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Dinoflagellates in the order Suessiales include the family Symbiodiniaceae,
which have essential roles as photosymbionts in corals, and their cold-adapted
sister group, Polarella glacialis. These diverse taxa exhibit extensive genomic
divergence, although their genomes are relatively small (haploid size <3 Gbp)
when compared with most other free-living dinoflagellates. Different strains
of Symbiodiniaceae form symbiosis with distinct hosts and exhibit different
regimes of gene expression, but intraspecific whole-genome divergence is
poorly understood. Focusing on three Symbiodiniaceae species (the free-living
Effrenium voratum and the symbiotic Symbiodinium microadriaticum and Durusdi-
nium trenchii) and the free-living outgroup P. glacialis, for which whole-genome
data from multiple isolates are available, we assessed intraspecific genomic
divergence with respect to sequence and structure. Our analysis, based on align-
ment and alignment-free methods, revealed a greater extent of intraspecific
sequence divergence in Symbiodiniaceae than in P. glacialis. Our results under-
score the role of gene duplication in generating functional innovation, with a
greater prevalence of tandemly duplicated single-exon genes observed in the
genomes of free-living species than in symbionts. These results demonstrate
the remarkable intraspecific genomic divergence in dinoflagellates under the
constraint of reduced genome sizes, shaped by genetic duplications and symbio-
genesis events during the diversification of Symbiodiniaceae.

1. Introduction

Dinoflagellate microalgae in the order Suessiales include the family Symbiodinia-
ceae, which predominantly comprise symbiotic lineages essential to coral reefs.
Symbiodiniaceae taxa, collectively, exhibit a broad spectrum of symbiotic associ-
ations (i.e. facultative) and variable degrees of host specificity (i.e. host-specialist
versus host-generalist), although some are described as free-living [1,2].
A comparative analysis of whole-genome sequences from 15 taxa revealed exten-
sive sequence and structural divergence among Symbiodiniaceae taxa, which was
more prevalent in isolates of the symbiotic species, Symbiodinium microadriaticum
[3]. This result was supported by a metagenomics survey of single-nucleotide
polymorphisms in the genomes of symbiotic Symbiodinium 'fitti’ from different
coral taxa and biogeographic origins, revealing intraspecific (i.e. within-species)
sequence divergence correlated with the coral host [4].

A recent comparative analysis incorporating genomes from three isolates of
the obligate, free-living species E. voratum identified genome features of the putative
free-living ancestor of Symbiodiniaceae [5]. These features include longer introns,
more-extensive RNA editing, less pseudogenization, and, perhaps most surpris-
ingly, similar genome sizes when compared to symbiotic counterparts. The
genome size of E. voratum suggests that genome reduction (to haploid genome
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Figure 1. Suessiales species phylogeny inferred using LSU rDNA sequences [1], for which genome data from multiple isolates are available. Coral reef world map is
based on Allen Coral Atlas [10]. Taxa not marked 'free-living’ are symbiotic and their host species are represented on the top right.

size<3 Gbp) occurred in symbiodiniacean dinoflagellates
before diversification of the order Suessiales [5]. These results
elucidate the role of a symbiotic lifestyle in shaping intraspecific
genomic divergence and the evolution of these taxa. Intrage-
nomic variation of the ITS2 phylogenetic marker sequences is
known among Symbiodiniaceae taxa [6,7]. However, intraspeci-
fic whole-genome divergence in these taxa relative to symbiotic
versus free-living lifestyle remains poorly understood. Whole-
genome data from multiple isolates of a species provide an
excellent analysis platform to address this knowledge gap.
Here, we investigate intraspecific genomic divergence in
four Suessiales species (of which three are Symbiodiniaceae).
These taxa represent two free-living species and two symbiotic
species, for which whole-genome data from multiple isolates are
available. We focus specifically on sequence and structural con-
servation, gene family dynamics, and gene duplication, and
how these features may reflect adaptation to different lifestyles.

2. Methods

2.1. Genome data

To investigate patterns of intraspecific genomic divergence
related to a facultative lifestyle, we focused on four Suessiales

species for which multi-isolate genome data are publicly avail-
able. The two symbiodiniacean species, S. microadriaticum [3,8]
and Durusdinium trenchii [9], represent independent origins
of symbiogenesis (figure 1; electronic supplementary material,
table S1). The remaining two are free-living species, the sym-
biodiniacean E. voratum [5] and Polarella glacialis that is sister
to the Symbiodiniaceae in the order Suessiales [11]. The
available genome data were generated from isolates collected
over vast geographical areas: the thermotolerant symbiont
D. trenchii from the Caribbean Sea and Pacific Ocean, the
free-living E. voratum from the Mediterranean Sea and both
sides of the Pacific Ocean, the symbiotic S. microadriaticum
from the Red Sea, Pacific Ocean and the Caribbean Sea,
and the psychrophilic P. glacialis from the Antarctic and
Arctic oceans (figure 1). Collectively, these data provide the
framework for interrogating intraspecific genome divergence.

2.2. Alignment-based assessment of genome-sequence
similarity

To assess genome-sequence similarity of the four target species

based on sequence alignment, we used nucmer (—mum)

implemented in MUMmer 4.0.0beta2 [12] at minimum align-
ment lengths of 100 bp, 1 Kb and 10 Kb to align assembled
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genome sequences for every possible pair of isolates in each
species. For each pairwise comparison, we calculated the per-
centage of aligned bases, Q, and overall sequence identity of
aligned regions, ID. Maximum values of for both Q and ID at
100% indicate that two genome sequences are identical. We
then used mummerplot (-f —layout) and dnadiff to generate
figures and reports for these alignments.

2.3. Alignment-free assessment of genome-sequence
similarity

Adopting the same approach described in Lo et al. [13], we
calculated statistic based on shared k-mers for each pair of
genomes, from which a distance (d) was derived. Briefly,
Jellyfish v2.3.0 [14] was used to derive k-mers (at k=23)
from each genome assembly, from which distances were
calculated using d2ssect (https://github.com/bakeronit/
d2ssect) from all possible pairs of genomes. Following the
earlier studies [5,13], core 23-mers among isolates of each
species were identified from the extracted 23-mers, using
the bash command comm (-12). BEDtools [15] intersect was
used to find regions of overlap between the core k-mers
and different genomic features.

2.4. Gene family evolution and introner element search

To infer homologous protein sets among isolates of a species,
all protein sequences predicted from all isolates were used as
input for OrthoFinder v2.5.4 [16]. The analysis was con-
ducted at different inflation parameters (I=1.5, 2.0, 4.0, 6.0,
8.0 or 10.0). From the generated homologous protein sets,
the proportion of isolate-specific sets was identified. To ident-
ify introner elements (IE), we used the introner element
sequences identified in Shah et al. [5] from eight Suessiales
isolates as a reference for Pattern Locator [17] to search for
inverted and direct repeat motifs within introns.

2.5. Identification of collinear gene blocks and types of
gene duplication

To identify collinear gene blocks shared by isolates of a species,
we first identified homologous protein sequences using
BLASTp (e-value < 10™°, query or subject cover > 50%, filtered
for top five hits for each query). This output was used as input
for MCScanX [18] (-b 2) to search for collinear gene blocks
between all possible pairs of isolates. For D. trenchii, we filtered
out duplicated genes [9] from the MCScanX output by selecting
gene pairs that were more similar to each other (i.e. low non-
synonymous (K,) + synonymous (K;) substitution score), then
chose gene blocks that still contained 5 or more genes. Gene
Ontology (GO) terms were assigned to all gene sets via
UniProt (version 2022_01) to GO (version December 2022) ID
mapping on the UniProt website (https:/ /www.uniprot.org/
id-mapping). The duplicate_gene_classifer implemented in
MCScanX was used to assess five distinct types of gene
duplication: (a) singleton=not duplicated; (b) dispersed =
duplicated with>10 genes in between; (c) proximal=
duplicated with <10 genes in between; (d) WGD = whole or
segmental genome duplication inferred by anchor genes in
collinear gene blocks comprising at least 5 genes; and (e)
tandem = duplicated one after the other (i.e. two or more con-
secutive genes on the same scaffold).

2.6. Analysis of tandemly duplicated genes

Tandemly duplicated (TD) genes were identified based on the
results of MCScanX above. For this analysis, we focused on two
best-quality (i.e. two most contiguous) genome assemblies
from each species, i.e. for a total of eight genomes. For each
TD block, we calculated the non-synonymous substitution
rate (K,) and synonymous rate (K,) between all possible pairs
of genes within the block, using the add_ka_and_ks_to_collinear-
ity.pl script implemented in MCScanX [18]. The ratio  was
defined as K,/K;. When assessing mean o for each TD block,
instances of infinity values (e.g. due to K, = 0) were ignored.

3. Results and discussion

3.1. Genomes of facultative symbionts have higher
sequence divergence

To investigate divergence of genome sequence, we used four
Suessiales species for which multi-isolate genome data are pub-
licly available: two symbiotic symbiodiniacean species (S.
microadriaticum [3,8] and Durusdinium trenchii [9]), the free-
living symbiodiniacean species of E. voratum [5], and the free-
living Polarella glacialis [11] that is sister to the Symbiodiniaceae
in the order Suessiales (see Methods). Following the approach
of Gonzélez-Pech et al. [3], for each pairwise comparison of
genome sequences, we calculated the percentage of aligned
bases, Q, and overall sequence identity of aligned regions, ID.
Genome sequences from isolates of the same species are
highly similar (Q>70.2%, ID >98.6% with minimum align-
ment length 100 bp; figure 24; see electronic supplementary
material, figure S1 for detail), compared to those between
species (Q <10.0%, ID <98.6%). High intraspecific sequence
similarity was observed despite the diverse geographical ori-
gins for isolates from each species (figure 1). Genome
sequences of the free-living P. glacialis were the most similar
(Q=95.5%, ID=98.7%; CCMP1383 against CCMP2088), fol-
lowed by the symbiotic D. trenchii (Q=93.3%, ID=99.8;
CCMP2556 against SCF082), the free-living E. voratum (Q =
92.0%, ID = 99.4%; RCC1521 against rt-383), and the symbiotic
S. microadriaticum (Q=78.5%, ID =99.7%; CCMP2467 against
CassKB8). Among the three E. wvoratum isolates, CCMP421
showed smaller percentage of aligned genome bases against
rt-383 (Q=70.2%) and against RCC1521 (Q=79.2%), com-
pared to Q=92.0% observed between RCC1521 and rt383;
this is likely to be due to the more fragmented CCMP421
genome assembly, also reflected in the low percentage of
mapped sequence reads (electronic supplementary material,
table S2). Between the two symbiotic species, the greater diver-
gence observed in S. microadriaticum might represent its much
earlier emergence and diversification [1]. Alternatively, the
lower divergence in D. trenchii may be due to the recent
whole-genome duplication (WGD) in this lineage [9].
Genome data of multiple isolates from a broader taxon rep-
resentation of Symbiodiniaceae lineages will help clarify the
possible link between intraspecific divergence and facultative
lifestyle of these symbionts.

To extend genome comparisons beyond alignable sequence
regions, we further assessed sequence divergence using an
alignment-free k-mer-based approach. This approach was
found to be robust against the contiguity of genome assemblies
[19], and has been applied successfully to discover distinct

781057 €L ‘Joig uadp  qosi/jeunol/bio buysijgndAranosiefos H


https://github.com/bakeronit/d2ssect
https://github.com/bakeronit/d2ssect
https://www.uniprot.org/id-mapping
https://www.uniprot.org/id-mapping

(@)
Query
D. trenchii CCMP2556

D. trenchii SCF082

E. voratum CCMP421 1

E. voratum RCC1521 1

E. voratum 1t-383 J
S. microadriaticum 04-503SCL.03 -

S. microadriaticum CCMP2467 4

S. microadriaticum CassKB8 1

P. glacialis CCMP1383 1

P. glacialis CCMP2088 b

)
Query

L .. 527 523 526 520
= = .. 529 525 528 521

o s [
oo 5 i

LI | 1527 5.29 ... 4.60 4.35 4.63 4.68 4.68
o 1523 525 ... 451 416 454 407 408
: :
2 1526 528 ... 4.53 4.18 456 4.03 4.04 2
g 3
& 1520 521 4.60 451 453 ... 5.09 512 a2
+45.01 5.04 435 4.16 4.18 ... 4751 [4:79)
4522 5.23 463 454 4.56 ... SAlIN 53118

B
5
i

4.07 4.03 5.09 4.75 5.11

4.08 4.04 512 479 5.13

[ |
S. microadriaticum 04-503SCL03 | W ... = = m m =

S

average percentage of 3
sequence aligned query, §
identity, ID (%) 0 (%) ° = - g
1000 W § 2 g e R z

S O «© 3

&9 Q o S

97.5 M s g 388 1§ %

§ § 8 8 8 S

92.5 . 100 5 &5 £ 8 8 ‘g

d & W & o ]

90.0 =

S. microadriaticum CassKB8

|
|

D3 distance

. 0.0
Moo

1.0-55

. 55-6.0

S. microadriaticum 04-503SCL03
S. microadriaticum CCMP2467

P. glacialis CCMP1383

P. glacialis CCMP2088

D. trenchii CCMP2556

D. trenchii SCF082

E. voratum CCMP421

E. voratum RCC1521

S. microadriaticum CassKB8
P. glacialis CCMP1383

P. glacialis CCMP2088

E. voratum rt-383

Figure 2. Intra- and inter-species genome sequence identity among four Suessiales species. (a) Alignment-based identity (minimum alignment length = 100 bp)
with query genome sequences (y-axis) aligned to the references (x-axis). The colour of the squares corresponds to percentage sequence identity /D, and the sizes
represent Q, the percentage of the query genome sequence aligned to the reference. (b) Alignment-free D3 distances showing delineation between species (<1 in
blue), family (1.0-5.5 in yellow) and the longest evolutionary distance across the order (>5.5 in pink).

phylogenetic signals in different genomic regions of Symbiodi-
niaceae [5,13]. We followed Lo et al. [13] to derive pairwise D5
distances, d, based on shared k-mer profiles at k =23 observed
in whole-genome sequences. As shown in figure 2b, the lowest
sequence divergence was seen in P. glacialis (d = 0.30), followed
by E. voratum (d=0.53 between RCC1521 and rt-383; d =0.9
when implicating the more-fragmented CCMP421 assembly),
D. trenchii (0.54), and the three S. microadriaticum isolates
(0.72-0.76). This pattern of divergence is consistent with our
observations based on Q and ID in figure 2a.

We further assessed the conserved core 23-mers in each
species (i.e. k-mers common in genomes of all isolates
within a species). For each species, we assessed the extent
of genome content shared among the isolates based on x,
the percentage of core 23-mers relative to all distinct 23-
mers; in the perfect scenario where genomes of all isolates
are identical, x =100%. Using this approach, E. voratum and
S. microadriaticum show similar extent of shared genome con-
tent among their corresponding isolates (x ranges between
19.5% and 25.2%; electronic supplementary material, table
S3). Approximately two-fold greater x was observed for
P. glacialis (52.3-54.9%) and D. trenchii (55.6-55.7%); this
observation likely reflects the impact of a diploid genome
assembly in the former [11] and WGD in the latter [9].
Duplicated genomic regions arising from WGD are resolved
over long evolutionary time scales of hundreds of millions
of years [20]. Given the recent (approx. 1Ma) WGD in
D. trenchii, this species likely has not had sufficient time to
resolve genetic redundancy. Regardless, our results here
lend support to the general utility of k-mer-derived distances
in clarifying genome-sequence divergence beyond gene

boundaries, which may serve as evidence to guide or comp-
lement taxonomic classification of Symbiodiniaceae, and
potentially of other dinoflagellates [19].

3.2. Intraspecific structural divergence in the genomes
of Symbiodiniaceae

To assess intraspecific structural genomic divergence, we
identified collinear gene blocks in all possible pairwise
genome comparisons for each species; the greater recovery of
these blocks and their implicated genes indicates a greater con-
served synteny among the isolates in a species. As expected,
due to the recent WGD, the two symbiotic D. trenchii isolates
CCMP2556 and SCF082 displayed the greatest conserved
synteny (1613 blocks involving approx. 22% of total genes
spanning 181-199 Mbp; electronic supplementary material,
table S4). On the other hand, genomes of the symbiotic S. micro-
adriaticum (101-196 blocks, 1.9-3.9% of genes, 8.1-17 Mbp)
showed less conserved synteny than the free-living E. voratum
RCC1521 and rt383 (344 blocks, 6.6-8.1% of genes, 51-60 Mbp;
electronic supplementary material, table S4); at first glance, this
result appears to support observations in an earlier study [3]
that the extent of structural rearrangements is greater in
genomes of facultative symbionts than those of free-living
taxa. However, the greater contiguity of the E. voratum
assemblies (scaffold N50 length=720Kbp for RCC1521,
252 Kbp for rt-383) than that of S. microadriaticum assemblies
(e.g. scaffold N50 length =43 Kbp for CassKB8 and 50 Kbp
for 04-503SCI.03) represents a systematic bias that would
affect recovery of collinear gene blocks. S. microadriaticum
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CCMP2467 (N50 length 9.96 Mbp) (electronic supplementary
material, table S1), the sole representation of a chromosome-
level assembly, lacks comparative power in this instance. As a
case in point, the inclusion of the fragmented assembly of
E. voratum CCMP421 (N50 length 304 Kbp; 38022 scaffolds)
lowers the extent of conserved synteny identified in E. voratum
(195-331 blocks, 4.4-7.9% of genes spanning 30-65Mbp in
the CCMP421 genome; electronic supplementary material,
table S4), and we identified no collinear gene blocks between
the outgroup P. glacialis isolates due in part to sparsity of
genes on the assembled genome scaffolds [11]. These results
in combination suggest that while structural rearrangements
contribute to structural divergence of Symbiodiniaceae gen-
omes as postulated in those of facultative symbionts [21] even
within the same species, such an analysis based on collinear
gene blocks is sensitive to contiguity of assembled genome
sequences. An in-depth assessment of structural divergence
would require genome assemblies of comparably high quality.

3.3. Genetic duplication enables functional innovation

Genetic duplication is known to impact genome evolution of
dinoflagellates, with genes occurring in high copy numbers
implicating essential functions (e.g. [22,23]), possibly facilitated
by the introgression of transcripts into the genome following
trans-splicing of spliced leader in transcription [24,25]. We inves-
tigated the evolution of protein families to search for evidence of
functional innovation and divergence within species, and its
potential connection to lifestyle. For each species, we inferred
homologous protein sets with OrthoFinder using sequences pre-
dicted from all corresponding isolates; the homologous sets that
are specific to an isolate may reflect instances of contrasting
divergence in and/or specialization of protein functions (e.g.
putative remote homologues), occurring at distinct evolutionary
rates. First, we assessed number of isolate-specific proteins for

each species based on OrthoFinder results ran at default par-
ameters (i.e. inflation parameter I=1.5). The highest
percentage of isolate-specific proteins was observed in D. trenchii
(13.5% of total proteins), followed by P. glacialis (12.0%); these
numbers are nearly four-fold greater than that observed in S.
microadriaticum (3.3%) and E. voratum (3.2%; figure 3). To inves-
tigate the robustness of this result, we increased the inflation
parameter (I) for clustering within OrthoFinder that controls
the granularity (i.e. higher inflation parameter produces smaller
clusters). As expected in all cases, the increase of I resulted in an
increase of isolate-specific proteins; at I =10, the percentage of
these proteins is 30.2% (D. trenchii), 27.5% (P. glacialis), 13.0%
(S. microadriaticum) and 8.9% (E. voratum). Despite the high syn-
teny and sequence conservation in D. trenchii, the substantial
number of protein families retained in duplicate after WGD
show evidence of isolate-specific divergence and/or specializ-
ation in D. trenchii where facultative lifestyle has been
hypothesized to be the main driver of post-WGD adaptation
[9]. In contrast, the comparable extent of isolate-specific protein
sets in P. glacialis may represent heterozygosity inherent to a
diploid representation of the genome assembly [11], distinct
from the haploid genome assemblies among the Symbiodinia-
ceae taxa. None of the E. wvoratum and S. microadriaticum
isolates showed evidence of WGD (electronic supplementary
material, table S5), and thus the similar level of isolate-specific
divergence in these species supports the notion of genome
reduction in the Suessiales ancestor, with WGD a mechanism
for escaping this process to generate functional innovation, as
observed in D. trenchii [9].

3.4. Genomes of free-living species contain a larger
number of tandemly duplicated single-exon genes

Tandemly duplicated (TD) genes (i.e. duplicated genes found
next to each other on the genome) are thought to facilitate
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Table 1. Tandemly duplicated (TD) genes within 19 Suessiales isolates. TD genes were defined as two or more consecutive genes on the same scaffold making  [JJil}

up a ‘block’, with its size represented by the total number of consecutive TD genes.

species and number of TD  number of median of

isolate genes TD blocks

B. minutum 1225 (3.7%) 569 2
Mf1.05h.01

(ladocopium sp. (92 1148 (2.5%) 536 2

C proliferum SCFOS5 2017 (60%) %7 2

D. trenchii 1031 (1.8%) 745 2
(CMP2556

D. trenchii SCF082 1045 (2.0%) 645 2

E voratum CCMPA21 495 (15%) 233 2

E. voratum RCC1521 1405 (4.4%) 559 3

Eovoratum 383 1567 39%) 635 3

S. linucheae 737 (2.3%) 348 2
(CMP2456

S. microadriaticum 437 (1.1%) 206 2
04-5035C1.03

S. microadriaticum 418 (1.0%) 200 2
(asskB8

S. microadriaticum 1060 (2.2%) 475 2
(CMP2467

S. natans CCMP2548 2499 (7.1%) 1021 2

S, necrogppetens 57 (16%) 74 2
(CMP2469

. pilosum‘ . s .(.2.1%.). e,
(CMP2461

S. tridach}'dorum » 2491 (‘6.5%)‘ ‘1254 - 2‘
(CMP2592

S. tridacnidorum 581 23%) 272 2
Sh18

>R>gl>ac‘ia‘libs‘ o o6 (92%) s,
(CMP1383

P glacials 4028 (78%) 1634 2
(CMP2088

their expression in dinoflagellates [26,27]. Recent studies of
whole-genome sequence data [8,11,28] revealed TD gene
blocks as part of unidirectional gene clusters. For instance,
approximately 40% of the gene repertoire in P. glacialis gen-
omes [11] were located in unidirectional gene clusters, many
of which encoded functions associated with cold and low-
light adaptation. Here we defined a TD block as a block com-
prising two or more consecutive genes with high sequence
identity on a genome scaffold. In our independent survey of
TD genes in all 19 available Suessiales genomes, we found
the largest number and proportion of TD genes in the free-
living lineages of P. glacialis (7.8% in CCMP1383, 9.2% in
CCMP2088) and S. natans (7.1%), followed by the symbiotic
S. tridacnidorum CCMP2592 (6.5%) and C. proliferum SCF055

TD block size

% of single-exon

maximum TD number of single-exon  genes among TD
block size genes in the genome genes
7 2054 (6.3%) 9.9
R 0 AL
7 1870 (5.6%) 9.6
6 3828 (6.9%) 9.2
6 serr(oew) 75
4 1420 (4.4%) 51
o (3B (120 B
7 3574 (9.0%) 25
6 255 (0.8%) 8.4
4 2734 (7.1%) 59
4 3074 (7.2%) 57
7 2770 (5.7%) 42
L 0 )L S
6 3187 (8.9%) 14.9
L “143‘1(6.‘1%)” R
10 s (4%) 192
5 3033 (11.8%) 9
4 0619 (44%) 552

(6.0%; this taxon was formerly described as Cladocopium goreaui
SCF055 [29]), with smaller proportions observed in the free-
living E. voratum (3.9% in rt-383, 44% in RCC1521), and
the smallest in S. microadriaticum (1.0-2.2%) (table 1). Some of
the largest TD blocks consisted of 13-16 genes, found in gen-
omes of free-living lineages (S. natans, and the P. glacialis
CCMP1383 and CCMP2088). Among the free-living E. voratum
isolates, the TD block sizes were slightly smaller, implicating
genes encoding ribulose bisphosphate carboxylase (the largest
block of nine genes in RCC1521), HECT and RLD domain-con-
taining E3 ubiquitin protein ligase 4 (rt-383, 7 genes),
calmodulin (rt-383, 7 genes) and solute carrier family 4 (rt-
383, 7 genes) (electronic supplementary material, table S6);
these implicated functions are essential for photosynthesis,

781057 €L Joig uadp  qosi/jeunol/bio-buiysijgndAiaposiesol



ion binding and transmembrane transport. However, we
cannot dismiss the possibility of genome-assembly contiguity
in affecting recovery of TD blocks. For instance, the recovery
of TD genes in the chromosome-level assembly of S. microadria-
ticum CCMP2467 is 2.2% versus approximately 1.0% in the
other two assemblies, and the recovery of 1.5% in E. voratum
CCMP421 contrasts to 3.9-4.4% in the other two E. voratum
genomes. Despite this, a greater extent of TD genes in free-
living lineages (P. glacialis: 55.2-59.4%; E. voratum RCC1521:
23.1% and rt-383: 22.5%; S. natans: 21.8%) were single-exon
genes, in contrast to the symbiotic D. trenchii and S. microadria-
ticum (4.2-9.2%) (table 1). Our results lend support to the
notion that tandem duplication may facilitate transcription of
genes encoding essential functions implicating single-exon
genes, and is potentially more prominent in genomes of free-
living taxa than those of symbiotic lineages [11]. Extensive
tandem gene duplication has been hypothesized to contribute
to longevity and the ease of acclimatization in corals [30];
whether this hypothesis also applies for Symbiodiniaceae
remains to be investigated.

IE are non-autonomous mobile elements characterized by
inverted repeat motifs within introns that are hypothesized to
propagate introns into genes [31-33], which have been found
to be more prevalent in genomes of free-living dinoflagellate
species [5,34,35]. We examined the presence of these elements
in the assembled genomes and TD genes for the multi-isolate
Suessiales species (electronic supplementary material, table
S1). We found the proportion of IE-containing genes overall
to be less in Symbiodiniaceae (3.2-6.3%) than P. glacialis
(10.7-11.5%), a trend also observed in the genome of
bloom-forming dinoflagellate species, Prorocentrum cordatum
(10.4%) [35]. Nonetheless, IEs were only found in a small pro-
portion of TD genes (2.5-5.7%) per Suessiales isolate,
suggesting they are neither connected to lifestyle nor play a
major role in propagating TD genes in Suessiales (electronic
supplementary material, table S1).

To assess selection acting on TD genes, we focused on the
two highest-quality genome assemblies (based on number
of scaffolds and N50 length) from each species (i.e. total
of eight isolates), excluding the fragmented assemblies of
E. voratum CCMP421 and S. microadriaticum CassKB8. We cal-
culated the ratio  as the non-synonymous substitution rate
(K,) to synonymous substitution rate (K;) between all possible
gene pairs within each TD block (electronic supplementary
material, table 56); in general, @ > 1.0 indicates positive selec-
tion, w=1.0 indicates neutral selection, whereas w<1.0
indicates purifying selection [36] among TD genes within a
block. Based on this analysis, compared to genomes of sym-
biotic species, those of free-living species yielded larger
proportions of TD blocks with mean ® <1.0, indicating
purifying selection, ie. 71.7% in P. glacialis and 67.7% in
E. voratum, compared to 64.2% in D. trenchii and 49.1% in
S. microadriaticumn (figure 4a; electronic supplementary
material, table S7). In all cases, the mean K, value per TD
block is less than 0.5 (figure 4b). The observed mean
values are similar between two isolates of a species (e.g.
mean variance of @ =0.26 for both P. glacialis isolates; elec-
tronic supplementary material, figure S2), suggesting a

common pattern of selective pressures acting on TD genes
for the species. An exception is the symbiotic S. microadriati-
cum (mean variance of w=0.16 for 04-5035CI.03 and 0.95
for CCMP2467; electronic supplementary material, figure
S2), but more genome data from other multi-isolate symbiotic
species will enable the systematic investigation of the possible
links between selection acting on TD genes and lifestyles.

To assess functions encoded by TD genes, we focused on
TD gene blocks that were recovered in genomes of both isolates
in one or more species. Functional annotation of these gene
blocks is shown in figure 4c, and the mean o value for the cor-
responding block is shown in figure 4d. Genes encoding
calmodulin, sulfotransfer domain-containing proteins and dis-
ulfide-isomerase proteins were recovered in TD blocks in all
eight isolates. Fructose-bisphosphate aldolase, dinoflagellate
viral nucleoproteins, and caltractin were recovered in at least
7 of the 8 isolates. Genes in TD blocks recovered only in free-
living P. glacialis and E. voratum encode functions related to
photosynthesis (i.e. photosystem I reaction centre subunit III,
chloroplast TIC 20-II protein, PS II complex 12 kDa extrinsic
protein, and peridinin-chlorophyll a-binding protein). In com-
parison, those in TD blocks found only in the two symbiotic
species encode for Nek1 protein that is involved in maintaining
centrosomes, and NaCP60E, a sodium channel protein. Most of
these functions were encoded by no more than 50 TD genes per
isolate (figure 4c) in which the mean o per gene block was less
than 1 (figure 4d). These results do not speak directly to the
specificity of gene functions to tandem duplication in the gen-
omes we analysed, given that some gene copies may also occur
elsewhere in the genomes. However, our results suggest a ten-
dency for TD genes within a block to undergo purifying
selection, regardless of lifestyle.

Our results demonstrate how a facultative lifestyle, or the lack
thereof, has shaped the genome evolution of Symbiodiniaceae
dinoflagellates. Generation of genetic and functional diversity
within species implicates genetic duplication, including
tandem duplication of genes. These evolutionary processes
are under the constraint of genome reduction that is hypoth-
esized to pre-date the diversification of order Suessiales [5].
Our analysis using whole-genome data uncovered genomic
variation and diversity among different isolates or strains
within a species, which are otherwise obscured in the identical
phylogenetic marker genes they share. Given the small number
of strains and species we analysed here, the varying extent of
intraspecific genomic divergence of the different lineages
remains to be validated using more-extensive whole-genome
data that represent greater number of samples per species
(e.g. at population scale from more strains and/or locations),
and from a broader taxonomic representation. While data gen-
eration at such scale remains costly due in part to large genome
sizes of dinoflagellates (see [37] for a perspective), our results
suggest a potential linkage of facultative lifestyles to intra-
specific genomic variations that discriminate free-living and
symbiotic species.

Dinoflagellate microalgae from the family Symbiodiniaceae are
well known for their role as the ‘solar power plants’ of coral
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reefs. These microalgae allow reefs to flourish in nutrient-poor
tropical waters via provision of fixed carbon through photosyn-
thesis, as well as essential nutrients. Breakdown of the coral-alga
symbiosis (i.e. coral bleaching) due to environmental stress puts
corals at risk of starvation, disease and eventual death. Much
effort is being expended to understand the basis of the coral-
alga symbiosis to enhance coral resistance to thermal stress.

Genome data from these microalgae provide a valuable resource
to achieve this goal. Earlier research has revealed extensive
sequence and structural divergence among distinct species and
genera of Symbiodiniaceae. This study investigates genome
divergence of Symbiodiniaceae at a finer resolution, specifically
in comparing genomes of multiple isolates from different
species. Results from this work demonstrate the remarkable
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genomic divergence among Symbiodiniaceae taxa even among
isolates. These data underline the importance of considering
intraspecific divergence that is driven by local adaptation, and
argue against the one-size-fits-all approach when designing a
robust coral-alga symbiosis.

This work did not require ethical approval from a human
subject or animal welfare committee.

The key data used in this study were published genome
data available from the cited sources with the following detail
for which GenBank accessions are noted where applicable: Symbiodi-
nium microadriaticum CCMP2467 [8] (GSE152150), CassKB8 [3]
(GCA_905221625) and 04-503SCL.03 [3] (GCA_905231925); Durusdi-
nium trenchii CCMP2556 and SCF082 [9] (https://doi.org/10.48610/
27da3e?7) [38]; Effrenium voratum RCC1521 (GCA_963377175), rt-383
(GCA_963377275) and CCMP421 (GCA_963377065) [5] (https://doi.
org/10.48610/1f0377a) [39]; and Polarella glacialis CCMP1383 [11]
(GCA_905237085) and CCMP2088 [11] (GCA_905237095). Sources of
other genome data are detailed in electronic supplementary material,
table S1.

Supplementary material is available online [40].
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