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the coal system. Unfortunately, these four systems are often studied individually, and rarely together as
integrated systems. Instead, holistic multi-energy system models can serve to improve the understanding of
these interdependent systems and guide policies that shape the systems as they evolve into the future. The NSF
project entitled “American Multi-Modal Energy System Synthetic & Simulated Data (AMES-3D)" seeks to fill
this void with an open-source, physically-informed, structural, and behavioral machine-learning model of the
AMES. To that end, this paper uses a GIS-data-driven, model-based system engineering approach to develop
structural models of the American Multi-Modal Energy System (AMES). This paper produces and reports the
hetero-functional incidence tensor, hetero-functional adjacency matrix, and the formal graph adjacency matrix
in terms of their statistics. This work compares these four hetero-functional graph models across the states of
New York (NY), California (CA), Texas (TX), and the United States of America (USA) as a whole. From the
reported statistics, the paper finds that the geography and the sustainable energy policies of these states are
deeply reflected in the structure of their multi-energy infrastructure systems and impact the full USA structure.

1. Introduction Holistic multi-energy system models should serve to improve the
understanding of these interdependent systems as they evolve into

As one of the most pressing challenges of the 21st century, global the future. Unfortunately, while there have been many attempts at
climate change demands a host of changes across at least four critical modeling multi-energy systems and large-scale flows of energy, the
energy infrastructures: the electric grid, the natural gas system, the field remains relatively nascent [6-14]. While initial models were
oil system, and the coal system. In the context of the United States, developed in response to the oil crisis and then to mitigate climate

this paper refers to this system-of-systems as “the American Multi- change with decarbonization they have also been developed to intro-
Modal Energy System (AMES)”. The needs of climate change demand

mitigation and adaptation strategies which are far more demanding
than the needs of just mitigation alone. Therefore, as policies are
developed to drive the sustainable energy transition forward, they must
not just aim to mitigate climate change but must also adapt to its effects
with resilient architectures. In effect, the need for decarbonization
must be harmonized with the need for economic development, national
energy security, and equitable energy access [1-3]. These combined
requirements to develop effective policies necessitate an understanding
of the AMES interdependencies and how they vary geographically
and temporally [4]. Furthermore, this cross-sectoral interdependency
can introduce architectural fragility [5] that must be managed as an many energy commodities, and do not extend to the entire Ameri-
integral part of the sustainable energy transition. can geography. The complexity of integrating multiple infrastructures

duce new energy streams such as hydrogen, synthetic fuels, bio-fuels,
and other renewable energy sources. These works introduce their own
set of weaknesses including the lack of asset level granularity, difficulty
of use, and specific one-off geographically-specific use case models.
Additionally, a majority of the works investigating these energy systems
in the past have been performed on individual energy networks [15-
19]. More recently, work has been published analyzing only a couple
of systems together such as pairing the electric grid with one of the
other fossil fuel systems that compose the AMES [6-13]. These works,
however, do not include all four critical energy infrastructures, their
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scales as n? % m where n is the number of infrastructures and m is the
number of energy commodities and increasingly requires robust model-
based systems engineering and graph theoretic methods to manage
these many interfaces. As an exception, the EIA developed a compre-
hensive model called the National Energy Modeling System (NEMS)
which it uses to produce the (American) Annual Energy Outlook [20].
Despite serving this important function and being publicly available,
this software tool remains opaque and difficult to use. The EIA website
itself recognizes: “[The] NEMS is only used by a few organizations
outside of the EIA. Most people who have requested NEMS in the
past have found out that it was too difficult or rigid to use [21]”. In
addition to the works on pairing the electric grid with individual fossil
fuels, extensive literature has developed on the co-dependence of the
electric grid and water resources in the form of the Energy-Water Nexus
(EWN) [22-41]. These works have demonstrated the potential benefits
of analyzing and optimizing the co-dependent infrastructure systems as
a single system-of-systems rather than each system independently [42].
Therefore, seeing the benefits pairing two systems can provide, further
emphasizes the need to model the entirety of the AMES. Consequently,
holistic multi-energy system models of the AMES remain a present need
for open-source, citizen-science to inform policies.

With a deficit of spatially and functionally resolved data, and with
the current methods for modeling multi-energy systems having their
limitations, the (American) National Science Foundation (NSF) put
forth a call for “research to develop and make available simulated and
synthetic data on interdependent critical infrastructures (ICIs), and thus
to improve understanding and performance of these systems” [43]. The
NSF project entitled “American Multi-Modal Energy System Synthetic
& Simulated Data (AMES-3D)” seeks to fill this void with an open-
source structural and behavioral model of the AMES. Adhering to
a Model-Based Systems Engineering (MBSE) approach [44,45], this
project develops an interdependent system data set and its associated
models on top of a strong theoretical foundation in systems engi-
neering. As a result, it can be used for practical applications in the
energy systems field to address not just mitigation of climate change
but adaptation and resilience as well. This is made possible by using
asset-level, openly available datasets to infer the AMES’ reference ar-
chitecture [46] to organize and define the interconnections between the
four subsystems. The reference architecture uses SysML [45] to model
the four interdependent energy systems, and the flows of mass and
energy within and between them. This reference architecture provides a
more detailed and self-consistent MBSE foundation for energy models
moving forward relative to the “reference energy systems” that have
been used in some national energy system optimization models [47—
50]. The datasets that infer the reference architecture are also used to
instantiate the AMES into an instantiated architecture [46]. While the
NSF project seeks to develop both a structural and behavioral model,
this paper focuses its scope on the former.

The development of the AMES reference architecture provides sev-
eral immediate benefits. The first is that a SysML-based reference
architecture describes the system’s form, function, and the allocation
of the latter onto the former [44,45]. Therefore, the reference archi-
tecture describes not just what the system is made of, but also what
it does. Second, a SysML-based reference architecture can be readily
translated into mathematical models including both the form and func-
tion. Standard structural models include formal graphs that describe
energy facilities and how they are connected. In the meantime, hetero-
functional graphs (HFG) describe how the wide variety of capabilities
in a system are interconnected and the flows of operands between
them. HFGs have been shown to provide more information than formal
graphs when analyzing an evolving instantiated architecture [51,52]. In
effect, HFGT provides a means to quantitatively interpret the graphical
SysML-based models from both a formal and functional lens. Such an
analysis has already been conducted on a small-scale electric power
distribution systems [51] as well as on a large scale for the entirety
of the American electric power system [52]. This paper now builds
on these electricity-only analyses to study the structure of the whole
AMES.
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1.1. Original contributions

This paper uses a data-driven, MBSE-guided approach to develop
open-source structural models of the American Multi-Modal Energy
System. More specifically, the AMES reference architecture [46] is
applied to an asset-level GIS data called Platts Map Data Pro [53] to
create models of several regions. The instantiated structural models
include for the first time the electric grid, the natural gas system, the
oil system, the coal system, and the interconnections between them
as defined by the AMES reference architecture, for the full contiguous
United States of America (USA). Initial results are organized into two
categories; a formal and hetero-functional graph for each of the regions
being studied, New York (NY), California (CA), Texas (TX), and the
full contiguous (USA). The states are chosen for their large size and
the diversity of their energy policies. Consequently, the chosen regions
have also taken distinct directions to advance the sustainable energy
transition. In 2019, CA had the most renewable energy generation out
of all the states [54]. In the meantime, NY’s efforts to expand renewable
energy capacity are balanced by its reliance on natural gas and oil to
meet space heating energy demands [55]. Alternatively, Texas, while
being the nation’s leading crude oil and natural gas producing state,
is also the nation’s leading producer of wind-powered electric genera-
tion [56]. By using MBSE and HFGT, new open-source data models are
presented for these three states and the full USA to aid in advancing
and guiding the sustainable energy transition and energy policies.

1.2. Paper outline

The remainder of the paper proceeds as follows. Section 2 is a
description of the background literature and the lack of open data
models used to develop the instantiated architecture models and guide
policy. Section 3 then presents the data source that drove the instanti-
ated models in Section 3.1, followed by defining the AMES Reference
Architecture in Section 3.2. The data processing in Section 3.2 is
then presented followed by a subsection on hetero-functional graph
theory 3.4. The paper then presents a comparison of the formal graphs
and hetero-functional graphs network statistics for each state in the
Results Section 4. The Results first start with an analysis of the com-
putational intensity in Section 4.1, it then presents the formal and
hetero-functional graph statistics in Sections 4.2 and 4.3 respectfully.
Section 4 continues to present the formal graph resource distributions
in Section 4.4 and the HFG capability distributions in Section 4.5. A
discussion of the HFG process degree distributions in Section 4.6 brings
the methodology section to a close. Finally the paper is brought to a
conclusion in Section 5.

2. Background

This section serves to situate the paper with respect to existing liter-
ature and the ongoing trends in the field. Section 2.1 describes existing
multi-energy system models. Section 2.2 discusses the general lack
of interdependent infrastructure system data and models. Section 2.3
discusses the emerging trend towards open data and source code in the
multi-energy system field. Finally, Section 2.4 introduces some essential
concepts in HFGT that are used in the remainder of the paper.

2.1. Existing multi-energy system models

Many existing multi-energy system models are in effect national
models used to inform national energy policy. Many such national
models have an often implicitly stated “reference energy system” which
serves as the first step for defining energy flow relationships [47-50].

Definition 1 (Reference Energy System [47]). As a tool to begin mod-
eling energy systems, “it represents a simplified and aggregated graphical
representation of the entire energy system under analysis which shows all
existing and potential new energy supply chains from primary energy to final
demand”’. [ ]
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A reference energy system defines how the primary energy flows
are processed and converted into different energy carriers and where
the energy is ultimately utilized in end-use sectors. While the RES does
identify all the modes of energy being tracked through the model, it
is driven purely by system behavior. This means it only incorporates
the system function but does not explicitly describe the system form.
In contrast, the practice of MBSE requires the definition of system
function and system form [44,45] in a graphical modeling language like
SySML. When a “reference energy system” omits the system form, asset-
level, and technology-specific interactions are ultimately neglected.
Additionally, by ignoring the form at the starting point for these energy
system models, simulation model outputs and results become less trans-
parent. Consequently, the absence of a description of the system form
further impedes the comparability of different models because they do
not explicitly state which technologies exist and how they interact.
This lack of model comparability further impedes the comparability of
differing strategies to global climate change mitigation and adaptation.
As an alternative to RES models, MBSE and SysML utilize reference
architectures as the basis of all downstream modeling activities.

Definition 2 (Reference Architecture [57]). “The reference architecture
captures the essence of existing architectures, and the vision of future
needs and evolution to provide guidance to assist in developing new in-
stantiated system architectures. ...Such reference architecture facilitates a
shared understanding across multiple products, organizations, or disciplines
about the current architecture and the vision on the future direction. A
reference architecture is based on concepts proven in practice. Most often
preceding architectures are mined for these proven concepts. For architecture
renovation and innovation validation and proof can be based on reference
implementations and prototyping. In conclusion, the reference architecture
generalizes instantiated system architectures to define an architecture that is
generally applicable in a discipline. The reference architecture does however
not generalize beyond its discipline”. [ ]

A reference architecture specifically includes a description of system
form and function. Consequently, it makes transparent all flows of
matter and energy and which energy assets are used for transforming
and transporting these flows. Furthermore, It becomes much easier
to compare energy system models and their underlying assumptions.
Finally, it is straightforward to determine how much of a reference
architecture appears in the instantiated architecture that pertains to the
geography of a specific region or case study.

Definition 3 (Instantiated Architecture [45,57]). A case-specific architec-
ture, which represents a real-world scenario, or an example test case.
At this level, the physical architecture consists of a set of instantiated
resources, and the functional architecture consists of a set of instanti-
ated system processes. The mapping defines which resources perform
what processes. [ |

The transparency and comparability of a reference architecture
becomes even more valuable in light of the open energy modeling
initiative. It began in 2014 as a result of the open access movement
which had begun in 2010 [47,58]. These movements originated from a
recognition of the limited transparency and reproducibility of energy
systems models [59]. The open energy modeling initiative seeks to
encourage the use of open access models in research to guide energy
policies and the sustainable energy transition. While this initiative has
resulted in the production of many open-access models, much work
remains to compare and converge these models towards the ultimate
goals of sustainable energy transition.

Several powerful energy system models have come out of the energy
modeling initiative including the 0SeMOSYS, NEMS, and PRIMES [47,
60-62]. However, these models each had their weaknesses. For exam-
ple, as previously mentioned, the NEMS is extremely difficult to use
making it unusable for many open access projects. While the NEMS
was a large model incorporating many different modes of energy to
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inform the annual energy outlook for policy planning, there have also
been a plethora of models developed for specific systems rather than
focusing on the interconnection of multiple critical infrastructures [15-
19]. Alternatively, other energy system optimization models (ESOMs)
such as the EnergyScope TD have been designed for the analysis of
intermittent integration of renewable on an hourly scale. Similarly,
the Electric Power Enterprise Control Simulator addresses the integra-
tion of variable renewable energy on multiple time scales [63,64].
These operational time-scale models, however, are not designed to
explore the annual transformation pathways of the sustainable energy
transition [47,65,66]. Finally, the development of multi-energy system
models did not truly gain concerted attention until 2016 [67].

2.2. Interdependent infrastructure system data & models

As the multi-energy system model developed, it created a greater
need for interdependent infrastructure system data and models. In
2016, the NSF released a call for open interdependent critical infras-
tructure system data [43] that could be specifically used in system
resilience and climate change adaptation research. This call directly
addresses the lack of existing open data sources on energy systems.

In the meantime, the existing methods for organizing such data
into multi-modal energy system models had their own limitations.
Multi-layer networks, for example, were often looked at as the lead-
ing candidate to structurally model these interdependent infrastruc-
tures. Unfortunately, multi-layer networks have often been unable to
address the explicit heterogeneity often encountered in engineering
systems [68,69]. In a recent comprehensive review, Kivela et al. [69]
wrote:

“The study of multi-layer networks ... has become extremely popu-
lar. Most real and engineered systems include multiple subsystems
and layers of connectivity and developing a deep understanding
of multi-layer systems necessitates generalizing ‘traditional’ graph
theory. Ignoring such information can yield misleading results, so
new tools need to be developed. One can have a lot of fun studying
‘bigger and better’ versions of the diagnostics, models, and dynam-
ical processes that we know and presumably love — and it is very
important to do so but the new ‘degrees of freedom’ in multi-layer
systems also yield new phenomena that cannot occur in single-layer
systems. Moreover, the increasing availability of empirical data for
fundamentally multi-layer systems amidst the current data deluge
also makes it possible to develop and validate increasingly general
frameworks for the study of networks.

... Numerous similar ideas have been developed in parallel, and the
literature on multi-layer networks has rapidly become extremely
messy. Despite a wealth of antecedent ideas in subjects like soci-
ology and engineering, many aspects of the theory of multi-layer
networks remain immature, and the rapid onslaught of papers on
various types of multilayer networks necessitates an attempt to
unify the various disparate threads and to discern their similarities
and differences in as precise a manner as possible.

... [The multi-layer network community] has produced an equally
immense explosion of disparate terminology, and the lack of con-
sensus (or even generally accepted) set of terminology and mathe-
matical framework for studying is extremely problematic”.

In addition to the Kivela et al. review [69], Schoonenberg et al.
numerically demonstrated the numerical limitations of multi-layer net-
works relative to hetero-functional graphs [68]. Similarly, Farid et al.
theoretically proved the ontological limitations of multi-layer networks
relative to hetero-functional graphs [70].

In this context, the NSF funded the “American Multi-Modal Energy
System Synthetic & Simulated Data (AMES-3D)” to develop an open-
source energy system data set using modeling methods, and more
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Fig. 1. GIS Layers from the Platts Map Data Pro dataset for the electric grid, natural gas system, oil system, and coal system for California (A), New York (B), Texas (C), and the

USA (D).

specifically hetero-functional graph theory (HFGT) that does not ex-
hibit the limitations of multi-layer networks [68]. Consequently, this
paper uses HFGT to present a hetero-functional graph structural model
(i.e. instantiated architecture) and analysis of the American multi-
modal energy system as part of the NSF-funded AMES-3D project.

2.3. Transparency through open data and source code

In addition to the need for reference architectures (Section 2.1),
and the need for interdependent infrastructure system data and models
(Section 2.2), the multi-energy systems literature also recognizes a
pressing need for open data and source code. To that effect, the open
modeling initiative (OMI) was founded in 2014 [58]. It was founded
with the intent to promote open access models research to guide
energy policy [47]. Similarly, the open modeling foundation (OMF) was
founded in 2021 [47,71] as an “international open science community
that works to enable the next generation modeling of human and nat-
ural systems” by making models more easily discoverable and globally
accessible [71]. The OMF seeks to create a collection of reusable,
interoperable models to study complex interactions between people and
the environment at multiple scales.

In direct alignment with the missions of the OMI and OMF is the
NSF’s call for open interdependent critical infrastructure system data as
previously mentioned. The work presented in this paper addresses these
needs with transparent open-source code and reproducible mathemat-
ics. First, the work relies on the previously developed AMES reference
architecture [46] that serves to visualize all of the AMES components,
functions, and interactions. In many fields, “mature” reference archi-
tectures often develop into international standards that converge and
reconcile the otherwise inevitable proliferation of models. Second, the
mathematics of hetero-functional graph theory is used to instantiate
the AMES reference architecture for NY, CA, TX, and the contiguous
United States. The explicit statement of the HFGT mathematics not only
validates the work and makes it entirely reproducible, but also makes
transparent the open-source HFGT toolbox used to produce the com-
putational results of this work. In all, the open data and open source
commitments made in the AMES-3D project have necessitated a re-
search methodology that enhances usability, re-usability, transparency,
and comparability of the models, tools, and results.

2.4. Hetero-functional graph theory

In the context of this work, hetero-functional graph theory serves
to translate and instantiate a graphical, SysML-based reference archi-
tecture into its mathematically equivalent hetero-functional graph. The
reliance on a reference architecture grounds the work in a strong
MBSE foundation. Additionally, the AMES reference architecture itself
provides a clear definition of the assets, functionality, and modes of
energy that are included in the AMES. This lossless translation from
an MBSE-SysML model to a HFG maintains the allocation of function
onto form as capabilities composed of subject + verb + object sentences
where the subjects are resources, the predicates are the processes, and
the operands are the objects of the verbs. This translation from the
AMES reference architecture to a HFG (using the HFGT toolbox) has
been well demonstrated for the single-commodity American electric
power system [52]. Now this demonstrates the same process to create
a multi-energy instantiated model of the full contiguous USA for a
structural (network) analysis.

The following HFGT definitions are presented to facilitate the re-
mainder of the paper.

Definition 4 (System Operand [72]). An asset or object I, € L that is
operated on or consumed during the execution of a process. W

Definition 5 (System Process [72,73]). An activity p € P that transforms
a predefined set of input operands into a predefined set of outputs. [l

Definition 6 (System Resource [72]). An asset or object r, € R that is
utilized during the execution of a process. [ ]

Definition 7 (Buffer [68]). A resource r € R is a buffer b, € By iff it is
capable of storing one or more operands at a unique location in space.
Bg=MuB. ®H

Definition 8 (Capability [74-79]). An action e,, € Eg (in the SysML
sense) defined by a system process p,, € P being executed by a resource
r, € R. It constitutes a subject + verb + operand sentence of the form:
“Resource r, does process p,,”. [ |
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Fig. 2. The top-level internal block diagram of the AMES. The domestic supply sources, energy imports, natural environment, domestic consumption, energy exports, and water
treatment are external to the AMES four subsystems of coal, natural gas, oil, and electric grid.

3. Methodology

As mentioned in the introduction, this paper utilizes a data-driven,
MBSE-guided methodology to infer a hetero-functional graph struc-
tural model of the American Multi-modal Energy System. This section
succinctly relays this method in four subsections:

(1) Input Data: Platts Map Data Pro

(2) Infer AMES Reference Architecture

(3) Convert GIS Shape Files to XML Data

(4) Calculate Hetero-functional Graph Structural Model

3.1. Input data: Platts map data pro

Following a data-driven approach, the Platts Map Data Pro [53]
data set is used to infer and instantiate the AMES Structural models.
This input dataset consists of Graphic Information System (GIS) layers
for each of the four subsystems in the AMES [53]. These geo-spatial
layers include meta-data attributes of the physical resources/facilities
that compose the AMES infrastructure in addition to their GPS co-
ordinates. As the Platts Map Data Pro is directed towards wholesale
energy decisions, the data is limited to transmission system resources
and neglects distribution level assets. This limitation in the dataset
notably excludes retail distribution of oil and gas (by truck). It also
cuts the electric grid off at the substations excluding distributed electric
generation assets such as roof-top solar that are an integral part of the
sustainable energy transition. Nevertheless, the Platts Map Data Pro is
likely the best available dataset because it allows inferences of not just
the AMES’s form but its function too. Visualizations of the Platts map
data pro GIS layers for each state addressed in this paper and the full
USA are presented in Fig. 1.

3.2. Infer AMES reference architecture

The inference of a hetero-functional graph structural model of the
American Multi-modal Energy System first requires the inference of the
underlying reference architecture. In the data-driven steps that follow,
the reference architecture plays a critical role in organizing the cleaned
Platts GIS data into defined resources with properly allocated function-
ality. Fig. 2 shows the top-level context diagram of the AMES reference
architecture and it is further elaborated in prior work [46]. The AMES
reference architecture provides a consistent blueprint from which to

develop AMES models irrespective of the choice of region or scale.
It also defines all energy resources/facilities, and the functions that
they can perform. The set of operands used to track the flows of mass
and energy between its many functions is also defined. Consequently,
the AMES reference architecture supports downstream analysis that
addresses both climate change mitigation and adaptation.

3.3. Convert GIS shape files to XML data

In this step, the Platts Map Data Pro GIS shape files are converted
into an associated XML file for each region (i.e. NY, CA, TX, USA)
that serves as the input for the openly available HFGT toolbox [80].
Although the Platts Map Data Pro GIS shape files are a commercially
curated dataset, they still need substantial cleaning and processing
before being organized into an XML file. As an immediate first step,
all resources marked with a canceled status, closed status, or illegible
identifying attributes are removed. From there, the primary obstacle is
that the Platts GIS data does not guarantee physical continuity between
all of the point-type (e.g. refineries and electric power generation
facilities) and line-type (e.g. oil pipelines and electric power lines)
resources in the dataset.

A novel operand-guided geographical clustering algorithm is devel-
oped and then applied to all four energy subsystems simultaneously.
It ensures that point-type resources with overlapping GIS coordinates
are aggregated into a single resource cluster. It also ensures that line-
type resources whose endpoints are not connected to any resource
cluster (e.g. “power lines to nowhere”) are connected to a nearby
resource cluster making sure to maintain the operand compatibility of
the line-type resource to the point-type resource cluster. For example,
an oil pipeline must connect to a refinery rather than an electric
power substation. The clustering algorithm also removes any isolated
point resources from the dataset. The geographical clustering algorithm
provides an automated means for cleaning the Platts GIS data at the
formidable scale presented by the AMES.

The clustering algorithm proceeds in several steps. (1) Using a
primary clustering distance of 0.1 miles, point-type resources and the
endpoints of line-type resources endpoints with like operand associa-
tions are sorted into clusters and connected in a manner that respects
the physical continuity of operands. (2) Then with a secondary clus-
tering distance of 1 mile, the remaining isolated nodes are added to
existing clusters with like operands. (3) Finally, with a tertiary cluster-
ing distance of 35 miles, the remaining isolated nodes are connected to
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Table 1

The computational complexity of processing GIS data and the HFGT Toolbox for the Multi-Modal Energy Systems in NY, CA, TX, and the

USA.

New York California Texas United States

Time to assign clusters (s) 2.44 9.9 166.49 3963.55
Time to process data (s) 23.60 105.31 1445.81 49,373.63
Time to process data & Write XML (s) 28.29 121.43 1499.93 51,470.68
Time to calculate A, (s) 14.49 20.25 1252.30 6171.14
Time to run HFGT toolbox (s) 19.13 29.45 1382.97 6439.74
XML size (MB) 5.6 13 192 420.7
HFG resulting pickle size (MB) 8.8 20.6 314.9 682.6

existing clusters with like operands via the creation of new transporta-
tion resources. After the execution of this clustering algorithm, the data
attributes of these resources are converted to strings in a manner that
adheres to the AMES reference architecture and the XML file format
required by the hetero-functional graph theory toolbox [80].

3.4. Calculation of hetero-functional graph structural model

The next step is to run the HFGT toolbox [80] on this newly
produced XML file so as to produce the positive and negative hetero-
functional incidence tensors (HFITS).

Definition 9 (The Negative 3rd Order Hetero-functional Incidence Tensor
(HFIT) M; [81,82]). The negative hetero-functional incidence ten-
sor M; e {0, 1}IEXIBsIxIEsl is a third-order tensor whose element
M;(z‘, ¥,¥) = 1 when the system capability ¢, € £ pulls operand /; € L
from buffer b, € Bs. N

Definition }9 (The Positive 3rd Order Hetero-functional Incidence Ten-
sor (HFIT) M;[81,82]). The positive hetero-functional incidence ten-
sor M; e {0, 1}EXIBsIxIEsl is a third-order tensor whose element
M; (i,y,w) = 1 when the system capability ¢, € £ injects operand
I; € L into buffer b, €Bs. N

In the context of the AMES, the operands are flows of matter and
energy like coal, oil, natural gas, and electricity. The buffers are the
point facilities like electric power plants and refineries. The capabilities
are “subject + verb + object” sentences such as “NG refinery refines raw
natural gas”. The HFITs are important because they include all of the
information necessary to produce: (1) a Formal Graph (FG) adjacency
matrix (A z,) where point-facilities are connected via edge-facilities, and
(2) a Hetero-Functional Graph (HFG) adjacency matrix A, where the
system’s capabilities follow one another.

Definition 11 (The Formal Graph Adjacency Matrix Ag,). The formal
graph adjacency matrix A, € {0, 1}!5:XIBsl is a matrix whose element
Aps(¥1,¥,) = 1 when there is a physical connection between buffer y,
and buffer y,. W

Definition 12 (Hetero-functional Adjacency Matrix [78]). A square bi-
nary matrix A, of size |£g| x |Eg| whose element A, (v, ) € (0,1} is
equal to one when string z,, ,, € Z is available and exists. [ |

Each of these adjacency matrices is then calculated from the inci-
dence tensors. The formal graph adjacency matrix Ap, requires two
steps. First, the two HFITs are summed along the operand dimension
to produce two incidence matrices [81,82]:

IL]

MEy) = Y, MEG, ) eY)
IL]

M) = Y, MGy, w) @

It is important to recognize that the operand heterogeneity information
is lost in this process. Then, these incidence matrices are multiplied.

This multiplication also results in a loss of information where the
allocation of function onto form in the form of capabilities is dropped
to describe the physical connection of buffers [81,82].

Ay =MiMGT 3)

In the meantime, the hetero-functional graph adjacency matrix 4,
is calculated without loss of information after the HFITs have been
matricized (or flattened) into hetero-functional incidence matrices M;
and M7 with dimension |L||Bg| X |Eg| [81,82].

A, =M M &)

While the FG adjacency matrix shows the physical connections from
one point-resource (i.e. buffer) to another, the HFG adjacency matrix
shows the logical sequence of capabilities one after the other. This
results in the HFG adjacency matrix not just describing the physical
connections but also the flow of functionality on matter and energy.
This allows the model to describe the system on an asset-level basis
defining the individual physical resources and the functionalities the
resource performs. The use of HFGs in this way affords the modeler the
ability to track the delivery of services as well as structural resilience
when subject to formal and functional changes. As previous works have
shown, the HFG allows for more comprehensive resilience analyses; be
it for small electric power distribution systems [51] or for full-scale
analysis of the American electric power system [52]. The open-source
HFGT toolbox [80] provides an automated means for processing the
input XML files at the formidable scale presented by the AMES.

4. Results: structural model statistics

Once created, the hetero-functional incidence tensor, the formal
graph, and the hetero-functional graph for the four regions of NY, CA,
TX, and the full USA can be compared. The following section presents
these comparisons in the following subsections:

(1) Computational Performance of the HFGT Toolbox

(2) Formal Graph Statistics

(3) Hetero-Functional Graph Statistics

(4) Formal Graph Resource Distribution

(5) Hetero-Functional Capability Distribution

(6) Hetero-Functional Graph Process and Operand Degree Distribu-
tion

4.1. Computational performance of HFGT toolbox

The hetero-functional graph theory toolbox [51] is used as a com-
putational tool that supports hetero-functional graph theory compu-
tations [68,74,81]. For this work, the exceptional scale of the AMES
required extensive computational improvements to the HFGT toolbox
so as to reduce computation times and memory used to produce the
XML files and HFGs. For this work, all the models and data processing
to produce the XML files was done on an iMac desktop with a 4 GHz
Quad-Core Intel Core i7 processor and 32 GBs of RAM. The compu-
tation times of major code milestones are presented in Table 1. The
resulting file sizes are also presented in Table 1. Note that the over-
whelming majority of the computation is devoted to converting the GIS
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Formal graph statistics for the multi-modal energy systems in NY, CA, TX, and the USA.

New York California Texas United States
# of Operands 13 13 14 14
# of Buffers 7686 16,754 197,108 473,321
# of Edges 9115 20,674 179,895 511,802
Formal graph sparsity 1.5438e—-4 7.3661e—5 4.6306e—6 2.2848e—6
Population (millions) 19.8 39.2 29.5 306.7
Land area (sqr miles) 54,556 163,696 268,597 3,119,884
Population density (ppl/sqr mile) 362.9 239.5 109.8 98.3
Buffers/land density (buffers/sqr mile) 0.1409 0.1023 0.7338 0.1518
Buffers/population density (buffers/ppl) 3.8818e—-4 4.2740e—-4 6.6816e—3 1.5432e-3
Edges/land density (edges/sqr mile) 0.1671 0.1263 0.6698 0.1641
Edges/population density (edges/ppl) 4.6035e—4 5.2740e-4 6.0981e-3 1.6687e-3

Table 3

Hetero-functional incidence tensor statistics for the multi-modal energy systems in NY, CA, TX, and the USA.

New York California Texas United States

# of Operands 13 13 14 14

# of Buffers 7686 16,754 19,7108 473,321

# of Capabilities 43,766 100,349 1,430,588 3,130,235

# of Elements in M. 40,921 94,377 1,422,463 3,028,855

# of Elements in M,,_ 42,778 99,796 1,425,699 3,070,083
HFIT sparsity 4.6484e-5 2.2221e-5 1.4848e-6 6.7354e-7
HFAM sparsity 1.0618e—4 4.8221e-5 2.8641e—6 1.425%-6
Capability land density (capabilities/sqr mile) 0.8022 0.6130 5.3262 1.0036
Capability population density (capabilities/ppl) 2.2104e-3 2.5599e-3 4.8495e-2 1.0206e-2

shape files into XML files. More specifically, automatic data cleaning
and processing activities dominated the computation. In comparison,

Interestingly, the majority of the computation time came from
processing and cleaning the GIS data. Specifically, the processing and
cleaning post assigning clusters to points takes the largest amount of
time when producing the XML. The actual assignment of clusters takes
about 1/10zh of the total time to produce the XMLs for all regions. When
looking at the computation time of the HFGT Toolbox nearly all of the
required time is spent calculating A,. This calculation is ported over
to Julia from Python through the use of CSV files, A, is calculated,
then ported back to Python via another CSV. The hetero-functional
adjacency matrix is at the heart of the HFG as it represents all flows
of capabilities with the system. In all, the HFGT toolbox computations
themselves are highly optimized and are produced in under two hours
on a moderately sized computer even for the full AMES dataset.

In line with the scale of each region, the smaller the region is,
the faster both the XML file and HFG is produced; with NY being
the fastest followed by CA, TX, and then the full USA. While CA is
about twice the size of NY it took 4 times as long to produce the
XML than NY. When comparing TX to NY it can be seen that TX is
26 times as large and takes 60 times as long to produce an XML. This
suggests the computation efficiency of creating an XML is that of 2N.
When comparing the computation times for the HFGT Toolbox, the
same trend emerges suggesting the toolbox also has a computational
efficiency of 2N. Additionally, seeing that TX takes about a quarter of
the time to complete the HFGT toolbox as the USA, it suggests that
TX composes about half of the American energy infrastructure. The
significant portion of energy resources that TX commands is confirmed
by the later sections.

4.2. Formal graph statistics

From the assessment of the computational intensity, the basic statis-
tics of the formal graph models for the four regions can be compared
relative to the size of their populations and land areas (Table 2).

As expected by the relative size of population and land area, Texas’s
energy infrastructure is the largest of the three states with California
presenting the second largest and New York being the smallest in terms
of the number of point-resources (buffers). The same ordering holds
true for the number of edges connecting the buffers in each of the

states with TX presenting the most edges and NY presenting the least.
All three states are of course included in the full USA model including
all of their buffers and edges. There are 9115 edges in NY, 20,674
edges in CA, 179,895 edges in TX, and 511,802 edges in the USA. This
corresponds to an adjacency matrix sparsity of 1.5438e—4, 7.3661e—-5,
4.6306e—6, and 2.2848e—6 for NY, CA, TX, and the USA respectively.
As expected, the larger the system the more sparse the adjacency
matrix becomes. While the three states display energy infrastructures
of differing scales, they all show a diverse energy mixture that utilizes
the same 13 operands with Texas and the USA additionally utilizing
solid biomass feedstock. Also, despite these absolute measures, NY’s
population density is significantly higher than that of Texas, California,
or the USA with TX and the USA having the lowest population densities.
This means that, if all else is held equal, New Yorkers receive more
energy infrastructure benefits whereas Californians and Texans and the
USA must spend more on energy infrastructure costs.

Table 2 also presents the buffers per land and population densities.
When looking at the buffers per square mile density, CA had the
smallest followed by NY, USA, and then TX reporting 0.1023, 0.1409,
0.1518, and 0.7338 respectively. This interesting result shows the
impact that TX has on influencing the USA’s energy infrastructure as
a whole. TX being such a large percentage of the USA’s infrastructure,
it brings up the buffer per square mile density above other states like
NY or CA. This is also seen in the buffers per population density with
NY having the lowest followed by CA, USA, and TX respectively. These
trends can also be tracked through the edges per square mile or popu-
lation density. Just as with buffers, CA has the lowest edges per square
mile density followed by NY, USA, and TX respectively. Then when
comparing the edges per population NY and CA switch, presenting NY
with the lowest density followed by CA, USA, and TX respectfully.
These density measures can be used as a course indicator for the energy
investment costs in each region. The lower the resource per population
density, the greater the proxy cost per individual. Similarly, the lower
the resource per square mile density, the more spread out the cost is
across the region’s landscape.

4.3. Hetero-functional graph statistics

The statistics of the hetero-functional graphs for NY, CA, TX, and
the USA are presented in Table 3 similarly to those of the formal
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Fig. 3. Normalized distribution of buffer types for NY, CA, TX, and the full USA.

graphs. Trends of sparsity in the HFITs match those of the formal
graph adjacency matrices. When comparing the number of capabili-
ties in each model, NY has the least, followed by CA, TX, and the
USA with (43,766), (100, 349), (1,430, 588), and (3, 130,235) capabilities
respectively. Unsurprisingly, the trend in the sparsity of the HFITs
follows that of the formal adjacency matrix. NY’s HFIT is twice as
dense as CA’s, which is 31 times as dense as TX’s, and which is 69
times as dense as the USA’s HFIT. Additionally, across all regions, the
negative HFIT has more filled elements than the positive indicating
a greater amount of capabilities that pull operands from capabilities
rather than injecting them. A network topology with more capabilities
that pull operands than inject operands is synonymous with a system
that gathers and refines operands then distributes and decomposes
them. In the largest sense, this mathematical result is consistent with
our understanding of the AMES which collects raw energy commodities
(especially coal, oil, and natural gas) and delivers them as relatively few
“high-grade” energy commodities like electricity. The hetero-functional
adjacency matrix can be calculated directly from the HFITs so as to
link capabilities together. Again, as expected, these sparse matrices
follow the same density trend as the HFIT with NY having the most
dense matrix followed by CA, TX, and the USA with sparsity values of
1.0618e—4, 4.8221e-5, 2.8641e—-6, and 1.4259e—6 respectfully.

Table 3 also presents the capabilities per land and population den-
sities. When looking at the capabilities per square mile density, CA had
the smallest followed by NY, USA, then TX reporting 0.6130, 0.8022,
1.0036, and 5.3262 respectively. The ordering of capabilities per square
mile density is the same trend as presented with buffers per square
mile in the formal graph statistics. Similarly, it shows the impact that
states like TX have on influencing the full USA’s energy infrastructure
trends. Additionally, due to the nature of allocating function onto form,
there are many more capabilities than buffers which brings the value
of the density over land statistics up. The increase in density values
is also seen in the capabilities per population density with NY having
the lowest followed by CA, USA, and TX respectively. These density
measures can be used as an indicator for the benefit of each region’s
energy system. The higher the capabilities per population density, the
greater the amount of functionality (or benefits) from the infrastructure
the population experiences. Similarly, the higher the capability per
square mile density, the more infrastructure benefits can be accessed
across the region’s landscape.

4.4. Formal graph resource distribution

While it is important to assess the number of buffers (e.g. point
energy facilities) in the multi-energy infrastructure of the three Amer-
ican states, it is also important to differentiate them by type. Fig. 3
shows that 74.6%, 76.8%, 69.3%, and 66% of the buffers in the formal
graph are electric power substations in the states of NY, CA, TX,
and the USA respectively. The high percentage of substations reflects

the highly ubiquitous nature of the electric power system in all four
regions. Furthermore, another 13.5%, 16.8%, 4.6%, and 6.4% of buffers
are devoted towards electric power generation facilities (of various
types) for NY, CA, TX, and the USA respectively. Because coal, oil, and
natural gas are very dense approximate forms of energy their processing
facilities for these types of energy have very strong economies of scale.
Therefore, there is a trend towards centralization and a small number of
point facilities for energy conversion. California, notably, has a greater
shift towards the electric grid with a greater presence of substations
and power plants than NY and TX. Meanwhile, Texas is notably a
large producer and trader of fossil fuels in the USA and thus has the
infrastructure to match. That NY has a greater reliance on oil and gas
facilities is likely a byproduct of it being located in a colder climate.
In opposition to the need for fossil fuels for space heating in cold
environments, both TX and CA depend more on electricity for cooling
spaces in their warmer climates and can make greater use of renewable
energy resources for such a cause.

The first massive peak around substations reflects that there are
more substations than any other type of node by far. In addition to
identifying the prominent dependence on electric power in American
life, the peak also shows that the transmission system comes a lot closer
to the grid periphery of electric power systems than the corresponding
distribution systems for coal, oil, or natural gas. By taking a data-
driven approach to the Platts data, the discrepancies of how close each
system’s transmission level assets reach towards the system periphery
becomes much more apparent. For the electric grid, the system bound-
ary ends at substations; ignoring the distribution system assets and
consumption and generation at homes and businesses. When looking
at oil and natural gas, the system boundary stops at the terminals
and ports where they are ultimately distributed outward. By taking a
data-driven approach to the Platts data, tankers and smaller gas lines
delivering fuel for residential and industrial use are also ultimately
omitted. As a result, gas stations, homes, and other retail aspects of
the oil and gas industries are not included. Additionally, with coal
being sold between commercial entities and not going out to individual
consumers, the number of coal facilities needed to distribute to the
demand is quite limited. Despite the system boundary limitations of
the Platts data, the analysis speaks to the state of the existing infras-
tructure and how much easier the electric power mode is to distribute
than any other. The ease of electric power transportation, along with
the potential reduction in carbon emissions, is one of the advantages
of electrifying energy demands as a part of the sustainable energy
transition.

Beyond the number and type of point-energy facilities, the formal
graph also measures their interconnectedness. Despite the heterogene-
ity of point-energy facilities and the sparsity of the four formal graphs
of each state and the full USA, Fig. 5 shows that the formal graph degree
distributions for all four regions are remarkably similar. In contrast
to the well-known power-law degree distribution for electric power
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Fig. 4. Normalized capability distribution of NY, CA, TX, and the USA.
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Fig. 5. Normalized formal graph degree distribution of NY, CA, TX, and the USA.

systems [6,83-86], these multi-energy systems have degree distribu-
tions with a rather unusual shape. Notability, all four regions peak
at a single degree, then have a major lack of nodes with a degree 2.
After the initial dip, the degree distribution jumps back up to nodes
more prevalent with a degree 3 before tailing off into an exponential
decay. Each energy subsystem likely contributes its own power-law
degree distribution so that the degree distributions depicted in Fig. 5
are actually a composition of phenomena associated with the delivery
of each energy commodity. These differing contributing factors are
further investigated through the hetero-functional graph distributions
reported in the following sections.

4.5. Hetero-functional capability distributions

In addition to looking at the type of nodes present in each region,
the presence of different capabilities can also be compared. As such,
the normalized counts of the different capabilities are presented in
Fig. 4 for NY, CA, TX, and the full USA. Fig. 4 visualizes the preva-
lence of differing energy mixtures for each region as determined by
their existing capabilities. Fig. 4 shows a large spike in electric power
capabilities similar to the formal graph node distributions shown in
Fig. 3. Another notable trend is that TX and the full USA have very
similar capability distributions; presumably by virtue of the large size
of the TX energy system relative to the full USA. The striking difference
between TX and the USA is that the USA has an abundance of coal
resources while TX has a very minimal amount. The lack of coal in
TX is likely a result of the coal sources residing most prominently
in the Appalachian region. Additionally, NY, TX, and the USA have
a heavy reliance on natural gas functionality. All three regions have
heavy spikes in functionality related to importing and exporting gas
resources. NY, as a relatively cold northeastern state, relies heavily

on natural gas for space heating during the cold winters. In contrast,
TX’s natural gas functionality comes as a result of its large oil and
gas economy. The USA’s capability distribution mixes these two de-
pendencies. Alternatively, CA is much more reliant on electric power
generation as it has space conditioning requirements are largely driven
by electrified cooling rather than natural-gas-based heating. Notably,
the functionality of solar, hydro, and natural gas electric generation are
most prominent as a result of CA’s sustainable energy transition and the
flexibility of natural gas electric generation to balance variable energy
resources (VERs). These natural gas electric generation capabilities pro-
vide valuable ramping functionality to balance the electric grid through
sharp upward and downward ramps in response to VER generation and
in demand levels. These results are further confirmed and supported by
the results in Fig. 6 which presents the normalized capacities of each
electric generation capability normalized by region.

As the sustainable energy transition requires an electrification of the
demands placed on the AMES, it becomes important to investigate the
electric power generation mix. In accordance with single energy mode
analysis, when the electric power generation capabilities in Fig. 4 are
weighted by generation capacity, it produces Fig. 6 which shows the
electric generation mix for the three states and the USA. The main
source of generation is found to be natural gas for all four presented
regions. The high presence of natural gas generation indicates that the
need for quick response generation sources to support VERs for NY,
CA, TX, and the USA in addition to low fuel costs has led to a large
dependency on natural gas for electric power generation. Additionally,
NY sees a larger generation capacity from processed oil and nuclear
power facilities than the other regions. Again, the reliance on oil-
fired generation stems from the need for “peaker” units that support
electrified heating in the coldest winter periods. CA’s commitment to
renewable energy generation is demonstrated in its solar and hydro
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Fig. 6. Normalized electric generation capacity by fuel source for NY, CA, TX, and the full USA.

capacity. While Texas has a large investment in wind power. Both TX
and the USA also have significant capacity in coal-fired electric power
generation. In contrast, Fig. 6 shows CA’s and NY’s energy transition
to cleaner fuel sources and away from coal. Finally, the electric power
generation mix in Fig. 6 demonstrates that when HFGT is restricted to
a single commodity network (e.g. electricity), it is able to reproduce
the familiar analytics associated with individual (and often siloed)
infrastructures.

Just as the degree distributions of the AMES FGs can be presented
so can the degree distributions for the HFGs. Figs. 7(a) and 7(b) show
the AMES’ HFG in-degree and out-degree distributions respectively. As
HFGs describe the logical sequence of capabilities, they are fundamen-
tally directed in nature. As such, both the in-degree and out-degree
must be presented. These plots present similar trends to those seen
in the FG degree distributions shown in Fig. 5. Neither the FG degree
distribution nor the HFG degree distributions follow a traditional power
law decay, but the long tails in each plot suggest that there are some
underlying power-law behaviors. From the HFG degree distributions,
it is clear that there is some combination of exponentially decaying
degree distributions from each of the four subsystems composing the
AMES. Interestingly, the general shape of both the in and out-degree
plots are very similar. Both plots have normalized distributions that
bottom out by degree 20 and have peaks at degrees 2 and 4. Addition-
ally, all four regions also have a major dip in their degree distributions
at degree 3. While the four regions all seem to have some underlying
power law behaviors, each region presents its own combination of de-
cays. The differing degree distribution combinations suggest that there
are geographical dependencies that influence the degree distributions.
Ultimately, while the results in Fig. 7 confirm those of Fig. 5, the
HFG model invites further investigation (in the following section) by
classifying the HFG’s capabilities by their underlying process.

4.6. Hetero-functional graph process degree distribution

Figs. 8 and 9 present three-dimensional (3D) degree distributions
of the AMES’ HFG where the third dimension classifies the node ca-
pabilities by their underlying process. This choice of classification
is of critical analytical importance. As discussed extensively in prior
works [68,81], capabilities can be associated with either point-type
buffers or line-type transportation resources. Therefore, a classification
scheme based on buffers is both incomplete and logically inconsistent
with the nature of a HFG. In the meantime, a classification scheme
based on the capabilities’ (input or output) operands runs the risk of
double counting the capabilities because each capability can have more

10

than one type of operand (e.g. a natural gas electric power plant).
Therefore, the most straightforward way of classifying capabilities into
mutually exclusive and totally exhaustive sets while preserving the
objectivity of the underlying statistics is based upon the capabilities’
underlying process.

Returning to Figs. 8 and 9, the former presents the 3D in-degree dis-
tribution while the latter presents the 3D out-degree distribution. Both
figures reveal, for the first time, the underlying nature of the AMES’
hetero-functional structure. With rare exception, the AMES exhibits a
power-law degree distribution for each set of capabilities classified by
process. These figures provide a fascinating empirical result. Previous
works demonstrate that HFGs of single operand networks have power-
law degree distributions just like formal graphs of single operand
networks [51,52]. Now, this paper shows that a HFG of a multi-operand
network exhibits a power law degree distribution for each type of
process so that the final HFG degree distribution in Fig. 7 shows a
superposition of the degree distributions associated with each type of
process. In contrast, such an empirical result cannot be reached using a
formal graph with buffer-nodes because of the information loss caused
by the sums in Egs. (1) and (2). In other words, HFGT has confirmed
well-known results in the network science literature and successfully
generalized them for systems that are fundamentally hetero-functional
in nature.

This theoretical insight has direct practical relevance to the fun-
damental systems science principles underlying the sustainable energy
transition. The 3D degree distributions in Figs. 8 and 9 show that
the AMES’ structure is evolving at different rates depending on the
underlying process of each capability. In other words, from a graph
theory perspective, the sustainable energy transition can be understood
as network phenomena where the decommissioning of carbon-intensive
processes (e.g. oil and gas refining and coal-fired electric power genera-
tion) is occurring at a certain rate, and carbon-light processes (e.g. wind
and solar power generation) is occurring at a different rate. Similarly,
broad trends towards electrification (or fuel switching) is a superpo-
sition of the network phenomena driving the consumption of carbon-
intensive fuels relative to consuming electricity. Said differently, HFGT
points to the network phenomena underpinning “infrastructure lock-
in” like homeowners who wish to switch to heat-pump technology
but find themselves “locked in” to furnace-based heating. Similarly,
HFGT points to the network phenomena underpinning “infrastructure
platforms” like car owners who wish to buy an electric vehicle but find
themselves worrying about local charging infrastructure. Ultimately,
a deeper study of the power laws in Figs. 8 and 9 is warranted
because the relative rates underpin the success of the sustainable energy
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Fig. 7. Normalized hetero-functional graph degree distribution of NY, CA, TX, and the USA.

transition. From a policy perspective, the sustainable energy transition
requires that the rate of integrating certain types of sustainable energy
capabilities be “sped up” relative to more carbon-intensive ones.

5. Conclusions and policy implications

This paper uses a data-driven, MBSE-guided approach to develop
open-source software that produces open structural models of the
American Multi-modal Energy System. It is part of a larger NSF project
entitled “American Multi-Modal Energy System Synthetic & Simulated
Data (AMES-3D)” which seeks to produce open-source structural and
behavioral models of the American Multi-modal Energy System. The
creation of open-source software and open-data models of the AMES
fills an important need in open, citizen-based science in America’s
sustainable energy transition. It also provides one of the few multi-
energy system datasets in which to advance fundamental methods. The
AMES’ structural models are inferred from the Platts Map Data Pro GIS
dataset and is complemented by the previously developed American
Multi-modal Energy System Reference Architecture [46]. Together,
these two data sources serve as the basis for an XML-based input data
file for the open-source hetero-functional graph theory toolbox.

This paper specifically reports the hetero-functional incidence ten-
sor, the formal graph adjacency matrix, and hetero-functional graph
adjacency matrix statistics for the multi-energy infrastructure systems
for the states of NY, CA, TX, and the full USA. Here, the application
of hetero-functional graph theory facilitates a nuanced analysis that
respects the heterogeneity in this highly interdependent system-of-
systems. The paper finds that the geography and sustainable energy

11

policies of the states are deeply reflected in the structure of their multi-
energy infrastructure. Because New York’s cold northeastern climate
drives heating demand, it has a multi-energy system with a greater
emphasis on oil and gas. In the meantime, California’s warm climate is
reflected in a multi-energy system with a greater emphasis on electric
power systems. Additionally, Texas has a large oil and gas economy
and thus has a large percentage of energy infrastructure pertaining
to these fossil fuels but also has built out of a tremendous amount
of wind energy for electric generation. Along these lines, California
and Texas have also geared their natural gas resources infrastructure
towards electric power generation to support their growing reliance
on variable energy resources. These trends appear as components of
the AMES as a whole. Additionally, states with a large energy in-
frastructure like Texas have a greater impact on shaping the USA’s
energy infrastructure. It is also important to note the import and export
functionality of these fuel sources are also very prominent. Identifying
the abundance of import and export functionality is important for the
evolution of a multi-modal energy system for two reasons. Import and
export functionality provides open interfaces to new modes of energy
delivery such as hydrogen. Important export functionality in a HFG
also creates a theoretical foundation from which to investigate energy
systems with relatively large import/export economies (e.g. Australia).
Finally, through the analysis of HFG degree distributions and their asso-
ciated processes, it becomes clear that power-law degree distributions
are fundamentally tied to the processes rather than point-resources
(i.e. buffers).

From the perspective of understanding the dynamics of the sus-
tainable energy transition, the power laws imply that for each type of
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process, the “popular” (e.g. most well-connected) become even more
so. The degree distribution power law for each process reinforces the
connections of the capabilities with more connected capabilities. The
AMES’ HFG has a power law associated with every type of process and
each power law reflects a rate of evolution or adoption.

Consequently, many new sustainable energy process technologies
may require policies, at least initially, that support them relative to
incumbent process technologies. These initial policies are likely to in-
stigate network-driven positive feedback loops that accelerate adoption
rates. For example, as renewable energy sources are adopted, they
expand the electric grid itself, which in turn supports electrification
on the AMES’ demand side. These implications are also applicable to
hydrogen as it becomes a more viable and prominent technology. As
this work was driven by the Platts GIS data, it was ultimately confined
to incumbent conventional energy sources, rather than new energy
pathways tied to hydrogen, synthetic fuels, and bio-energy. Naturally,
the transparent nature of the AMES reference architecture lends itself
to revision so as to include these new energy carriers based upon first-
principle process physics. Finally, the power law results found in Figs. 8
and 9 present a ripe opportunity for further investigation.

Beyond the structural analysis presented here, the AMES’ structural
model presents multiple avenues for future open-science research. First,
expanding on previous works examining the resilience of electric power
systems [51,52], this hetero-functional graph model can be used to
examine the resilience of the entire AMES to cascading failures and
attacks on multiple modes of energy. Additionally, behavioral data

Table 4

Sustainable Energy, Grids and Networks 38 (2024) 101254

can be incorporated so as to develop a physically-informed machine-
learning behavioral model of the AMES [87] that rigorously studies
the AMES’ sustainability and resilience. Finally, scenarios varying the
energy mixtures seen in these regions and across the entire USA can be
investigated to explore potential sustainable energy transitions.
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Appendix A

See Tables 4 and 5.

This table presents the normalization factors for Figs. 3-7 for the regions NY, CA, TX, and the USA.

New York California Texas United States

Normalization factor Fig. 3 3.15e-4 1.37e-4 1.14e-4 7.93e-6

Normalization factor Fig. 4 1.30e-4 5.97e-5 5.07e-6 2.11e-6

Normalization factor Fig. 5 2.27e—4 1.17e-4 6.88e—5 5.60e—6

Normalization factor Fig. 6 2.71e-5 1.52e-5 8.59e-6 9.25e-7

Normalization factor Fig. 7A 2.29e-5 9.96e—-6 6.99e-7 3.24e-7

Normalization factor Fig. 7B 2.29e-5 9.96e—6 6.99e-7 3.24e-7

Table 5
This table presents the normalization factors for Figs. 8 and 9 for the regions NY, CA, TX, and the USA.
NY In NY Out CA In CA Out TX In TX Out USA In USA Out

Generate electric power from water energy 5.62e-3 5.62e-3 3.60e-3 3.60e-3 4.76e-2 4.76e-2 7.70E-4 7.70E-4
Generate electric power from processed gas 6.17e-3 6.17e-3 2.83e-3 2.83e-3 5.05e-3 5.05e-3 5.20E-4 5.20E-4
Generate electric power from processed oil 4.17e-2 4.17e-2 0.125 0.125 0.33 0.33 1.63E-3 1.63E-3
Generate electric power from uranium 0.25 0.25 1 1 0.5 0.5 1.96E-2 1.96E-2
Generate electric power from coal 0.5 0.5 0.2 0.2 5.26e—2 5.26e—2 3.31E-3 3.31E-3
Generate electric power from other 5.26e-2 5.26e-2 1.47e-2 1.47e-2 5.88e-2 5.88e-2 2.97E-3 2.97E-3
Generate electric power from wind energy 2.56e—2 2.56e—2 9.43e-3 9.43e-3 7.69e-3 7.69e—3 2.10E-3 2.10E-3
Generate electric power from solar 5.26e—2 5.26e—2 2.3%e-3 2.39e-3 5.56e—2 5.56e—2 1.56E-3 1.56E-3
Consume electric power 4.23e—4 4.23e—4 1.79e-4 1.79e-4 1.65e—4 1.65e—4 1.56E—-4 1.56E-4
Compress processed gas 2.38e-2 2.38e-2 4.22e-3 4.22e-3 3.81e-3 3.81e-3 1.19E-2 1.19E-2
Compress syngas 2.38e-2 2.38e-2 4.22e-3 4.22e-3 3.81e-3 3.81e-3 1.19E-2 1.19E-2
Compress raw gas 2.38e-2 2.38e-2 4.22e-3 4.22e-3 3.81e-3 3.81e-3 1.19E-2 1.19E-2
Import processed gas 3.94e-3 3.94e-3 1.16e-2 1.16e-2 7.11e-4 7.11e-4 2.45E-3 2.45E-3
Import syngas 3.94e-3 3.94e-3 1.16e-2 1.16e-2 7.11e-4 7.11e-4 2.45E-3 2.45E-3
Import raw gas 3.94e-3 3.94e-3 1.16e-2 1.16e-2 7.11e—-4 7.11e-4 2.45E-3 2.45E-3
Export processed gas 3.94e-3 3.94e-3 1.16e-2 1.16e-2 7.11e-4 7.11e-4 2.45E-3 2.45E-3
Import crude oil 1.35e-2 1.35e-2 1.02e-2 1.02e-2 4.63e-3 4.63e-3 2.13E-2 2.13E-2
Export crude oil 1.35e-2 1.35e-2 1.02e-2 1.02e-2 4.63e-3 4.63e-3 2.13E-2 2.13E-2
Import processed oil 1.35e-2 1.35e-2 1.02e-2 1.02e-2 4.63e-3 4.63e-3 2.13E-2 2.13E-2
Export processed oil 1.35e-2 1.35e-2 1.02e-2 1.02e-2 4.63e-3 4.63e-3 2.17E-2 2.17E-2
Import liquid biomass feedstock 1.35e-2 1.35e-2 1.10e-2 1.10e-2 4.83e-3 4.83e-3 2.22E-2 2.22E-2
Export liquid biomass feedstock 1.35e-2 1.35e-2 1.10e-2 1.10e-2 4.83e-3 4.83e-3 2.22E-2 2.22E-2
Import coal 0.25 0.25 0.125 0.125 1.82e-2 1.82e-2 2.66E-3 2.66E-3
Export coal 0.33 0.33 0.17 0.17 6.67e-2 6.67e-2 0.05 0.05
Process raw gas 0 0 5.26e-2 5.26e-2 3.10e-3 3.10e-3 0.04 0.04
Process crude oil 0 0 5.26e—2 5.26e—2 3.85e-2 3.85e-2 0.2 0.2
Transport electric power 9.95e-5 9.95e-5 3.44e-5 3.44e-5 1.31e—-4 1.31e-4 7.73E-5 7.73E-5
Transport processed gas 1.52e—4 1.52e—4 6.43e-5 6.43e-5 1.63e-5 1.63e-5 2.07E-4 2.07E-4
Transport syngas 1.65e—4 1.65e—4 6.77e-5 6.77e-5 1.63e-5 1.63e-5 2.09E-4 2.09E-4
Transport raw gas 1.65e—-4 1.65e—-4 6.77e-5 6.77e-5 1.63e-5 1.63e-5 2.07E-4 2.07E-4
Transport crude oil 8.47e-3 8.47e-3 4.82e—4 4.82e—-4 2.73e—4 2.73e-4 2.11E-3 2.11E-3

13

(continued on next page)



D.J. Thompson and A.M. Farid

Table 5 (continued).
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NY In NY Out CA In CA Out TX In TX Out USA In USA Out

Transport processed oil 3.23e-3 3.23e-3 5.92e—4 5.92e-4 5.37e-3 5.37e-3 1.05E-2 1.05E-2

Transport liquid biomass feedstock 0 0 0 0 0 0 0 0

Transport coal 9.83e-5 9.83e-5 7.17e-5 7.17e-5 1.14e-3 1.14e-3 5.16E-4 5.16E-4

Transport water energy 0 0 0 0 0 0 0 0

Transport Other 0 0 0 0 0.01 0.01 4.76E-2 4.76E-2

Transport solid biomass feedstock 0 0 0 0 0 0 0 0

Total 2.28e-5 2.28e-5 9.97e—6 9.97e—6 6.99e—7 6.99e—7 3.24E-7 3.24E-7
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