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ABSTRACT

Construction sites present significant potential safety hazards to the workers, with hand tools being
a major source of injuries. This paper presents a Lightweight approach for Small Tools Detection
(LSTD) method using a deep neural network for real-time detection of small construction tools.
LSTD utilizes a lightweight backbone with Dynamic Feature Extraction, Accurate Separated Head,
and Integrated Feature Fusion, reducing parameters by 73% and computations by 28% versus YOLOvV5
while achieving 87.3% mean Average Precision (mAP) on challenging construction site datasets.
Additional modules enhance detection recall and robustness to appearance variation and scale
changes. Extensive experiments demonstrate LSTD’s superior performance in misty conditions and
illumination changes. With high accuracy in a compact 2.87M parameter network, LSTD brings
ubiquitous worker safety monitoring via edge devices closer to reality. The proposed model marks

a significant advancement in improving safety in high-risk construction environments.

1. Introduction

36

. . . 37
Construction sites are hazardous environments where N
workers are exposed to many safety risks. According to the

Occupational Safety and Health Administration (OSHA)
20% of worker fatalities in private industry in 2020 were in"

41
construction [1] [2]. Also, construction is among the most

dangerous industries but has lagged behind others in tech- '

43
nological adoption [3]. Cultural resistance to new techniques “

often exists, with preferences leaning towards conventional

manual approaches [4]. Moreover, Studies show that the four ®

leading causes of construction site fatalities in the Unlted
States are falls, electrocutions, being struck by objects, and
getting caught in between objects [5]. A leading cause of

these incidents is struck-by hazards from objects like falling :Z

tools and materials. Small hand and power tools, which are

. . . . . 51
prevalent on construction sites, contribute to these incidents ,
5

in various ways. For example, electric power tools can cause

53
electrocutions through defective cords, and hand tools may

be improperly secured and fall, striking workers below [6, 7]

Preventing such incidents requires effective safety protocols o

and risk mitigation methods tailored to the construction site
environment.

57

58
Proper organization, storage, and transport of small con-

struction tools are therefore paramount for site safety, but

managing numerous small objects that are constantly in" o

motion is an enormous challenge [8]. Computer vision tech-

62

niques like object detection, however, now enable auto- o

mated monitoring and analysis of construction sites. By
automatically detecting small tools in images and v1deo
feeds, potentially unsafe conditions can be identified so that

66
corrective actions may be taken. Vision-based models can

accurately localize small objects like tools and equlpment

68
to identify fall and struck-by hazards in real-time [2]. This o
enables proactive interventions through warnings, relocation o

of objects, changes to site layout, and standardization of

*Corresponding author
ORCID(S):

72

tool storage procedures. Among modern visual detection
architectures, You Only Look Once (YOLO) v5 has emerged
as a leading approach due to its speed and accuracy [9]. By
leveraging YOLOVS models tailored to construction sites,
project managers can track on-site tools and enhance safety
protocols in an efficient automated manner.

YOLOVS [9] is a state-of-the-art one-stage object detec-
tor well-suited for real-time analysis of construction sites.
As a one-stage detector, YOLOVS directly predicts bound-
ing boxes (BB) and class probabilities in one evaluation
of an image. This allows the model to operate faster than
previous two-stage detectors like Faster R-CNN [10] that
first generate region proposals. YOLOVS is also preferred in
benchmarks, it achieves high accuracy while requiring fewer
floating point operations and memory. These qualities make
YOLOVS well-matched to the domain of construction sites
where both speed and accuracy are necessary.

In this paper, we propose a Lightweight approach for
Small Tools Detection (LSTD) based on the YOLOvV5 mod-
els for detecting small construction tools on construction
sites. We utilize a comprehensive dataset [11] of common
hand and power tools in context within actual construction
environments. Using this data, we train a LSTD model with
robust performance for tool detection tasks. We additionally
demonstrate the real-time capabilities of our tool detector by
integrating it with an edge device that warns workers on-site
when tools are spotted in hazardous areas.

The ability to accurately and rapidly recognize small
construction tools is critical for mitigating safety incidents
before they occur. Our LSTD approach provides intelligent
situational awareness to identify small objects. As tools are
the instruments used for virtually all construction activities,
a specialized tool detector gives fulsome visibility into on-
site risks. Also, automated tool detection with models like
our LSTD should likewise be adopted as an indispensable
safety mechanism. Just as essential safety gear protects in-
dividual workers, proactive detection systems protect the
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entire work crew by preventing hazardous conditions from s
arising in the first place. 55

Monitoring small construction tools is clearly impor- ss
tant for improving site safety, but few previous computer s
vision works have focused specifically on these small ob- ss
jects. Our LSTD model, with high accuracy and real-time s
performance, can therefore provide managers or site superin- s
tendents with an unprecedented ability to track and manage &
tools for safety. In the remainder of this paper, we provide e
further technical details on our approach, evaluations, and es
demonstrations of the system in operation. We believe the o4
wide deployment of fast and accurate vision systems like s
ours could make substantial impacts by reducing injuries and e

fatalities on construction sites around the world. 67
In summary, the contributions of the proposed method es
are as follows: 69

70
e We propose a lightweight end-to-end network for ,,

small object detection that utilizes the Accurate Sep- ,,
arated Head (ASH), the Integrated Feature Fusion ,,
(IFF), and the Dynamic Feature Extraction to capture ,,
a more comprehensive feature. .

e We illustrate the performance of the proposed meth- *
ods on the small object detection task on comprehen- "’
sive dataset [11]. Compared with the baseline equiv- B
alents, our method decreases computational complex- ;Z

ity and enhances accuracy.
81

82

2. Related works 83

Since small objects lack context and have indistinguish- **
able characteristics, complicated backdrops, and poor reso- *°
lution, it is challenging to recognize them using conventional *
object identification methods [12, 13, 14]. Training inputs *
with smaller-looking objects can help somewhat compensate *°
for this low identification accuracy for little objects. Nev- *
ertheless, it might not be feasible to create more training *
picture datasets using different objects ranging in size from *
very tiny to very large given the available datasets [15]. In *
order to effectively recognize tiny objects in a variety of
areas, researchers have thus tried to alter and enhance current **
algorithms without the need for new training picture datasets *°
[16, 17, 15, 18, 19, 20]. *

When the resolution of the region filled by the small *
objects is increased, some developed algorithms can identify *
small things. For instance, Ku et al. [21] suggested a better
YOLOv4-based technique that can identify a hard helmet™™
in order to increase worker safety on building sites. Im-'"
ages were sharpened and localized tiny object features were'”
extracted using an image super-resolution (ISR) module.'”
Similar to this, Wang et al. [22] created a method based*
on YOLOvV4 and integrated a feature texture transfer (FTT)
module to capture the regional features of tiny objects and™™
improve image resolution. The suggested technique suc-""
cessfully identified the tiny targets—student head move-"
ments—in college courses. 1

105

8

110

Contextual information was used in other attempts to
identify tiny objects. This approach uses context to augment
information for better identification at low resolutions by
using more abstract higher-layer characteristics. A small
object detection technique based on the SSD framework with
segmentation and detection heads was created by Sun et al.
[23]. This technique efficiently recognizes people as well
as traffic signs by supplying more semantic features to the
detection head via the segmentation head. Furthermore, Lim
et al. [24] presented an SSD that uses integrated features
to get semantic features as well as an attention module
to extract features of the object in order to recognize tiny
objects more precisely than traditional SSDs.

Deep learning-based object detection studies for con-
struction sites can be divided into two categories: those that
focus on worker behavior recognition [25, 26, 27] and those
that just recognize objects like workers and heavy machin-
ery [2, 28, 29, 30]. Luo et al. [29] investigated an object
detection model based on a convolutional neural network
(CNN) for the purpose of identifying 22 different kinds of
heavy machinery and laborers on a construction site. Using
CNN characteristics, Fang et al. [2, 28] sought to determine
if employees on high floors wore hard helmets. Son et al.
[30] reported a detection technique that could differentiate
the workers from the backdrop using 3,241 images to create
an object detection model for construction site workers. As
an alternative, a number of academics have developed a more
efficient technique that involves slicing or tiling the input
image in order to enlarge small objects inside a wider pixel
region, therefore enabling small object recognition [31].
For instance, a small object detection approach based on
fine-tuning and slicing-aided hyper-inference was presented
by Akyon et al. [31]. For object detection, they separated
the input photos into overlapping slices without requiring
unnecessary computing power. Although this approach en-
hanced small object detection performance, the larger pixel
area occasionally decreased big object detection. Using the
slicing-aided inference approach, Keles et al. [32] assessed
the YOLOvVS5 and YOLOX models and found that sliced in-
ference enhanced small object detection performance. Nev-
ertheless, while cropping the input image, this study did
not sufficiently take into consideration redundant objects in
the overlapping area. EdgeDuet was developed by Wang et
al. [33] to detect medium- to large-sized objects locally on
mobile devices while offloading small object detection to
the edge. By dividing a frame into many tiles, EdgeDuet
allows for parallel offloading, which facilitates small object
detection. Through overlap-tiling, this technique also lessens
tile dependencies so that objects that span into neighboring
tiles are not missed.

As indicated earlier, prior research primarily aimed at
enhancing small object detection accuracy revealed that their
suggested techniques raised the average precision (AP) in
comparison to current algorithms. The majority of small
object detection methods were evaluated on the precision
of small object recognition in a GPU, despite the use of
high-quality pictures. However, real-time object detection
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taking into account processing as well as transmission of
video data was not well evaluated. Thus, when real-time
object identification is required, their field applicability is
diminished. In this sense, edge computing has been used
in recent construction studies to address automated con-
struction demands by lowering monitoring latency. Chen et
al.’s study [34] showed that edge nodes had performance
comparable to local devices, suggesting that utilizing edge
nodes is feasible for implementing hardhat-wearing detec-
tion based on YOLOVS at a construction site. To solve
the original problem of expensive processing, Xu et al.
[35] also implemented harness-use detection based on the
YOLOVS on edge nodes. Additionally, Zhang et al. [36]
demonstrated the accuracy and effectiveness of edge node
detection for risky behavior to address efficiency as well
as accuracy challenges. Furthermore, Zhao et al. [27] used
YOLOvV3 to manage construction sites’ safety in real-time
after identifying the activities that workers conduct in dan-
gerous regions at outdoor sites, which is another study that
looked at worker behavior recognition. By using object
identification techniques that included a mask region-based %
CNN to establish a safe distance between the crane and ¥
workers, Yang et al. [25] were able to identify cranes and %
surrounding workers. The human body was separated into *
the head, chest, and arms by Zhao and Obonyo [26] in order ¢
to identify worker behavior and suggest ways to improve
productivity at the site. Investigating whether edge inference °
may be used effectively for precise and instantaneous tiny ¢
object recognition is thus important. 64
The development of small tools detection algorithms
for safety monitoring and tools-manager robots encounters
challenges including recognizing small tools in diverse con- ¢
struction environments and deploying efficient algorithms ¢
at the edge. This study aims to address these challenges by ¢
introducing a lightweight and accurate small tools detection ™
algorithm suitable for deployment in complex construction 7
sites. To enhance detection accuracy, the algorithm selec- 7
tively expands the original dataset using on-the-fly data 7
augmentation strategies, which improves the model’s robust-
ness and generalization ability. Additionally, the algorithm 7
employs a Dynamic Feature Extraction (DFE) module to 7
focus on capturing more related features, thereby improving 77
detection accuracy. The suggested IFF module accurately 7
captures features and detailed information of small tools ™
while using a low computation. Furthermore, the use of ®
an ASH module speeds up the convergence of the LSTD #
and enhances detection accuracy. Overall, the LSTD model &
demonstrates promise for managing robot operations in un- #
structured environments as well as presents insightful infor- 8

mation for small tool detection development in the future. #
86

87

3. Methodology

Following several iterations of development, the YOLO 2
series has grown to be a well-liked family of object de- ®
tection frameworks. YOLOVS, an anchor-based, one-stage %
detection method, is renowned for its excellent accuracy and

Table 1
Specifics of the LSTD output size of the feature, component,
and connection technique.

No.  Module From Output size
0 CBR 1 [32, 320, 320]
1 CBR 1 [64, 160, 160]
2 RICC v3 -1 [64, 160, 160]
3 CBR -1 [128, 80, 80]
4 RICC v3 -1 [128, 80, 80]
5 CBR -1 [256,40,40]
6 RICC v3 -1 [256,40,40]
7 AP -1 [256,40,40]
8 CBR -1 [128,40,40]
9 UpSample -1 [128, 80, 80]
10 Concatenation  [—1,4] [256, 80, 80]
11 RIC 1 [128, 80, 80]
12 CBR -1 [128,40,40]
13 Concatenation [—1,8,6] [512,40,40]
14 RIC 1 [256, 40, 40]
15  ASH [11,14]  [128,80,80]
[256,40,40]

quick detection speed. Ultralytics made YOLOVS publicity
available, offering four distinct scale variants. The structure
of YOLOVS, which consists of a head, neck, as well as
backbone, is shown in Fig. 1. In order to extract features from
the input, the backbone component downsamples the input
four times. The neck component uses the Path Aggregation
Network (PAN) and Feature Pyramid Network (FPN) archi-
tectures. YOLOvVS’s head structure consists of three linked
heads. We used YOLOVS as the basis for our study’s LSTD
algorithm, which we built as the baseline.

The architecture of our suggested LSTD is shown in
Fig. 1. The three parts of LSTD are the Accurate Separated
Head (ASH), the Integrated Feature Fusion (IFF), and the
Dynamic Feature Extraction (DFE). The three primary mod-
ules of DFE are RICC (Robust Integrated Convolution based
on CBAM), CBR(Convolution, Batch Normalization layer,
ReLU function), and Adaptive Pooling (AP). The CBR, RIC
(Robust Integrated Convolution), Concat, and UpSample
modules make up the majority of IFF. The CBR module and
1 X 1 convolution make up the majority of the ASH.

Table 1 provides a detailed representation of the LSTD
feature map variation, connecting components, as well as
network composition. The model is small, with only 16
specially designed components. The entering information
flow layer is indicated by the second column, where -1 de-
notes the layer that came before it. Customized modules are
shown in Table 1’s third column. The resulting feature map’s
dimensions—width, height, and number of channels—are
listed in the last column. For instance, the feature maps from
rows No. 9 and No. 4 are subjected to a Concat operation, as
shown by the item [-1, 4] in row No. 10 of the table. A feature
map with size [512,80,80] is produced by this process.

3.1. Dynamic Feature Extraction

The number of modules in DFE decreased and down-
scaled input images multiple (2, 4, 8, and 16) in order to
address the challenges presented by the decrease in feature
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T e’ Output
Input g R
DFE IFF 20440 ASH
\f/_l _CBR _——> Conv2D —> Classification
AP Conv2D — Regression
13\ _/ 40x40 e | R | :
\lv-/ Concat Conv2D — Object
RICC-v3 ‘ —
CBIR upsample | __CBR _——> Conv2D —> Classification
I CBR .
\f/ \-f/ | Conv2D —> Regression
L2 80x80 Concat CBR —
RICC-v3 ———p RIC i
~. RIC__ 80x80 Conv2D —» Object
CBR Legend for Snippets
QR/ Conv 2D BN RelU s Lt
L1 160x160
RICC-v3 BottleNeck CBR CBR add
f S — D — ™ D ——
\T/ CBR BottleNeck
320x320 RICC-v3 — — Concat _ CBR _CBR
\C_:f/ CBR — S
~ CBR MaxPool MaxPool MaxPool Concat CBR
. — ~

Figure 1: Overview of the LSTD architecture diagram based on YOLOv5. Three main parts make up the LSTD architecture,
similar to YOLOV5: head, neck, and backbone. Components of the LSTD architecture are Dynamic Feature Extraction (DFE),
Integrated Feature Fusion (IFF), and Accurate Separated Head (ASH).

dimension with more layers as well as the possible infor- 2
mation loss brought on by smaller objects. By doing this, 2
the feature maps’ detail loss is decreased and smaller targets
may be represented more accurately. We also included an
attention technique to extract important information in an 2
adaptable manner. DFE maintains a lightweight design while

concentrating on useful feature information. 27
28

3.1.1. DFE Structure 2

Four layers make up the DFE, as seen in Fig. 1: one s
Lead Layer (LO), and three Level Layers (L1, L2, L3). A=
6 X 6 convolutional kernel is present in the Lead Layer, s
which is a CBR module. It removes operations like channel s3
concatenation and slicing in comparison to the the baseline,
which lowers the amount of parameters and computational s
cost. Every CBR module and every RICC module make up 36
the initial pair of Level Layers (L1, L2). ReLU activation s7
function, Batch Normalization layer (BN), and Conv2d with ss
a 3 x 3 filter size make up the CBR module. Finally, the s
Level Layer (L3) includes the AP module. The two CBR 4
components with a 1 X 1 filter size and the three Max- a
Pooling modules with a 5 X 5 filter size make up this AP

layer. In baseline, the Average Pooling module is less effi-
cient than the AP module in capturing multi-scale contextual
information. From Level Layers (L2) and Level Layers (L3),
DFE creates an output with the size [4, 512, 40, 40] and [4,
256, 80, 80], which are then sent to IFF.

3.1.2. RICC Modules

Figure 2 illustrates the three RICC modules that we
suggested in this study, namely RICC_v1, RICC_v2, and
RICC_v3, based on the [37]. These modules are critical to
receptive field extension, adaptive augmentation, and feature
extraction.

RICC_v1: The input is initially processed via a Conv2d
with filter size 1 x 1 in a CBR module, after which the output
is sent to two routes. The branch path is unprocessed, while
the main route passes via CBR modules with Conv2d with
filter size 3 x 3. Ultimately, a CBAM module receives the
combined output feature maps from the two pathways.

RICC_v2: Initially, a Conv2d with filter size 1 x 1
CBR module with the input feature map reduces the channel
dimension by half. Subsequently, the output is sent to two
routes: the branch route remains unprocessed, while the

M. Soleymani et al.: Preprint submitted to Elsevier

Page 4 of 16



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Short Title of the Article

CBR _ CBR _ CBR _
j/ | \I/
\C_i_R/ x BottleNeck ~ \CBB/ BottleNeck '~
add
—l— Concat ——> Concat
CBAM [ l
! \ClB_R/ \C%R/,
CBAM CBAM
a b C I

Figure 2: Three suggested RICC modules are illustrated. (a)
RICC v1, (b) RICC_v2, (c) RICC v3.

primary route passes via the Bottleneck component. Sub-
sequently, the two pathways’ outputs are joined in the axis
of the channel. After that, the fused output passes via a
convolutional with kernel size 1 X 1 in a CBR module to *
increase the channel dimension to the intended feature map *
of output. Lastly, a CBAM component is used to filter the **
spatial features as well as feature channels. 3
RICC_v3: The input initially follows multiple routes. *
The primary route passes via the BottleNeck module after *°
passing via a CBR component with Conv2d with kernel *
size 1 X 1 to decrease the channel dimension. The channel ¢
dimension is further decreased by the branch route, which *
passes viaa CBR component Conv2d with kernel size 3 x 3. *
These two pathways’ channel outputs are then concatenated. *°
After that, the integrated feature passes through a Conv2d *
with kernel size 1 X 1 in a CBR component to increase the >
channel dimension to the intended output channels. Lastly, **
the spatial coordinates and feature channels are weighted *
using a CBAM module. Furthermore, the BottleNeck com- **
ponent has a residual design in which the input passes via *
a shortcut link after passing via two Conv2d layers with ¥
kernel size 3 X 3. The ultimate output, a feature map, is *®
subsequently created by adding the input data to it. %
After doing comparative studies on three RICC modules,
we decided to include the RICC_v3 module in DFE; the ¢
specifics are provided in Section 3.3. There are variations in
the number of BottleNecks in the three Level Layers (L1, L2,
and L3) of the RICC_v3 module. L1, L2, and L3 specifically
used 1, 2, and 3 bottlenecks, respectively, with 1, 2, and 3 X

values in line.
62

3.1.3. CBAM 6

As noted above, in order to increase the accuracy of small e
object detection, we decreased the number of network layers. 65
As a result, the contextual understanding of the feature was ¢
weakened. Furthermore, the same background interferences ¢
have a major impact on the proper identification of small
construction tools. Therefore, in order to improve recogni- e
tion ability and concentrate on useful feature information, 7
we added an attention module to the different Level Layers 7,

Channel Attention Module (CAM)

= maxpool —> Shared —>

MLP

—
Input Feature
F

—
maxpool

—

S
Channel Attention
MC

Spatial Attention Module (SAM) Lehend

(=T —o-
Channel-refined [maxpool, avgpool] Sigmoid Spatial Attention
Feature F Mg

Element-wise
= summation
S Sigmoid

Element-wise
" Multiplication

Input Feature Refined feature
F Fcbam

Figure 3: Overall architecture of CBAM that contains SAM
and CAM.

(L1, L2, and L3) of the DFE. In addition, the Convolution
Block Attention Module (CBAM), suggested by Woo et al.
[38], distinguishes itself from [39], [40], and [41] by being
a lightweight attention module. It possesses the capability to
adaptively boost the expressive capacity of crucial features
of spatial dimension and channels. The two submodules that
make up CBAM are the CAM and SAM, as seen in Fig. 3.
First, CAM infers a feature map M, € RE*1*D from the
input feature map F € R(EHXW) SAM then infers a feature
map M, € RXFW) We included attention methods to
improve recognition ability and concentrate on useful feature
information in the three Level Layers (L1, L2, and L.3) of the
DFE.

"What’ is significant in relation to an input is the focus of
the channel attention. First, average pooling and max pool-
ing processes are used to aggregate the input feature map
for spatial information. The shared multi-layer perceptron
(MLP) receives the aggregated feature map after that. Next,
the resultant feature vectors are combined using element-
wise summation. The sigmoid activation function is the final
step in obtaining channel attention feature maps. To put it
briefly, channel attention is calculated as follows:

M_(F) = o (MLP (AvgPool(F)) + MLP (MaxPool(F)))
(D

The Sigmoid activation function operation is represented
by o in the formula, the shared perceptron operation by
MLP, and the global average pooling and maximum pooling
operations by Avg-Pool and Max-Pool, respectively.

Where is an instructive portion of the feature map that
receives spatial attention. First, two (1 X H X W) feature
maps are created from the channel attention module’s output
using the max pooling and average pooling processes. Next,
a 7 X 7 convolution layer concatenates and convolves the
feature maps.
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Ultimately, a 2D spatial attention map is created by using
the Sigmoid function to make the spatial attention output. To
put it briefly, spatial attention is calculated as follows:

M(F,) = o (f™ ([AvgPool(F,); MaxPool(F,)])) (2)

A 7x7 convolution process is represented in the formula
by f7%7. The CAM processes the feature F first, producing
the output F, in the channel dimension. The SAM processes
the feature F' to make the F,,,, in the spatial dimension. One
way to sum up the attention process generally is as follows:

F,=M,F)xF

Fopum = M(F,) X F,

cham
3.2. Integrated Feature Fusion

The middle layer of the network architecture, known
as the "feature fusion," creates feature maps containing
multi-scale information and is utilized for feature fusion
and information transfer across various layers. This research
proposes an Integrated Feature Fusion (IFF), which can s
help the model generate accurate features with fewer pa- s:
rameters. The feature fusion network is modified. Through s.
examination of the information in Section 3.2, we see that s3
small construction tools detection exhibit little variance in ss
size and are generally modest in size. As a result, using ss
the full FPN and PAN as seen in Fig. 4(a) is not required. s
Given the low pixel percentage of small tools, we elimi- s7
nated the 32x downsampling layer from the PAN as well ss
as FPN architecture, which is the lowest feature layer, in so
order to decrease the model size and improve flexibility. e
Fig. 4(b) depicts this structure. While making the model &
lighter and reducing computational complexity, simplifying e
the feature fusion network’s structure may also make features o3
less capable of being represented. Thus, as seen in Fig. 4(c),
we created Integrated Feature Fusion (IFF) at the top layer 65
based on the simplified network. In order to fuse multi- ¢
scale properties, IFF uses bidirectional connections. To be e
more precise, the bottom-up pathway uses downsampling es
to convey low-level detail information, whereas the top- e
down pathway uses upsampling to communicate high-level
semantic information. Both high and low-level semantics =
are included in the fused feature. In order to get deeper »
semantic information and minimize detail loss, IFF also uses 73
integrated links to combine features from higher levels. Two 7
CBR modules, two RIC modules, one UpSample module, 75
and two Concat modules make up IFF. For details on the 7
precise arrangement and connections, please see Fig. 1. Itis 7
important to note that RICC is a reduced version of the RICC 7
structure in DFE. For example, the final CBAM module 7
is not present, and the BottleNeck module lacks a shortcut so
connection. Lastly, in accordance with the input from DFE, s
IFF sends two feature maps to the ASH. The corresponding s>
tensor forms are (4, 256, 80, 80) and (4, 512, 40, 40). As a s
result, using the full FPN and PAN architectures as seen in s
Fig. 4(a) is not required.

sO—0O0—0@—
t | t
a P40—>O—>‘—>
t | t
p3©—>O—>.—>

"O—0—@—

t t
PSO—>O—>'—>

/\
p4O—>O—>.—>
t ! |
p3©—>O—>.—>

Figure 4: Overall Schematic of feature fusion. (a) FPN) +
PAN, (b) Simplified IFF, (c) IFF.

3.3. Accurate Separated Head

The discrepancy between the regression and classifi-
cation tasks is a major problem in object detection. The
baseline’s coupled detection head shares parameters with the
localization as well as classification branches. However, em-
ploying common parameters may result in spatial misalign-
ment problems because of the somewhat uneven focus of
the localization as well as classification tasks [42]. Ge et al.
[43] experiments have demonstrated that switching out the
YOLOVS connected head for a decoupled one may greatly
increase convergence speed and improve detection perfor-
mance. ASH eliminates the Object branch and separates
the regression and classification branches for independent
prediction. Furthermore, in contrast to YOLOX, we further
minimize model complexity and inference delay by lowering
from 2 to 1 the number of conv2d with filter size 3 X 3 on
both routes.

Fig. 5 shows how the ASH is structured. The following
are the particular operations: First, a Conv2d with kernel size
1 x % 1 is used to decrease the channel dimension of the IFF
feature to 128 and 256, respectively. After that, it is divided
into the regression as well as the classification branch, two
parallel branches. A Conv2d with kernel size 3 x 3 is present
in each branch for tasks involving regression and classifica-
tion, respectively. The regression branch is expanded with
an extra Object branch, and each branch is then subjected to
an additional 1 X 1 convolution process. Furthermore, the
regression branch forecasts the target’s Object (confidence
information) and regression (bounding box information),
while the classification branch is in charge of forecasting the
target’s Classification (classification information). With two
effectively separated heads, LOSD produces two different
final output tensor shapes: (4, 7, 80, 80) and (4, 7, 40, 40).

This work proposes the anchor-based object identifica-
tion algorithm LOSD. By employing the scale of the objects
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Figure 5: Overall structure of YOLOV5 head and the proposed 0
ASH.

53

54

as the categorization metric, the anchor sizes are derived by Z:
categorization. This work uses the auto anchor technique to
autonomously create as well as cluster anchor sizes depend-
ing on the inputs, developing them using a genetic method,
as opposed to predefining anchor templates. Six sets of
anchors are generated after K nearest neighbor clustering on
30,432 points: (25,25), (30,29), (35,45), (38,338), (45,42),
and (52, 50). 57
58
3.4. Dataset 59
The dataset utilized in this study consists of images eo
of 12 different small construction tools, including cutters,
buckets, hammers, knives, saws, shovels, tackers, drills, e
grinders, spanners, and wrenches [11]. These tools were 63
carefully selected based on their frequent usage in indoor
construction sites, as determined by analyzing construction
standard specifications and interviews with site managers
[11]. To capture the diversity of appearances, sizes, shapes, s
colors, and backgrounds encountered in real-world construc- es
tion environments, the dataset comprises 34,738 images. e
Approximately 18% (6,258 images) were acquired directly e
from actual construction sites, ensuring the inclusion of
realistic conditions such as occlusions, varying illumination, s
and worker interactions. The remaining 82% (28,480 im- 7
ages) were captured with various controlled backgrounds
like construction background sites to further enhance the
dataset’s diversity. The dataset was meticulously annotated
with bounding boxes, indicating the location and class of
each tool instance. The images were carefully curated to "
include variations in resolution, occlusion, lighting condi-
tions, and backgrounds, factors known to influence the per- 7
formance of object detection methods [44, 45]. The dataset 74
was divided into training (60%, 20,842 images), validation
(20%, 6,948 images), and test (20%, 6,948 images) sets. This s
dataset was constructed with the goal of improving object

detection model performance while accounting for factors

78

such as background diversity, illumination changes, occlu-
sions, and resolution variations, all of which are prevalent in
challenging construction site environments.

3.5. Experiment

Windows 11 is the operating system utilized in this
paper, and CUDA version 11.8 is employed. The machine
used for the trials included an Intel Core i7 13620H CPU
and an NVIDIA GeForce RTX 4060 Laptop GPU. PyTorch
1.10.1 is used with Python 3.9 as the development language.
The Adam optimizer [46] was used, with an initial learning
rate of 0.0009 and a Cosine learning rate decay strategy. A
weight decay of 0.0005 was applied to regularize the model.
The loss function was the Focal Binary Cross-Entropy, with
gamma set to 2 and alpha set to 0.25 for focal weighting. The
model was trained for 200 epochs, with a batch size of 4. The
detection findings can be categorized as true positive (TP),
false positive (FP), true negative (TN), and false negative
(FN) based on these studies. We present all the measures that
are utilized in this research, such as FLOPs, mean average
precision (mAP), recall (R), precision (P), and F1 score. In
particular, recall (R) and precision (P) are defined as:

p=_1IP _

TP+ FP
TP

TP+ FN

here recall is calculated by dividing the number of true
positives by the sum of the true positives and false negatives,
and precision is calculated by dividing the number of true
positives by the sum of the true positives and the erroneous
positives.

The AP for many categories is referred to as the mAP,
and AP is defined as follows:

x 100%

%X 100%

1
AP = / p(rydr 3)
0

In addition, the average mAP over various intersection
over union (IoU) thresholds (from 0.5 to 0.95, step 0.05) is
represented by mAP@0.5:0.95.

The mAP and recall, or F1-score, is a useful metric for
assessing a model’s overall performance in detection tasks.
The F1-score is defined as follows and its value goes from 0O
to 1.

2 - Precision - Recall
Precision + Recall

Fl-score = 4
FLOPs is a measure of how many floating point operations
the model needs to perform to simulate the output. It is an
important indicator of the complexity of the model and can
be used to compare to other models.

4. Result and Discussion

We carried out eight tests to assess the effectiveness of
the suggested LOSD model, which are detailed in the results
section.
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Table 2

Influence of augmentation on the LSTD.
Dataset type P(%) R(%) mAP(%)
Original 82.4 80.8 84.2
Augmented 85.0 83.5 87.3

4.1. Data Augmentation Effect

We validate our approach on the original dataset and on-
the-fly (online) augmented dataset in order to look into the
effects of data augmentation methodologies on the metrics.
The augmentation strategy comprises various operations,
including horizontal flipping, median blur, spatial shifting,
adjustments in brightness and HSV, mosaic application, and
the incorporation of Contrast Limited Adaptive Histogram
Equalization (CLAHE) and simulated fog effects. The train-
ing dataset was the sole variable in the experimental setting,
with all other parameters remaining constant. Table 2 dis-
plays the experimental outcomes. On-the-fly augmentation
produced gains of 2.3% in recall, 3.4% in precision, and 3.1%
in mAP over the original dataset. With recall, precision, and
mAP of 83.5%, 85.0%, and 87.3%, respectively, the On-the-
fly augmentation approach produced noteworthy gains in
all measures in comparison to the original dataset. Thus,
the On-the-fly augmentation technique used in this work
successfully improves LSTD’s detection performance.

49

4.2. Effect of Different Module 50

This study made several changes to the baseline model’s
structure according to the traits of small tools detection and s
the requirement to improve construction safety. We validated s»
our approach on the suggested IFF to confirm the viability ss
and efficacy of the changes. It should be noted that the s
baseline model was used for these trials, and no further ss
modifications indicated in the study were used; instead, the s
only emphasis was on structural validation. Table 3 shows s;
that the number of parameters and layers dropped to 6.69 ss
M and 107 respectively, as well as the FLOPs dropped by s
4.5 G after the 32x downsampling layers in the baseline &
model’s neck and backbone were removed. Meanwhile, the &
mAP significantly increased by 2.1%. The mAP rose from e
86.2% to 87.3% with IFF, while the FLOPs and number ¢
of parameters increased slightly to 11.3 G and 1.85 M, &
respectively. IFF adds top-layer integration connections in es
comparison with FFN. The DFE + IFF architecture obtained
a 7.2% gain in mAP, a 73% decrease in parameters, as e
well as a 29% reduction in computation when compared to s
FPN + PAN. Thus, it can be said that despite significantly e
lowering the number of parameters, the suggested DFE + 7
IFF architecture enhances small tools detection ability. 7

The experimental outcomes of the three robust inte-
grated components suggested in the LSTD architecture are 7
shown in Table 4. It is evident that the best detection per- 7.
formance is obtained when the RICC_v3 module is utilized. s
It uses the fewest parameters while achieving the best ac- 7
curacy, recall, and mAP when compared to RICC_v1 and

Table 3
Comparison evaluation of three network architectures, PAN +
FPN, DFE + FFN, and DFE + IFF on the test dataset.

Architecture Layer mAP (%) Param (M) FLOPs (G)
PAN+FPN 157 80.1 6.69 15.6
DFE + Simple IFF 107 83.2 1.79 11.1
DFE + IFF 107 83.9 1.85 11.3

Table 4
Comparison evaluation of three robust integrated convolution
modaules.

Component  mAP (%) R (%) P (%) Param (M)

RICC v1 83.4 81.3 82.2 4.10

RICC v2 83.5 82.1 81.4 3.40

RICC v3 87.3 83.5 85.0 2.87
Table 5

Utilization of different attention mechanisms in the LSTD and
examination of their results.

Module P (%) R (%) mAP (%) Param (M)
Baseline w/o attention  81.2 80.6 84.7 2.86
SE 83.6 81.3 85.4 2.87
CA 82.4 83.6 86.1 2.87
SimAM 83.2 81.3 85.0 2.86
CBAM 85.0 83.5 87.3 2.87

RICC_v2. For this reason, we decided to use the RICC_v3
module in this study to extract features from DFE.

4.3. Evaluating various attention mechanisms on
LSTD

In this research, attention methods are included in the
three Level layers (L1, L2, and L3) of DFE to improve the
feature extraction capabilities. Using the expanded dataset
and the suggested LSTD model, we carried out five com-
parison experiments to investigate the efficacy of attention
modules in small tools detection: with the SE module, the
CA module, the SimAM module, the CBAM module, and
without the attention module. Table 5 shows that the base-
line using the CBAM had the greatest mAP (87.3%) and
precision (85%) while the baseline using the CA had the
highest recall (83.6%). It is important to note that adding
attention modules to any experiment almost completely pre-
vented the model’s parameter size from growing. In general,
the CBAM-equipped LSTD model performs the best. The
explainable results of LSTD employing various attention
modules are shown in Fig. 6.

Fig. 6 depicts the activation maps produced by the ex-
plainable Grad-CAM method in both simple and compli-
cated situations, respectively. It is evident from the numbers
that LSTD primarily targets small construction tools. Small
construction tool identification is greatly impacted by com-
parable backgrounds, as was seen in the prior loss study. Ad-
ditionally, the goal of this study is to develop a cutting-edge
small tools detection model for monitoring safety and robots,
specifically designed to identify and discriminate among
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SimAM module CBAM module

Figure 6: Grad-CAM visualizations generated by various attention modules.

various tools. To achieve this precision, the algorithm will 57
be tailored to differentiate between tools positioned in the s
foreground and those in the background. Also, LSTD shows s
off a creative method for differentiating between small tools 4
in the background and foreground. This feature of LSTD a
highlights how it may mimic some parts of human cogni- s
tive capacities, including perception and decision-making 43
processes. Moreover, another area of interest for LSTD in 4
the picture is the area containing small tools. It is evident
from the class activation maps that distinct attention modules s
show differing levels of concentration on the small tools. +
In both complicated and straightforward circumstances, the s
LSTD architecture with the CBAM provides a more precise 4
focus on the object zone and places greater attention on small s
tool regions. The SimAM and CA concentrate on specific s:
locations in the complicated scenario, but the SE module has s
a lesser concentration on small tools. When compared to the ss
CBAM, the SimAM, SE, and CA focus less on the small tool s«
area in the simple scenario. According to the experimental ss
results, the LSTD with the CBAM is able to identify small s
tools in the background and foreground more clearly, as well s7
as concentrate and focus more effectively in that area. 58

59

4.4. Ablation Study o0
We carried out tests to evaluate the model’s performance ¢,
incrementally after each modification in order to further ,
examine the efficacy of the improvement methodologies ¢,
suggested in this research. Table 6 displays the test procedure ,
and ablation experiment outcomes. The data shows that the ¢
B model, which uses the DFE + IFF architecture, reaches a
73% decrease in parameters to 1.85 M from 6.69 M while ,
maintaining a little greater recall and accuracy compared to
the baseline. Based on the B model, the C model increases es
the number of parameters by a small amount and improves e
recall, accuracy, mAP@0.5:0.95, and mAP. This is achieved 7
by adding the ASH component. The CBAM module was 7
added to the C model to create the LSTD model, which »

exhibits improvements in mAP@0.5:0.95, mAP, and pre-
cision but a minor decline in recall. In addition, our sug-
gested LSTD model outperforms the baseline (A) model by
7.6%,7.2%,4.9%, and 6.8% in mAP@0.5:0.95, mAP, recall,
and precision, achieving 77.8%, 87.3%, 83.5%, and 85%,
respectively, with just 2.87 M parameters—a 57% decrease.
The ablation experiment results show how efficient the en-
hancement tactics suggested in this study are, especially
when it comes to lowering the number of parameters and
improving detection accuracy. Also, the ASH component
adds more to recall, the CBAM enhances accuracy more,
and the DFE + IFF architecture has a bigger effect on the
parameters.

In addition, LSTD, representing the fully augmented
model, emerges as the top-performing method across all
tools as shown in Fig. 7. For instance, LSTD achieves
an accuracy of 82.87% for Cutter (CU) and 84.16% for
Hammer (HA), outperforming configurations A, B, and C.
Notably, the introduction of attention-guided spatial high-
lighting (ASH) and Convolutional Block Attention Module
(CBAM) consistently contributes to performance improve-
ment. For tools like Grinder (GR), LSTD attains remark-
able accuracy at 90.18%, underscoring the efficacy of the
proposed method. The attention mechanisms, particularly
CBAM, play a pivotal role in elevating overall performance,
evident in the substantial improvements from configura-
tion B to LSTD across various tools. This ablation study
provides valuable insights into the cumulative impact of
depthwise feature enhancement, instance-level feature fu-
sion, attention-guided spatial highlighting, and CBAM in
enhancing small tool detection in construction site scenarios.

4.5. LSTD test results

The LSTD model’s confusion matrix is displayed in Fig.
8. The anticipated labels are shown by the vertical axis, and
the genuine labels are represented by the horizontal axis. The
major diagonal probabilities indicate the likelihood that each
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Table 6
Effects of each component on the performance of LSTD.
Model Components Metrics
abbreviation . mAP@©0.5:0.95 mAP R P Param
Baseline DFE IFF ASH CBAM
(%) (%) (%) (%) (M)
A v 70.2 80.1 78.6 78.2 6.69
B v v v 74.2 83.9 80.1 80.2 1.85
C v v v v 77.2 84.7 80.6 81.2 2.86
LSTD v v v v v 77.8 87.3 83.5 85.0 2.87
Cutter (CU)
100 cu 0.027 0.003 0.010 0.013 0.030 0.013
Trowel (TR) Hammer (HA)
90 HA 0. 0.003 0.027 0.030 0.007 0.023
30 KN - 0.004 0.014 0.016 0.033 0.043 0.007
Wrench (WR) 7 Knife (KN) SA | 0.002 0.007 0.002 0.002 0.143 0,003 0.011 0.007 0.002
60 SHA 0.010 0.007 0.034 0.030 0.033
50 3 TA-{0.030 0.019 0.010 0.007 0.007 0.004 0.021 0.033
©
Spanner (SP) 40 Saw (SA) S BU0.033 0.005 0.024 0.027 0.009 0.023 0.030 0.007
=
DR -{0.005 0.003 0.004 0.133 0.008 0.008 0.005 0.003 0.001
GR 0.037 0.003 0.030 0.023 0.006 0.030 0.010 0.004
Grinder (GR) Shovel (SH) SP —0.020 0.043 0.030 0.007 0.006 0.030
WR - 0.014 0.033 0.018 0.008 0.013
TR -0.030 0.030 0.027 0.027 0.038 0.007
Drill (DR) Tacker (TA) . . . . . . . ; . ; ;
CU HA KN SA SH TA BU DR GR SP WR TR
Bucket (BU)
LSTD —=—C B A Predicted labels

Figure 7: Radar chart for each category of objects in the test
dataset, with different modules represented by different colored
lines based on Table 6, displaying precision values.

24

category will be correctly classified. The precision of mis-

25
classification is shown by the numbers off the main diagonal, _
which indicates that overall, misclassification happens less ”

frequently.

cant (significant level of 0.05) and that it could be concluded

that the results had a meaningful difference. The LSTD z:
and Baseline models differ significantly from one another,

indicating the dependability of our suggested approach.

Fig. 9 displays the LSTD result in the following unstruc- -
tured environments: (a) standard illumination, (b) intense “
illumination, (c) subdued illumination, and (d) misty con- o

ditions. Although the environment has a notable effect on

the model performance, LSTD is still able to identify the z
categories and detect small tools under conditions like misty “
conditions, intense illumination, and subdued illumination. N
It is evident that the suggested LSTD model has strong e

resilience and flexibility in intricate external contexts. The

28
Using mAP as the assessment metric, we ran seven "

iterations of tests on the LSTD and baseline models to verify "
the validity of the training outcomes. Analysis of variance
was used to examine the experimental outcomes for small »
objects, and this indicates that the difference between the -
total means of the two approaches was statistically signifi- "

Figure 8: Comprehensive insight into Model Performance by
Confusion matrix that shows the accuracy of each object.

goal of this research is to create a detecting algorithm that
can be used for robots or monitoring safety.

Another crucial metric for assessing the model’s effec-
tiveness is its capacity for generalization. Three distinct tool
kinds, namely big (closer to camera) tool, medium, and very
small, were utilized to obtain the generalization precision
of the LSTD model, as seen in Fig. 6. The graphic shows
that the model can identify tools from the background and
recognize and categorize big tools with accuracy. Although
the algorithm can detect the tools quite correctly. The LSTD
works well for very small and big tools simultaneously.

Three distinct datasets of construction site settings,
including intense illumination, subdued illumination, and
misty conditions, were produced in order to evaluate the
detection ability of the LSTD model in difficult scenarios.
The particular test results are listed in Table 7. The subdued
illumination situation yielded the best result (precision =
84.7%) and Fl-score (84.1%) for small tools detection.
Overall, the LSTD showed high accuracy in situations
with intense illumination, subdued illumination, and misty
conditions; however, scenarios with misty conditions and
intense illumination had a greater impact on the detection
performance.
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(c)

Figure 9: LSTD model's performance has proven to be consistent across different environment conditions, including (a) standard
illumination, (b) intense illumination, (c) subdued illumination, and (d) misty conditions. The image shows a cluttered construction
site with scattered tools in workplace, including hammers, knives, and cutters on the floor. This presents a significant tripping

hazard for workers moving through construction sites.

Table 7

Effects of different brightness conditions on the performance of LSTD.

Dataset P (%) R (%) mAP (%) Fl-score(%) CDR(%) EDR(%) MDR(%)
intense illumination 82.2 82.6 85.7 82.4 84.6 6.4 15.4
subdued illumination  84.7 84.1 86.1 84.4 84.1 5.8 15.9
misty conditions 83.7 81.8 86.4 84.7 83.9 7.1 16.1
4.6. LSTD Robustness u normal light dataset’s photos are subjected to brightness

Various external noises might create interference during 12
the actual small tools detection procedure. For instance, 13
problems like too little or too much illumination or misty 1
conditions might exist. As a result, the detection algorithm 1
that is created must be very resilient to noise and flexible. 1
The LSTD model’s detection ability in various construc- 17
tion site conditions will be evaluated in the future using s
four test datasets: misty conditions, intense illumination, 1
standard illumination, and subdued illumination. Also, the 20

reductions (-30%), brightness enhancements (+30%), and
fog additions (+30%) to produce the subdued illumina-
tion, intense illumination, and misty conditions datasets,
respectively. As a result, for every extensive experiment, the
quantity, classes, as well as locations of the labeled BBs
for associated images are all the same. As seen in Fig. 9,
we displayed the LSTD model’s detection results for small
tools in various environmental conditions. Although there
are a few cases of wrong detection, the image illustrates
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Table 8 4

Comparison of LSTD performance with state-of-the-art mod- +

els. 43
Model mAP (%) Param (M) 44
Efficientnetv2 80.6 20.67 45
Lcnet 80.4 1.96 46
Ghostnet 80.2 1.08 P
Mobilenetv3 78.5 1.97 '8
YOLOvV8 - Small 84.3 11.15 20
YOLOVT - Tiny 83.1 6.03 %
YOLOvV6 - Small  83.2 17.18
YOLOVS5 - Small  80.1 6.69 "
YOLOv3 - Tiny 822 2.18 %2

2.87 53

54

LSTD (ours) 87.3

55

56
how well our suggested LSTD model can detect small tools 5,

in various settings. The experimental findings show that
while intense illumination in the construction site has a
significant influence, misty conditions have little effect on 4,
the LSTD model’s detection ability. Thus, one avenue for g,
future development is to enhance the detection accuracy in g,
misty conditions. 6

64

4.7. Comparisons with state-of-the-art model .

We contrasted the LSTD model with the most advanced
object identification techniques in order to further corrobo-
rate the effectiveness of the suggested methodology. o

Table 8 lists the models that are being compared. Ac-
cording to Table 8, LSTD reaches the maximum mAP value _,
of 87.3%. LSTD demonstrates higher mAP values, show- _,
casing improvements of 4.1% compared to the recently
published YOLOv7-Tiny [47] when the number of param- _,
eters decreases by 52.3%. Similarly, when contrasted with _,
YOLOv6-Small[48], LSTD reveals a notable mAP increase
of 2.2%, emphasizing its enhanced detection performance
with significant reductions in the number of parameters to _,
83.3% against YOLOv8-Small, LSTD exhibits a substantial _,
improvement of 3.0% in mAP, highlighting its superior
object detection capabilities when the number of parameters
decreases by 74.2%. Furthermore, although LSTD has a bit |
more parameters than Ghostnet [49], YOLOv3-Tiny [50] ,,
Mobilenetv3 [51], and Lenet [52], the LSTD mAP is higher _,
than them significantly. As a result, the LSTD’s high mAP ,
and comparatively limited number of parameters lead to an

impressive overall performance. o

87

4.8. Discussion w
Accurate small tool detection in unstructured construc- o
tion sites is difficult due to a number of factors, including
illumination and mistiness. The goal of this work is to create o
a detection architecture for monitoring safety and robots. In 0
order to tackle these problems, a LSTD method for detecting 0
small tools in intricate and unstructured construction sites o
is suggested. With fewer parameters and computation, this .
algorithm’s unique neural network design delivers excellent
detection accuracy. Furthermore, enhancements to the head o
and backbone networks efficiently mitigate interference. The

following are the specific contributions made by this paper:
(1) To increase the generalization and resilience of the
model, on-the-fly data augmentation techniques are used to
semantic enlarge the original dataset. (2) DFE is proposed To
improve the feature extraction performance for small tools.
(3) To achieve lighter weight and richer feature representa-
tions, an IFF is suggested. (4) To enhance the background
interference discriminating capability, an ASH is employed.
In comparison to sophisticated object identification algo-
rithms, the suggested technique achieves greater detection
accuracy for small tools in complicated construction site
conditions while displaying superior robustness, adaptation,
and generalization in unstructured sites. This approach may
also be used in monitoring safety and robots that are used in
construction sites.

The lightweight and efficient nature of our proposed
LSTD model, demonstrated by the significant reduction
in parameters (73%) and computations (28%) compared to
YOLOVS, makes it a promising candidate for integration
into existing safety monitoring systems or robotic platforms
used on construction sites. Although explicit evaluations
on edge devices were not conducted in this study, the low
computational requirements and compact architecture of our
model suggest its suitability for deployment on resource-
constrained devices or embedded systems commonly found
in construction site monitoring setups. The ability to accu-
rately detect and localize small construction tools in real
time is crucial for enabling proactive safety measures and
interventions. By integrating our LSTD model into on-site
monitoring systems, potential hazards such as tools being
dropped, misplaced, or left in high-risk areas can be iden-
tified in a timely manner. This real-time awareness can
trigger various safety protocols and warning mechanisms
to mitigate risks and prevent accidents. For instance, upon
detecting a tool in an unauthorized or hazardous zone, auto-
mated alerts or notifications can be sent to site supervisors
or workers in the vicinity, prompting immediate action to
secure the tool or evacuate the area if necessary. Addition-
ally, real-time tool tracking can support the implementation
of standardized tool storage and management procedures,
ensuring that tools are properly accounted for and stored
in designated areas when not in use. Furthermore, the in-
tegration of our LSTD model with robotic platforms or
autonomous systems employed for construction site mon-
itoring can enable autonomous detection and response to
potential hazards. Robots equipped with our model could
actively patrol the site, identifying and flagging instances of
misplaced or dropped tools, and even potentially retrieving
or securing them to prevent accidents.

While the current study focuses on demonstrating the
lightweight and accurate performance of our LSTD model,
future work should involve explicit evaluations on various
edge devices and embedded systems commonly used in
construction site monitoring scenarios. By assessing the
model’s inference times and resource requirements on these
target platforms, we can further validate its real-time ca-
pabilities and suitability for deployment in practical safety
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monitoring applications. Moreover, additional research can s
explore the seamless integration of our model with exist- ss
ing safety monitoring systems, robotic platforms, and site s
management software. Developing user-friendly interfaces, s
alert mechanisms, and decision-support tools based on real- ss
time tool detection outputs can facilitate the adoption of our so
approach and enhance its practical impact on construction e
site safety. 61

The need for lightweight models for detecting small e
objects in construction sites arises from several practical e
considerations. In this case, construction sites often have e
limited access to high-performance computing resources, s
making it challenging to deploy computationally intensive s
models on-site. Lightweight models can be more easily e
deployed on edge devices or embedded systems with modest es
hardware capabilities. To put it in another way, edge devices o
and robotic systems used for on-site monitoring may have 7
power and battery constraints, making it essential to use effi- =
cient models that minimize energy consumption while main- 7
taining high accuracy. Also, in many construction safety 7
scenarios, real-time monitoring and immediate detection of 7
potential hazards are crucial. Small tools, despite their size, 7
can pose significant risks if mishandled or left unattended. 7
A lightweight model can enable faster inference times, al- 77
lowing for more responsive safety monitoring and hazard 7
detection. Specific examples where immediate detection of 7
small tools is essential include: 8

81

e Small tools inadvertently dropped from heights can
pose serious risks to workers below. Immediate de-
tection of such incidents can trigger alerts or safety

measures to prevent injuries. .

e Certain tools, if used incorrectly or in unauthorized
areas, can create hazardous situations. Real-time de- *
. . - . 87
tection can enable timely interventions or safety re-

. 88
minders.
89

e Misplaced or stolen tools can disrupt workflows and o
potentially lead to unsafe practices. Immediate de- o1
tection can aid in tool tracking, management, and s
accountability. 0

94
¢ By integrating small tool detection with worker track-

ing, unsafe behaviors or proximity violations involv-

ing tools can be identified and addressed promptly. .

While modern robots may have GPU capabilities to run *
computationally intensive models, the use of lightweight *
models can still offer advantages in terms of power effi-'*
ciency, reduced hardware requirements, and the potential for'”
deploying multiple models concurrently for various safety'®
monitoring tasks. Furthermore, as construction sites evolve'”
and incorporate more edge devices, sensors, and Internet'®
of Things (IoT) technologies, the demand for efficient and'®
lightweight models will become increasingly important to'®
enable real-time safety monitoring and decision-making at'”’
the edge. 18

109

As can be observed from the results of the ablation
experiment (Table 6), the addition of ASH increases the pa-
rameters, while also achieving overall better results. Anchor-
based detectors are somewhat more sophisticated since they
need to do clustering analysis before the learning phase in
order to identify the ideal anchor set. The act of moving
detection results between hardware adds extra delay in par-
ticular specific edge applications. Conversely, the anchor-
free method can increase detection speed and has a simpler
decoding logic [43]. As aresult, by using the without anchor
approach to decrease the parameters and increase speed, the
model may be further improved.

With an accuracy of just 87.3%, the robustness of the
model (Table 7) shows that the LSTD model’s detection
ability in the misty scenario is rather weak. The model’s
detection efficacy may be lowered in the misty conditions,
which might result in missed detections. As a result, in order
to enhance the model’s adaptability to this setting and bolster
the LSTD model’s resilience, it is feasible to include an even
greater number of misty conditions input in the training.

Comparisons with smaller or lightweight state-of-the-
art architecture showed that LSTD earned the highest mAP,
demonstrating the effectiveness of our improvement efforts
based on extracting useful features. Extracting relevant fea-
ture information from tiny targets is the main goal of the
DFE. The lightweight aspect of the model is maintained
while acquiring richer feature representations through the
use of the IFF. The model’s detection performance is further
improved by the use of ASH. Furthermore, it is allowed to
slightly raise the parameter of LSTD in order to considerably
enhance detection precision, even though the parameter size
is not minimum.

4.9. Limitation

This study presents promising results and significant
advancements in small tools detection in construction en-
vironments, however, it still has some limitations, like any
other research project. Nonetheless, our primary goal was to
overcome the shortcomings of current methods for detecting
small tools in intricate and unstructured construction sites.
The design of the proposed method allows us to model
the system dynamics smoothly with fewer parameters and
computation and capture the complex interactions among
features. Firstly, the effectiveness of our proposed LSTD
model can be influenced by environmental conditions such
as illumination levels and mistiness. While we have demon-
strated robustness across various scenarios, including in-
tense illumination, subdued illumination, and misty condi-
tions, further research may be needed to enhance the model’s
adaptability to extreme environmental conditions. Addition-
ally, although our proposed LSTD model achieves superior
performance with relatively fewer parameters compared to
some state-of-the-art models, there is ongoing research to
optimize model complexity further without compromising
detection accuracy. Striking a balance between model com-
plexity and efficiency is crucial for real-world deployment.
While our lightweight approach is designed to be suitable for
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edge device deployment, we did not explicitly implement or sz
test the model on actual edge devices in this study. Future ss
work will involve evaluating the model’s performance and s
conducting experiments on various edge computing plat- e
forms to validate its real-time capabilities and resource ef- s
ficiency in practical construction site monitoring scenarios. s
However, the proposed method has specific advantages over 63
those methods, especially in the context of the task we e
focus on, where we are interested in detecting small tools es
in intricate and unstructured construction sites, and extract- es
ing comprehensive features when applying ASH, DFE, and ¢
IFF. Also, it is true that the proposed method falls within es
the broader domain of small object detection, we want to e
emphasize that our focus is specifically on detecting small 7
tools in intricate and unstructured construction sites. 71
One limitation of our study is that, while the dataset -
was carefully curated to include variations in factors such
as background diversity, occlusions, and resolution changes,
our experimental evaluation primarily focused on the impact "
of fog and lighting conditions on the model’s performance. 7
Due to the lack of comprehensive metadata in the dataset s
regarding other factors, we were unable to quantitatively 7
evaluate the robustness of our approach to these additional 77
challenges. While this dataset aimed to capture a diverse 7
range of real-world conditions encountered in construction 7
sites, the explicit evaluation of our model’s performance so
under varying levels of occlusion, background complexity, s
and resolution changes was not conducted. Future work s
should incorporate detailed annotations and controlled ex- s
periments to assess the model’s resilience to these factors, s
which are known to influence the performance of object ss
detection methods in practical scenarios. Furthermore, col- s
lecting and annotating additional data with an emphasis on s
these specific factors would enable a more comprehensive ss
evaluation of our approach’s capabilities and potential lim- s
itations in handling the full spectrum of challenges present %
in construction site environments. However, it’s essential to o
note that the data utilized in our study is a small tools dataset 92
[11], currently the largest dataset available for this specific o3
domain. This dataset comprises real-world image capture in o
standard settings, providing a diverse range of construction o
site contexts. We have meticulously processed these images 9
to enable comprehensive testing of our proposed model’s o7
detection capabilities for different small tools in intricate and
unstructured construction sites. As a limitation, it is crucial s
to highlight that due to the unique labeling process and thew
distinctive number of classes in the used datasets comparedio
to other existing datasets, we faced challenges in testing ouric2
model on alternative datasets to evaluate the generalizationios
of the proposed method. The lack of a standardized labelingios
schema and class distribution in other datasets limits theos
direct applicability of our model beyond the used datasets.os
Despite these constraints, we have conducted a series ofior
extensive experiments on the dataset [11] to showcase the
effectiveness of our proposed in detecting small tools in

. . . . 108
intricate and unstructured construction sites.

109

Also, our future research directions include refinement
of environmental adaptability, further investigation into
techniques to enhance the model’s adaptability to extreme
environmental conditions, such as misty environments or
varying illumination levels. Additionally, tailoring the LSTD
model for specific applications within the construction
domain, considering factors such as camera placement,
scene complexity, and tool diversity, to optimize detection
performance is a priority. Furthermore, incorporating real-
time feedback mechanisms into the LSTD model to enable
continuous learning and adaptation in dynamic construction
environments is an important avenue for exploration. By
addressing these limitations and pursuing future research
directions, we aim to further advance the field of small tools
detection in construction environments and contribute to the
development of safer construction practices.

5. Conclusions

This paper presents LSTD, a Lightweight Small object
detection architecture for difficult and unstructured con-
struction sites. By utilizing on-the-fly data augmentation
techniques, the mAP, recall, and precision are increased
by 3.1%, 2.7%, and 2.6%, respectively, in comparison to
the original dataset. In comparison to the PAN + FPN
architecture in the YOLOVS, the DFE + IFF architecture
achieves a 73% decrease in parameters and a 27% reduction
in computation. The advantages of CBAM integration allow
the LSTD to reach the highest precision (85%) and mAP
(87.3%). In addition, it increases the LSTD capacity to
concentrate on small tool areas. The influence of the DFE +
IFF network topology is further demonstrated by the ablation
experiment, whereby the CBAM module enhances accuracy
and the ASH module effects more on recall. Additionally, the
study shows that misty condition in construction sites has a
more significant effect on the LSTD’s detection ability than
illumination. The suggested object identification approach
obtains the greatest mAP (87.3%) when compared to other
cutting-edge techniques.

To automate the monitoring of safety in construction
sites, the proposed LSTD model could be incorporated into
robotic systems to monitor onsite small tools for worker
safety enhancement and tool tracking and management. Fur-
ther study will investigate more to make sure it can reach
the necessary speed and accuracy when deployed on edge
devices. To further enhance the model’s capacity to discrim-
inate between small tools, it is also worthwhile to investigate
the incorporation of complicated construction site environ-
ments into the model input. Also, given the properties of
small tools, it is promising to investigate ways to improve
BB generation techniques or create loss functions that are
more suited for small object recognition in order to improve
small tools detection performance.
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