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There is a wide interest in developing methods that reduce the cost of resolving the near-wall
and small-scale turbulence in order to enable the use of turbulence-resolving methods (such
as large eddy simulation) at higher, more industrially relevant, Reynolds numbers. Existing
techniques for this can struggle to accurately predict scenarios with complex flow physics such as
transition, large-scale unsteadiness, and smooth-body separation/reattachment. Deep-learning
based subgrid-scale (DL-SGS) models may help address this. However, the standard a priori
approach for training these is unable to account for interactions of the DL-SGS closure with the
numerics and resolved physics. Optimizing the DL-SGS closure over the governing equations
using the adjoint equation has previously been found to improve predictions and stability in
incompressible flows. In this paper, an adjoint training method is developed for compressible
LES, and is applied the flow around a NACA 0012 airfoil at Re𝑐 = 5 × 104 and Ma = 0.4. The
DL-SGS closure is trained on a single angle of attack, and improves predictions compared to
classical SGS models when extrapolating to out-of-sample angles of attack, even when it has not
been trained over fully representative flow physics.

I. Introduction
Turbulence-resolving methods such as large eddy simulation (LES) are increasingly being used to enable accurate

predictions in flow regimes containing laminar-to-turbulent transition and smooth-body separation. However, the utility
of fully resolved LES remains limited due to the significant cost incurred by mesh resolution requirements, particularly
in near-wall regions of the flow [1]. Including the effects of pressure gradients, transition, and heat transfer on the
subgrid-scale (SGS) is challenging, particularly near the wall, and attempts at it are not widespread [2]. It is therefore
important to develop new SGS closure models which will yield accurate coarse-mesh (in both near-wall and bulk) LES
simulations of the complex near-wall flow. Our objective is to use deep learning to develop coarse-mesh LES models
which have an accuracy comparable to highly resolved LES or direct numerical simulation (DNS).

Recently, interest has grown in using deep learning for SGS model closures [3]. Most efforts in this direction
train the deep learning SGS (DL-SGS) model in an a priori manner, where the SGS closure parameters are estimated
offline from filtered DNS data without optimising over the governing equations [4–7]. Although simple to implement
with existing supervised machine learning methods, a priori training of the SGS closure has two key disadvantages:
optimisation does not commute with a nonlinear function, introducing errors, and the training procedure does not
account for numerical errors, which can be significant for a coarse grid LES—even with a "perfect" SGS model derived
by coupling to DNS [8]. These issues have been observed to negatively affect both accuracy [9, 10] and even stability
[11] of DL-SGS closures, and may play a part in their limited application to only relatively simple canonical flows such
as isotropic turbulence, jets, and turbulent channel flows.

To address this limitation, an adjoint-training method has recently been proposed that allows the optimisation to be
carried out over the governing equations [9–11]. This has been demonstrated to have superior performance to existing
classical and a priori trained DL-SGS models in decaying isotropic turbulence [11], turbulent plane jets [10], and flow
over bluff bodies [9].

Motivated by the success of the adjoint-trained deep learning LES methodology in incompressible flows, this paper
will develop adjoint training methods and DL-SGS models for compressible flow around low to moderate Reynolds
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number airfoils. The fluid mechanics here are more complex than previous applications of the methodology—accurately
capturing the near-wall behaviour of the laminar separation bubble and turbulent reattachment is important for an
accurate prediction [12], especially in a coarse-mesh LES. Reynolds-averaged Navier–Stokes (RANS) models are not
considered in this paper, as they consistently struggle with this type of flow due to the large-scale unsteadiness and
laminar–turbulent transition [13].

In the remainder of this paper, we will first present the governing equations solved by PyFlowCL, our in-house
curvilinear finite-difference solver used throughout this work, along with the mathematical background for our adjoint
optimization methodology. We will then detail our DNS testing and training data set, along with some validation against
existing DNS simulations at the same conditions in the literature. Next, we discuss the computational set up for our
model training and a posteriori simulations, before finally assessing the performance of the DL-SGS model relative to
some classical SGS modeling approaches in long time scale a posteriori simulations at various angles of attack.

II. Governing Equations and Methodology

A. Governing Equations and General Approach
The LES equations considered in this paper are derived from the non-dimensional compressible Navier–Stokes

equations with an ideal gas equation of state. They are given by
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where 𝑥 ∈ Ω is the simulation domain, 𝜌 is the density, 𝑢𝑖 is the Cartesian velocity vector, Re, Ma, and Pr are the
scaling Reynolds, Mach, and Prandtl numbers respectively, and the viscous stress tensor and the heat-flux vector are
𝜎 = 𝜇(𝑇) (∇u + ∇u⊤ − 2

3 (∇ · u)I) and q = −𝜇∇𝑇 . A power-law dependence on temperature is assumed for the viscosity
𝜇. The PDE system (Eq. (1)) is closed using the ideal gas law and by assuming that the gas is calorically perfect. It is
completed with appropriate boundary conditions for 𝑥 ∈ 𝜕Ω.

The unweighted and Favre (density-weighted) filtering operations are defined as
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∫
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respectively, where 𝐺 (r, x) is an appropriately normalized LES filter kernel. (In most cases this is unknown and
determined implicitly by the LES grid.) Applying the filters in Eq. (2) to the compressible Navier–Stokes equations
(Eq. (1)) results in the compressible LES equations,
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where 𝜎̃ = 𝜇(𝑇) (∇ũ + ∇ũ⊤ − 2
3 (∇ · ũ)I) and q̃ = −𝜇(𝑇)∇𝑇 . The filtering operation produces several unclosed terms,

shown on the right hand side (RHS), due to the nonlinearities of Eq. (1) and several other neglected terms. Historically,
the focus has been on the SGS stress tensor and heat-flux vector,

𝜏sgs
𝑖 𝑗 ≡ 𝜌𝑢𝑖𝑢 𝑗 − 𝜌𝑢̃𝑖 𝑢̃ 𝑗 and 𝑓 sgs

𝑗 ≡ 𝜌𝑢 𝑗𝑇 − 𝜌𝑢̃ 𝑗𝑇, (4)

respectively, which can not be calculated if only the filtered variables (and not the filtered values of their products) are
known.
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Equation (3) contains additional unclosed terms, denoted 𝜖𝑢𝑖 and 𝜖𝐸 , that arise due to (a) the noncommutativity of
filtering and discrete differentiation operations, and (b) the use of nonlinear constitutive and transport models. These
terms are generally neglected in practical LES SGS modeling considerations, even though they can be of a similar
magnitude to 𝜏sgs and 𝑓sgs. The adjoint-trained DL-SGS model will account for all unclosed terms, including these
additional terms.

In the DL-SGS model, the unclosed terms are modeled with the aid of a deep neural network (DNN) h(𝜌,Δ, 𝑇,∇⊗ũ; 𝜃)
where Δ is a measure of the local grid length scale, and the parameters 𝜃 are to be calibrated to filtered DNS data. In
compressible flows, h is a 4× 3 tensor - it has three elements for each momentum equation and 3 elements for the energy
equation. Note that, with the 12 inputs 𝜌, Δ, 𝑇 , and ∇ ⊗ ũ, the closure model h is Galilean invariant.

B. PyFlowCL Background
The simulations in this paper are conducted in PyFlowCL, an in-house, compressible, curvilinear finite-difference

flow solver. PyFlowCL is Python-native and leverages the PyTorch and MPI libraries to enable scalable, distributed
simulation and model training with full GPU acceleration. Gradients of the flow variables are calculated using
fourth-order central differences, and time is advanced using the explicit fourth-order Runge–Kutta method. To control
numerical instabilities from the gradient discretization, a highly discriminating implicit low-pass spatial filter is applied
to the conserved variables at the end of each time step.

C. Adjoint Training of Neural Networks in PyFlowCL
Our objective is to select the parameters 𝜃 such that the time evolution on the short time interval [𝑡, 𝑡 + 𝜏] of the LES

solution Q(x, 𝑡; 𝜃) = {𝜌, 𝑢, 𝑇 ; 𝜃} (initialized from trusted high-fidelity data Q∗ (x, 𝑡)) matches as closely as possible
the evolution of the high-fidelity data. The inclusion of 𝜃 in Q(x, 𝑡; 𝜃) indicates that it is calculated with the DL-SGS
model parameters 𝜃. We will use adjoint equations to optimize over the DL-LES equations to calibrate the parameters 𝜃
to the high-fidelity data. As we solve the non-dimensional Navier-Stokes equations, the values of 𝜌 and ∥u∥2 in the
freestream flow are 1; the temperature 𝑇 is divided through by a factor of 𝛾 so that it also satisfies this and does not have
an disproportionate influence on the loss function. In the equations below, we will consider the fully discretized LES
equations. We minimize the following objective function:
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(5)
where here 𝑡 𝑓 = 𝑡 + 𝜏 indicates that the loss is calculated at the final time of the optimization interval [𝑡, 𝑡 + 𝜏], ∥ · ∥1 is
the ℓ1 norm, and 𝑁𝑝 is the number of LES grid points. This is used instead of a volume integral as it avoids weighting
the DL-SGS model away from the more critical areas of the flow where the mesh is finer.

Gradient descent-type algorithms for optimizing the model parameters 𝜃 require the gradient ∇𝜃 𝐽 (𝜃). Adjoint
equations are used to efficiently evaluate the gradient ∇𝜃 𝐽 (𝜃). The adjoint approach only requires the solution of five
linear PDEs. The number of adjoint equations does not depend upon the dimension of the neural network parameters 𝜃;
this is a key advantage of the adjoint optimization method since deep learning models can have a very large number of
parameters.

In order to illustrate the adjoint optimization method, consider the forward discrete update equation for Q (without a
discrete filtering operation):

Q(𝑡 + Δ𝑡) = 𝐹 (Q(𝑡); 𝜃), (6)

where 𝐹 is the discretized PDE update. The adjoint solution Q̂(𝑡) = 𝜕𝐽/𝜕Q(𝑡) is advanced backwards in time (with
time step Δ𝑡) using the chain rule expression [11]

Q̂(𝑡) =
(
𝜕𝐹 (Q(𝑡); 𝜃)

𝜕Q(𝑡)

)⊤
Q̂(𝑡 + Δ𝑡), (7)

with the final condition Q̂(𝑡 𝑓 ) = 𝜕𝐽/𝜕Q(𝑡 𝑓 ). The RHS in Eq. (7) is evaluated using automatic differentiation. We
have extended this to include discrete adjoints for the low-pass filtering operation at the end of each time step and
communication across sub-domain boundaries. As far as we are aware, this article is the first to use adjoint optimization
to train machine learning closure models for compressible turbulent flows.
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Once the adjoint equation has been solved, the gradient of the objective function ∇𝜃 𝐽 (𝜃) can be evaluated via the
following formula:

∇𝜃 𝐽 (𝜃) =
𝑁𝑡∑︁
𝑖=0

∇𝜃𝐹 (Q(𝑡𝑖); 𝜃)⊤Q̂(𝑡𝑖+1), (8)

where 𝑁𝑡 = 𝜏/Δ𝑡 is the number of LES time steps in an optimization interval, and 𝑡𝑖 = 𝑡 + 𝑖Δ𝑡.
Once ∇𝜃 𝐽 (𝜃 (𝑘 ) ) has been obtained at optimization iteration 𝑘 , an updated estimate for the parameters can be

obtained for the next optimization iteration as

𝜃 (𝑘+1) = 𝜃 (𝑘 ) − 𝛼 (𝑘 )∇𝜃 𝐽 (𝜃 (𝑘 ) ), (9)

where 𝛼 (𝑘 ) is the learning rate.
In practice, optimization of the LES equations with the DL-SGS closure model is carried out using a mini-batch

version of the adjoint equation, where multiple instances of the governing equations are solved separately on multiple
machines for multiple random sub-samples of filtered DNS data.

The adjoint-training approach used in this work is as follows:
1) Generate a database of DNS data, filtered and down-sampled to the coarse LES grid.
2) Randomly select a short time interval [𝑡, 𝑡 + 𝜏].
3) Solve Eq. (3) on [𝑡, 𝑡 + 𝜏] (with an initial condition from the filtered and down-sampled DNS data) and calculate

the loss function 𝐽 (𝜃) on each machine.
4) Solve the adjoint equation (Eq. (7)) on [𝑡 + 𝜏, 𝑡] and calculate ∇𝜃 𝐽 (𝜃) on each machine.
5) Average the gradients across all machines (i.e. across the mini-batch) and update the parameters 𝜃 using the

RMSprop algorithm (similar to Eq. (9)).
6) Go back to step 2 and repeat until the loss function has been satisfactorily reduced.
The adjoint solution is fully parallelized and uses the same domain decomposition and overlaps as the forward

solution. Due to the very short optimization timescale, Lyapunov divergence due to the chaotic nature of turbulence
is not a challenge [11]. Furthermore, optimizing the DL-SGS model over several short timescale simulations is not
expected to limit accuracy of the trained model—the small-spatial-scale turbulent flow structures that are most relevant
for SGS modeling also have small temporal scales.

III. Training and Testing Datasets

A. DNS overview
We have generated a DNS database of a NACA 0012 airfoil at Re𝑐 = 5 × 104 and Ma = 0.4 at various angles of

attack (𝐴𝑜𝐴 = 5◦, 7.5◦, 10.0◦, and 15◦) for training and testing DL-SGS closures. This airfoil has been chosen as it is a
common choice for DNS computations across the literature [14–17]. To maintain consistency with the majority of
existing DNS data, all simulations are conducted with a span-wise domain extent that is 20% of the airfoil chord. The
DL-SGS model in this paper will only be trained on the 𝐴𝑜𝐴 = 5◦ data—this is to test the ability of adjoint-trained
models to extrapolate to different angles of attack that may contain unseen flow structures such as large-scale flow
separation. We remark that, even when trained on a particular case, the a posteriori coarse mesh LES simulations are
quasi-out-of-sample because they are aiming to accurately predict the correct time-average flow and not the short-time
evolution of the sub-samples of DNS data that they trained on.

The DNS simulations are conducted on an 187M point O-grid, with 1920 points in the tangential direction, 540
points in the wall-normal direction, and 180 points in the span-wise direction. Snapshots of the instantaneous velocity
magnitude at all four flow conditions are shown in Fig. 1. To avoid confinement effects from the far-field boundary
condition affecting the results, the computational domain has a radius of 20 chord lengths. We note that this is larger
than most DNS simulations of this airfoil, with the exception of [17], who observed slight changes in the pressure at
reattachment for domain radii between 15 and 100 chord length. It is reasonable to expect fully separated flow conditions
to be more sensitive to this due to the larger domain blockage caused by the separated flow structure. The DNS were run
for 15-20 flow-through times before averaging for a further 10 flow-through times to calculate turbulence statistics.

As can be seen in Fig. 1a and b, at 𝐴𝑜𝐴 = 5◦ and 7.5◦, the flow forms the usual flow structure for low-Reynolds
airfoils, consisting of a laminar separation bubble, which breaks down and causes reattachment, followed by a turbulent
boundary layer for the rest of the airfoil. In contrast, 𝐴𝑜𝐴 = 10◦ and 15◦ (Fig. 1c and d) exhibit fully separated flow,
corresponding to a stalled airfoil.
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The fully separated flow at 𝐴𝑜𝐴 = 15◦ is consistent with the DNS calculations in [15], but this is not the case at
𝐴𝑜𝐴 = 10◦. This is because 𝐴𝑜𝐴 ≈ 10◦ is roughly where the airfoil stalls: fully separated flow is observed in DNS
calculations at 𝐴𝑜𝐴 = 9.25◦ in [18], while as previously mentioned, reattaching flow is observed in DNS calculations at
𝐴𝑜𝐴 = 10◦ in [15]. It is therefore likely that the flow-field at this condition is extremely sensitive to domain (or tunnel)
confinement effects, numerics, and exact details of the mesh resolution. This analysis is backed up by the experimental
𝐶𝐿 − 𝐴𝑜𝐴 curves collated in [19]: different experiments observe this airfoil at this Reynolds number to stall over a wide
range of angles of attack, from 6◦ to 10◦.

(a) AoA = 5

(b) AoA = 7.5

(c) AoA = 10 (d) AoA = 15
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Fig. 1 Snapshots of the instantaneous DNS velocity magnitude, 𝑈𝑚𝑎𝑔.

The maximum normalized wall spacings from the DNS of the 𝐴𝑜𝐴 = 5◦ case are 0.6, 5, and 3 in the wall-normal,
stream-wise and span-wise directions. These spacings are well within their recommended limits for DNS [20], indicating
adequate resolution of the near-wall flow structures.

B. DNS validation
Our DNS database is validated by comparing time-average pressure and friction coefficients (𝐶𝑝) to DNS

computations of other authors. This is shown in Fig. 2 for 𝐴𝑜𝐴 = 5◦, and Fig. 3 for 𝐴𝑜𝐴 = 15◦. There is excellent
agreement with the DNS data in the literature at 𝐴𝑜𝐴 = 5◦, and good agreement at 𝐴𝑜𝐴 = 15◦ - it is possible that the
latter flow configuration affected by the rounded trailing edge in the present DNS, and/or stronger confinement effects
from the smaller domain in the reference DNS data. Further validation is possible at 𝐴𝑜𝐴 = 5◦ by comparing our
results to the DNS simulations in [17]. Again, the PyFlowCL results match the reference data very closely, both for the
time-average wall-parallel velocity (Fig. 4) and for the Reynolds shear stress (Fig. 5).
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Fig. 2 Time-average DNS pressure coefficients (𝐶𝑝) at 𝐴𝑜𝐴 = 5◦ from PyFlowCL compared to DNS data in the
literature [14, 16].
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Fig. 3 Time-average DNS pressure coefficients (𝐶𝑝 at 𝐴𝑜𝐴 = 15◦ from PyFlowCL compared to DNS data in the
literature [15].
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Fig. 4 Time-average DNS wall parallel velocity profiles at 𝐴𝑜𝐴 = 5◦ compared to the DNS results in [17].
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Fig. 5 Time-average DNS wall Reynolds shear stress profiles at 𝐴𝑜𝐴 = 5◦ compared to the DNS results in [17].
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IV. Training and Computational Setup

A. Model formulation
In this paper. we use an anisotropic eddy-viscosity formulation to approximate the SGS stresses. In the anisotropic

eddy-viscosity formulation, the SGS stress is approximated as

𝜏𝑆𝐺𝑆
𝑖 𝑗 + 𝜖𝑢𝑖 ≈ 𝜇(𝑇) ℎ𝑖 𝑗 (𝜌,Δ, 𝑇,∇ ⊗ 𝑢̃)𝑆𝑖 𝑗 , (10)

and the SGS heat flux is approximated as

𝑓 𝑆𝐺𝑆
𝑗 + 𝜖𝐸 ≈ 𝜅(𝑇) ℎ4 𝑗 (𝜌,Δ, 𝑇,∇ ⊗ 𝑢̃) 𝜕𝑇

𝜕𝑥 𝑗

, (11)

where 𝑆𝑖 𝑗 is the resolved deviatoric strain rate tensor. An advantage of this approach is that the DL-SGS model is
constrained by design to be free-stream preserving. Our experience directly modeling the SGS stresses with a DNN was
that this property was complicated to enforce, and was required for stability: spurious SGS stresses were not introduced
by changes in grid size, density, or temperature.

B. LES grid and filtering DNS data
The computational grid for the LES simulations is formed by down-sampling the DNS grid by a factor of 8 × 4 × 9

in the tangential, wall normal, and span wise directions. This coarsening results in an LES grid with approximate
normalized wall spacings of 40, 4, and 30 in the stream wise, wall-normal, and span wise directions—the wall-normal
spacing here is larger than usually recommended for LES, meaning that the DL-SGS model will hopefully learn a
degree of wall modeling during the optimization process.

The 8 × 4 × 9 coarsening in a 288-fold reduction in the number of computational points, and an 8-fold increase in
the time step supported by the grid. This means that LES simulations with no SGS model have a 2,300 times lower
computational cost than the corresponding DNS simulations. In general, we have found that the DL-SGS model has
an overhead of about 20% compared to no model, so carrying out DL-SGS simulations is still over three orders of
magnitude cheaper than DNS.

A two step process is used for filtering the DNS data. First, the DNS data is averaged in a 9 × 4 × 9 point grid
around each LES point. The filtered flow field after this first step still has a 2Δ wavelength component in it. Due to the
numerical limitations of collocated finite difference schemes, this is not resolvable on the computational grid—in both
DNS and LES we remove it with the implicit filter. To remove these from the filtered DNS data, it is filtered again on
the LES grid with a fourth-order explicit low-pass filter. The first step of this filtering process is visualized in Fig. 6.
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Fig. 6 Visualization of the DNS data filtering and down-sampling to the LES grid near the rounded trailing
edge of the NACA 0012.
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C. Training hyper-parameters
The DNN ℎ(𝜌,Δ, 𝑇,∇ ⊗ 𝑢̃) has four layers and uses ELU (exponential linear unit) activation functions, including

on the output layer. A fairly narrow network with 25 hidden units is used - large networks are not desirable in this
application, as they increase the cost of both a posteriori simulations and training the model. The use of the exponential
linear unit (ELU) functions on the output layer ensures that the net dissipation provided by the eddy viscosity plus the
laminar viscosity is always positive: as 𝑥 → −∞, ELU(𝑥) → −1. This allows the model to provide a reasonable amount
of back-scatter, while also maintaining solution stability. This avoids having to use clipping methods (such as those
proposed in [21]) to limit the back-scatter to a reasonable value.

The training is conducted over 125 time steps on the LES grid; this corresponds to 1% of a chord flow-through time,
and a mini-batch size of 24 is used the optimization, with each LES instance being distributed across 2 NVIDIA V100
GPUs. The RMSprop hyper-parameters are kept at their default value in PyTorch, and the learning rate is set to 0.01.
Filtered DNS (fDNS) snapshot pairs are randomly selected for each batch (without replacement) from a database of
1,000 snapshot pairs of fDNS data. The out-of-sample performance of the DL-SGS model is periodically checked on a
separate test data set consistent of 24 filtered DNS snapshot pairs evenly distributed throughout the temporal extent of
the training data. As can be seen in Fig. 7, the optimization converges to approximately a 4% reduction in loss on the
test data set, and does not appear to be over fitting to the training data (which would be indicated by the training loss
descending wile the test loss levels off or increases).

0 50 100 150 200 250
Batch

0.94

0.95

0.96

0.97

0.98

0.99

1.00

J*

J * = J / JTest
NM

 JTest
NM = 2.6694e 03

Test
Train

Fig. 7 Convergence of test and training loss (relative to the no model test loss, 𝐽𝑇𝑒𝑠𝑡
𝑁𝑀

) for the DL-SGS model
optimizing over 1% of a chord flow-though time.

V. A Posteriori Results

A. Assessment of DL-SGS model performance
After training, a posteriori LES are run with the DL-SGS model at all four angles of attack considered in this

paper. To assess the performance of the DL-SGS model, LES simulations are also run with three classical (i.e. not
deep-learning) SGS modelling approaches: no model (or implicit) LES, where the dissipation from the numerical filter
is relied upon to provide a similar effect to the SGS stresses [22]; the Smagorinsky model [23] which is well known to
have issues in transitional flows; and the wall adapting local eddy viscosity (WALE) model [24] which is formulated in a
way that addresses much of the shortcomings of the Smagorinsky model. For the two eddy viscosity based approaches,
the SGS heat-flux is modeled assuming a turbulent Prandtl number of 0.85. The values chosen for the Smagorinsky
coefficient and the WALE coefficient are 𝐶𝑠 = 0.1, and 𝐶𝑤 = 0.325. All LES simulations were run for at least 20 flow
through times to expel initial transients and averaged for 10 flow through times to calculate statistics. The DL-SGS
model has been verified to result in stable LES simulations at all four conditions for very long run times.

Although the DL-SGS model has been trained over data at 𝐴𝑜𝐴 = 5◦, this is considered to be a quasi-out-of-sample
case. This is because the model has only been trained over short intervals (1% of a chord flow through time) of filtered
DNS (fDNS) data, which is different to the long term evolution of a simulation where the DL-SGS model is able to
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influence the formation of new flow structures such as shear layer vortices—these typically form on a time scale that is
an order of magnitude larger than the optimization period. The 𝐴𝑜𝐴 = 7.5◦, 10◦, and 15◦ cases all correspond to fully
out of sample flow conditions.

The a posteriori simulations are assessed by comparison to the fDNS simulations. Three figures of merit (FoM) are
used for this. The first FoM is in intended to be a time-average equivalent of the loss function used in training (see 5), so
that

𝐽post =
1
𝑁𝑝

(
∥𝜌 − 𝜌∗∥1 + ∥𝑢̃ − 𝑢̃∗∥1 + ∥𝑣̃ − 𝑣̃∗∥1 +

∥𝑇 − 𝑇∗∥1

𝛾

)
, (12)

where bars and tildes indicate temporal unweighted- and Favre-averages. 𝐽post measures how well a particular SGS
model satisfies the goal of the optimization process, but might not necessarily correlate with accurate prediction aof the
aerodynamic coefficients. The second and third FoMs are therefore deviations of the LES time-average lift and drag
coefficients (𝐶𝐿 and 𝐶𝐷). Tables 1 and 2 shows the values for these error metrics across all four angles of attack for the
no model, Smagorinsky, WALE, and DL-SGS model LES simulations. Taken in aggregate across all four angles of
attack, the DL-SGS model shows a clear advantage compared to no SGS model and both classical SGS models, with
the lowest value in all three error metrics by a comfortable amount (expect for separated cases with the Smagorinsky
model). To provide more insight, the flow conditions are broken up in to three groups: reattaching flows (𝐴𝑜𝐴 = 5◦ and
7.5◦), flows on the verge of separation (𝐴𝑜𝐴 = 10◦), and fully separated flows (𝐴𝑜𝐴 = 15◦). These three groups are
considered in turn in the rest of this section of the paper.

Table 1 Comparison of ℓ1 error relative to time-average fDNS 𝐽post for the no model, Smagorinsky, WALE, and
DL-SGS LES.

Angle of attack 5◦ 7.5◦ 10◦ 15◦

Training Out-of-sample Out-of-sample Out-of-sample

No model 𝐽post 0.014 0.030 0.178 0.101
Smagorinsky 𝐽post 0.083 0.091 0.064 0.047
WALE 𝐽post 0.012 0.025 0.169 0.069
DL-SGS 𝐽post 0.009 0.018 0.136 0.047

Table 2 Comparison of errors in 𝐶𝐿 and 𝐶𝐷 for the no model, Smagorinsky, WALE, and DL-SGS LES.

Angle of attack 5◦ 7.5◦ 10◦ 15◦

Training Out-of-sample Out-of-sample Out-of-sample

fDNS 𝐶𝐿 0.605 0.725 0.449 0.788

No model 𝐶𝐿 error [%] 6.2 12.5 111.0 3.6
Smagorinsky 𝐶𝐿 error [%] 35.3 16.2 54.2 12.9
WALE 𝐶𝐿 error [%] 5.8 10.4 105.9 10.9
DL-SGS 𝐶𝐿 error [%] 3.0 4.7 84.2 13.2

fDNS 𝐶𝐷 0.0356 0.050 0.125 0.273

No model 𝐶𝐷 error [%] 6.8 22.0 44.9 29.6
Smagorinsky 𝐶𝐷 error [%] 51.9 93.6 12.6 14.7
WALE 𝐶𝐷 error [%] 6.0 17.6 40.1 26.0
DL-SGS 𝐶𝐷 error [%] 2.6 7.2 20.9 17.6
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1. Reattaching flows
For the two reattaching flow cases (𝐴𝑜𝐴 = 5◦ and 7.5◦), where the model was trained over representative physics,

Tab. 1 shows the error in the DL-SGS lift and drag coefficients is about half the next best model (WALE). The DL-SGS
time-average flow-field is also much closer to fDNS at these conditions. We consider this to be a significant reduction in
modeling error and improvement in predictive ability - even for the out-of-sample flow condition.

The Smagorinsky model does particularly poorly at these conditions and does not offer an improvement over no
SGS model at all. The flow feature causing this can be seen in Fig. 8: the DL-SGS model (and no model and WALE)
correctly predicts reattaching flow, but the Smagorinsky model misses this—likely due to its well known issues in
transitional flows preventing the breakdown of the laminar separation bubble.

(a) fDNS (b) Deep learning (c) Smagorinsky
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ag

Fig. 8 Time-average velocity magnitude fields for fDNS and the DL-SGS and Smagorinsky models at 𝐴𝑜𝐴 = 7.5◦.

It is also interesting to compare the location of separation and reattachment predicted by the different SGS models
at these conditions. This is shown in Fig. 9 - for both the quasi-out-of-sample and the out-of-sample case, DL-SGS
predicts the first onset of separation and the location of reattachment to be close the where they were observed in the
fDNS (although it predicts a small region of temporary reattachment for 𝑥 < 0.2 at 𝐴𝑜𝐴 = 7.5◦). In contrast, both the
classical SGS modeling approaches (no model and WALE) predict separation and reattachment late at 𝐴𝑜𝐴 = 5◦, and
reattachment early at 𝐴𝑜𝐴 = 7.5◦. The DL-SGS also predicts the correct friction coefficient in the turbulent boundary
layer downstream of reattachment (approx 𝑥 > 0.6 and 𝑥 > 0.3 for 𝐴𝑜𝐴 = 5◦ and 7.5◦), which neither the no model nor
the WALE model are able to do.

0.00 0.25 0.50 0.75 1.00
x

0.015

0.010

0.005

0.000

0.005

0.010

C f

(a) AoA = 5

0.00 0.25 0.50 0.75 1.00
x

(b) AoA = 7.5

DL-SGS
No-model
WALE
fDNS

Fig. 9 LES suction surface friction coefficient distributions for the (a) quasi-out-of-sample and (b) out-of-sample
reattaching flow conditions.

The local ℓ1 error in the time-average pressure 𝑝 and Favre-averaged velocity magnitude, 𝑈𝑚𝑎𝑔 at 𝐴𝑜𝐴 = 7.5◦ is
shown in Fig. 10. The errors in the DL-SGS simulation (Fig. 10c) are significantly lower than both no model LES
and LES with the WALE model (Figs. 10a and b) near the leading edge and on the suction surface of the airfoil. The
reason for this can be found in the friction coefficient distributions in Fig. 9 and the boundary layer profiles in Fig. 11.

11



At 𝑥 = 0.2, the WALE model and the no model simulations are close to predicting reattachment - this results in less
blockage from the separation bubble and consequently fuller boundary layer velocity profiles going downstream. The
DL-SGS model captures the leading edge separation bubble much more accurately, resulting in boundary layer profiles
that are closer to fDNS downstream. The reason for the consistent over-prediction of the near-wall velocity by the
DL-SGS is unclear (we also observe this at 𝐴𝑜𝐴 = 5◦)—whether it can be reduced by changing the training period or
the model inputs requires further investigation. An alternative possibility is that specialist wall-models must be trained
to reduce it. In any case, the DL-SGS model predicts more accurate boundary layer profiles than either classical SGS
modeling approach.

(a) No model

(b) WALE

(c) Deep learning

0.00 0.01 0.02 0.03
1 error in p

0.0 0.1 0.2 0.3
1 error in Umag 

Fig. 10 ℓ1 errors (compared to fDNS) in time-average pressure 𝑝 and Favre-averaged velocity magnitude, 𝑈𝑚𝑎𝑔

at 𝐴𝑜𝐴 = 7.5◦. White lines indicate locations of boundary layer profiles.

2. Flow on the verge of separation
At 𝐴𝑜𝐴 = 10◦, the analysis is difficult due to the extremely sensitive nature of the flow field at the verge of stall—as

discussed in Sec. III there is a large spread in DNS simulations in the literature around this condition, with some
predicting reattachment and some predicting fully-separated flow, and the location of stall in experimental 𝐶𝐿 − 𝐴𝑜𝐴

curves seems to vary widely [19]. As can be seen in Tab. 1 the no model error in time-average flow field 𝐽post is 10
times larger than at e.g. 𝐴𝑜𝐴 = 5◦, although the DL-SGS model reduces this by 24%, despite never having seen fully
separated flow in training.

The Smagorinsky model does well at this condition compared to the other models, although this is a case of a
stopped clock being right twice a day: it is not surprising that it predicts fully separated flow given that it does that for
all other flow conditions too. This is shown in Fig. 12. Even if it predicts the correct flow structure, the Smagorinsky
model still has a large error in 𝐶𝐿 (Tab. 2), so it is not accurately predicting the large-scale fDNS flow.

3. Fully separated flow
For the fully separated flow condition (𝐴𝑜𝐴 = 15◦), the Smagorinsky model is again the best performing model,

although this time the DL-SGS model is very competitive—𝐽∗post is broadly the same between the two cases, and the
errors in 𝐶𝐿 and 𝐶𝐷 from the Smagorinsky model are only lower by a 0.3 and 2.9 points (Tab. 1). Some brief numerical
experiments that we conducted indicated that had we optimized the value of 𝐶𝑠 on the 𝐴𝑜𝐴 = 5◦ in the same manner as
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Fig. 11 Wall-normal boundary layer profiles at 𝐴𝑜𝐴 = 7.5◦. 𝑈∥ is the velocity in the wall parallel direction.
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Fig. 12 Time-average velocity magnitude fields for fDNS and the DL-SGS and Smagorinsky models at
𝐴𝑜𝐴 = 10.0◦.

the DL-SGS model, 𝐶𝑠 would have been O(0.01). This would result in a performance that is on par with the no model
LES-including larger errors at high angles of attack. The no model and WALE simulations have a low error in 𝐶𝐿 -
given their larger error in 𝐶𝐷 and larger 𝐽post, this seems to be because of a cancellation of errors, and is not indicative
of a dependable predictive ability at this angle of attack.

At this far-out-of-sample condition we also see a significant improvement in the behavior of the flow around the
laminar separation bubble at the leading edge of the airfoil from the DL-SGS model (Fig. 13). While this might be
the main source of improvement from the DL-SGS model at this condition (compared to no model and WALE), if
the model had not learned some transferable physics from the re-attaching flow cases, it is likely that the unseen SGS
physics downstream of about 50% chord would have been incorrect, corrupting the flow in this region and resulting in
worse overall performance than the no-model simulations. This is not reflected in Tab. 1 or Fig. 13. This is extremely
promising given that the fully separated flow structure contains large amounts of flow physics that are unseen to the
DL-SGS model (large-scale leading edge vortex roll up, fully separated flow, and a Von-Karman vortex street—see
Fig. 1), and suggests that the DL-SGS model has learned at least some generalizable features of the SGS physics.
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Fig. 13 ℓ1 errors (compared to fDNS) in time-average pressure 𝑝 and Favre-averaged velocity magnitude, 𝑈𝑚𝑎𝑔

at 𝐴𝑜𝐴 = 15.0◦.

VI. Conclusion
The focus of this paper was the development of DL-SGS models for compressible for over a NACA 0012 airfoil

at Re = 50, 000 and Ma = 0.4. The results presented in this paper represent a significant improvement in the ability
of DL-SGS models to generalize to previously unseen flow conditions and flow physics. We attribute this to the
adjoint training method used, where the DL-SGS model is optimized to match the short term evolution of filtered DNS
data—this has significant advantages over the a priori method that is usually used for training DL-SGS models, which is
not able to take in to account the interaction of the DL-SGS model with the governing equations or the LES numerics.

The DL-SGS model is only trained on filtered DNS data from one angle of attack (𝐴𝑜𝐴 = 5◦) at the lower end of
angles of attack investigated. A relatively coarse LES grid is used, corresponding to 288 times fewer grid points than
the DNS simulations. The DL-SGS model is tested in a posteriori simulations at 𝐴𝑜𝐴 = 5◦, 7.5◦, 10◦, and 15◦. The
𝐴𝑜𝐴 = 5◦ a posteriori simulation is considered quasi-out-of-sample, this is because the model has only been trained
over short periods (1% of a chord flow-through time), but the a posteriori simulations run for more than 30 flow-through
times, including 10 for gathering statistics. Of the fully out-of-sample simulations, the flow field at 𝐴𝑜𝐴 = 7.5◦ displays
the same broad physics as at 𝐴𝑜𝐴 = 5◦, consisting of a laminar separation bubble followed by turbulent reattachment.
The flow fields at 𝐴𝑜𝐴 = 10◦ and 15◦ are very far out-of-sample—they are characterized by fully separated flow, trailing
edge vortex roll up, and the formation of large coherent structures downstream of the stalled airfoil. The DL-SGS model
was not trained over any data that included this physics.

Despite only being trained at a single angle of attack, the DL-SGS model out performs simulations with no SGS
model and the WALE model in all four cases, leading to reductions in error of the lift and drag coefficients and the
time-average flow field. The Smagorinsky model incorrectly predicts fully separated flow at all angles of attack. This
does result in it having a more accurate flow field than DL-SGS compared to the filtered DNS simulation at 10◦ (this
flow condition is likely extremely sensitive as it is on the verge of stall), although DL-SGS is competitive with it at 15◦
and generalizes an order of magnitude better to lower angles of attack.

For the flow configurations with reattachment (the quasi-out-of-sample 𝐴𝑜𝐴 = 5◦ and the fully out-of-sample
𝐴𝑜𝐴 = 7.5◦) where the DL-SGS model has been trained over broadly representative flow physics, it results in a
significantly more accurate flow field, with errors in the lift and drag coefficients that are 50% smaller than the next
best model (WALE). The DL-SGS model correctly predicts the onset of separation and reattachment at both of these
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flow conditions, which no model, Smagorinsky model, and WALE model simulations fail to do. In addition, in the
out-of-sample flow 𝐴𝑜𝐴 = 7.5◦ flow condition it enables the LES to properly capture the leading edge laminar separation
bubble, a feature that the classical SGS models also fail to accurately predict. Even in the far-our-of-sample case
(𝐴𝑜𝐴 = 15◦) where the DL-SGS model has not been trained over any representative flow physics, it is competitive
with the best classical SGS model (Smagorinsky), giving a similar ℓ1 error in the time-average flow field, and only a
marginally worse error in the time-average lift coefficient. The strong performance of the DL-SGS model at this flow
condition implies that, during training, it has learned at least some generalizable SGS physics that enable it to give
reasonable predictions for this far out-of-sample flow condition.
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