

Lightweight Detection of Small Tools for Safer Construction

Maryam Soleymani^{a,*}, Mahdi Bonyani^a and Chao Wang^b

^aPh.D. Student, Bert S. Turner Department of Construction Management, Louisiana State University, USA

^bAssociate Professor and Graduate Program Advisor, Bert S. Turner Department of Construction Management, Louisiana State University, USA

ARTICLE INFO

Keywords:
Small Tools Detection
Construction Worker Safety
Site Monitoring
YOLO
Safety Management
Attention Learning
Object Detection
Deep learning

ABSTRACT

Construction sites present significant potential safety hazards to the workers, with hand tools being a major source of injuries. This paper presents a **Lightweight** approach for **Small Tools Detection** (LSTD) method using a deep neural network for real-time detection of small construction tools. LSTD utilizes a lightweight backbone with Dynamic Feature Extraction, Accurate Separated Head, and Integrated Feature Fusion, reducing parameters by 73% and computations by 28% versus YOLOv5 while achieving 87.3% mean Average Precision (mAP) on challenging construction site datasets. Additional modules enhance detection recall and robustness to appearance variation and scale changes. Extensive experiments demonstrate LSTD's superior performance in misty conditions and illumination changes. With high accuracy in a compact 2.87M parameter network, LSTD brings a significant advancement in improving safety in high-risk construction environments.

1. Introduction

Construction sites are hazardous environments where workers are exposed to many safety risks. According to the Occupational Safety and Health Administration (OSHA), 20% of worker fatalities in private industry in 2020 were in construction [1] [2]. Also, construction is among the most dangerous industries but has lagged behind others in technological adoption [3]. Cultural resistance to new techniques often exists, with preferences leaning towards conventional manual approaches [4]. Moreover, Studies show that the four leading causes of construction site fatalities in the United States are falls, electrocutions, being struck by objects, and getting caught in between objects [5]. A leading cause of these incidents is struck-by hazards from objects like falling tools and materials. Small hand and power tools, which are prevalent on construction sites, contribute to these incidents in various ways. For example, electric power tools can cause electrocutions through defective cords, and hand tools may be improperly secured and fall, striking workers below [6, 7]. Preventing such incidents requires effective safety protocols and risk mitigation methods tailored to the construction site environment.

Proper organization, storage, and transport of small construction tools are therefore paramount for site safety, but managing numerous small objects that are constantly in motion is an enormous challenge [8]. Computer vision techniques like object detection, however, now enable automated monitoring and analysis of construction sites. By automatically detecting small tools in images and video feeds, potentially unsafe conditions can be identified so that corrective actions may be taken. Vision-based models can accurately localize small objects like tools and equipment to identify fall and struck-by hazards in real-time [2]. This enables proactive interventions through warnings, relocation of objects, changes to site layout, and standardization of

tool storage procedures. Among modern visual detection architectures, You Only Look Once (YOLO) v5 has emerged as a leading approach due to its speed and accuracy [9]. By leveraging YOLOv5 models tailored to construction sites, project managers can track on-site tools and enhance safety protocols in an efficient automated manner.

YOLOv5 [9] is a state-of-the-art one-stage object detector well-suited for real-time analysis of construction sites. As a one-stage detector, YOLOv5 directly predicts bounding boxes (BB) and class probabilities in one evaluation of an image. This allows the model to operate faster than previous two-stage detectors like Faster R-CNN [10] that first generate region proposals. YOLOv5 is also preferred in benchmarks, it achieves high accuracy while requiring fewer floating point operations and memory. These qualities make YOLOv5 well-matched to the domain of construction sites where both speed and accuracy are necessary.

In this paper, we propose a **Lightweight** approach for **Small Tools Detection** (LSTD) based on the YOLOv5 models for detecting small construction tools on construction sites. We utilize a comprehensive dataset [11] of common hand and power tools in context within actual construction environments. Using this data, we train a LSTD model with robust performance for tool detection tasks. We additionally demonstrate the real-time capabilities of our tool detector by integrating it with an edge device that warns workers on-site when tools are spotted in hazardous areas.

The ability to accurately and rapidly recognize small construction tools is critical for mitigating safety incidents before they occur. Our LSTD approach provides intelligent situational awareness to identify small objects. As tools are the instruments used for virtually all construction activities, a specialized tool detector gives fulsome visibility into on-site risks. Also, automated tool detection with models like our LSTD should likewise be adopted as an indispensable safety mechanism. Just as essential safety gear protects individual workers, proactive detection systems protect the

*Corresponding author
ORCID(s):

1 entire work crew by preventing hazardous conditions from 54
 2 arising in the first place. 55

3 Monitoring small construction tools is clearly impor- 56
 4 tant for improving site safety, but few previous computer 57
 5 vision works have focused specifically on these small ob- 58
 6 jects. Our LSTD model, with high accuracy and real-time 59
 7 performance, can therefore provide managers or site superin- 60
 8 tendents with an unprecedented ability to track and manage 61
 9 tools for safety. In the remainder of this paper, we provide 62
 10 further technical details on our approach, evaluations, and 63
 11 demonstrations of the system in operation. We believe the 64
 12 wide deployment of fast and accurate vision systems like 65
 13 ours could make substantial impacts by reducing injuries and 66
 14 fatalities on construction sites around the world. 67

15 In summary, the contributions of the proposed method 68
 16 are as follows: 69

- 17 • We propose a lightweight end-to-end network for 71
 18 small object detection that utilizes the Accurate Sep- 72
 19 arated Head (ASH), the Integrated Feature Fusion 73
 20 (IFF), and the Dynamic Feature Extraction to capture 74
 21 a more comprehensive feature. 75
- 22 • We illustrate the performance of the proposed meth- 76
 23 ods on the small object detection task on comprehen- 77
 24 sive dataset [11]. Compared with the baseline equiv- 78
 25 alents, our method decreases computational complex- 79
 26 ity and enhances accuracy. 80

27 2. Related works

28 Since small objects lack context and have indistin- 84
 29 guishable characteristics, complicated backdrops, and poor 85
 30 resolution, it is challenging to recognize them using conventional 86
 31 object identification methods [12, 13, 14]. Training inputs 87
 32 with smaller-looking objects can help somewhat compensate 88
 33 for this low identification accuracy for little objects. 89
 34 Nevertheless, it might not be feasible to create more training 90
 35 picture datasets using different objects ranging in size from 91
 36 very tiny to very large given the available datasets [15]. In 92
 37 order to effectively recognize tiny objects in a variety of 93
 38 areas, researchers have thus tried to alter and enhance current 94
 39 algorithms without the need for new training picture datasets 95
 40 [16, 17, 15, 18, 19, 20]. 96

41 When the resolution of the region filled by the small 97
 42 objects is increased, some developed algorithms can identify 98
 43 small things. For instance, Ku et al. [21] suggested a better 99
 44 YOLOv4-based technique that can identify a hard helmet¹⁰⁰
 45 in order to increase worker safety on building sites. Im-¹⁰¹
 46 ages were sharpened and localized tiny object features were¹⁰²
 47 extracted using an image super-resolution (ISR) module.¹⁰³
 48 Similar to this, Wang et al. [22] created a method based¹⁰⁴
 49 on YOLOv4 and integrated a feature texture transfer (FTT)¹⁰⁵
 50 module to capture the regional features of tiny objects and¹⁰⁶
 51 improve image resolution. The suggested technique suc-¹⁰⁷
 52 cessfully identified the tiny targets—student head move-¹⁰⁸
 53 ments—in college courses.¹⁰⁹ 110

Contextual information was used in other attempts to identify tiny objects. This approach uses context to augment information for better identification at low resolutions by using more abstract higher-layer characteristics. A small object detection technique based on the SSD framework with segmentation and detection heads was created by Sun et al. [23]. This technique efficiently recognizes people as well as traffic signs by supplying more semantic features to the detection head via the segmentation head. Furthermore, Lim et al. [24] presented an SSD that uses integrated features to get semantic features as well as an attention module to extract features of the object in order to recognize tiny objects more precisely than traditional SSDs.

Deep learning-based object detection studies for construction sites can be divided into two categories: those that focus on worker behavior recognition [25, 26, 27] and those that just recognize objects like workers and heavy machinery [2, 28, 29, 30]. Luo et al. [29] investigated an object detection model based on a convolutional neural network (CNN) for the purpose of identifying 22 different kinds of heavy machinery and laborers on a construction site. Using CNN characteristics, Fang et al. [2, 28] sought to determine if employees on high floors wore hard helmets. Son et al. [30] reported a detection technique that could differentiate the workers from the backdrop using 3,241 images to create an object detection model for construction site workers. As an alternative, a number of academics have developed a more efficient technique that involves slicing or tiling the input image in order to enlarge small objects inside a wider pixel region, therefore enabling small object recognition [31]. For instance, a small object detection approach based on fine-tuning and slicing-aided hyper-inference was presented by Akyon et al. [31]. For object detection, they separated the input photos into overlapping slices without requiring unnecessary computing power. Although this approach enhanced small object detection performance, the larger pixel area occasionally decreased big object detection. Using the slicing-aided inference approach, Keles et al. [32] assessed the YOLOv5 and YOLOX models and found that sliced inference enhanced small object detection performance. Nevertheless, while cropping the input image, this study did not sufficiently take into consideration redundant objects in the overlapping area. EdgeDuet was developed by Wang et al. [33] to detect medium- to large-sized objects locally on mobile devices while offloading small object detection to the edge. By dividing a frame into many tiles, EdgeDuet allows for parallel offloading, which facilitates small object detection. Through overlap-tiling, this technique also lessens tile dependencies so that objects that span into neighboring tiles are not missed.

As indicated earlier, prior research primarily aimed at enhancing small object detection accuracy revealed that their suggested techniques raised the average precision (AP) in comparison to current algorithms. The majority of small object detection methods were evaluated on the precision of small object recognition in a GPU, despite the use of high-quality pictures. However, real-time object detection

1 taking into account processing as well as transmission of
 2 video data was not well evaluated. Thus, when real-time
 3 object identification is required, their field applicability is
 4 diminished. In this sense, edge computing has been used
 5 in recent construction studies to address automated con-
 6 struction demands by lowering monitoring latency. Chen et
 7 al.'s study [34] showed that edge nodes had performance
 8 comparable to local devices, suggesting that utilizing edge
 9 nodes is feasible for implementing hardhat-wearing detec-
 10 tion based on YOLOv5 at a construction site. To solve
 11 the original problem of expensive processing, Xu et al.
 12 [35] also implemented harness-use detection based on the
 13 YOLOv5 on edge nodes. Additionally, Zhang et al. [36]
 14 demonstrated the accuracy and effectiveness of edge node
 15 detection for risky behavior to address efficiency as well
 16 as accuracy challenges. Furthermore, Zhao et al. [27] used
 17 YOLOv3 to manage construction sites' safety in real-time
 18 after identifying the activities that workers conduct in dan-
 19 gerous regions at outdoor sites, which is another study that
 20 looked at worker behavior recognition. By using object
 21 identification techniques that included a mask region-based
 22 CNN to establish a safe distance between the crane and
 23 workers, Yang et al. [25] were able to identify cranes and
 24 surrounding workers. The human body was separated into
 25 the head, chest, and arms by Zhao and Obonyo [26] in order
 26 to identify worker behavior and suggest ways to improve
 27 productivity at the site. Investigating whether edge inference
 28 may be used effectively for precise and instantaneous tiny
 29 object recognition is thus important.

30 The development of small tools detection algorithms
 31 for safety monitoring and tools-manager robots encounters
 32 challenges including recognizing small tools in diverse con-
 33 struction environments and deploying efficient algorithms
 34 at the edge. This study aims to address these challenges by
 35 introducing a lightweight and accurate small tools detection
 36 algorithm suitable for deployment in complex construction
 37 sites. To enhance detection accuracy, the algorithm selec-
 38 tively expands the original dataset using on-the-fly data
 39 augmentation strategies, which improves the model's robust-
 40 ness and generalization ability. Additionally, the algorithm
 41 employs a Dynamic Feature Extraction (DFE) module to
 42 focus on capturing more related features, thereby improving
 43 detection accuracy. The suggested IFF module accurately
 44 captures features and detailed information of small tools
 45 while using a low computation. Furthermore, the use of
 46 an ASH module speeds up the convergence of the LSTD
 47 and enhances detection accuracy. Overall, the LSTD model
 48 demonstrates promise for managing robot operations in un-
 49 structured environments as well as presents insightful infor-
 50 mation for small tool detection development in the future.

51 3. Methodology

52 Following several iterations of development, the YOLO
 53 series has grown to be a well-liked family of object de-
 54 tection frameworks. YOLOv5, an anchor-based, one-stage
 55 detection method, is renowned for its excellent accuracy and

Table 1

Specifics of the LSTD output size of the feature, component, and connection technique.

No.	Module	From	Output size
0	CBR	-1	[32, 320, 320]
1	CBR	-1	[64, 160, 160]
2	RICC_v3	-1	[64, 160, 160]
3	CBR	-1	[128, 80, 80]
4	RICC_v3	-1	[128, 80, 80]
5	CBR	-1	[256, 40, 40]
6	RICC_v3	-1	[256, 40, 40]
7	AP	-1	[256, 40, 40]
8	CBR	-1	[128, 40, 40]
9	UpSample	-1	[128, 80, 80]
10	Concatenation	[-1, 4]	[256, 80, 80]
11	RIC	-1	[128, 80, 80]
12	CBR	-1	[128, 40, 40]
13	Concatenation	[-1, 8, 6]	[512, 40, 40]
14	RIC	-1	[256, 40, 40]
15	ASH	[11, 14]	[128, 80, 80]
			[256, 40, 40]

quick detection speed. Ultralytics made YOLOv5 publicity available, offering four distinct scale variants. The structure of YOLOv5, which consists of a head, neck, as well as backbone, is shown in Fig. 1. In order to extract features from the input, the backbone component downsamples the input four times. The neck component uses the Path Aggregation Network (PAN) and Feature Pyramid Network (FPN) architectures. YOLOv5's head structure consists of three linked heads. We used YOLOv5 as the basis for our study's LSTD algorithm, which we built as the baseline.

The architecture of our suggested LSTD is shown in Fig. 1. The three parts of LSTD are the Accurate Separated Head (ASH), the Integrated Feature Fusion (IFF), and the Dynamic Feature Extraction (DFE). The three primary modules of DFE are RICC (Robust Integrated Convolution based on CBAM), CBR(Convolution, Batch Normalization layer, ReLU function), and Adaptive Pooling (AP). The CBR, RIC (Robust Integrated Convolution), Concat, and UpSample modules make up the majority of IFF. The CBR module and 1×1 convolution make up the majority of the ASH.

Table 1 provides a detailed representation of the LSTD feature map variation, connecting components, as well as network composition. The model is small, with only 16 specially designed components. The entering information flow layer is indicated by the second column, where -1 denotes the layer that came before it. Customized modules are shown in Table 1's third column. The resulting feature map's dimensions—width, height, and number of channels—are listed in the last column. For instance, the feature maps from rows No. 9 and No. 4 are subjected to a Concat operation, as shown by the item [-1, 4] in row No. 10 of the table. A feature map with size [512, 80, 80] is produced by this process.

52 3.1. Dynamic Feature Extraction

The number of modules in DFE decreased and down-
 scaled input images multiple (2, 4, 8, and 16) in order to
 address the challenges presented by the decrease in feature

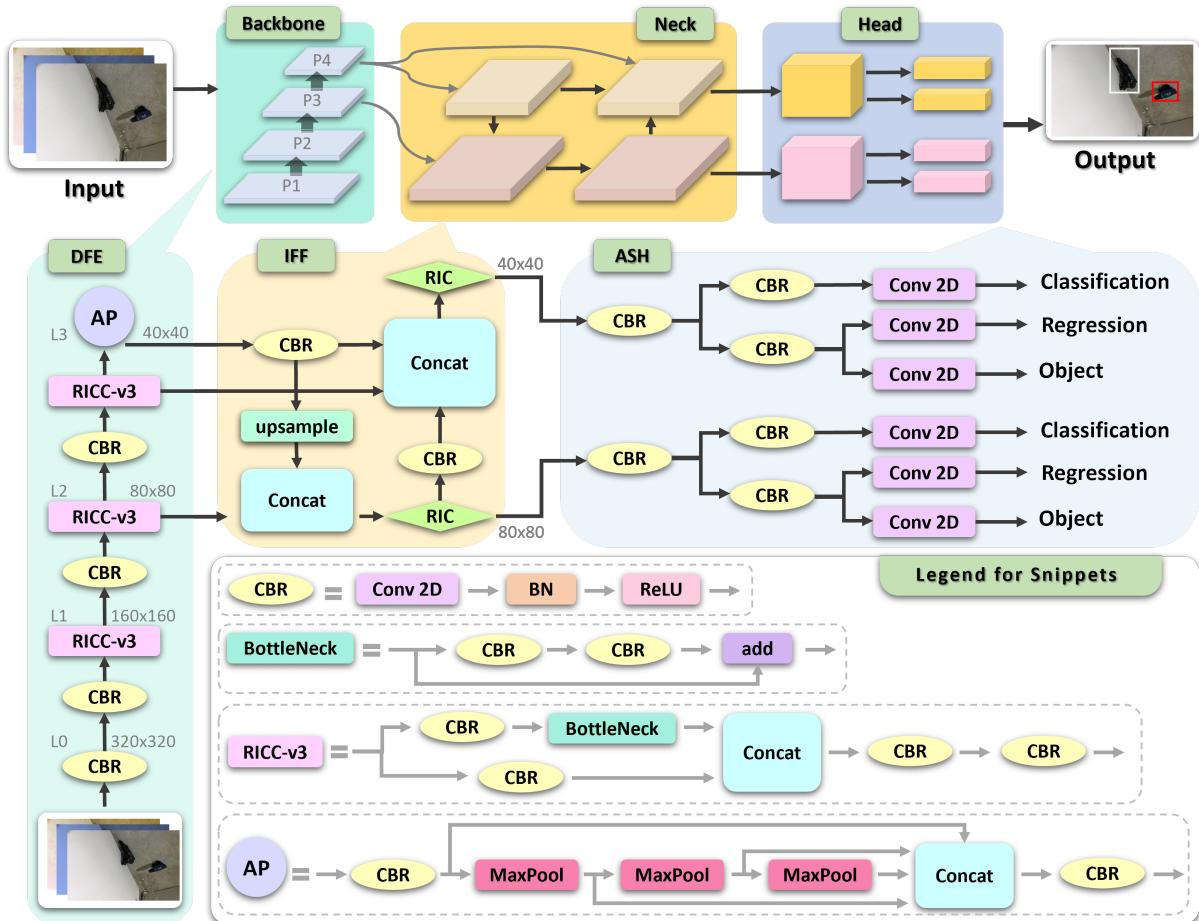


Figure 1: Overview of the LSTD architecture diagram based on YOLOv5. Three main parts make up the LSTD architecture, similar to YOLOv5: head, neck, and backbone. Components of the LSTD architecture are Dynamic Feature Extraction (DFE), Integrated Feature Fusion (IFF), and Accurate Separated Head (ASH).

dimension with more layers as well as the possible information loss brought on by smaller objects. By doing this, the feature maps' detail loss is decreased and smaller targets may be represented more accurately. We also included an attention technique to extract important information in an adaptable manner. DFE maintains a lightweight design while concentrating on useful feature information.

3.1.1. DFE Structure

Four layers make up the DFE, as seen in Fig. 1: one Lead Layer (L0), and three Level Layers (L1, L2, L3). A 6×6 convolutional kernel is present in the Lead Layer, which is a CBR module. It removes operations like channel concatenation and slicing in comparison to the baseline, which lowers the amount of parameters and computational cost. Every CBR module and every RICC module make up the initial pair of Level Layers (L1, L2). ReLU activation function, Batch Normalization layer (BN), and Conv2d with a 3×3 filter size make up the CBR module. Finally, the Level Layer (L3) includes the AP module. The two CBR components with a 1×1 filter size and the three Max-Pooling modules with a 5×5 filter size make up this AP

layer. In baseline, the Average Pooling module is less efficient than the AP module in capturing multi-scale contextual information. From Level Layers (L2) and Level Layers (L3), DFE creates an output with the size [4, 512, 40, 40] and [4, 256, 80, 80], which are then sent to IFF.

3.1.2. RICC Modules

Figure 2 illustrates the three RICC modules that we suggested in this study, namely RICC_v1, RICC_v2, and RICC_v3, based on the [37]. These modules are critical to receptive field extension, adaptive augmentation, and feature extraction.

RICC_v1: The input is initially processed via a Conv2d with filter size 1×1 in a CBR module, after which the output is sent to two routes. The branch path is unprocessed, while the main route passes via CBR modules with Conv2d with filter size 3×3 . Ultimately, a CBAM module receives the combined output feature maps from the two pathways.

RICC_v2: Initially, a Conv2d with filter size 1×1 CBR module with the input feature map reduces the channel dimension by half. Subsequently, the output is sent to two routes: the branch route remains unprocessed, while the

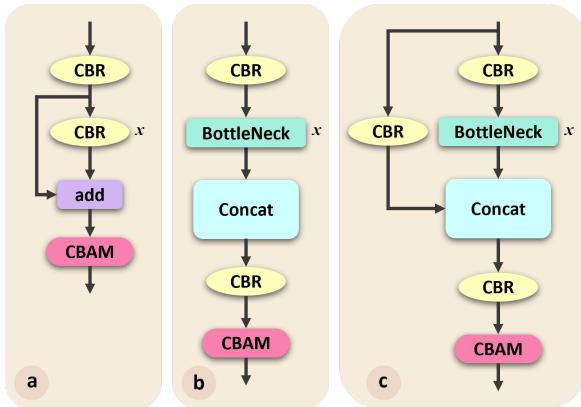


Figure 2: Three suggested RICC modules are illustrated. (a) RICC_v1, (b) RICC_v2, (c) RICC_v3.

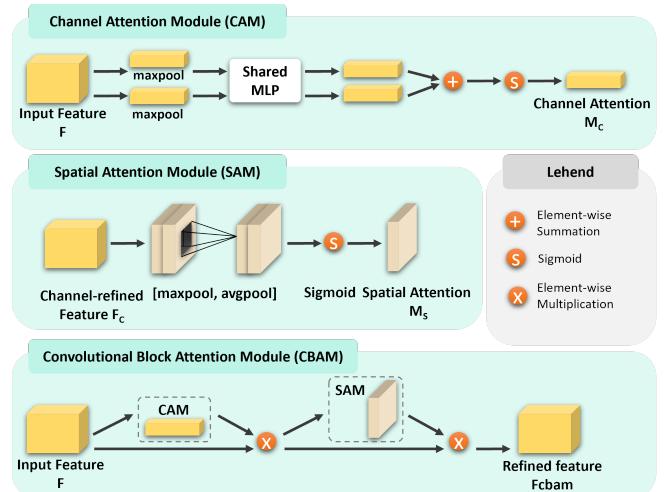


Figure 3: Overall architecture of CBAM that contains SAM and CAM.

1 primary route passes via the Bottleneck component. Sub-
2 subsequently, the two pathways' outputs are joined in the axis
3 of the channel. After that, the fused output passes via a
4 convolutional with kernel size 1×1 in a CBR module to
5 increase the channel dimension to the intended feature map
6 of output. Lastly, a CBAM component is used to filter the
7 spatial features as well as feature channels.

8 **RICC_v3:** The input initially follows multiple routes. 44
9 The primary route passes via the Bottleneck module after 45
10 passing via a CBR component with Conv2d with kernel 46
11 size 1×1 to decrease the channel dimension. The channel 47
12 dimension is further decreased by the branch route, which 48
13 passes via a CBR component Conv2d with kernel size 3×3 . 49
14 These two pathways' channel outputs are then concatenated. 50
15 After that, the integrated feature passes through a Conv2d 51
16 with kernel size 1×1 in a CBR component to increase the 52
17 channel dimension to the intended output channels. Lastly, 53
18 the spatial coordinates and feature channels are weighted 54
19 using a CBAM module. Furthermore, the Bottleneck com- 55
20 ponent has a residual design in which the input passes via 56
21 a shortcut link after passing via two Conv2d layers with 57
22 kernel size 3×3 . The ultimate output, a feature map, is 58
23 subsequently created by adding the input data to it. 59

24 After doing comparative studies on three RICC modules, 60
25 we decided to include the RICC_v3 module in DFE; the 61
26 specifics are provided in Section 3.3. There are variations in 62
27 the number of Bottlenecks in the three Level Layers (L1, L2, 63
28 and L3) of the RICC_v3 module. L1, L2, and L3 specifically 64
29 used 1, 2, and 3 bottlenecks, respectively, with 1, 2, and 3 \times 65
30 values in line.

31 **3.1.3. CBAM** 66
32 As noted above, in order to increase the accuracy of small 67
33 object detection, we decreased the number of network layers. 68
34 As a result, the contextual understanding of the feature was 69
35 weakened. Furthermore, the same background interferences 70
36 have a major impact on the proper identification of small 71
37 construction tools. Therefore, in order to improve recogni- 72
38 tion ability and concentrate on useful feature information, 73
39 we added an attention module to the different Level Layers 74

(L1, L2, and L3) of the DFE. In addition, the Convolution Block Attention Module (CBAM), suggested by Woo et al. [38], distinguishes itself from [39], [40], and [41] by being a lightweight attention module. It possesses the capability to adaptively boost the expressive capacity of crucial features of spatial dimension and channels. The two submodules that make up CBAM are the CAM and SAM, as seen in Fig. 3. First, CAM infers a feature map $M_c \in \mathbb{R}^{(C \times 1 \times 1)}$ from the input feature map $F \in \mathbb{R}^{(C \times H \times W)}$. SAM then infers a feature map $M_s \in \mathbb{R}^{(1 \times H \times W)}$. We included attention methods to improve recognition ability and concentrate on useful feature information in the three Level Layers (L1, L2, and L3) of the DFE.

50 'What' is significant in relation to an input is the focus of 51 the channel attention. First, average pooling and max pooling 52 processes are used to aggregate the input feature map for 53 spatial information. The shared multi-layer perceptron (MLP) 54 receives the aggregated feature map after that. Next, the 55 resultant feature vectors are combined using element- 56 wise summation. The sigmoid activation function is the final 57 step in obtaining channel attention feature maps. To put it 58 briefly, channel attention is calculated as follows:

$$M_c(F) = \sigma(\text{MLP}(\text{AvgPool}(F)) + \text{MLP}(\text{MaxPool}(F))) \quad (1)$$

59 The Sigmoid activation function operation is represented 60 by σ in the formula, the shared perceptron operation by 61 MLP, and the global average pooling and maximum pooling 62 operations by Avg-Pool and Max-Pool, respectively.

63 Where is an instructive portion of the feature map that 64 receives spatial attention. First, two $(1 \times H \times W)$ feature 65 maps are created from the channel attention module's output 66 using the max pooling and average pooling processes. Next, 67 a 7×7 convolution layer concatenates and convolves the 68 feature maps.

1 Ultimately, a 2D spatial attention map is created by using
 2 the Sigmoid function to make the spatial attention output. To
 3 put it briefly, spatial attention is calculated as follows:

$$M_s(F_c) = \sigma(f^{7 \times 7} ([\text{AvgPool}(F_c); \text{MaxPool}(F_c)])) \quad (2)$$

4 A 7×7 convolution process is represented in the formula
 5 by $f^{7 \times 7}$. The CAM processes the feature F first, producing
 6 the output F_c in the channel dimension. The SAM processes
 7 the feature F to make the F_{cbam} in the spatial dimension. One
 8 way to sum up the attention process generally is as follows:

$$F_c = M_c(F) \times F$$

$$F_{cbam} = M_s(F_c) \times F_c$$

3.2. Integrated Feature Fusion

10 The middle layer of the network architecture, known
 11 as the "feature fusion," creates feature maps containing
 12 multi-scale information and is utilized for feature fusion
 13 and information transfer across various layers. This research
 14 proposes an Integrated Feature Fusion (IFF), which can 50
 15 help the model generate accurate features with fewer pa- 51
 16 rameters. The feature fusion network is modified. Through 52
 17 examination of the information in Section 3.2, we see that 53
 18 small construction tools detection exhibit little variance in 54
 19 size and are generally modest in size. As a result, using 55
 20 the full FPN and PAN as seen in Fig. 4(a) is not required. 56
 21 Given the low pixel percentage of small tools, we elimi- 57
 22 nated the 32x downsampling layer from the PAN as well 58
 23 as FPN architecture, which is the lowest feature layer, in 59
 24 order to decrease the model size and improve flexibility. 60
 25 Fig. 4(b) depicts this structure. While making the model 61
 26 lighter and reducing computational complexity, simplifying 62
 27 the feature fusion network's structure may also make features 63
 28 less capable of being represented. Thus, as seen in Fig. 4(c), 64
 29 we created Integrated Feature Fusion (IFF) at the top layer 65
 30 based on the simplified network. In order to fuse multi- 66
 31 scale properties, IFF uses bidirectional connections. To be 67
 32 more precise, the bottom-up pathway uses downsampling 68
 33 to convey low-level detail information, whereas the top- 69
 34 down pathway uses upsampling to communicate high-level 70
 35 semantic information. Both high and low-level semantics 71
 36 are included in the fused feature. In order to get deeper 72
 37 semantic information and minimize detail loss, IFF also uses 73
 38 integrated links to combine features from higher levels. Two 74
 39 CBR modules, two RIC modules, one UpSample module, 75
 40 and two Concat modules make up IFF. For details on the 76
 41 precise arrangement and connections, please see Fig. 1. It is 77
 42 important to note that RICC is a reduced version of the RICC 78
 43 structure in DFE. For example, the final CBAM module 79
 44 is not present, and the BottleNeck module lacks a shortcut 80
 45 connection. Lastly, in accordance with the input from DFE, 81
 46 IFF sends two feature maps to the ASH. The corresponding 82
 47 tensor forms are $(4, 256, 80, 80)$ and $(4, 512, 40, 40)$. As a 83
 48 result, using the full FPN and PAN architectures as seen in 84
 49 Fig. 4(a) is not required.

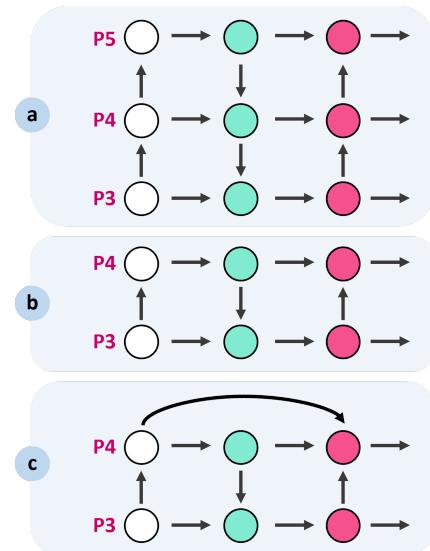


Figure 4: Overall Schematic of feature fusion. (a) FPN + PAN, (b) Simplified IFF, (c) IFF.

3.3. Accurate Separated Head

The discrepancy between the regression and classification tasks is a major problem in object detection. The baseline's coupled detection head shares parameters with the localization as well as classification branches. However, employing common parameters may result in spatial misalignment problems because of the somewhat uneven focus of the localization as well as classification tasks [42]. Ge et al. [43] experiments have demonstrated that switching out the YOLOv5 connected head for a decoupled one may greatly increase convergence speed and improve detection performance. ASH eliminates the Object branch and separates the regression and classification branches for independent prediction. Furthermore, in contrast to YOLOX, we further minimize model complexity and inference delay by lowering from 2 to 1 the number of conv2d with filter size 3×3 on both routes.

Fig. 5 shows how the ASH is structured. The following are the particular operations: First, a Conv2d with kernel size 1×1 is used to decrease the channel dimension of the IFF feature to 128 and 256, respectively. After that, it is divided into the regression as well as the classification branch, two parallel branches. A Conv2d with kernel size 3×3 is present in each branch for tasks involving regression and classification, respectively. The regression branch is expanded with an extra Object branch, and each branch is then subjected to an additional 1×1 convolution process. Furthermore, the regression branch forecasts the target's Object (confidence information) and regression (bounding box information), while the classification branch is in charge of forecasting the target's Classification (classification information). With two effectively separated heads, LOSD produces two different final output tensor shapes: $(4, 7, 80, 80)$ and $(4, 7, 40, 40)$.

This work proposes the anchor-based object identification algorithm LOSD. By employing the scale of the objects

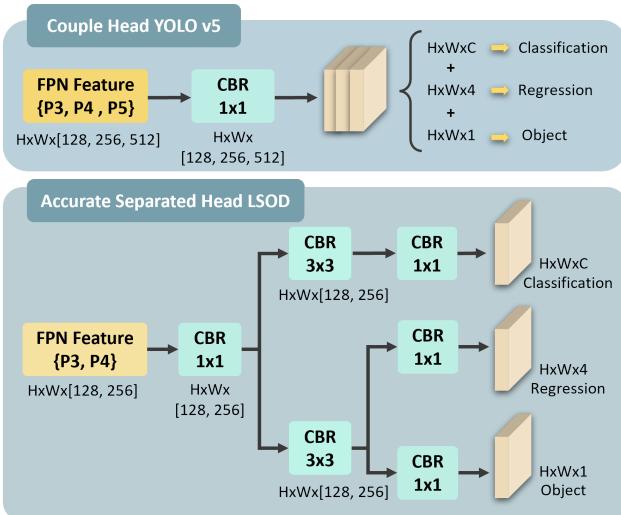


Figure 5: Overall structure of YOLOv5 head and the proposed ASH.

such as background diversity, illumination changes, occlusions, and resolution variations, all of which are prevalent in challenging construction site environments.

3.5. Experiment

Windows 11 is the operating system utilized in this paper, and CUDA version 11.8 is employed. The machine used for the trials included an Intel Core i7 13620H CPU and an NVIDIA GeForce RTX 4060 Laptop GPU. PyTorch 1.10.1 is used with Python 3.9 as the development language. The Adam optimizer [46] was used, with an initial learning rate of 0.0009 and a Cosine learning rate decay strategy. A weight decay of 0.0005 was applied to regularize the model. The loss function was the Focal Binary Cross-Entropy, with gamma set to 2 and alpha set to 0.25 for focal weighting. The model was trained for 200 epochs, with a batch size of 4. The detection findings can be categorized as true positive (TP), false positive (FP), true negative (TN), and false negative (FN) based on these studies. We present all the measures that are utilized in this research, such as FLOPs, mean average precision (mAP), recall (R), precision (P), and F1 score. In particular, recall (R) and precision (P) are defined as:

$$P = \frac{TP}{TP + FP} \times 100\%$$

$$R = \frac{TP}{TP + FN} \times 100\%$$

here recall is calculated by dividing the number of true positives by the sum of the true positives and false negatives, and precision is calculated by dividing the number of true positives by the sum of the true positives and the erroneous positives.

The AP for many categories is referred to as the mAP, and AP is defined as follows:

$$AP = \int_0^1 p(r) dr \quad (3)$$

In addition, the average mAP over various intersection over union (IoU) thresholds (from 0.5 to 0.95, step 0.05) is represented by mAP@0.5:0.95.

The mAP and recall, or F1-score, is a useful metric for assessing a model's overall performance in detection tasks. The F1-score is defined as follows and its value goes from 0 to 1.

$$F1\text{-score} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \quad (4)$$

FLOPs is a measure of how many floating point operations the model needs to perform to simulate the output. It is an important indicator of the complexity of the model and can be used to compare to other models.

4. Result and Discussion

We carried out eight tests to assess the effectiveness of the suggested LOSD model, which are detailed in the results section.

Table 2

Influence of augmentation on the LSTD.

Dataset type	P(%)	R(%)	mAP(%)
Original	82.4	80.8	84.2
Augmented	85.0	83.5	87.3

4.1. Data Augmentation Effect

We validate our approach on the original dataset and on-the-fly (online) augmented dataset in order to look into the effects of data augmentation methodologies on the metrics. The augmentation strategy comprises various operations, including horizontal flipping, median blur, spatial shifting, adjustments in brightness and HSV, mosaic application, and the incorporation of Contrast Limited Adaptive Histogram Equalization (CLAHE) and simulated fog effects. The training dataset was the sole variable in the experimental setting, with all other parameters remaining constant. Table 2 displays the experimental outcomes. On-the-fly augmentation produced gains of 2.3% in recall, 3.4% in precision, and 3.1% in mAP over the original dataset. With recall, precision, and mAP of 83.5%, 85.0%, and 87.3%, respectively, the On-the-fly augmentation approach produced noteworthy gains in all measures in comparison to the original dataset. Thus, the On-the-fly augmentation technique used in this work successfully improves LSTD's detection performance.

4.2. Effect of Different Module

This study made several changes to the baseline model's structure according to the traits of small tools detection and the requirement to improve construction safety. We validated our approach on the suggested IFF to confirm the viability and efficacy of the changes. It should be noted that the baseline model was used for these trials, and no further modifications indicated in the study were used; instead, the only emphasis was on structural validation. Table 3 shows that the number of parameters and layers dropped to 6.69 M and 107 respectively, as well as the FLOPs dropped by 4.5 G after the 32x downsampling layers in the baseline model's neck and backbone were removed. Meanwhile, the mAP significantly increased by 2.1%. The mAP rose from 86.2% to 87.3% with IFF, while the FLOPs and number of parameters increased slightly to 11.3 G and 1.85 M, respectively. IFF adds top-layer integration connections in comparison with FFN. The DFE + IFF architecture obtained a 7.2% gain in mAP, a 73% decrease in parameters, as well as a 29% reduction in computation when compared to FPN + PAN. Thus, it can be said that despite significantly lowering the number of parameters, the suggested DFE + IFF architecture enhances small tools detection ability.

The experimental outcomes of the three robust integrated components suggested in the LSTD architecture are shown in Table 4. It is evident that the best detection performance is obtained when the RICC_v3 module is utilized. It uses the fewest parameters while achieving the best accuracy, recall, and mAP when compared to RICC_v1 and

Table 3

Comparison evaluation of three network architectures, PAN + FPN, DFE + FFN, and DFE + IFF on the test dataset.

Architecture	Layer	mAP (%)	Param (M)	FLOPs (G)
PAN+FPN	157	80.1	6.69	15.6
DFE + Simple IFF	107	83.2	1.79	11.1
DFE + IFF	107	83.9	1.85	11.3

Table 4

Comparison evaluation of three robust integrated convolution modules.

Component	mAP (%)	R (%)	P (%)	Param (M)
RICC_v1	83.4	81.3	82.2	4.10
RICC_v2	83.5	82.1	81.4	3.40
RICC_v3	87.3	83.5	85.0	2.87

Table 5

Utilization of different attention mechanisms in the LSTD and examination of their results.

Module	P (%)	R (%)	mAP (%)	Param (M)
Baseline w/o attention	81.2	80.6	84.7	2.86
SE	83.6	81.3	85.4	2.87
CA	82.4	83.6	86.1	2.87
SimAM	83.2	81.3	85.0	2.86
CBAM	85.0	83.5	87.3	2.87

RICC_v2. For this reason, we decided to use the RICC_v3 module in this study to extract features from DFE.

4.3. Evaluating various attention mechanisms on LSTD

In this research, attention methods are included in the three Level layers (L1, L2, and L3) of DFE to improve the feature extraction capabilities. Using the expanded dataset and the suggested LSTD model, we carried out five comparison experiments to investigate the efficacy of attention modules in small tools detection: with the SE module, the CA module, the SimAM module, the CBAM module, and without the attention module. Table 5 shows that the baseline using the CBAM had the greatest mAP (87.3%) and precision (85%) while the baseline using the CA had the highest recall (83.6%). It is important to note that adding attention modules to any experiment almost completely prevented the model's parameter size from growing. In general, the CBAM-equipped LSTD model performs the best. The explainable results of LSTD employing various attention modules are shown in Fig. 6.

Fig. 6 depicts the activation maps produced by the explainable Grad-CAM method in both simple and complicated situations, respectively. It is evident from the numbers that LSTD primarily targets small construction tools. Small construction tool identification is greatly impacted by comparable backgrounds, as was seen in the prior loss study. Additionally, the goal of this study is to develop a cutting-edge small tools detection model for monitoring safety and robots, specifically designed to identify and discriminate among

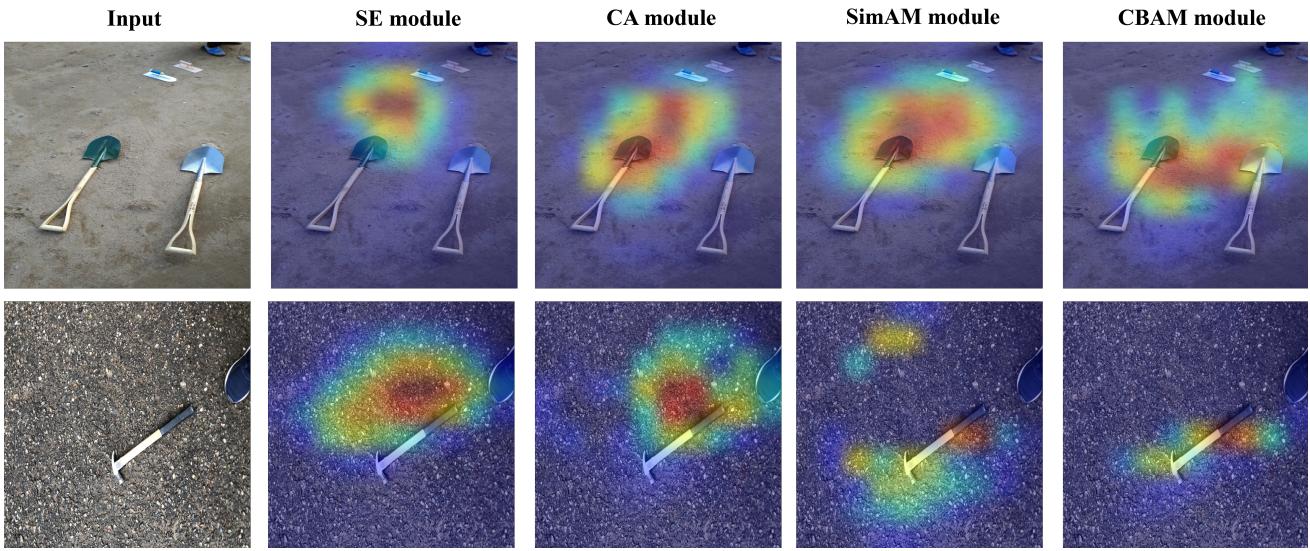


Figure 6: Grad-CAM visualizations generated by various attention modules.

1 various tools. To achieve this precision, the algorithm will 37
 2 be tailored to differentiate between tools positioned in the 38
 3 foreground and those in the background. Also, LSTD shows 39
 4 off a creative method for differentiating between small tools 40
 5 in the background and foreground. This feature of LSTD 41
 6 highlights how it may mimic some parts of human cogni- 42
 7 tive capacities, including perception and decision-making 43
 8 processes. Moreover, another area of interest for LSTD in 44
 9 the picture is the area containing small tools. It is evident 45
 10 from the class activation maps that distinct attention modules 46
 11 show differing levels of concentration on the small tools. 47
 12 In both complicated and straightforward circumstances, the 48
 13 LSTD architecture with the CBAM provides a more precise 49
 14 focus on the object zone and places greater attention on small 50
 15 tool regions. The SimAM and CA concentrate on specific 51
 16 locations in the complicated scenario, but the SE module has 52
 17 a lesser concentration on small tools. When compared to the 53
 18 CBAM, the SimAM, SE, and CA focus less on the small tool 54
 19 area in the simple scenario. According to the experimental 55
 20 results, the LSTD with the CBAM is able to identify small 56
 21 tools in the background and foreground more clearly, as well 57
 22 as concentrate and focus more effectively in that area. 58
 23

4.4. Ablation Study

24 We carried out tests to evaluate the model's performance 60
 25 incrementally after each modification in order to further 61
 26 examine the efficacy of the improvement methodologies 62
 27 suggested in this research. Table 6 displays the test procedure 63
 28 and ablation experiment outcomes. The data shows that the 64
 29 B model, which uses the DFE + IFF architecture, reaches a 65
 30 73% decrease in parameters to 1.85 M from 6.69 M while 66
 31 maintaining a little greater recall and accuracy compared to 67
 32 the baseline. Based on the B model, the C model increases 68
 33 the number of parameters by a small amount and improves 69
 34 recall, accuracy, mAP@0.5:0.95, and mAP. This is achieved 70
 35 by adding the ASH component. The CBAM module was 71
 36 added to the C model to create the LSTD model, which 72

exhibits improvements in mAP@0.5:0.95, mAP, and precision but a minor decline in recall. In addition, our suggested LSTD model outperforms the baseline (A) model by 7.6%, 7.2%, 4.9%, and 6.8% in mAP@0.5:0.95, mAP, recall, and precision, achieving 77.8%, 87.3%, 83.5%, and 85%, respectively, with just 2.87 M parameters—a 57% decrease. The ablation experiment results show how efficient the enhancement tactics suggested in this study are, especially when it comes to lowering the number of parameters and improving detection accuracy. Also, the ASH component adds more to recall, the CBAM enhances accuracy more, and the DFE + IFF architecture has a bigger effect on the parameters.

In addition, LSTD, representing the fully augmented model, emerges as the top-performing method across all tools as shown in Fig. 7. For instance, LSTD achieves an accuracy of 82.87% for Cutter (CU) and 84.16% for Hammer (HA), outperforming configurations A, B, and C. Notably, the introduction of attention-guided spatial highlighting (ASH) and Convolutional Block Attention Module (CBAM) consistently contributes to performance improvement. For tools like Grinder (GR), LSTD attains remarkable accuracy at 90.18%, underscoring the efficacy of the proposed method. The attention mechanisms, particularly CBAM, play a pivotal role in elevating overall performance, evident in the substantial improvements from configuration B to LSTD across various tools. This ablation study provides valuable insights into the cumulative impact of depthwise feature enhancement, instance-level feature fusion, attention-guided spatial highlighting, and CBAM in enhancing small tool detection in construction site scenarios.

4.5. LSTD test results

The LSTD model's confusion matrix is displayed in Fig. 8. The anticipated labels are shown by the vertical axis, and the genuine labels are represented by the horizontal axis. The major diagonal probabilities indicate the likelihood that each

Table 6

Effects of each component on the performance of LSTD.

Model abbreviation	Components					Metrics				
	Baseline	DFE	IFF	ASH	CBAM	mAP@0.5:0.95 (%)	mAP (%)	R (%)	P (%)	Param (M)
A	✓					70.2	80.1	78.6	78.2	6.69
B	✓	✓	✓			74.2	83.9	80.1	80.2	1.85
C	✓	✓	✓	✓		77.2	84.7	80.6	81.2	2.86
LSTD	✓	✓	✓	✓	✓	77.8	87.3	83.5	85.0	2.87

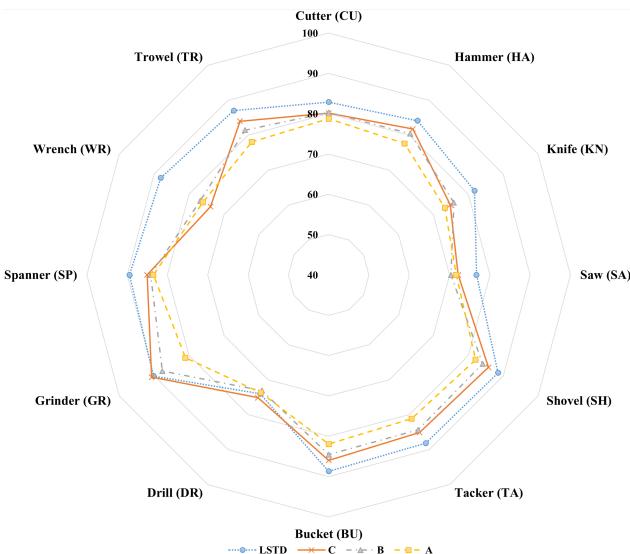


Figure 7: Radar chart for each category of objects in the test dataset, with different modules represented by different colored lines based on Table 6, displaying precision values.

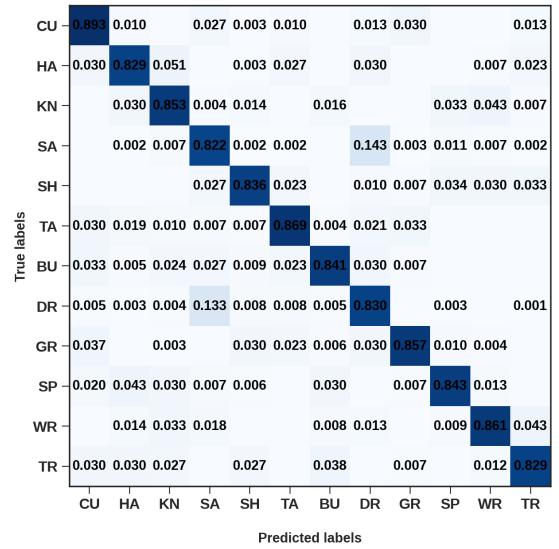


Figure 8: Comprehensive insight into Model Performance by Confusion matrix that shows the accuracy of each object.

goal of this research is to create a detecting algorithm that can be used for robots or monitoring safety.

Another crucial metric for assessing the model's effectiveness is its capacity for generalization. Three distinct tool kinds, namely big (closer to camera) tool, medium, and very small, were utilized to obtain the generalization precision of the LSTD model, as seen in Fig. 6. The graphic shows that the model can identify tools from the background and recognize and categorize big tools with accuracy. Although the algorithm can detect the tools quite correctly. The LSTD works well for very small and big tools simultaneously.

Three distinct datasets of construction site settings, including intense illumination, subdued illumination, and misty conditions, were produced in order to evaluate the detection ability of the LSTD model in difficult scenarios. The particular test results are listed in Table 7. The subdued illumination situation yielded the best result (precision = 84.7%) and F1-score (84.1%) for small tools detection. Overall, the LSTD showed high accuracy in situations with intense illumination, subdued illumination, and misty conditions; however, scenarios with misty conditions and intense illumination had a greater impact on the detection performance.

category will be correctly classified. The precision of misclassification is shown by the numbers off the main diagonal, which indicates that overall, misclassification happens less frequently.

Using mAP as the assessment metric, we ran seven iterations of tests on the LSTD and baseline models to verify the validity of the training outcomes. Analysis of variance was used to examine the experimental outcomes for small objects, and this indicates that the difference between the total means of the two approaches was statistically significant (significant level of 0.05) and that it could be concluded that the results had a meaningful difference. The LSTD and Baseline models differ significantly from one another, indicating the dependability of our suggested approach.

Fig. 9 displays the LSTD result in the following unstructured environments: (a) standard illumination, (b) intense illumination, (c) subdued illumination, and (d) misty conditions. Although the environment has a notable effect on the model performance, LSTD is still able to identify the categories and detect small tools under conditions like misty conditions, intense illumination, and subdued illumination. It is evident that the suggested LSTD model has strong resilience and flexibility in intricate external contexts. The

goal of this research is to create a detecting algorithm that can be used for robots or monitoring safety.

Another crucial metric for assessing the model's effectiveness is its capacity for generalization. Three distinct tool kinds, namely big (closer to camera) tool, medium, and very small, were utilized to obtain the generalization precision of the LSTD model, as seen in Fig. 6. The graphic shows that the model can identify tools from the background and recognize and categorize big tools with accuracy. Although the algorithm can detect the tools quite correctly. The LSTD works well for very small and big tools simultaneously.

Three distinct datasets of construction site settings, including intense illumination, subdued illumination, and misty conditions, were produced in order to evaluate the detection ability of the LSTD model in difficult scenarios. The particular test results are listed in Table 7. The subdued illumination situation yielded the best result (precision = 84.7%) and F1-score (84.1%) for small tools detection. Overall, the LSTD showed high accuracy in situations with intense illumination, subdued illumination, and misty conditions; however, scenarios with misty conditions and intense illumination had a greater impact on the detection performance.

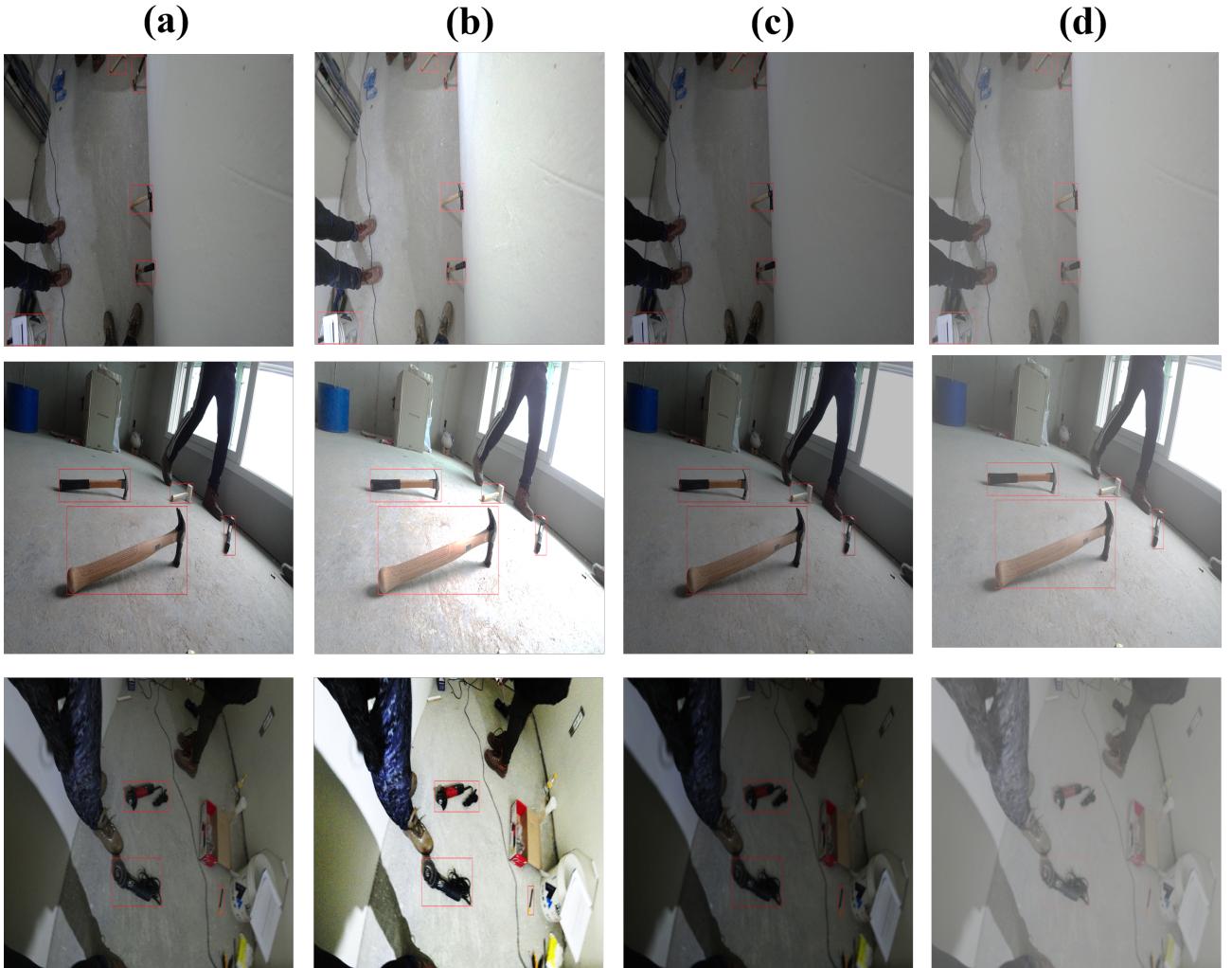


Figure 9: LSTD model's performance has proven to be consistent across different environment conditions, including (a) standard illumination, (b) intense illumination, (c) subdued illumination, and (d) misty conditions. The image shows a cluttered construction site with scattered tools in workplace, including hammers, knives, and cutters on the floor. This presents a significant tripping hazard for workers moving through construction sites.

Table 7

Effects of different brightness conditions on the performance of LSTD.

Dataset	P (%)	R (%)	mAP (%)	F1-score(%)	CDR(%)	EDR(%)	MDR(%)
intense illumination	82.2	82.6	85.7	82.4	84.6	6.4	15.4
subdued illumination	84.7	84.1	86.1	84.4	84.1	5.8	15.9
misty conditions	83.7	81.8	86.4	84.7	83.9	7.1	16.1

4.6. LSTD Robustness

Various external noises might create interference during the actual small tools detection procedure. For instance, problems like too little or too much illumination or misty conditions might exist. As a result, the detection algorithm that is created must be very resilient to noise and flexible. The LSTD model's detection ability in various construction site conditions will be evaluated in the future using four test datasets: misty conditions, intense illumination, standard illumination, and subdued illumination. Also, the

normal light dataset's photos are subjected to brightness reductions (-30%), brightness enhancements (+30%), and fog additions (+30%) to produce the subdued illumination, intense illumination, and misty conditions datasets, respectively. As a result, for every extensive experiment, the quantity, classes, as well as locations of the labeled BBs for associated images are all the same. As seen in Fig. 9, we displayed the LSTD model's detection results for small tools in various environmental conditions. Although there are a few cases of wrong detection, the image illustrates

Table 8

Comparison of LSTD performance with state-of-the-art models.

Model	mAP (%)	Param (M)
Efficientnetv2	80.6	20.67
Lcnet	80.4	1.96
Ghostnet	80.2	1.08
Mobilenetv3	78.5	1.97
YOLOv8 - Small	84.3	11.15
YOLOv7 - Tiny	83.1	6.03
YOLOv6 - Small	83.2	17.18
YOLOv5 - Small	80.1	6.69
YOLOv3 - Tiny	82.2	2.18
LSTD (ours)	87.3	2.87

following are the specific contributions made by this paper: (1) To increase the generalization and resilience of the model, on-the-fly data augmentation techniques are used to semantic enlarge the original dataset. (2) DFE is proposed To improve the feature extraction performance for small tools. (3) To achieve lighter weight and richer feature representations, an IFF is suggested. (4) To enhance the background interference discriminating capability, an ASH is employed. In comparison to sophisticated object identification algorithms, the suggested technique achieves greater detection accuracy for small tools in complicated construction site conditions while displaying superior robustness, adaptation, and generalization in unstructured sites. This approach may also be used in monitoring safety and robots that are used in construction sites.

1 how well our suggested LSTD model can detect small tools
 2 in various settings. The experimental findings show that
 3 while intense illumination in the construction site has a
 4 significant influence, misty conditions have little effect on
 5 the LSTD model's detection ability. Thus, one avenue for
 6 future development is to enhance the detection accuracy in
 7 misty conditions.

4.7. Comparisons with state-of-the-art model

9 We contrasted the LSTD model with the most advanced
 10 object identification techniques in order to further corroborate
 11 the effectiveness of the suggested methodology.

12 Table 8 lists the models that are being compared. Ac-
 13 cording to Table 8, LSTD reaches the maximum mAP value
 14 of 87.3%. LSTD demonstrates higher mAP values, show-
 15 cing improvements of 4.1% compared to the recently
 16 published YOLOv7-Tiny [47] when the number of param-
 17 eters decreases by 52.3%. Similarly, when contrasted with
 18 YOLOv6-Small[48], LSTD reveals a notable mAP increase
 19 of 2.2%, emphasizing its enhanced detection performance
 20 with significant reductions in the number of parameters to
 21 83.3% against YOLOv8-Small, LSTD exhibits a substantial
 22 improvement of 3.0% in mAP, highlighting its superior
 23 object detection capabilities when the number of parameters
 24 decreases by 74.2%. Furthermore, although LSTD has a bit
 25 more parameters than Ghostnet [49], YOLOv3-Tiny [50]
 26 Mobilenetv3 [51], and Lcnet [52], the LSTD mAP is higher
 27 than them significantly. As a result, the LSTD's high mAP
 28 and comparatively limited number of parameters lead to an
 29 impressive overall performance.

4.8. Discussion

31 Accurate small tool detection in unstructured construc-
 32 tion sites is difficult due to a number of factors, including
 33 illumination and mistiness. The goal of this work is to create
 34 a detection architecture for monitoring safety and robots. In
 35 order to tackle these problems, a LSTD method for detecting
 36 small tools in intricate and unstructured construction sites
 37 is suggested. With fewer parameters and computation, this
 38 algorithm's unique neural network design delivers excellent
 39 detection accuracy. Furthermore, enhancements to the head
 40 and backbone networks efficiently mitigate interference. The

56 The lightweight and efficient nature of our proposed
 57 LSTD model, demonstrated by the significant reduction
 58 in parameters (73%) and computations (28%) compared to
 59 YOLOv5, makes it a promising candidate for integration
 60 into existing safety monitoring systems or robotic platforms
 61 used on construction sites. Although explicit evaluations
 62 on edge devices were not conducted in this study, the low
 63 computational requirements and compact architecture of our
 64 model suggest its suitability for deployment on resource-
 65 constrained devices or embedded systems commonly found
 66 in construction site monitoring setups. The ability to accu-
 67 rately detect and localize small construction tools in real
 68 time is crucial for enabling proactive safety measures and
 69 interventions. By integrating our LSTD model into on-site
 70 monitoring systems, potential hazards such as tools being
 71 dropped, misplaced, or left in high-risk areas can be iden-
 72 tified in a timely manner. This real-time awareness can
 73 trigger various safety protocols and warning mechanisms
 74 to mitigate risks and prevent accidents. For instance, upon
 75 detecting a tool in an unauthorized or hazardous zone, auto-
 76 mated alerts or notifications can be sent to site supervisors
 77 or workers in the vicinity, prompting immediate action to
 78 secure the tool or evacuate the area if necessary. Addition-
 79 ally, real-time tool tracking can support the implementation
 80 of standardized tool storage and management procedures,
 81 ensuring that tools are properly accounted for and stored
 82 in designated areas when not in use. Furthermore, the in-
 83 tegration of our LSTD model with robotic platforms or
 84 autonomous systems employed for construction site mon-
 85 itoring can enable autonomous detection and response to
 86 potential hazards. Robots equipped with our model could
 87 actively patrol the site, identifying and flagging instances of
 88 misplaced or dropped tools, and even potentially retrieving
 89 or securing them to prevent accidents.

90 While the current study focuses on demonstrating the
 91 lightweight and accurate performance of our LSTD model,
 92 future work should involve explicit evaluations on various
 93 edge devices and embedded systems commonly used in
 94 construction site monitoring scenarios. By assessing the
 95 model's inference times and resource requirements on these
 96 target platforms, we can further validate its real-time ca-
 97 pabilities and suitability for deployment in practical safety

1 monitoring applications. Moreover, additional research can 54
 2 explore the seamless integration of our model with exist- 55
 3 ing safety monitoring systems, robotic platforms, and site 56
 4 management software. Developing user-friendly interfaces, 57
 5 alert mechanisms, and decision-support tools based on real- 58
 6 time tool detection outputs can facilitate the adoption of our 59
 7 approach and enhance its practical impact on construction 60
 8 site safety. 61

9 The need for lightweight models for detecting small 62
 10 objects in construction sites arises from several practical 63
 11 considerations. In this case, construction sites often have 64
 12 limited access to high-performance computing resources, 65
 13 making it challenging to deploy computationally intensive 66
 14 models on-site. Lightweight models can be more easily 67
 15 deployed on edge devices or embedded systems with modest 68
 16 hardware capabilities. To put it in another way, edge devices 69
 17 and robotic systems used for on-site monitoring may have 70
 18 power and battery constraints, making it essential to use effi- 71
 19 cient models that minimize energy consumption while main- 72
 20 taining high accuracy. Also, in many construction safety 73
 21 scenarios, real-time monitoring and immediate detection of 74
 22 potential hazards are crucial. Small tools, despite their size, 75
 23 can pose significant risks if mishandled or left unattended. 76
 24 A lightweight model can enable faster inference times, al- 77
 25 lowing for more responsive safety monitoring and hazard 78
 26 detection. Specific examples where immediate detection of 79
 27 small tools is essential include: 80

- Small tools inadvertently dropped from heights can pose serious risks to workers below. Immediate detection of such incidents can trigger alerts or safety measures to prevent injuries. 81
- Certain tools, if used incorrectly or in unauthorized areas, can create hazardous situations. Real-time detection can enable timely interventions or safety reminders. 82
- Misplaced or stolen tools can disrupt workflows and potentially lead to unsafe practices. Immediate detection can aid in tool tracking, management, and accountability. 83
- By integrating small tool detection with worker tracking, unsafe behaviors or proximity violations involving tools can be identified and addressed promptly. 84

43 While modern robots may have GPU capabilities to run 98
 44 computationally intensive models, the use of lightweight 99
 45 models can still offer advantages in terms of power effi- 100
 46 ciency, reduced hardware requirements, and the potential for 101
 47 deploying multiple models concurrently for various safety 102
 48 monitoring tasks. Furthermore, as construction sites evolve 103
 49 and incorporate more edge devices, sensors, and Internet 104
 50 of Things (IoT) technologies, the demand for efficient and 105
 51 lightweight models will become increasingly important to 106
 52 enable real-time safety monitoring and decision-making at 107
 53 the edge. 108

As can be observed from the results of the ablation experiment (Table 6), the addition of ASH increases the parameters, while also achieving overall better results. Anchor-based detectors are somewhat more sophisticated since they need to do clustering analysis before the learning phase in order to identify the ideal anchor set. The act of moving detection results between hardware adds extra delay in particular specific edge applications. Conversely, the anchor-free method can increase detection speed and has a simpler decoding logic [43]. As a result, by using the without anchor approach to decrease the parameters and increase speed, the model may be further improved.

With an accuracy of just 87.3%, the robustness of the model (Table 7) shows that the LSTD model's detection ability in the misty scenario is rather weak. The model's detection efficacy may be lowered in the misty conditions, which might result in missed detections. As a result, in order to enhance the model's adaptability to this setting and bolster the LSTD model's resilience, it is feasible to include an even greater number of misty conditions input in the training.

Comparisons with smaller or lightweight state-of-the-art architecture showed that LSTD earned the highest mAP, demonstrating the effectiveness of our improvement efforts based on extracting useful features. Extracting relevant feature information from tiny targets is the main goal of the DFE. The lightweight aspect of the model is maintained while acquiring richer feature representations through the use of the IFF. The model's detection performance is further improved by the use of ASH. Furthermore, it is allowed to slightly raise the parameter of LSTD in order to considerably enhance detection precision, even though the parameter size is not minimum.

4.9. Limitation

This study presents promising results and significant advancements in small tools detection in construction environments, however, it still has some limitations, like any other research project. Nonetheless, our primary goal was to overcome the shortcomings of current methods for detecting small tools in intricate and unstructured construction sites. The design of the proposed method allows us to model the system dynamics smoothly with fewer parameters and computation and capture the complex interactions among features. Firstly, the effectiveness of our proposed LSTD model can be influenced by environmental conditions such as illumination levels and mistiness. While we have demonstrated robustness across various scenarios, including intense illumination, subdued illumination, and misty conditions, further research may be needed to enhance the model's adaptability to extreme environmental conditions. Additionally, although our proposed LSTD model achieves superior performance with relatively fewer parameters compared to some state-of-the-art models, there is ongoing research to optimize model complexity further without compromising detection accuracy. Striking a balance between model complexity and efficiency is crucial for real-world deployment. While our lightweight approach is designed to be suitable for

1 edge device deployment, we did not explicitly implement or 57
 2 test the model on actual edge devices in this study. Future 58
 3 work will involve evaluating the model's performance and 59
 4 conducting experiments on various edge computing plat- 60
 5 forms to validate its real-time capabilities and resource ef- 61
 6 ficiency in practical construction site monitoring scenarios. 62
 7 However, the proposed method has specific advantages over 63
 8 those methods, especially in the context of the task we 64
 9 focus on, where we are interested in detecting small tools 65
 10 in intricate and unstructured construction sites, and extract- 66
 11 ing comprehensive features when applying ASH, DFE, and 67
 12 IFF. Also, it is true that the proposed method falls within 68
 13 the broader domain of small object detection, we want to 69
 14 emphasize that our focus is specifically on detecting small 70
 15 tools in intricate and unstructured construction sites. 71

16 One limitation of our study is that, while the dataset 72
 17 was carefully curated to include variations in factors such 73
 18 as background diversity, occlusions, and resolution changes, 73
 19 our experimental evaluation primarily focused on the impact 73
 20 of fog and lighting conditions on the model's performance. 74
 21 Due to the lack of comprehensive metadata in the dataset 75
 22 regarding other factors, we were unable to quantitatively 76
 23 evaluate the robustness of our approach to these additional 77
 24 challenges. While this dataset aimed to capture a diverse 78
 25 range of real-world conditions encountered in construction 79
 26 sites, the explicit evaluation of our model's performance 80
 27 under varying levels of occlusion, background complexity, 81
 28 and resolution changes was not conducted. Future work 82
 29 should incorporate detailed annotations and controlled ex- 83
 30 periments to assess the model's resilience to these factors, 84
 31 which are known to influence the performance of object 85
 32 detection methods in practical scenarios. Furthermore, col- 86
 33 lecting and annotating additional data with an emphasis on 87
 34 these specific factors would enable a more comprehensive 88
 35 evaluation of our approach's capabilities and potential lim- 89
 36 itations in handling the full spectrum of challenges present 90
 37 in construction site environments. However, it's essential to 91
 38 note that the data utilized in our study is a small tools dataset 92
 39 [11], currently the largest dataset available for this specific 93
 40 domain. This dataset comprises real-world image capture in 94
 41 standard settings, providing a diverse range of construction 95
 42 site contexts. We have meticulously processed these images 96
 43 to enable comprehensive testing of our proposed model's 97
 44 detection capabilities for different small tools in intricate and 98
 45 unstructured construction sites. As a limitation, it is crucial 99
 46 to highlight that due to the unique labeling process and the 100
 47 distinctive number of classes in the used datasets compared 101
 48 to other existing datasets, we faced challenges in testing our 102
 49 model on alternative datasets to evaluate the generalization 103
 50 of the proposed method. The lack of a standardized labeling 104
 51 schema and class distribution in other datasets limits the 105
 52 direct applicability of our model beyond the used datasets. 106
 53 Despite these constraints, we have conducted a series of 107
 54 extensive experiments on the dataset [11] to showcase the 108
 55 effectiveness of our proposed in detecting small tools in 108
 56 intricate and unstructured construction sites. 109

Also, our future research directions include refinement of environmental adaptability, further investigation into techniques to enhance the model's adaptability to extreme environmental conditions, such as misty environments or varying illumination levels. Additionally, tailoring the LSTD model for specific applications within the construction domain, considering factors such as camera placement, scene complexity, and tool diversity, to optimize detection performance is a priority. Furthermore, incorporating real-time feedback mechanisms into the LSTD model to enable continuous learning and adaptation in dynamic construction environments is an important avenue for exploration. By addressing these limitations and pursuing future research directions, we aim to further advance the field of small tools detection in construction environments and contribute to the development of safer construction practices.

5. Conclusions

This paper presents LSTD, a Lightweight Small object detection architecture for difficult and unstructured construction sites. By utilizing on-the-fly data augmentation techniques, the mAP, recall, and precision are increased by 3.1%, 2.7%, and 2.6%, respectively, in comparison to the original dataset. In comparison to the PAN + FPN architecture in the YOLOv5, the DFE + IFF architecture achieves a 73% decrease in parameters and a 27% reduction in computation. The advantages of CBAM integration allow the LSTD to reach the highest precision (85%) and mAP (87.3%). In addition, it increases the LSTD capacity to concentrate on small tool areas. The influence of the DFE + IFF network topology is further demonstrated by the ablation experiment, whereby the CBAM module enhances accuracy and the ASH module effects more on recall. Additionally, the study shows that misty condition in construction sites has a more significant effect on the LSTD's detection ability than illumination. The suggested object identification approach obtains the greatest mAP (87.3%) when compared to other cutting-edge techniques.

To automate the monitoring of safety in construction sites, the proposed LSTD model could be incorporated into robotic systems to monitor onsite small tools for worker safety enhancement and tool tracking and management. Further study will investigate more to make sure it can reach the necessary speed and accuracy when deployed on edge devices. To further enhance the model's capacity to discriminate between small tools, it is also worthwhile to investigate the incorporation of complicated construction site environments into the model input. Also, given the properties of small tools, it is promising to investigate ways to improve BB generation techniques or create loss functions that are more suited for small object recognition in order to improve small tools detection performance.

6. Disclosures

The authors declare no conflict of interest.

1 Acknowledgements

2 This material is based upon work supported by the
 3 National Science Foundation under Grant No. 2222881. Any
 4 opinions, findings, and conclusions or recommendations
 5 expressed in this material are those of the author(s) and
 6 do not necessarily reflect the views of the National Science
 7 Foundation.

8 References

[1] Census of fatal occupational injuries summary, <https://www.bls.gov/news.release/cfoi.nr0.htm>, [Accessed 24-01-2024] (2023).

[2] Q. Fang, H. Li, X. Luo, L. Ding, H. Luo, T. M. Rose, W. An, Detecting non-hardhat-use by a deep learning method from far-field surveillance videos, *Automation in Construction* 85 (2018) pp. 1–9. doi:10.1016/j.autcon.2017.09.018.

[3] W. Yi, A. P. Chan, Critical review of labor productivity research in construction journals, *Journal of Management in Engineering* 30 (2) (2014) pp. 214–225. doi:10.1061/(ASCE)ME.1943-5479.0000194.

[4] C. Mao, Q. Shen, W. Pan, K. Ye, Major barriers to off-site construction: The developer's perspective in china, *Journal of Management in Engineering* 31 (3) (2015) p. 04014043. doi:10.1061/(ASCE)ME.1943-5479.0000246.

[5] U.S. Bureau of Labor Statistics, <https://www.bls.gov/>, [Accessed 25-01-2024].

[6] J. Hinze, J. N. Devenport, G. Giang, Analysis of construction worker injuries that do not result in lost time, *Journal of Construction Engineering and Management* 132 (3) (2006) pp. 321–326. doi:10.1061/(ASCE)0733-9364(2006)132:3(321).

[7] M. Bonyani, M. Soleymani, C. Wang, Construction workers' unsafe behavior detection through adaptive spatiotemporal sampling and optimized attention based video monitoring, *Automation in Construction* 165 (2024) p.105508. doi:10.1016/j.autcon.2024.105508.

[8] E. D. Marks, J. Teizer, Method for testing proximity detection and alert technology for safe construction equipment operation, *Construction Management and Economics* 31 (6) (2013) pp. 636–646. doi:10.1080/01446193.2013.783705.

[9] Ultralytics, <https://github.com/ultralytics/>, [Accessed 25-01-2024] (2021).

[10] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, *Advances in Neural Information Processing Systems* 28, [Accessed 25-01-2024] (2015). URL <https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html>

[11] K. Lee, C. Jeon, D. H. Shin, Small tool image database and object detection approach for indoor construction site safety, *KSCE Journal of Civil Engineering* 27 (3) (2023) pp. 930–939. doi:10.1007/s12205-023-1011-2.

[12] Y. Liu, P. Sun, N. Wergeles, Y. Shang, A survey and performance evaluation of deep learning methods for small object detection, *Expert Systems with Applications* 172 (2021) p. 114602. doi:10.1016/j.eswa.2021.114602.

[13] K. Tong, Y. Wu, F. Zhou, Recent advances in small object detection based on deep learning: A review, *Image and Vision Computing* 97 (2020) p. 103910. doi:10.1016/j.imavis.2020.103910.

[14] H. Wang, Y. Song, L. Huo, L. Chen, Q. He, Multiscale object detection based on channel and data enhancement at construction sites, *Multimedia Systems* 29 (1) (2023) pp. 49–58. doi:10.1007/s00530-022-00983-x.

[15] G. X. Hu, Z. Yang, L. Hu, L. Huang, J. M. Han, Small object detection with multiscale features, *International Journal of Digital Multimedia Broadcasting* 2018 (2018) p. 4546896. doi:10.1155/2018/4546896.

[16] B. Bosquet, M. Mucientes, V. M. Brea, Stdnet-st: Spatio-temporal convnet for small object detection, *Pattern Recognition* 116 (2021) p. 107929. doi:10.1016/j.patcog.2021.107929.

[17] C. Eggert, S. Brehm, A. Winschel, D. Zecha, R. Lienhart, A closer look: Small object detection in faster r-cnn, in: *Proceedings - IEEE International Conference on Multimedia and Expo*, IEEE, 2017, pp. 421–426. doi:10.1109/ICME.2017.8019550.

[18] M. Liu, X. Wang, A. Zhou, X. Fu, Y. Ma, C. Piao, Uav-yolo: Small object detection on unmanned aerial vehicle perspective, *Sensors (Switzerland)* 20 (8) (2020) p. 2238. doi:10.3390/s20082238.

[19] H. Luo, J. Liu, W. Fang, P. E. D. Love, Q. Yu, Z. Lu, Real-time smart video surveillance to manage safety: A case study of a transport mega-project, *Advanced Engineering Informatics* 45 (2020) p. 101100. doi:10.1016/j.aei.2020.101100.

[20] J. Ren, Y. Guo, D. Zhang, Q. Liu, Y. Zhang, Distributed and efficient object detection in edge computing: Challenges and solutions, *IEEE Network* 32 (6) (2018) pp. 137–143. doi:10.1109/MNET.2018.1700415.

[21] B. Ku, K. Kim, J. Jeong, Real-time isr-yolov4 based small object detection for safe shop floor in smart factories, *Electronics (Switzerland)* 11 (15) (2022) p. 2348. doi:10.3390/electronics11152348.

[22] Z. Z. Wang, K. Xie, X. Y. Zhang, H. Q. Chen, C. Wen, J. B. He, Small-object detection based on yolo and dense block via image super-resolution, *IEEE Access* 9 (2021) pp. 56416–56429. doi:10.1109/ACCESS.2021.3072211.

[23] C. Sun, Y. Ai, S. Wang, W. Zhang, Mask-guided ssd for small-object detection, *Applied Intelligence* 51 (6) (2021) pp. 3311–3322. doi:10.1007/s10489-020-01949-0.

[24] J. S. Lim, M. Astrid, H. J. Yoon, S. I. Lee, Small object detection using context and attention, in: *3rd International Conference on Artificial Intelligence in Information and Communication*, IEEE, 2021, pp. 181–186. doi:10.1109/ICAIIC51459.2021.9415217.

[25] Z. Yang, Y. Yuan, M. Zhang, X. Zhao, Y. Zhang, B. Tian, Safety distance identification for crane drivers based on mask r-cnn, *Sensors (Switzerland)* 19 (12) (2019) p. 2789. doi:10.3390/s19122789.

[26] J. Zhao, E. Obonyo, Convolutional long short-term memory model for recognizing construction workers' postures from wearable inertial measurement units, *Advanced Engineering Informatics* 46 (2020) p. 101177. doi:10.1016/j.aei.2020.101177.

[27] Y. Zhao, Q. Chen, W. Cao, J. Yang, J. Xiong, G. Gui, Deep learning for risk detection and trajectory tracking at construction sites, *IEEE Access* 7 (2019) pp. 30905–30912. doi:10.1109/ACCESS.2019.2902658.

[28] W. Fang, L. Ding, H. Luo, P. E. D. Love, Falls from heights: A computer vision-based approach for safety harness detection, *Automation in Construction* 91 (2018) pp. 53–61. doi:10.1016/j.autcon.2018.02.018.

[29] X. Luo, H. Li, D. Cao, F. Dai, J. Seo, S. Lee, Recognizing diverse construction activities in site images via relevance networks of construction-related objects detected by convolutional neural networks, *Journal of Computing in Civil Engineering* 32 (3) (2018) p. 04018012. doi:10.1061/(ASCE)CP.1943-5487.0000756.

[30] H. Son, H. Choi, H. Seong, C. Kim, Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks, *Automation in Construction* 99 (2019) pp. 27–38. doi:10.1016/j.autcon.2018.11.033.

[31] F. C. Akyon, S. O. Altinuc, A. Temizel, Slicing aided hyper inference and fine-tuning for small object detection, in: *Proceedings - International Conference on Image Processing*, IEEE, 2022, pp. 966–970. doi:10.1109/ICIP46576.2022.9897990.

[32] M. C. Keles, B. Salmanoglu, M. S. Guzel, B. Gursoy, G. E. Bostanci, Evaluation of yolo models with sliced inference for small object detection, *arXiv* (2022). doi:10.48550/arXiv.2203.04799.

[33] X. Wang, Z. Yang, J. Wu, Y. Zhao, Z. Zhou, Edgeduet: Tiling small object detection for edge assisted autonomous mobile vision, in: *Proceedings - IEEE Annual Joint Conference: INFOCOM*, IEEE Computer and Communications Societies, Vol. 2021-May, IEEE, 2022. doi:10.1109/INFOCOM42981.2021.9488843.

[34] C. Chen, H. Gu, S. Lian, Y. Zhao, B. Xiao, Investigation of edge computing in computer vision-based construction resource detection, *Buildings* 12 (12) (2022) p. 2167. doi:10.3390/buildings12122167.

[35] Z. Xu, J. Huang, K. Huang, A novel computer vision-based approach for monitoring safety harness use in construction, *IET Image Processing* 17 (4) (2023) pp. 1071–1085. doi:10.1049/iptr.12696.

1 [36] J. Zhang, C. C. Liu, J. J. C. Ying, Deepssafety: a deep neural network-based edge computing framework for detecting unsafe behaviors of construction workers, *Journal of Ambient Intelligence and Humanized Computing* 14 (12) (2023) pp. 15997–16009. doi:10.1007/s12652-023-04554-4.

2 [37] C. Y. Wang, H. Y. Mark Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, I. H. Yeh, Cspnet: A new backbone that can enhance learning capability of cnn, in: *IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops*, Vol. 2020-June, 2020, pp. 1571–1580. doi:10.1109/CVPRW50498.2020.00203.

3 [38] S. Woo, J. Park, J.-Y. Lee, I. S. Kweon, Cbam: Convolutional block attention module, in: *Proceedings of the European Conference on Computer Vision*, 2018, pp. 3–19, [Accessed 25-01-2024].

4 URL https://link.springer.com/chapter/10.1007/978-3-030-01234-2_1

5 [39] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, IEEE, 2018, pp. 7132–7141. doi:10.1109/CVPR.2018.00745.

6 [40] Q. Hou, D. Zhou, J. Feng, Coordinate attention for efficient mobile network design, in: *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2021, pp. 13708–13717. doi:10.1109/CVPR46437.2021.01350.

7 [41] L. Yang, R. Y. Zhang, L. Li, X. Xie, Simam: A simple, parameter-free attention module for convolutional neural networks, in: *Proceedings of Machine Learning Research*, Vol. 139, PMLR, 2021, pp. 11863–11874, [Accessed 24-01-2024].

8 URL <https://proceedings.mlr.press/v139/yang21o>

9 [42] G. Song, Y. Liu, X. Wang, Revisiting the sibling head in object detector, in: *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2020, pp. 11560–11569. doi:10.1109/CVPR42600.2020.01158.

10 [43] Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, Yolox: Exceeding yolo series in 2021, *arXiv* (2021). doi:10.48550/arXiv.2107.08430.

11 [44] M. Shi, D. Zheng, T. Wu, W. Zhang, R. Fu, K. Huang, Small object detection algorithm incorporating swin transformer for tea buds, *Plos One* 19 (3) (2024) p. e0299902. doi:10.1371/journal.pone.0299902.

12 [45] C. Chen, H. Ding, M. Duan, Discretization and decoupled knowledge distillation for arbitrary oriented object detection, *Digital Signal Processing* 150 (2024) p.104512. doi:10.1016/j.dsp.2024.104512.

13 [46] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, *arXiv* (2014). doi:10.48550/arXiv.1412.6980.

14 [47] C. Y. Wang, A. Bochkovskiy, H. Y. M. Liao, Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, *arXiv* (2022) pp. 7464–7475[Accessed 24-01-2024].

15 URL https://openaccess.thecvf.com/content/CVPR2023/html/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.html

16 [48] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Yolov6: A single-stage object detection framework for industrial applications, *arXiv* (2022). doi:10.48550/arXiv.2209.02976.

17 [49] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu, Ghostnet: More features from cheap operations, in: *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2020, pp. 1577–1586. doi:10.1109/CVPR42600.2020.00165.

18 [50] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, *arXiv* (2018). doi:10.48550/arXiv.1804.02767.

19 [51] A. Howard, M. Sandler, B. Chen, W. Wang, L. C. Chen, M. Tan, G. Chu, V. Vasudevan, Y. Zhu, R. Pang, Q. Le, H. Adam, Searching for mobilenetv3, in: *Proceedings of the IEEE International Conference on Computer Vision*, Vol. 2019-October, 2019, pp. 1314–1324. doi:10.1109/ICCV.2019.00140.

20 [52] H. Yu, L. Zhang, Lcnet: a light-weight network for object counting, in: *International Conference on Neural Information Processing*, Springer, 2020, pp. 411–422. doi:10.1007/978-3-030-63830-6_35.