesis, 
ribosome function, and DNA topology, respectively. We first determined the maximum 
non-inhibitory concentrations of these antibiotics by testing their effect on P. aeruginosa 
growth at different concentrations (Table S3). We then tested these antibiotics at their 
respective maximum non-inhibitory concentrations for their effect on P. aeruginosa 
twitching. As shown in Fig. 3B, none of these above antibiotics affected P. aeruginosa 
twitching motility significantly. This suggested that the stimulation of twitching by 
detergents was unlikely the result of a physiological response to general stressors. 
Moreover, we tested the effect of polymyxin B, which applies envelope stress as do bile 
salts, by targeting the outer membrane of gram-negative bacteria (53, 78). Somewhat 

FIG 2 Bile salts enhance P. aeruginosa twitching motility. (A) Bile salts increase P. aeruginosa twitching. 

Twitching motility of PAO1 was analyzed without (−) or with (+) 0.5% bile salts as in Fig. 1B with 

data similarly presented. Quadruple asterisks indicate two values are statistically different with P < 

0.0001. (B) Dose effect of bile salts on PAO1 twitching. PAO1 twitching was analyzed with the standard 

polystyrene petri dish protocol as in panel A with varying concentrations (% [wt/vol]) of bile salts as 

indicated. Data presented are from three biological experiments, each performed in quadruplicate with 

data points from the same experiment represented by the same symbols in color and shape.
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unexpectedly, this antibiotic showed no stimulatory effect on P. aeruginosa twitching 
(Fig. 3B). These results suggested that the observed stimulation of twitching motility by 
bile salts and other detergents (Fig. 2 and 3A) might not be related to a response to 
general or envelope stress.

Glass enhances P. aeruginosa twitching in comparison to polystyrene

Detergents such as bile salts are amphipathic molecules with both polar and non-polar 
moieties (50, 54, 56, 57, 79). As such, they can change the physicochemical properties 
of a surface (50, 80–82). In stab assays for twitching motility, bacteria cells translocate 
in the interstitial space between the solidified agar media and the hydrophobic surface 
of a polystyrene petri dish. We considered the possibility that bile salts in a growth 
media may interact with the hydrophobic surface of the polystyrene petri dishes to 
alter its physicochemical properties. Such interactions may allow bile salts to make 
the polystyrene surface more hydrophilic to possibly facilitate twitching motility. In 
comparison with polystyrene, glass petri dishes present a more hydrophilic surface. We 
therefore examined P. aeruginosa twitching with LB media using glass in comparison 
with polystyrene petri plates. As shown in Fig. S2, P. aeruginosa was observed to twitch 
significantly more on glass petri dishes than polystyrene ones in LB without the addition 
of bile salts. These results are consistent with the proposition that surface hydrophobicity 
or hydrophilicity plays crucial roles in bacterial twitching.

Bile salts do not enhance P. aeruginosa twitching on glass surfaces

We reproduced the above observation on glass (Fig. S2) with a modified twitching assay, 
where a glass or a polystyrene microscope slide was used as the twitching surface (see 
Materials and Methods). In this assay, the slides were cleaned and sterilized before they 
were placed in a polystyrene petri dish. Molten LB agar media were then poured into 

FIG 3 Detergents, but not antibiotics, promote P. aeruginosa twitching. (A) Effects of detergents. PAO1 

twitching was analyzed with the standard petri dish protocol as in Fig. 2A with LB agar without 

modification (−) or with bile salts (BSs) (5 mg/mL), Triton X-100 (TX100) (75 µg/mL), Triton X-114 

(TX114) (75 µg/mL), or SDS (850 µg/mL). (B) Effects of antibiotics. PAO1 twitching was analyzed as in 

(A) with ampicillin (Amp) (313 ng/mL), ciprofloxacin (Cipro) (31 ng/mL), gentamicin (Gent) (31 ng/mL), or 

polymyxin B (PB) (313 ng/mL). Data presented in both panels are from three biological experiments, each 

performed in triplicate. Data points from the same experiment are represented by the same symbols in 

color and shape. Results in both panels are from the same sets of biological replicates, and the controls 

(BSs and −) are from the same data sets as a result. Quadruple asterisks indicate two values are statistically 

different with P < 0.0001. Antibiotics resulted in values that are not significantly (ns) different with P > 

0.05.
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the petri dish. Twitching motility was analyzed as before, except that the incubation time 
was shortened to limit the twitching zone to be within the boundaries of the width of 
the microscope slide. As shown in Fig. 4A, PAO1 twitched significantly more on glass 
slides than on polystyrene ones, as was observed with petri dishes (Fig. S2). As expected, 
the addition of bile salts significantly stimulated twitching on the polystyrene slide (Fig. 
4A). In contrast, the supplementation of bile salts showed no promotional effect on 
twitching with the glass slide (Fig. 4A). A pilA mutant, which is non-piliated, was used 
as the non-twitching control, and it showed no twitching motility on all surfaces with 
or without bile salts (Fig. 4). It is also noteworthy that the twitching motility on the 
polystyrene slide in the presence of bile salts showed no statistical difference from that 
on the glass slides with or without bile salts. These results indicate that surface hydrophi­
licity likely enhances twitching motility, and the effects of bile salts on twitching could 
be attributed to their ability to change a hydrophobic surface to a more hydrophilic one. 
This is consistent with the observation that the stimulatory effect of bile salts is no longer 
observed on the more hydrophilic glass surface in contrast with polystyrene ones.

Increase in hydrophobicity of glass surfaces reduces P. aeruginosa twitching

Next, we modified the surface of the glass slides to be more hydrophobic using a 
chemical treatment. For this, we pretreated the glass slides with a polydimethylsiloxane 
(PDMS) solution before the analysis of twitching motility. PDMS is known to coat glass 
surfaces to make them more hydrophobic (83). As shown in Fig. 4B, the treatment of 
the glass surface with PDMS significantly reduced P. aeruginosa twitching to a level 
that is not significantly different from that on a polystyrene slide. In comparison, PDMS 
treatment did not impact twitching motility of P. aeruginosa on polystyrene slides (Fig. 
4B), ruling out any inhibitory effects by PDMS. The P. aeruginosa pilA mutant showed 
no twitching under all experimental conditions as expected (Fig. 4). These results are 
consistent with the idea that hydrophilicity of surfaces enhances P. aeruginosa twitching 
and that bile salts and other detergents stimulate twitching motility on hydrophobic 
polystyrene surfaces by making them more hydrophilic.

FIG 4 Glass surfaces increase P. aeruginosa twitching motility. (A) Glass surfaces stimulate PAO1 twitching 

motility, and bile salts no longer enhance it. The twitching motility of PAO1 and its isogenic pilA mutant 

was analyzed with polystyrene (PS) or glass microscope slides in LB without or with 0.5% bile salts (BSs) 

after 18 hours of incubation (see Materials and Methods). (B) Hydrophobic coating of glass reduces 

twitching motility. Experiments were performed as in A, except that the microscope slides were coated 

without or with polydimethylsiloxane (PDMS) (see Materials and Methods). Data presented in both panels 

are from three biological experiments each performed in triplicate. The data for the controls (PS and 

Glass) are the same controls in both panels as they are from the same sets of biological replicates. 

Quadruple asterisks indicating two values are statistically different with P < 0.0001.
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Increase in hydrophilicity of polystyrene surfaces drastically enhances 
bacterial twitching motility

While natural polystyrene surfaces are hydrophobic, they can be treated with plasma gas 
to increase their hydrophilicity for tissue culture purposes (84). The surfaces of plasma- 
or TC-treated plates are therefore more hydrophilic than non-treated ones. We compared 
P. aeruginosa twitching motility with six-well polystyrene plates either TC treated or 
non-treated (Fig. 5A). The P. aeruginosa PAO1 strain exhibited significantly increased 
twitching motility on plasma-treated surfaces over the non-treated ones in LB media (Fig. 
5A). The magnitude of increase in this case is about two- to threefold. This increase is 
more pronounced than on glass surfaces, which led to an increase of onefold or less (Fig. 
4A). While the addition of bile salts significantly enhanced P. aeruginosa twitching on 
untreated plates, with the TC-treated surfaces, it appeared to diminish twitching, albeit 
to an extent not statistically significant.

We examined whether the drastic increase in twitching motility with TC-treated 
polystyrene surfaces with P. aeruginosa could be extended to A. nosocomialis. As shown 
in Fig. 5B, A. nosocomialis M2 displayed no twitching motility in LB media with the non-
treated plates. This is expected because these plates are made of polystyrene like the 
petri dishes routinely used for twitching motility assays. TC-treated plates drastically 
increased M2 twitching with LB media by almost 50-fold without the addition of bile salts 
or detergents. Interestingly, the addition of bile salts to TC-treated plates significantly 
decreased twitching motility by A. nosocomialis, much more so than P. aeruginosa (Fig. 
5A). The comparable levels of M2 twitching on TC-treated and untreated plates in the 
presence of bile salts are consistent with bile salts modifying both surfaces to similar 
levels of hydrophobicity or hydrophilicity. An isogenic pilA mutant was used as a control, 
and it displayed no twitching under all experimental treatments (Fig. 5B). The results 
here indicate the enhancement of twitching motility by hydrophilic surfaces is not 
confined to P. aeruginosa. Similar enhancement in A. nosocomialis suggests a more 
general phenomenon where hydrophilic surfaces promote interactions that are more 
favorable for bacterial twitching as mediated by the T4P as a motility apparatus.

DISCUSSION

The interaction with surfaces is essential for the survival and proliferation of bacteria in 
their natural environment as well as in health and disease. In their natural habitats, most 
bacteria exist in multicellular ensembles known as biofilms, the establishment of which 
depends on bacterial attachment to surfaces (85–88). During bacterial infection of a host, 
one of the earliest steps in the process is the adhesion of a pathogen to the surfaces of 
host cells, tissues, and medical implants. From a bacterial perspective, such interactions 
rely on the timely biogenesis and proper functioning of adhesins on their surfaces. One 
of the structures critical for bacterial adhesion to both biotic and abiotic surfaces is the 
bacterial T4P, which is prevalent in both gram-positive and gram-negative bacteria (2, 13, 
28, 29, 31). It is an important virulence factor in many pathogens, including P. aeruginosa 
and A. baumannii, which are both on the WHO priority pathogens list (16). In these 
bacteria, as well as A. nosocomialis and others, the T4P is known to power bacterial 
twitching motility, which provides a convenient assay for the investigation of T4P 
biogenesis and function.

Here, we described an unexpected mechanism by which bile salts and other deter­
gents can stimulate bacterial twitching motility. It was previously observed that A. 
nosocomialis exhibits significant twitching motility with MacConkey but not with Luria-
Bertani agar media (22, 49). This phenomenon was observed using stab assays to 
visualize interstitial colony expansion with polystyrene petri dishes. After confirming this 
observation, we identified bile salts as the component in MacConkey responsible for 
eliciting A. nosocomialis twitching motility (Fig. 1A). The stimulatory effects of bile salts 
on twitching are not limited to A. nosocomialis, as we made similar observations with 
multiple strains of A. baumannii (Fig. 1B) and P. aeruginosa (Fig. 2A; Fig. S1). Additionally, 
our results indicated that other detergents, whether anionic or non-ionic, likewise 
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promoted P. aeruginosa twitching motility (Fig. 3A). Surprisingly, this stimulation of 
twitching is likely not due to a physiological change in response to the presence of bile 
salts and other detergents in the growth medium. Instead, it is the ability of detergents 
to alter the physicochemical properties of a surface that enhances twitching motility in 
multiple bacterial species.

The above conclusion is based on a few lines of experimental evidence from this 
study. First, antibiotics with various modes of actions failed to enhance P. aeruginosa 
twitching motility (Fig. 3B). These included polymyxin B, which can apply envelope stress 
(78), as do bile salts and other detergents. These results suggested that the enhancement 
of twitching motility by detergents is likely not a bacterial response to a general or 
envelope stressor in a growth media. Second, we observed that surfaces of glass, which 
are more hydrophilic than that of polystyrene, significantly enhanced twitching motility 
(Fig. S2; Fig. 4A). We further demonstrated that the use of glass surfaces abrogated 
the stimulatory effect of bile salts such that the addition of bile salts no longer pro­
moted P. aeruginosa twitching motility on these surfaces (Fig. 4A). When the surface 
properties of glass were changed by the application of a hydrophobic coating, the 
enhancement of bacterial twitching by glass was reversed (Fig. 4B). These results show 
that hydrophilic surfaces promote twitching, whereas hydrophobic ones suppress it. 
Because bile salts in the growth media only enhance twitching motility on polystyrene 
but not on glass surfaces, we conclude that bile salts likely function to modify natural 
polystyrene surfaces to be more hydrophilic, which promote bacterial motility. Lastly, 
we performed experiments with TC-treated and non-treated polystyrene surfaces (Fig. 
5). The TC-treated surfaces, which are more hydrophilic, significantly enhanced bacterial 
twitching motility. As similarly observed on glass surfaces, the addition of bile salts no 
longer displayed a stimulatory effect on P. aeruginosa and A. nosocomialis twitching 
on TC-treated plates. These results support our conclusion that the physicochemical 
properties of a surface significantly impact the effectiveness of T4P-powered twitching 
motility in bacteria. On hydrophilic surfaces, bacteria twitch more, and on hydrophobic 
surfaces, they twitch less. We further conclude that the promotional effects of bile salts 

FIG 5 TC-treated plates ameliorate twitching and abolish the effects of bile salts. (A) P. aeruginosa 

twitching on TC-treated polystyrene. The twitching motility of P. aeruginosa PAO1 and its isogenic pilA 

mutant strain was analyzed with six-well polystyrene plates (see Materials and Methods) either TC treated 

or non-treated in LB agar without or with 0.5% bile salts (BSs). (B) A. nosocomialis twitching on TC-treated 

polystyrene. The twitching motility of A. nosocomialis M2 and its isogenic pilA deletion mutant was 

analyzed as in panel A. Data presented in both panels are from three biological experiments each 

performed in triplicate. Quadruple asterisks indicate that two values are statistically different with P < 

0.0001.
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and other detergents on bacterial twitching are largely due to their ability to change the 
properties of a surface over which bacteria translocate by twitching motility.

Categorically, there are two possible mechanistic explanations for the observed 
effects of the physicochemical properties of a surface on bacterial twitching. There 
have been reports that bacteria attach better to hydrophobic surfaces in the context 
of biofilm formation or otherwise (89–92). It follows that reducing hydrophobicity may 
lead to alteration of the interactions of a bacterial cell or its pilus with a subsurface over 
which a bacterium translocates by twitching motility. Sustained twitching movement 
relies on the recurrence of a multi-step process. These steps include the unobstructed 
extension of a T4P, the subsequent attachment of the pilus through its distal end for 
anchoring, followed by a successful T4P retraction event. It is conceivable that tamper­
ing with any of these steps through physicochemical interactions with a surface can 
lead to changes in bacterial twitching behaviors. The effects of surface properties on 
bacterial surface motility were discussed in a recent review article (45). Alternatively, 
surface sensing has been demonstrated to mediate changes in cell physiology and 
behavior (6, 93–98). It is possible that the physicochemical properties of a surface may 
be detected by a bacterium through surface sensing to modulate T4P biogenesis and its 
functions, leading to alterations in twitching motility. Further investigation is necessary 
to determine if the above scenarios or others, either alone or in combination, are the 
underlying reasons for the observed enhancement of T4P-powered bacterial twitching 
by surface hydrophilicity.

MATERIALS AND METHODS

Strains and culture conditions

The bacterial strains used in this study are listed in Table 1. These include A. nosocomialis 
M2, A. baumannii strains Ab0057 and AYE, and P. aeruginosa strains PAO1 and PA14. 
When appropriate, isogenic pilA mutants were used as controls. P. aeruginosa strains were 
grown at 37℃ on 1.5% Luria-Bertani agar, while A. nosocomialis and A. baumannii strains 
were grown at 37℃ on 1.5% MacConkey agar (Oxoid). Oxoid bile acids were used in this 
study when indicated.

Twitching motility assays

Twitching motility was analyzed by three different protocols using the agar stab methods 
(22, 27, 49) with 1.2% agar media (102). The first protocol uses a standard 100 mm × 
15 mm polystyrene or glass petri dish (Fisher Scientific) as previously described (22, 27, 
49, 102). In brief, plates with 25 mL agar media were prepared a day before the assays 
and allowed to sit on the benchtop overnight. These plates were then dried in a biosafety 
cabinet for 20 minutes before stab inoculation. After 48 hours of incubation at 37℃ in a 
humidity chamber, the agar media were removed, and the twitching zone was visualized 
by staining with 1% crystal violet. Twitching areas were determined using the NIH ImageJ 
software (103).

TABLE 1 Bacterial strains used in this study

Species Strain Description Reference

Acinetobacter nosocomialis M2 Clinical isolate (99)
M2 ΔpilA pilA deletion and insertion 

of kanamycin-resistant cassette 
(ΔpilA::kan)

(23)

Acinetobacter baumannii Ab0057 Clinical isolate (62)
AYE Clinical isolate (63)

Pseudomonas aeruginosa PAO1 Wild type (100)
PW8622 PAO1 pilA-H02::ISphoA/hah (101)
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The second protocol uses either a glass (Opto-Edu) or a polystyrene (VWR Interna­
tional) microscope slide (1, 3) inside a standard polystyrene petri dish for analyzing 
twitching motility. The microscope slides were first submerged in a filter-sterilized 
polydimethylsiloxane solution (RainX) (104) or in 70% ethanol as a control. These slides 
were air dried on a rack at 40℃ before being placed at the bottom of a polystyrene 
petri dish. They were then covered by 25 mL of molten agar, which was poured into the 
petri dish a day before. A twitching assay is initiated by stab inoculation as described 
previously (22, 27, 49, 102), except that the incubation is shortened to 18 hours to 
limit the twitching zone within the boundaries of the microscope slide. One additional 
modification is that the twitching zone in this case was visualized by incident lighting 
and traced with a permanent marker without removing the agar from the petri dish. 
Twitching area was determined using ImageJ as above.

The third protocol uses six-well polystyrene plates with or without TC treatment 
(Falcon). Each well of a plate contains 2 mL agar media, and twitching motility assays 
were initiated by stab inoculation as described above. The twitching area was analyzed 
as described for the microscope slide-based assay, except that the incubation time was 
extended to 24 hours.

Two-factor ANOVA with replication in Microsoft Excel was used for statistical analysis 
when appropriate. Error bars in figures represent standard derivations calculated from 
the means of three biological replicates.
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