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Abstract—Differential Privacy (DP) is a privacy
enhancing technology (PET) that is being increas-
ingly used and called for by policymakers in the
US and Europe, but not well-suited for protecting
corporate proprietary information that are used
to produce aggregate industry-wide statistics. We
elucidate this scenario with an example of cyberse-
curity management data, and consider an alternative
approach that relies on a pragmatic assessment of
harm to add noise to the data.

Index Terms—Public Policy Issues, Data Sharing,
Privacy

I. Introduction
Differential Privacy (DP) is a privacy-

enhancing technology (PET) that is increasingly
used to protect data about individuals. Here,
we explore its use for protecting proprietary
corporate information that might be used to
produce aggregate industry-wide statistics. We
provide a worked example that will provide
a gentle introduction to DP and shows how
recasting the statistics that are to be produced
allows the analyst to improve the trade-off
between statistics that are both useful and that
protect the interests of data providers, who
simultaneously wish to benefit from industry-
wide statistics while limiting the risk of revealing
their proprietary information.

Some firms are willing to support research
by providing sensitive and potentially damag-
ing confidential data provided that the results
cannot be used to make inferences that point
back to those supplying the data. For example,

companies may be willing to answer confidential
surveys about their experience with cybercrime
or malware, provided that statistics are only
published in aggregate. Network providers may
be willing to provide details regarding their
circuit capacity, utilization, and packet loss.
However, Dwork and Roth’s Fundamental Law
of Information Recovery [1] states that every
use of confidential data to produce public statis-
tics releases information increases the chance
that confidential data can be accurately recon-
structed.

DP, despite being a powerful PET, poorly
addresses some kinds of reputational harms that
firms might suffer following the release of some
kinds of aggregate statistics. However, changing
the specific questions that are asked of the confi-
dential data—the query set—may make it easier
to both apply DP and reason about possible
harms. Readers may find this especially relevant,
given various national efforts to advance the use
of DP and other privacy enhancing technologies.
[2]

Our worked example here uses synthetic cy-
bersecurity management data, specifically the
number of patched systems in an enterprise.
However, our argument is applicable to a wide
range of proprietary data. For example, it could
apply to counts of ransomware attacks, or counts
of systems, or to the packet loss of high-speed
internet links, or any other statistic that one
might wish to protect with DP that exhibits



the mathematical properties that we present
here. We do this by avoiding the traditional
mathematical framing of DP as much as possible
and instead focus on the utility of the released
statistics in an intuitive way based on visualiza-
tions of simulated results.

Finally, we consider an alternative approach
for performing privacy-preserving data analysis
that is inspired by DP, but where the amount
of noise added is derived based on an empirical
assessment of harm.

II. Background
There are three distinct and complex chal-

lenges when trying to protect proprietary data
at the firm level. First, since the kinds of harms
that firms and individuals can suffer are fun-
damentally different, firms have fundamentally
different concerns regarding the disclosure of
proprietary information than individuals have
regarding the disclosure of their personal data.
Second, the sample size (the number of firms
providing data) is often small. Third, in gen-
eral, there are considerably more differences in
measurable characteristics between firms than
between people, resulting in more variability
between samples and more outliers. All of these
pose challenges for DP.

There are also practical challenges in using
DP. First, DP is formally described in terms
of a mathematical abstraction called privacy
loss, typically represented by the greek letter
epsilon (ϵ), which maps to some relative poten-
tial improvement in capability that an attacker
may enjoy as a result of a data release, but
does not map to absolute increases in harm.
While the ultimate goal of DP is to minimize
harm that data subjects might experience as a
result of providing data, the potential for actual
harm must take into account the context of the
query—something that DP generally does not
do.

There are a number of ways to think about
and use DP, but the simple version we use in this
paper is to imagine that there is a database with
a number of records, each with a fixed number of

fields. Each record represents confidential data
from a different entity. The goal is to produce a
useful statistic for release while providing some
degree of protection for the confidential data.

DP provides protection by adding a degree
of noise to the result of each query against
the confidential records. This noise makes it
difficult to reconstruct one or more of the true,
confidential values of any record or combination
of records. Equivalently, DP limits the ability of
an attacker (which we will call the data hacker)
to ascertain if data from a particular entity are
or are not included in the confidential dataset.

In general, DP mechanisms fall into three
broad modes of operation:

1) Local model. Noise is added to every
element of every record of the entire
database, after which the entire noisy
database can be used for any number of
statistical operations without further pri-
vacy loss. Indeed, once noised, the entire
noisy database can be publicly released.
Local model requires comparatively high
levels of noise to achieve significant privacy
protection, which limits the usefulness of
this approach.

2) Central model. A trusted data curator
receives confidential data, computes statis-
tics, and adds noise to each result. Multi-
ple queries that address the same records
increase the overall privacy loss that data
subjects experience.

3) Central model with synthetic data. The
trusted curator performs queries on the
data to produce a noisy statistical model,
which it then uses to generate synthetic
data. This data can be used or pub-
lished without additional privacy loss. The
challenge with this approach is creating
synthetic data that have sufficient fidelity
and accuracy. In practice, this is an open
research problem.

Here we explore the use of DP solely in the
trusted curator mode, avoiding the high levels
of noise required by the local model and the
immaturity of methods to generate synthetic



data.
The goal of DP is to assure that an analysis of

a database containing an individual’s confiden-
tial data should not differ by more than a small
amount from an analysis of a similar database
that does not contain the individual’s data.

DP uses a parameter ϵ to quantify what we
mean by “a small amount.” If ϵ = 0, there should
be no difference, which means that queries on
the database can have no relationship to the
data stored in the database. If ϵ = ∞, then
any difference is acceptable. In practice, ϵ = ∞
allows a query to precisely release any value in
the database, or even the entire database.

We are interested in the range 0 < ϵ < ∞,
where there is a trade-off between the accuracy
of the output and the amount of privacy loss
incurred. The higher the accuracy, the more
privacy loss.

If the intended use of the data requires more
accuracy, or alternatively if the data do not
require so much protection, then less noise can
be used, and there is more privacy loss and more
accurate statistics.

III. A simple example of harms from querying
firm-level data

Consider the following simple example:
100 firms using a widely used oper-
ating system each complete a survey
reporting the fraction of systems they
are running that have been upgraded
to the latest security patch. Each of
these 100 reports consists of a single
number between 0.0 and 1.0 and is
stored in database D that is operated
by the trusted curator. Our goal is to
get a sense, industry-wide, of whether
firms are keeping their systems up-to-
date with respect to security patches.

Once the trusted curator receives the reports,
the curator computes one or more queries on the
confidential data and publishes the result to the
public.

One obvious query of public interest would be
the average of the values. In practice, we might

wish to weigh each sample based on the size of
the firm, but for this simple example, we assume
a query that solely computes the mean of the
values returned from each firm. This statistic
will eventually be translated to a headline on a
website, such as: “Customer Survey finds only
90% of Systems Properly Patched.”

Our first question is whether releasing the
mean of these values (with no noise added)
can cause harm to the firms that provided
the inputs. What if the mean is 0.5? This
might imply that the contributing firms have all
upgraded half of their systems to the latest patch
level. Alternatively it might be that precisely
half of the firms reported patching all of their
systems, and half reported patching none.

A. The Data Hacker
In the specific case above, unless we assume

that the data hacker knows the statistic for
99 of the firms and is attempting to learn the
data for the firm that remains, it is unlikely
that revealing that the average is 0.5 will harm
any one firm. (We return to this assumption in
Section IV-C.)

However, this harmless situation may not hold
with other averages. What if the mean is 0%?
Then it would have to be true (from the math)
that each of the firms returned the value 0.0
as their firm’s response to the query. No firm
has upgraded any of their systems. The release
of the average would cause reputational harm
to all of the contributing firms. Note that if the
average had been 100%, the firms might be very
happy to reveal that result. The actual harm (or
the potential for actual harm) depends on both
the result and the context of the query, not the
underlying math.

We term this harm the binomial pathology,
drawing an analogy to the binomial theorem,
in that there are many ways to take 50 balls
out of an urn with 100 balls in it (without
replacement), but ignoring order, there is only
one way to take out 0 or all 100. As the returned
value of the query gets closer to the minimum
or maximum of the possible range for the mean,



there are fewer and fewer combinations of data
values that can yield that specific result. Thus,
the potential for harm is data dependent.

The binomial pathology can arise in other con-
texts. Consider a census block where the average
age is 45. There could be much younger and
much older people contributing to that average,
so we learn little about them as individuals. But
if the average is 85, it is a good guess that most
of the people in that block are likely to be at
least over 65, because no individual is likely
to be over 130. The data hacker, seeing that
the average age is 85, can only guess about a
given individual in the census block, but a guess
can be good enough to cause harm. Also, the
guess can become arbitrarily more accurate with
additional public data—for example, learning
that a couple living on the block married just
before the husband was drafted to serve in the
Korean War.

B. Privacy loss vs. harm
While the ultimate goal of DP is to prevent

harm to the data subject, the protection pro-
vided by DP is defined not by the possible harm
of a data release, but by the maximum amount
of privacy loss that can result.

It is the relative privacy loss that is data
independent: the absolute protection depends
upon the global data context. A given amount
of privacy loss will be more damaging in the
hands of a data hacker who has substantial
knowledge about the world in which the data
subjects reside.

DP’s protection is defined by the degree that
the potential harm caused by the result of a
query is independent of whether the individual’s
data were considered when evaluating the query.
The classic DP example is a query that tries to
establish a link between smoking and cancer.
If that linkage is accepted, a smoker might see
their health or life insurance rates go up. The
smoker is harmed by the result of the query, but
not because of privacy loss: it made no difference
whether the smoker’s confidential data were in
the database or not. So the difference between

the harm suffered whether or not the smoker’s
data were considered is zero, which is why
the approach is called differential privacy. The
smokers in the data were harmed, but so were
the smokers not in the data. [3]

In our security example above, if we publish
that the average patch rate is 0.0, the firms
are individually harmed, but so is the broader
community: it will be guilt by association.

This kind of harm may not be acceptable in
the case of corporate confidentiality. If we seek
voluntary release of data (as opposed to data
release that is compelled by regulation or law),
the fear of this kind of harm may cause firms to
refuse to release data.

For example, corporations may fear that
making confidential data available to produce
industry-wide statistics may help create a body
of evidence that will be used to regulate the
industry. This is a harm that DP is not designed
to mitigate, because this is a harm outside of
DP’s definition of privacy loss. [4] But recogniz-
ing this limitation, can adding noise to a result
contribute to the mitigation of this sort of harm?

IV. Adding noise, in the DP way

DP protects privacy by adding noise to the
result of each query, creating uncertainty for a
data hacker attempting to learn the contents of
the confidential database.

There are many approaches for adding noise
that are consistent with DP; here we use the
Laplace Mechanism, which adds noise drawn
from a Laplace distribution with zero mean to
the result of each query. The zero mean assures
that the noise added to the true answer is equally
likely to be positive or negative, so that there
is no implicit bias added to the query results.
The magnitude of the noise added (the width
of the Laplace distribution) is determined by
two factors: ϵ (discussed above), and a factor
called sensitivity. While ϵ gets all the attention
in discussions of DP, the concept of sensitivity is
equally significant, as the amount of noise added
is a function of both.



A. Sensitivity
DP sensitivity (∆f) is the maximum amount

that a query result (in this case, mean) can
change if the data associated with the unit of
protection—typically a single database record—
is changed or removed. (Here we ignore the
subtle difference between removing a record and
changing it; see Kifer and Machanavajjhala [5]
for a full discussion.)

The sensitivity of a query is based not on
the actual values in the current database, but
on the theoretical maximal impact that a single
record change could cause for the universe of all
possible databases. In fact, it is an error to use
the contents of a particular database to compute
query sensitivity: it must be inferred from the
range of values that might be in the database.
In our example, with 100 samples between 0 and
1, the maximum impact a single firm could have
would be the situation where (x1...x99) = 0 and
x100 = 1. In this case, the mean will either be
x100

100 , or .01. or else 0, if x100 is changed to 0.
The global sensitivity S is thus .01.

B. The Laplace noise function
The zero-mean Laplace distribution is defined

as follows: for a possible value x of noise to
be added to the true value, the probability of
adding that noise value is

P =
1

2b
exp(−abs(

x

b
))

where b is defined as S
ϵ , and S is the sensitivity.

Most papers that introduce differential pri-
vacy include a plot of the Laplace distribution;
ours appears below, in figure 1. The Y-axis
height of the red line indicates the probability
that a single value drawn from this Laplace
distribution will result in the value indicated on
the X-axis. For this distribution with a mean of
0.5 and a scale of 0.01, the most probable value
is 0.5, and 95% of the values will be between
0.47 and 0.53. These values correspond to using
the Laplace Mechanism with an ϵ = 1.0 and
sensitivity ∆f = 0.01 to add noise to a value of
0.5.

Note that while it appears that 0.50 is the
most probable value, a value close to 0.5 is
vanishly improbable: fewer than 10% of the
values are between 4.999 and 0.501
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Epsilon = 1.0, Mean = 0.5, S = 0.01
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95% limits

Fig. 1. The probability distribution function (PDF) of
possible noisy statistics for a mean of 0.5; the total area
under the red line is equal to 1.0; 95% of the values appear
between the two blue lines.

We would like to derive the required level of
noise (or other possible mitigations) from an
assessment of the real potential for harm, rather
than an abstract notion of privacy loss based on
ϵ. In practice, it is difficult to quantify the poten-
tial for harm. Instead, many data analysts take
the reverse approach: they review the amount
of noise that a given level of ϵ will add to the
statistic and decide if the result is still useful.
If not, the amount of noise is decreased; if so,
the amount of noise is increased. Eventually the
analyst finds the maximum amount of noise that
can be added while still allowing the statistic
to be fit-for-use. This emphasis on utility may
dominate an assessment of harm.

In our example, in which the query is designed
to reveal the fraction of systems patched to the
latest release, the privacy protected value will
be between 0.47 and 0.53 with high probability,
and between 0.45 and 0.55 with almost absolute
certainty. Many people consider ϵ = 1.0 to be a
high amount of privacy protection, and in this
case it happens to produce what we consider to
be a useful answer! But we maintain that this



would not be the case if the industry mean were
an extreme value.

C. The worst-case assumption
DP’s definition causes it to make a worst-

case assumption about the prior knowledge of
the data hacker, short of knowing the actual
value that DP is trying to protect. That is,
it assesses an upper-bound of the potential
loss of privacy that might result from a data
release, independent of what the data hacker’s
prior knowledge or computational capabilities.
So consider the case of a data hacker that
happens to know the actual answer for 99 of the
firms, and wants to learn the answer for the final
firm. If no noise is added to the answer, then the
hacker can easily reverse the computation of the
mean and derive the answer for that firm. Thus,
the data curator decides to protect the result
with DP.

Assume that the mean of the known 99 values
was 0.5. If the remaining (unknown) value is 0.0,
the true mean of all the values will be 0.495. If
the remaining value is 1.0, the true mean would
be 0.505. (Note that we have just recomputed
the Global Sensitivity in this case–the difference
is 0.01.) In these two extreme cases, what would
the Laplace distributions be for the noisy answer
with an epsilon of 1?

As before, the data hacker faces a 95% cer-
tainty that the returned value is ±0.03 from
the actual answer. The hacker does not know
from which distribution (anywhere between the
lowest and highest pictured in Figure 2) the re-
turned value came. All the hacker sees is a single
number. If that number happened to be .5, the
value is equally likely to have come from the
lowest and the highest alternative, so the hacker
has learned nothing. However, if the answer were
(for example) .48, it is much more likely that this
result was from the distribution on the left. In
other words, the hacker cannot guess the true
value of the final value, knowing the other 99
values, but may be able (for some published
noisy results) to guess that the remaining value
is “lowish” or “highish.” Whether this degree of
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Fig. 2. PDF graphs showing the range of possible noisy
results depending on actual value of the 100th data item
being 0.0 (red) or 1.0 (blue), assuming that the other 99
data items are all 0.0.

guess is harmful is a policy question that must
be answered from the actual context: it is not a
question of math.

One question we might ask is whether we
need to address the actual worst case. A hacker
that knows all but 2 of the values would learn
essentially nothing from the range of possible
noisy answers. If we allow ourselves to relax the
worst case assumption in assessing the potential
for actual harm, we may get a more realistic
assessment of what a data hacker can actually
learn. Once again, this is a policy question that
the mathematical foundation of DP allows us to
ask, but does not answer.

V. Addressing the binomial pathology
The previous illustrations showed the distri-

bution of added noise if the actual mean was
0.5. What if the true mean was really 0.0—that
is, what if all of the firms had patched none
of their systems? Figure 3 shows the resulting
distribution of noisy answers.

Here, the hacker can reasonably infer that
there is a 95% probability that less than 3%
systems are patched. The hacker cannot know
that the actual value was 0.0, but even knowing
that it is highly likely that the value is less than
3% may be enough to cause harm. Would this
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Fig. 3. PDF of possible noisy results if the true mean of
the 100 values is 0.0.

degree of uncertainty allow any single firm that
had contributed data to plausibly claim that
while the overall number was really low, they
had actually done a good job? Probably not.

Note that the reported value after protection
may be less than zero or greater than 1. That
is, the trusted curator might declare that -10%
of all companies are fully patched. In this case,
all parties (both legitimate data analysts and
the data hacker) would understand that this
cannot be a true value, and that it was either
be the result of a small number (such as 0)
being treated with a small negative value from
the Laplace distribution, or else (with lower
probability) a larger value (such as .5, or even
1.0) being treated with an even more negative
value from the Laplace distribution.

To minimize the public’s confusion, the orga-
nization producing the protected statistics might
resolve to only report values ≥ 0 and ≤ 1.0 This
robs downstream data users (and hackers) of
some information, but lessens the chance that
the reporting agency is open to ridicule. (This
exact problem faced the US Census Bureau in its
use of differential privacy for the 2020 Census;
it resolved the problem by publishing two sets
of statistics: one set having only non-negative
integer counts, and a second set, the so-called
noisy measurements file, containing negative and

fractional numbers.)
How about an organization that has not

contributed to the dataset? If the names of the
firms are themselves confidential, an organiza-
tion could claim that their data was not included
in the computation, but there is no way to
prove this. DP cannot help this organization.
Even if the organization can establish through
some kind of audit that its data truly was not
included, that organization will still likely suffer
reputational harm because it will be tarred
with the same brush as the poorly performing
organizations that did participate.

These sorts of harms are not the harms that
DP is designed to prevent. This is like the
case of smoking and cancer. Some reputational
harm may attach to firms of the sort surveyed,
whether or not they were in the sample.

VI. Small samples exacerbate DP privacy loss

What if there were only 10 firms in the
database, rather than 100? In that case, the
global sensitivity S would be 10 times greater,
and if ϵ were still 1, the distribution of possible
results would look like Figure 4.
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Fig. 4. PDF of the protected (noisy) statistic if the true
mean of the 10 values is 0.5.

This amount of noise, given a global sensitiv-
ity of .1, significantly decreases the utility of any
published results.



How can we improve the utility of the result?
One obvious answer is to decrease the amount
of noise, which is accomplished by increasing
ϵ. WIth ϵ = 10, the plot will be exactly the
same as Figure 1. This should not be a surprise:
if we increase ϵ by 10 and increase the global
sensitivity by 10, the two changes cancel out.
What is different is that the data hacker can now
form a far more accurate hypothesis regarding
the underlying confidential data (see Figure 5).

0.425 0.450 0.475 0.500 0.525 0.550 0.575
Value with noise

0

10

20

30

40

50
Epsilon = 10, S = 0.1

Final value = 0.0
Final value = 1.0

Fig. 5. Range of noisy results depending on actual value
of the final data item, with 10 samples.

Because the global sensitivity has changed
by a factor of 10, the curves representing the
Laplace distribution for the minimum and max-
imum value of the one sample that the worst-
case hacker does not know have moved 10 times
further apart. In this case, while the hacker can-
not guess an exact number for that remaining
hidden value, as Figure 5 shows, the hacker can
make a very good guess.

The high quality of the guess is consistent
with DP’s concept of privacy loss: in the context
of a single query protected using the Laplace
mechanism, there is little protection with ϵ = 10.

VII. Making the situation better
We have identified two risks that DP was

not designed to mitigate (and does so poorly):
small data set sizes and the binomial pathology.

Regarding the first risk, as the sample size
(the number of firms) shrinks, we must rely
on a pragmatic, not worst-case, analysis of the
capabilities and intentions of the hacker to assess
potential harm. But what can we do about the
binomial pathology?

A. Sampling the data records
One approach that is used to try to protect

individual entries in a database is to sample the
database and compute a noisy result across a
subset of the sample (here, the firms). [6] In
this case, a firm can try to claim that the result
may not apply to them because they may not
even have been in the sample. In this simplistic
example, would sampling address the privacy
concerns of the firms?

Sadly, probably not. Here, the sample size
works against that claim. If there were 100
firms, and the trusted agent that computes and
returns the noisy answer declares that it has
used the data from only 90 of them, what then?
Statisticians, when looking at the behavior of
firms, can often justify the assumption that the
variables that define their behavior are i.i.d. In
this case, using a sample of 90 to predict the
behavior of a population of 100 is a highly robust
statistical assumption. The more firms that are
in the data, the stronger the justification for
a statistical conclusion that a subsample is a
robust predictor of the population. Sampling
cannot help us here.

B. Change the query
Another way out of this dilemma is not to

compute the mean, but to devise an alternative
query that provides sufficient information for the
needs of the data analyst but avoids pitfalls such
as the binomial pathology. These alternative
queries may also benefit from added noise, but
with careful design can avoid dangerous results
from low-probability data values. Indeed, this
experience is common for those attempting to
adopt a statistical analysis to incorporate dif-
ferential privacy: frequently it is necessary not
simply to add noise to the statistics that are



reported, but to change the statistics that we
choose to report.

One kind of query might be some form of
quantile. For example, the query might be:
“what fraction of the firms have patched more
than 50% of their systems.” This is essentially a
histogram with two bins, and a count for each.

Of course, none of the firms might have
patched more than 50% of their systems, so
100 would be in the lower bin, and none of
them in the upper bin. Would this outcome
represent a harm to an individual firm? None
of the firms have patched more than 50%–that
fact is known about each individual firm. But
the firms might find this degree of reputational
loss to be tolerable, since all the others are in
the same boat. And any single firm could argue
that they had done 49% of their systems.

With DP we protect histograms by adding
noise independently to each bin’s count. If there
are 90 firms with fewer than 50% of their systems
patched and 10 firms with more than 50%
of their systems patched, the DP computation
might add noise of +2.5 to the first number
and -1.3 to the second number, with the result
of 92.5 firms in the firm bin and 8.7 firms in
the second. Of course, the reporting organization
might choose to round these numbers.

Small counts are still a problem, however. If
there is a bin with 100 firms in it, adding or
subtracting one or two as we add noise does
not greatly change the utility. For a bin with
one firm in it, adding or subtracting one or two,
which might make the result zero or negative,
is potentially a huge loss in the precision (and
utility) of that small bin size. If we created more
bins, the expected number of firms in each bin
would be smaller, so the degree of uncertainty
for the results would increase. If there were only
10 firms in the data, and we split them up into
more than a very few bins, the added noise would
render the results less useful.

C. Add noise based on the actual data
If it is necessary to use a query (such as

mean) that has a low-probability data disclo-

sure pathology, we could consider abandoning
the logic of DP and adding noise (or more
noise) only when the actual data triggers the
pathology. To do so steps completely outside
the philosophy of DP, because the fact that
additional noise has been added to a partic-
ular result (which has to be disclosed) itself
reveals important facts about the data. In our
example with 100 firms, the trusted agent could
add additional noise as the true value of the
result approaches 0.0. This would prevent a
data hacker from making a precise guess, but
would still make obvious that the number was
unfortunately low. Such ad hoc systems are
difficult to analyze and are brittle if there exists
external data that can be used to undo their
protection mechanisms: it was the analysis of
such schemes and the dissatisfaction with them
that led to the development of DP.

Once the trusted curator has committed to
releasing the query of a mean, there are no easy
ways to mask the pathological outcomes. Re-
fusing to return a result itself reveals something
about the data. Adding lots of noise based on the
data reveals something about the data, which
is why DP requires that the trusted curator
make the decision about how much noise to add
before looking at the confidential data. This is
an example of the “Fienberg Problem.” [7] The
US Census Bureau addressed this problem by
tuning its DP system for the 2020 Census using
data from the 2010 Census.

It is critical to disclose the amount of noise
that a trusted curator has added to a result,
both to inform the legitimate data analyst and
as well a possible data hacker. A frustrating
harm can occur when an hacker does not un-
derstand how the added noise has limited the
validity of his conclusion, and publishes an un-
justified conclusion, causing reputational harm
that could have been prevented had the hacker
been aware of the added noise. Showing some
form of error bars on an answer may be a way
to make the point forcefully. However, the error
bars must not be presented in a way that reveals
anything further about the actual data.



VIII. Conclusions
The astute reader may have observed that we

could have written this paper from a different
starting point, with a title such as: “The Hidden
Perils of Computing a Mean,” and gotten much
of the way through the development without
even mentioning DP. We chose this course
through the material both to introduce the
basic ideas of DP, and to point out that there
are queries on specific kinds of datasets that
must lead to either poor privacy or poor utility
outcomes even for systems that implement DP.
Kifer et. al’s award winning paper explores this
specific tradeoff in greater depth. [5].

Practitioners seeking to deploy DP to real-
world situations must be concerned with both
the setting of ϵ and in developing queries that
provide sufficient utility and address the risk
of addressing firm-specific information. Such de-
tails are frequently not discussed in introductory
texts on DP, but they are beginning to appear
in practical guides, such as NIST’s recently
published draft Guidelines for Evaluating Dif-
ferential Privacy Guarantees. [8] Dwork recom-
mends that organizations maintain an “epsilon
registry” to for both internal accounting and
public accountability. [9] Benthall et al propose
an approach for integrating DP with the con-
textual integrity privacy model. [10]

We believe that practitioners deploying DP
should start not with a desired of ϵ, but instead
start with an assessment of harm, and tune the
amount of noise to be added based on that
assessment. After determining the amount of
noise, it may be useful to compute and report
ϵ to assist others in assessing the amount of
privacy protection.
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