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A B S T R A C T
Construction sites present significant potential safety hazards to the workers, with hand tools being
a major source of injuries. This paper presents a Lightweight approach for Small Tools Detection
(LSTD) method using a deep neural network for real-time detection of small construction tools.
LSTD utilizes a lightweight backbone with Dynamic Feature Extraction, Accurate Separated Head,
and Integrated Feature Fusion, reducing parameters by 73% and computations by 28% versus YOLOv5
while achieving 87.3% mean Average Precision (mAP) on challenging construction site datasets.
Additional modules enhance detection recall and robustness to appearance variation and scale
changes. Extensive experiments demonstrate LSTD’s superior performance in misty conditions and
illumination changes. With high accuracy in a compact 2.87M parameter network, LSTD brings
ubiquitous worker safety monitoring via edge devices closer to reality. The proposed model marks
a significant advancement in improving safety in high-risk construction environments.

1. Introduction1

Construction sites are hazardous environments where2

workers are exposed to many safety risks. According to the3

Occupational Safety and Health Administration (OSHA),4

20% of worker fatalities in private industry in 2020 were in5

construction [1] [2]. Also, construction is among the most6

dangerous industries but has lagged behind others in tech-7

nological adoption [3]. Cultural resistance to new techniques8

often exists, with preferences leaning towards conventional9

manual approaches [4]. Moreover, Studies show that the four10

leading causes of construction site fatalities in the United11

States are falls, electrocutions, being struck by objects, and12

getting caught in between objects [5]. A leading cause of13

these incidents is struck-by hazards from objects like falling14

tools and materials. Small hand and power tools, which are15

prevalent on construction sites, contribute to these incidents16

in various ways. For example, electric power tools can cause17

electrocutions through defective cords, and hand tools may18

be improperly secured and fall, striking workers below [6, 7].19

Preventing such incidents requires effective safety protocols20

and risk mitigation methods tailored to the construction site21

environment.22

Proper organization, storage, and transport of small con-23

struction tools are therefore paramount for site safety, but24

managing numerous small objects that are constantly in25

motion is an enormous challenge [8]. Computer vision tech-26

niques like object detection, however, now enable auto-27

mated monitoring and analysis of construction sites. By28

automatically detecting small tools in images and video29

feeds, potentially unsafe conditions can be identified so that30

corrective actions may be taken. Vision-based models can31

accurately localize small objects like tools and equipment32

to identify fall and struck-by hazards in real-time [2]. This33

enables proactive interventions through warnings, relocation34

of objects, changes to site layout, and standardization of35
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tool storage procedures. Among modern visual detection36

architectures, You Only Look Once (YOLO) v5 has emerged37

as a leading approach due to its speed and accuracy [9]. By38

leveraging YOLOv5 models tailored to construction sites,39

project managers can track on-site tools and enhance safety40

protocols in an efficient automated manner.41

YOLOv5 [9] is a state-of-the-art one-stage object detec-42

tor well-suited for real-time analysis of construction sites.43

As a one-stage detector, YOLOv5 directly predicts bound-44

ing boxes (BB) and class probabilities in one evaluation45

of an image. This allows the model to operate faster than46

previous two-stage detectors like Faster R-CNN [10] that47

first generate region proposals. YOLOv5 is also preferred in48

benchmarks, it achieves high accuracy while requiring fewer49

floating point operations and memory. These qualities make50

YOLOv5 well-matched to the domain of construction sites51

where both speed and accuracy are necessary.52

In this paper, we propose a Lightweight approach for53

Small Tools Detection (LSTD) based on the YOLOv5 mod-54

els for detecting small construction tools on construction55

sites. We utilize a comprehensive dataset [11] of common56

hand and power tools in context within actual construction57

environments. Using this data, we train a LSTD model with58

robust performance for tool detection tasks. We additionally59

demonstrate the real-time capabilities of our tool detector by60

integrating it with an edge device that warns workers on-site61

when tools are spotted in hazardous areas.62

The ability to accurately and rapidly recognize small63

construction tools is critical for mitigating safety incidents64

before they occur. Our LSTD approach provides intelligent65

situational awareness to identify small objects. As tools are66

the instruments used for virtually all construction activities,67

a specialized tool detector gives fulsome visibility into on-68

site risks. Also, automated tool detection with models like69

our LSTD should likewise be adopted as an indispensable70

safety mechanism. Just as essential safety gear protects in-71

dividual workers, proactive detection systems protect the72
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entire work crew by preventing hazardous conditions from1

arising in the first place.2

Monitoring small construction tools is clearly impor-3

tant for improving site safety, but few previous computer4

vision works have focused specifically on these small ob-5

jects. Our LSTD model, with high accuracy and real-time6

performance, can therefore provide managers or site superin-7

tendents with an unprecedented ability to track and manage8

tools for safety. In the remainder of this paper, we provide9

further technical details on our approach, evaluations, and10

demonstrations of the system in operation. We believe the11

wide deployment of fast and accurate vision systems like12

ours could make substantial impacts by reducing injuries and13

fatalities on construction sites around the world.14

In summary, the contributions of the proposed method15

are as follows:16

• We propose a lightweight end-to-end network for17

small object detection that utilizes the Accurate Sep-18

arated Head (ASH), the Integrated Feature Fusion19

(IFF), and the Dynamic Feature Extraction to capture20

a more comprehensive feature.21

• We illustrate the performance of the proposed meth-22

ods on the small object detection task on comprehen-23

sive dataset [11]. Compared with the baseline equiv-24

alents, our method decreases computational complex-25

ity and enhances accuracy.26

2. Related works27

Since small objects lack context and have indistinguish-28

able characteristics, complicated backdrops, and poor reso-29

lution, it is challenging to recognize them using conventional30

object identification methods [12, 13, 14]. Training inputs31

with smaller-looking objects can help somewhat compensate32

for this low identification accuracy for little objects. Nev-33

ertheless, it might not be feasible to create more training34

picture datasets using different objects ranging in size from35

very tiny to very large given the available datasets [15]. In36

order to effectively recognize tiny objects in a variety of37

areas, researchers have thus tried to alter and enhance current38

algorithms without the need for new training picture datasets39

[16, 17, 15, 18, 19, 20].40

When the resolution of the region filled by the small41

objects is increased, some developed algorithms can identify42

small things. For instance, Ku et al. [21] suggested a better43

YOLOv4-based technique that can identify a hard helmet44

in order to increase worker safety on building sites. Im-45

ages were sharpened and localized tiny object features were46

extracted using an image super-resolution (ISR) module.47

Similar to this, Wang et al. [22] created a method based48

on YOLOv4 and integrated a feature texture transfer (FTT)49

module to capture the regional features of tiny objects and50

improve image resolution. The suggested technique suc-51

cessfully identified the tiny targets—student head move-52

ments—in college courses.53

Contextual information was used in other attempts to54

identify tiny objects. This approach uses context to augment55

information for better identification at low resolutions by56

using more abstract higher-layer characteristics. A small57

object detection technique based on the SSD framework with58

segmentation and detection heads was created by Sun et al.59

[23]. This technique efficiently recognizes people as well60

as traffic signs by supplying more semantic features to the61

detection head via the segmentation head. Furthermore, Lim62

et al. [24] presented an SSD that uses integrated features63

to get semantic features as well as an attention module64

to extract features of the object in order to recognize tiny65

objects more precisely than traditional SSDs.66

Deep learning-based object detection studies for con-67

struction sites can be divided into two categories: those that68

focus on worker behavior recognition [25, 26, 27] and those69

that just recognize objects like workers and heavy machin-70

ery [2, 28, 29, 30]. Luo et al. [29] investigated an object71

detection model based on a convolutional neural network72

(CNN) for the purpose of identifying 22 different kinds of73

heavy machinery and laborers on a construction site. Using74

CNN characteristics, Fang et al. [2, 28] sought to determine75

if employees on high floors wore hard helmets. Son et al.76

[30] reported a detection technique that could differentiate77

the workers from the backdrop using 3,241 images to create78

an object detection model for construction site workers. As79

an alternative, a number of academics have developed a more80

efficient technique that involves slicing or tiling the input81

image in order to enlarge small objects inside a wider pixel82

region, therefore enabling small object recognition [31].83

For instance, a small object detection approach based on84

fine-tuning and slicing-aided hyper-inference was presented85

by Akyon et al. [31]. For object detection, they separated86

the input photos into overlapping slices without requiring87

unnecessary computing power. Although this approach en-88

hanced small object detection performance, the larger pixel89

area occasionally decreased big object detection. Using the90

slicing-aided inference approach, Keles et al. [32] assessed91

the YOLOv5 and YOLOX models and found that sliced in-92

ference enhanced small object detection performance. Nev-93

ertheless, while cropping the input image, this study did94

not sufficiently take into consideration redundant objects in95

the overlapping area. EdgeDuet was developed by Wang et96

al. [33] to detect medium- to large-sized objects locally on97

mobile devices while offloading small object detection to98

the edge. By dividing a frame into many tiles, EdgeDuet99

allows for parallel offloading, which facilitates small object100

detection. Through overlap-tiling, this technique also lessens101

tile dependencies so that objects that span into neighboring102

tiles are not missed.103

As indicated earlier, prior research primarily aimed at104

enhancing small object detection accuracy revealed that their105

suggested techniques raised the average precision (AP) in106

comparison to current algorithms. The majority of small107

object detection methods were evaluated on the precision108

of small object recognition in a GPU, despite the use of109

high-quality pictures. However, real-time object detection110
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taking into account processing as well as transmission of1

video data was not well evaluated. Thus, when real-time2

object identification is required, their field applicability is3

diminished. In this sense, edge computing has been used4

in recent construction studies to address automated con-5

struction demands by lowering monitoring latency. Chen et6

al.’s study [34] showed that edge nodes had performance7

comparable to local devices, suggesting that utilizing edge8

nodes is feasible for implementing hardhat-wearing detec-9

tion based on YOLOv5 at a construction site. To solve10

the original problem of expensive processing, Xu et al.11

[35] also implemented harness-use detection based on the12

YOLOv5 on edge nodes. Additionally, Zhang et al. [36]13

demonstrated the accuracy and effectiveness of edge node14

detection for risky behavior to address efficiency as well15

as accuracy challenges. Furthermore, Zhao et al. [27] used16

YOLOv3 to manage construction sites’ safety in real-time17

after identifying the activities that workers conduct in dan-18

gerous regions at outdoor sites, which is another study that19

looked at worker behavior recognition. By using object20

identification techniques that included a mask region-based21

CNN to establish a safe distance between the crane and22

workers, Yang et al. [25] were able to identify cranes and23

surrounding workers. The human body was separated into24

the head, chest, and arms by Zhao and Obonyo [26] in order25

to identify worker behavior and suggest ways to improve26

productivity at the site. Investigating whether edge inference27

may be used effectively for precise and instantaneous tiny28

object recognition is thus important.29

The development of small tools detection algorithms30

for safety monitoring and tools-manager robots encounters31

challenges including recognizing small tools in diverse con-32

struction environments and deploying efficient algorithms33

at the edge. This study aims to address these challenges by34

introducing a lightweight and accurate small tools detection35

algorithm suitable for deployment in complex construction36

sites. To enhance detection accuracy, the algorithm selec-37

tively expands the original dataset using on-the-fly data38

augmentation strategies, which improves the model’s robust-39

ness and generalization ability. Additionally, the algorithm40

employs a Dynamic Feature Extraction (DFE) module to41

focus on capturing more related features, thereby improving42

detection accuracy. The suggested IFF module accurately43

captures features and detailed information of small tools44

while using a low computation. Furthermore, the use of45

an ASH module speeds up the convergence of the LSTD46

and enhances detection accuracy. Overall, the LSTD model47

demonstrates promise for managing robot operations in un-48

structured environments as well as presents insightful infor-49

mation for small tool detection development in the future.50

3. Methodology51

Following several iterations of development, the YOLO52

series has grown to be a well-liked family of object de-53

tection frameworks. YOLOv5, an anchor-based, one-stage54

detection method, is renowned for its excellent accuracy and55

Table 1
Specifics of the LSTD output size of the feature, component,
and connection technique.

No. Module From Output size
0 CBR -1 [32, 320, 320]
1 CBR -1 [64, 160, 160]
2 RICC_v3 -1 [64, 160, 160]
3 CBR -1 [128, 80, 80]
4 RICC_v3 -1 [128, 80, 80]
5 CBR -1 [256, 40, 40]
6 RICC_v3 -1 [256, 40, 40]
7 AP -1 [256, 40, 40]
8 CBR -1 [128, 40, 40]
9 UpSample -1 [128, 80, 80]
10 Concatenation [−1, 4] [256, 80, 80]
11 RIC -1 [128, 80, 80]
12 CBR -1 [128, 40, 40]
13 Concatenation [−1, 8, 6] [512, 40, 40]
14 RIC -1 [256, 40, 40]
15 ASH [11, 14] [128, 80, 80]

[256, 40, 40]

quick detection speed. Ultralytics made YOLOv5 publicity56

available, offering four distinct scale variants. The structure57

of YOLOv5, which consists of a head, neck, as well as58

backbone, is shown in Fig. 1. In order to extract features from59

the input, the backbone component downsamples the input60

four times. The neck component uses the Path Aggregation61

Network (PAN) and Feature Pyramid Network (FPN) archi-62

tectures. YOLOv5’s head structure consists of three linked63

heads. We used YOLOv5 as the basis for our study’s LSTD64

algorithm, which we built as the baseline.65

The architecture of our suggested LSTD is shown in66

Fig. 1. The three parts of LSTD are the Accurate Separated67

Head (ASH), the Integrated Feature Fusion (IFF), and the68

Dynamic Feature Extraction (DFE). The three primary mod-69

ules of DFE are RICC (Robust Integrated Convolution based70

on CBAM), CBR(Convolution, Batch Normalization layer,71

ReLU function), and Adaptive Pooling (AP). The CBR, RIC72

(Robust Integrated Convolution), Concat, and UpSample73

modules make up the majority of IFF. The CBR module and74

1 × 1 convolution make up the majority of the ASH.75

Table 1 provides a detailed representation of the LSTD76

feature map variation, connecting components, as well as77

network composition. The model is small, with only 1678

specially designed components. The entering information79

flow layer is indicated by the second column, where -1 de-80

notes the layer that came before it. Customized modules are81

shown in Table 1’s third column. The resulting feature map’s82

dimensions—width, height, and number of channels—are83

listed in the last column. For instance, the feature maps from84

rows No. 9 and No. 4 are subjected to a Concat operation, as85

shown by the item [-1, 4] in row No. 10 of the table. A feature86

map with size [512,80,80] is produced by this process.87

3.1. Dynamic Feature Extraction88

The number of modules in DFE decreased and down-89

scaled input images multiple (2, 4, 8, and 16) in order to90

address the challenges presented by the decrease in feature91
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Figure 1: Overview of the LSTD architecture diagram based on YOLOv5. Three main parts make up the LSTD architecture,
similar to YOLOv5: head, neck, and backbone. Components of the LSTD architecture are Dynamic Feature Extraction (DFE),
Integrated Feature Fusion (IFF), and Accurate Separated Head (ASH).

dimension with more layers as well as the possible infor-1

mation loss brought on by smaller objects. By doing this,2

the feature maps’ detail loss is decreased and smaller targets3

may be represented more accurately. We also included an4

attention technique to extract important information in an5

adaptable manner. DFE maintains a lightweight design while6

concentrating on useful feature information.7

3.1.1. DFE Structure8

Four layers make up the DFE, as seen in Fig. 1: one9

Lead Layer (L0), and three Level Layers (L1, L2, L3). A10

6 × 6 convolutional kernel is present in the Lead Layer,11

which is a CBR module. It removes operations like channel12

concatenation and slicing in comparison to the the baseline,13

which lowers the amount of parameters and computational14

cost. Every CBR module and every RICC module make up15

the initial pair of Level Layers (L1, L2). ReLU activation16

function, Batch Normalization layer (BN), and Conv2d with17

a 3 × 3 filter size make up the CBR module. Finally, the18

Level Layer (L3) includes the AP module. The two CBR19

components with a 1 × 1 filter size and the three Max-20

Pooling modules with a 5 × 5 filter size make up this AP21

layer. In baseline, the Average Pooling module is less effi-22

cient than the AP module in capturing multi-scale contextual23

information. From Level Layers (L2) and Level Layers (L3),24

DFE creates an output with the size [4, 512, 40, 40] and [4,25

256, 80, 80], which are then sent to IFF.26

3.1.2. RICC Modules27

Figure 2 illustrates the three RICC modules that we28

suggested in this study, namely RICC_v1, RICC_v2, and29

RICC_v3, based on the [37]. These modules are critical to30

receptive field extension, adaptive augmentation, and feature31

extraction.32

RICC_v1: The input is initially processed via a Conv2d33

with filter size 1 x 1 in a CBR module, after which the output34

is sent to two routes. The branch path is unprocessed, while35

the main route passes via CBR modules with Conv2d with36

filter size 3 × 3. Ultimately, a CBAM module receives the37

combined output feature maps from the two pathways.38

RICC_v2: Initially, a Conv2d with filter size 1 x 139

CBR module with the input feature map reduces the channel40

dimension by half. Subsequently, the output is sent to two41

routes: the branch route remains unprocessed, while the42
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Figure 2: Three suggested RICC modules are illustrated. (a)
RICC_v1, (b) RICC_v2, (c) RICC_v3.

primary route passes via the Bottleneck component. Sub-1

sequently, the two pathways’ outputs are joined in the axis2

of the channel. After that, the fused output passes via a3

convolutional with kernel size 1 × 1 in a CBR module to4

increase the channel dimension to the intended feature map5

of output. Lastly, a CBAM component is used to filter the6

spatial features as well as feature channels.7

RICC_v3: The input initially follows multiple routes.8

The primary route passes via the BottleNeck module after9

passing via a CBR component with Conv2d with kernel10

size 1 × 1 to decrease the channel dimension. The channel11

dimension is further decreased by the branch route, which12

passes via a CBR component Conv2d with kernel size 3 × 3.13

These two pathways’ channel outputs are then concatenated.14

After that, the integrated feature passes through a Conv2d15

with kernel size 1 × 1 in a CBR component to increase the16

channel dimension to the intended output channels. Lastly,17

the spatial coordinates and feature channels are weighted18

using a CBAM module. Furthermore, the BottleNeck com-19

ponent has a residual design in which the input passes via20

a shortcut link after passing via two Conv2d layers with21

kernel size 3 × 3. The ultimate output, a feature map, is22

subsequently created by adding the input data to it.23

After doing comparative studies on three RICC modules,24

we decided to include the RICC_v3 module in DFE; the25

specifics are provided in Section 3.3. There are variations in26

the number of BottleNecks in the three Level Layers (L1, L2,27

and L3) of the RICC_v3 module. L1, L2, and L3 specifically28

used 1, 2, and 3 bottlenecks, respectively, with 1, 2, and 3 ×29

values in line.30

3.1.3. CBAM31

As noted above, in order to increase the accuracy of small32

object detection, we decreased the number of network layers.33

As a result, the contextual understanding of the feature was34

weakened. Furthermore, the same background interferences35

have a major impact on the proper identification of small36

construction tools. Therefore, in order to improve recogni-37

tion ability and concentrate on useful feature information,38

we added an attention module to the different Level Layers39

Figure 3: Overall architecture of CBAM that contains SAM
and CAM.

(L1, L2, and L3) of the DFE. In addition, the Convolution40

Block Attention Module (CBAM), suggested by Woo et al.41

[38], distinguishes itself from [39], [40], and [41] by being42

a lightweight attention module. It possesses the capability to43

adaptively boost the expressive capacity of crucial features44

of spatial dimension and channels. The two submodules that45

make up CBAM are the CAM and SAM, as seen in Fig. 3.46

First, CAM infers a feature map 𝑀𝑐 ∈ ℝ(𝐶×1×1) from the47

input feature map𝐹 ∈ ℝ(𝐶×𝐻×𝑊 ). SAM then infers a feature48

map 𝑀𝑠 ∈ ℝ(1×𝐻×𝑊 ). We included attention methods to49

improve recognition ability and concentrate on useful feature50

information in the three Level Layers (L1, L2, and L3) of the51

DFE.52

’What’ is significant in relation to an input is the focus of53

the channel attention. First, average pooling and max pool-54

ing processes are used to aggregate the input feature map55

for spatial information. The shared multi-layer perceptron56

(MLP) receives the aggregated feature map after that. Next,57

the resultant feature vectors are combined using element-58

wise summation. The sigmoid activation function is the final59

step in obtaining channel attention feature maps. To put it60

briefly, channel attention is calculated as follows:61

𝑀𝑐(𝐹 ) = 𝜎 (MLP (AvgPool(𝐹 )) + MLP (MaxPool(𝐹 )))
(1)

The Sigmoid activation function operation is represented62

by 𝜎 in the formula, the shared perceptron operation by63

MLP, and the global average pooling and maximum pooling64

operations by Avg-Pool and Max-Pool, respectively.65

Where is an instructive portion of the feature map that66

receives spatial attention. First, two (1 × 𝐻 × 𝑊 ) feature67

maps are created from the channel attention module’s output68

using the max pooling and average pooling processes. Next,69

a 7 × 7 convolution layer concatenates and convolves the70

feature maps.71
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Ultimately, a 2D spatial attention map is created by using1

the Sigmoid function to make the spatial attention output. To2

put it briefly, spatial attention is calculated as follows:3

𝑀𝑠(𝐹𝑐) = 𝜎
(

𝑓 7×7 ([AvgPool(𝐹𝑐);MaxPool(𝐹𝑐)]
)) (2)

A 7×7 convolution process is represented in the formula4

by 𝑓 7×7. The CAM processes the feature 𝐹 first, producing5

the output 𝐹𝑐 in the channel dimension. The SAM processes6

the feature𝐹 to make the𝐹𝑐𝑏𝑎𝑚 in the spatial dimension. One7

way to sum up the attention process generally is as follows:8

𝐹𝑐 = 𝑀𝑐(𝐹 ) × 𝐹
𝐹𝑐𝑏𝑎𝑚 = 𝑀𝑠(𝐹𝑐) × 𝐹𝑐

3.2. Integrated Feature Fusion9

The middle layer of the network architecture, known10

as the "feature fusion," creates feature maps containing11

multi-scale information and is utilized for feature fusion12

and information transfer across various layers. This research13

proposes an Integrated Feature Fusion (IFF), which can14

help the model generate accurate features with fewer pa-15

rameters. The feature fusion network is modified. Through16

examination of the information in Section 3.2, we see that17

small construction tools detection exhibit little variance in18

size and are generally modest in size. As a result, using19

the full FPN and PAN as seen in Fig. 4(a) is not required.20

Given the low pixel percentage of small tools, we elimi-21

nated the 32x downsampling layer from the PAN as well22

as FPN architecture, which is the lowest feature layer, in23

order to decrease the model size and improve flexibility.24

Fig. 4(b) depicts this structure. While making the model25

lighter and reducing computational complexity, simplifying26

the feature fusion network’s structure may also make features27

less capable of being represented. Thus, as seen in Fig. 4(c),28

we created Integrated Feature Fusion (IFF) at the top layer29

based on the simplified network. In order to fuse multi-30

scale properties, IFF uses bidirectional connections. To be31

more precise, the bottom-up pathway uses downsampling32

to convey low-level detail information, whereas the top-33

down pathway uses upsampling to communicate high-level34

semantic information. Both high and low-level semantics35

are included in the fused feature. In order to get deeper36

semantic information and minimize detail loss, IFF also uses37

integrated links to combine features from higher levels. Two38

CBR modules, two RIC modules, one UpSample module,39

and two Concat modules make up IFF. For details on the40

precise arrangement and connections, please see Fig. 1. It is41

important to note that RICC is a reduced version of the RICC42

structure in DFE. For example, the final CBAM module43

is not present, and the BottleNeck module lacks a shortcut44

connection. Lastly, in accordance with the input from DFE,45

IFF sends two feature maps to the ASH. The corresponding46

tensor forms are (4, 256, 80, 80) and (4, 512, 40, 40). As a47

result, using the full FPN and PAN architectures as seen in48

Fig. 4(a) is not required.49

Figure 4: Overall Schematic of feature fusion. (a) FPN) +
PAN, (b) Simplified IFF, (c) IFF.

3.3. Accurate Separated Head50

The discrepancy between the regression and classifi-51

cation tasks is a major problem in object detection. The52

baseline’s coupled detection head shares parameters with the53

localization as well as classification branches. However, em-54

ploying common parameters may result in spatial misalign-55

ment problems because of the somewhat uneven focus of56

the localization as well as classification tasks [42]. Ge et al.57

[43] experiments have demonstrated that switching out the58

YOLOv5 connected head for a decoupled one may greatly59

increase convergence speed and improve detection perfor-60

mance. ASH eliminates the Object branch and separates61

the regression and classification branches for independent62

prediction. Furthermore, in contrast to YOLOX, we further63

minimize model complexity and inference delay by lowering64

from 2 to 1 the number of conv2d with filter size 3 × 3 on65

both routes.66

Fig. 5 shows how the ASH is structured. The following67

are the particular operations: First, a Conv2d with kernel size68

1 × × 1 is used to decrease the channel dimension of the IFF69

feature to 128 and 256, respectively. After that, it is divided70

into the regression as well as the classification branch, two71

parallel branches. A Conv2d with kernel size 3 x 3 is present72

in each branch for tasks involving regression and classifica-73

tion, respectively. The regression branch is expanded with74

an extra Object branch, and each branch is then subjected to75

an additional 1 × 1 convolution process. Furthermore, the76

regression branch forecasts the target’s Object (confidence77

information) and regression (bounding box information),78

while the classification branch is in charge of forecasting the79

target’s Classification (classification information). With two80

effectively separated heads, LOSD produces two different81

final output tensor shapes: (4, 7, 80, 80) and (4, 7, 40, 40).82

This work proposes the anchor-based object identifica-83

tion algorithm LOSD. By employing the scale of the objects84
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Figure 5: Overall structure of YOLOv5 head and the proposed
ASH.

as the categorization metric, the anchor sizes are derived by1

categorization. This work uses the auto anchor technique to2

autonomously create as well as cluster anchor sizes depend-3

ing on the inputs, developing them using a genetic method,4

as opposed to predefining anchor templates. Six sets of5

anchors are generated after K nearest neighbor clustering on6

30,432 points: (25,25), (30,29), (35,45), (38,338), (45,42),7

and (52, 50).8

3.4. Dataset9

The dataset utilized in this study consists of images10

of 12 different small construction tools, including cutters,11

buckets, hammers, knives, saws, shovels, tackers, drills,12

grinders, spanners, and wrenches [11]. These tools were13

carefully selected based on their frequent usage in indoor14

construction sites, as determined by analyzing construction15

standard specifications and interviews with site managers16

[11]. To capture the diversity of appearances, sizes, shapes,17

colors, and backgrounds encountered in real-world construc-18

tion environments, the dataset comprises 34,738 images.19

Approximately 18% (6,258 images) were acquired directly20

from actual construction sites, ensuring the inclusion of21

realistic conditions such as occlusions, varying illumination,22

and worker interactions. The remaining 82% (28,480 im-23

ages) were captured with various controlled backgrounds24

like construction background sites to further enhance the25

dataset’s diversity. The dataset was meticulously annotated26

with bounding boxes, indicating the location and class of27

each tool instance. The images were carefully curated to28

include variations in resolution, occlusion, lighting condi-29

tions, and backgrounds, factors known to influence the per-30

formance of object detection methods [44, 45]. The dataset31

was divided into training (60%, 20,842 images), validation32

(20%, 6,948 images), and test (20%, 6,948 images) sets. This33

dataset was constructed with the goal of improving object34

detection model performance while accounting for factors35

such as background diversity, illumination changes, occlu-36

sions, and resolution variations, all of which are prevalent in37

challenging construction site environments.38

3.5. Experiment39

Windows 11 is the operating system utilized in this40

paper, and CUDA version 11.8 is employed. The machine41

used for the trials included an Intel Core i7 13620H CPU42

and an NVIDIA GeForce RTX 4060 Laptop GPU. PyTorch43

1.10.1 is used with Python 3.9 as the development language.44

The Adam optimizer [46] was used, with an initial learning45

rate of 0.0009 and a Cosine learning rate decay strategy. A46

weight decay of 0.0005 was applied to regularize the model.47

The loss function was the Focal Binary Cross-Entropy, with48

gamma set to 2 and alpha set to 0.25 for focal weighting. The49

model was trained for 200 epochs, with a batch size of 4. The50

detection findings can be categorized as true positive (TP),51

false positive (FP), true negative (TN), and false negative52

(FN) based on these studies. We present all the measures that53

are utilized in this research, such as FLOPs, mean average54

precision (mAP), recall (R), precision (P), and F1 score. In55

particular, recall (R) and precision (P) are defined as:56

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

× 100%

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

× 100%

here recall is calculated by dividing the number of true57

positives by the sum of the true positives and false negatives,58

and precision is calculated by dividing the number of true59

positives by the sum of the true positives and the erroneous60

positives.61

The AP for many categories is referred to as the mAP,62

and AP is defined as follows:63

𝐴𝑃 = ∫

1

0
𝑝(𝑟) 𝑑𝑟 (3)

In addition, the average mAP over various intersection64

over union (IoU) thresholds (from 0.5 to 0.95, step 0.05) is65

represented by mAP@0.5:0.95.66

The mAP and recall, or F1-score, is a useful metric for67

assessing a model’s overall performance in detection tasks.68

The F1-score is defined as follows and its value goes from 069

to 1.70

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ Precision ⋅ Recall
Precision + Recall (4)

FLOPs is a measure of how many floating point operations71

the model needs to perform to simulate the output. It is an72

important indicator of the complexity of the model and can73

be used to compare to other models.74

4. Result and Discussion75

We carried out eight tests to assess the effectiveness of76

the suggested LOSD model, which are detailed in the results77

section.78
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Table 2
Influence of augmentation on the LSTD.

Dataset type P(%) R(%) mAP(%)
Original 82.4 80.8 84.2
Augmented 85.0 83.5 87.3

4.1. Data Augmentation Effect1

We validate our approach on the original dataset and on-2

the-fly (online) augmented dataset in order to look into the3

effects of data augmentation methodologies on the metrics.4

The augmentation strategy comprises various operations,5

including horizontal flipping, median blur, spatial shifting,6

adjustments in brightness and HSV, mosaic application, and7

the incorporation of Contrast Limited Adaptive Histogram8

Equalization (CLAHE) and simulated fog effects. The train-9

ing dataset was the sole variable in the experimental setting,10

with all other parameters remaining constant. Table 2 dis-11

plays the experimental outcomes. On-the-fly augmentation12

produced gains of 2.3% in recall, 3.4% in precision, and 3.1%13

in mAP over the original dataset. With recall, precision, and14

mAP of 83.5%, 85.0%, and 87.3%, respectively, the On-the-15

fly augmentation approach produced noteworthy gains in16

all measures in comparison to the original dataset. Thus,17

the On-the-fly augmentation technique used in this work18

successfully improves LSTD’s detection performance.19

4.2. Effect of Different Module20

This study made several changes to the baseline model’s21

structure according to the traits of small tools detection and22

the requirement to improve construction safety. We validated23

our approach on the suggested IFF to confirm the viability24

and efficacy of the changes. It should be noted that the25

baseline model was used for these trials, and no further26

modifications indicated in the study were used; instead, the27

only emphasis was on structural validation. Table 3 shows28

that the number of parameters and layers dropped to 6.6929

M and 107 respectively, as well as the FLOPs dropped by30

4.5 G after the 32x downsampling layers in the baseline31

model’s neck and backbone were removed. Meanwhile, the32

mAP significantly increased by 2.1%. The mAP rose from33

86.2% to 87.3% with IFF, while the FLOPs and number34

of parameters increased slightly to 11.3 G and 1.85 M,35

respectively. IFF adds top-layer integration connections in36

comparison with FFN. The DFE + IFF architecture obtained37

a 7.2% gain in mAP, a 73% decrease in parameters, as38

well as a 29% reduction in computation when compared to39

FPN + PAN. Thus, it can be said that despite significantly40

lowering the number of parameters, the suggested DFE +41

IFF architecture enhances small tools detection ability.42

The experimental outcomes of the three robust inte-43

grated components suggested in the LSTD architecture are44

shown in Table 4. It is evident that the best detection per-45

formance is obtained when the RICC_v3 module is utilized.46

It uses the fewest parameters while achieving the best ac-47

curacy, recall, and mAP when compared to RICC_v1 and48

Table 3
Comparison evaluation of three network architectures, PAN +
FPN, DFE + FFN, and DFE + IFF on the test dataset.

Architecture Layer mAP (%) Param (M) FLOPs (G)
PAN+FPN 157 80.1 6.69 15.6
DFE + Simple IFF 107 83.2 1.79 11.1
DFE + IFF 107 83.9 1.85 11.3

Table 4
Comparison evaluation of three robust integrated convolution
modules.

Component mAP (%) R (%) P (%) Param (M)
RICC_v1 83.4 81.3 82.2 4.10
RICC_v2 83.5 82.1 81.4 3.40
RICC_v3 87.3 83.5 85.0 2.87

Table 5
Utilization of different attention mechanisms in the LSTD and
examination of their results.

Module P (%) R (%) mAP (%) Param (M)
Baseline w/o attention 81.2 80.6 84.7 2.86
SE 83.6 81.3 85.4 2.87
CA 82.4 83.6 86.1 2.87
SimAM 83.2 81.3 85.0 2.86
CBAM 85.0 83.5 87.3 2.87

RICC_v2. For this reason, we decided to use the RICC_v349

module in this study to extract features from DFE.50

4.3. Evaluating various attention mechanisms on51

LSTD52

In this research, attention methods are included in the53

three Level layers (L1, L2, and L3) of DFE to improve the54

feature extraction capabilities. Using the expanded dataset55

and the suggested LSTD model, we carried out five com-56

parison experiments to investigate the efficacy of attention57

modules in small tools detection: with the SE module, the58

CA module, the SimAM module, the CBAM module, and59

without the attention module. Table 5 shows that the base-60

line using the CBAM had the greatest mAP (87.3%) and61

precision (85%) while the baseline using the CA had the62

highest recall (83.6%). It is important to note that adding63

attention modules to any experiment almost completely pre-64

vented the model’s parameter size from growing. In general,65

the CBAM-equipped LSTD model performs the best. The66

explainable results of LSTD employing various attention67

modules are shown in Fig. 6.68

Fig. 6 depicts the activation maps produced by the ex-69

plainable Grad-CAM method in both simple and compli-70

cated situations, respectively. It is evident from the numbers71

that LSTD primarily targets small construction tools. Small72

construction tool identification is greatly impacted by com-73

parable backgrounds, as was seen in the prior loss study. Ad-74

ditionally, the goal of this study is to develop a cutting-edge75

small tools detection model for monitoring safety and robots,76

specifically designed to identify and discriminate among77
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Figure 6: Grad-CAM visualizations generated by various attention modules.

various tools. To achieve this precision, the algorithm will1

be tailored to differentiate between tools positioned in the2

foreground and those in the background. Also, LSTD shows3

off a creative method for differentiating between small tools4

in the background and foreground. This feature of LSTD5

highlights how it may mimic some parts of human cogni-6

tive capacities, including perception and decision-making7

processes. Moreover, another area of interest for LSTD in8

the picture is the area containing small tools. It is evident9

from the class activation maps that distinct attention modules10

show differing levels of concentration on the small tools.11

In both complicated and straightforward circumstances, the12

LSTD architecture with the CBAM provides a more precise13

focus on the object zone and places greater attention on small14

tool regions. The SimAM and CA concentrate on specific15

locations in the complicated scenario, but the SE module has16

a lesser concentration on small tools. When compared to the17

CBAM, the SimAM, SE, and CA focus less on the small tool18

area in the simple scenario. According to the experimental19

results, the LSTD with the CBAM is able to identify small20

tools in the background and foreground more clearly, as well21

as concentrate and focus more effectively in that area.22

4.4. Ablation Study23

We carried out tests to evaluate the model’s performance24

incrementally after each modification in order to further25

examine the efficacy of the improvement methodologies26

suggested in this research. Table 6 displays the test procedure27

and ablation experiment outcomes. The data shows that the28

B model, which uses the DFE + IFF architecture, reaches a29

73% decrease in parameters to 1.85 M from 6.69 M while30

maintaining a little greater recall and accuracy compared to31

the baseline. Based on the B model, the C model increases32

the number of parameters by a small amount and improves33

recall, accuracy, mAP@0.5:0.95, and mAP. This is achieved34

by adding the ASH component. The CBAM module was35

added to the C model to create the LSTD model, which36

exhibits improvements in mAP@0.5:0.95, mAP, and pre-37

cision but a minor decline in recall. In addition, our sug-38

gested LSTD model outperforms the baseline (A) model by39

7.6%,7.2%,4.9%, and 6.8% in mAP@0.5:0.95, mAP, recall,40

and precision, achieving 77.8%, 87.3%, 83.5%, and 85%,41

respectively, with just 2.87 M parameters—a 57% decrease.42

The ablation experiment results show how efficient the en-43

hancement tactics suggested in this study are, especially44

when it comes to lowering the number of parameters and45

improving detection accuracy. Also, the ASH component46

adds more to recall, the CBAM enhances accuracy more,47

and the DFE + IFF architecture has a bigger effect on the48

parameters.49

In addition, LSTD, representing the fully augmented50

model, emerges as the top-performing method across all51

tools as shown in Fig. 7. For instance, LSTD achieves52

an accuracy of 82.87% for Cutter (CU) and 84.16% for53

Hammer (HA), outperforming configurations A, B, and C.54

Notably, the introduction of attention-guided spatial high-55

lighting (ASH) and Convolutional Block Attention Module56

(CBAM) consistently contributes to performance improve-57

ment. For tools like Grinder (GR), LSTD attains remark-58

able accuracy at 90.18%, underscoring the efficacy of the59

proposed method. The attention mechanisms, particularly60

CBAM, play a pivotal role in elevating overall performance,61

evident in the substantial improvements from configura-62

tion B to LSTD across various tools. This ablation study63

provides valuable insights into the cumulative impact of64

depthwise feature enhancement, instance-level feature fu-65

sion, attention-guided spatial highlighting, and CBAM in66

enhancing small tool detection in construction site scenarios.67

4.5. LSTD test results68

The LSTD model’s confusion matrix is displayed in Fig.69

8. The anticipated labels are shown by the vertical axis, and70

the genuine labels are represented by the horizontal axis. The71

major diagonal probabilities indicate the likelihood that each72
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Table 6
Effects of each component on the performance of LSTD.

Model
abbreviation

Components Metrics

Baseline DFE IFF ASH CBAM
mAP@0.5:0.95
(%)

mAP
(%)

R
(%)

P
(%)

Param
(M)

A ✓ 70.2 80.1 78.6 78.2 6.69
B ✓ ✓ ✓ 74.2 83.9 80.1 80.2 1.85
C ✓ ✓ ✓ ✓ 77.2 84.7 80.6 81.2 2.86

LSTD ✓ ✓ ✓ ✓ ✓ 77.8 87.3 83.5 85.0 2.87

Figure 7: Radar chart for each category of objects in the test
dataset, with different modules represented by different colored
lines based on Table 6, displaying precision values.

category will be correctly classified. The precision of mis-1

classification is shown by the numbers off the main diagonal,2

which indicates that overall, misclassification happens less3

frequently.4

Using mAP as the assessment metric, we ran seven5

iterations of tests on the LSTD and baseline models to verify6

the validity of the training outcomes. Analysis of variance7

was used to examine the experimental outcomes for small8

objects, and this indicates that the difference between the9

total means of the two approaches was statistically signifi-10

cant (significant level of 0.05) and that it could be concluded11

that the results had a meaningful difference. The LSTD12

and Baseline models differ significantly from one another,13

indicating the dependability of our suggested approach.14

Fig. 9 displays the LSTD result in the following unstruc-15

tured environments: (a) standard illumination, (b) intense16

illumination, (c) subdued illumination, and (d) misty con-17

ditions. Although the environment has a notable effect on18

the model performance, LSTD is still able to identify the19

categories and detect small tools under conditions like misty20

conditions, intense illumination, and subdued illumination.21

It is evident that the suggested LSTD model has strong22

resilience and flexibility in intricate external contexts. The23

Figure 8: Comprehensive insight into Model Performance by
Confusion matrix that shows the accuracy of each object.

goal of this research is to create a detecting algorithm that24

can be used for robots or monitoring safety.25

Another crucial metric for assessing the model’s effec-26

tiveness is its capacity for generalization. Three distinct tool27

kinds, namely big (closer to camera) tool, medium, and very28

small, were utilized to obtain the generalization precision29

of the LSTD model, as seen in Fig. 6. The graphic shows30

that the model can identify tools from the background and31

recognize and categorize big tools with accuracy. Although32

the algorithm can detect the tools quite correctly. The LSTD33

works well for very small and big tools simultaneously.34

Three distinct datasets of construction site settings,35

including intense illumination, subdued illumination, and36

misty conditions, were produced in order to evaluate the37

detection ability of the LSTD model in difficult scenarios.38

The particular test results are listed in Table 7. The subdued39

illumination situation yielded the best result (precision =40

84.7%) and F1-score (84.1%) for small tools detection.41

Overall, the LSTD showed high accuracy in situations42

with intense illumination, subdued illumination, and misty43

conditions; however, scenarios with misty conditions and44

intense illumination had a greater impact on the detection45

performance.46
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Figure 9: LSTD model’s performance has proven to be consistent across different environment conditions, including (a) standard
illumination, (b) intense illumination, (c) subdued illumination, and (d) misty conditions. The image shows a cluttered construction
site with scattered tools in workplace, including hammers, knives, and cutters on the floor. This presents a significant tripping
hazard for workers moving through construction sites.

Table 7
Effects of different brightness conditions on the performance of LSTD.

Dataset P (%) R (%) mAP (%) F1-score(%) CDR(%) EDR(%) MDR(%)
intense illumination 82.2 82.6 85.7 82.4 84.6 6.4 15.4
subdued illumination 84.7 84.1 86.1 84.4 84.1 5.8 15.9
misty conditions 83.7 81.8 86.4 84.7 83.9 7.1 16.1

4.6. LSTD Robustness1

Various external noises might create interference during2

the actual small tools detection procedure. For instance,3

problems like too little or too much illumination or misty4

conditions might exist. As a result, the detection algorithm5

that is created must be very resilient to noise and flexible.6

The LSTD model’s detection ability in various construc-7

tion site conditions will be evaluated in the future using8

four test datasets: misty conditions, intense illumination,9

standard illumination, and subdued illumination. Also, the10

normal light dataset’s photos are subjected to brightness11

reductions (-30%), brightness enhancements (+30%), and12

fog additions (+30%) to produce the subdued illumina-13

tion, intense illumination, and misty conditions datasets,14

respectively. As a result, for every extensive experiment, the15

quantity, classes, as well as locations of the labeled BBs16

for associated images are all the same. As seen in Fig. 9,17

we displayed the LSTD model’s detection results for small18

tools in various environmental conditions. Although there19

are a few cases of wrong detection, the image illustrates20
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Table 8
Comparison of LSTD performance with state-of-the-art mod-
els.

Model mAP (%) Param (M)
Efficientnetv2 80.6 20.67
Lcnet 80.4 1.96
Ghostnet 80.2 1.08
Mobilenetv3 78.5 1.97
YOLOv8 - Small 84.3 11.15
YOLOv7 - Tiny 83.1 6.03
YOLOv6 - Small 83.2 17.18
YOLOv5 - Small 80.1 6.69
YOLOv3 - Tiny 82.2 2.18
LSTD (ours) 87.3 2.87

how well our suggested LSTD model can detect small tools1

in various settings. The experimental findings show that2

while intense illumination in the construction site has a3

significant influence, misty conditions have little effect on4

the LSTD model’s detection ability. Thus, one avenue for5

future development is to enhance the detection accuracy in6

misty conditions.7

4.7. Comparisons with state-of-the-art model8

We contrasted the LSTD model with the most advanced9

object identification techniques in order to further corrobo-10

rate the effectiveness of the suggested methodology.11

Table 8 lists the models that are being compared. Ac-12

cording to Table 8, LSTD reaches the maximum mAP value13

of 87.3%. LSTD demonstrates higher mAP values, show-14

casing improvements of 4.1% compared to the recently15

published YOLOv7-Tiny [47] when the number of param-16

eters decreases by 52.3%. Similarly, when contrasted with17

YOLOv6-Small[48], LSTD reveals a notable mAP increase18

of 2.2%, emphasizing its enhanced detection performance19

with significant reductions in the number of parameters to20

83.3% against YOLOv8-Small, LSTD exhibits a substantial21

improvement of 3.0% in mAP, highlighting its superior22

object detection capabilities when the number of parameters23

decreases by 74.2%. Furthermore, although LSTD has a bit24

more parameters than Ghostnet [49], YOLOv3-Tiny [50]25

Mobilenetv3 [51], and Lcnet [52], the LSTD mAP is higher26

than them significantly. As a result, the LSTD’s high mAP27

and comparatively limited number of parameters lead to an28

impressive overall performance.29

4.8. Discussion30

Accurate small tool detection in unstructured construc-31

tion sites is difficult due to a number of factors, including32

illumination and mistiness. The goal of this work is to create33

a detection architecture for monitoring safety and robots. In34

order to tackle these problems, a LSTD method for detecting35

small tools in intricate and unstructured construction sites36

is suggested. With fewer parameters and computation, this37

algorithm’s unique neural network design delivers excellent38

detection accuracy. Furthermore, enhancements to the head39

and backbone networks efficiently mitigate interference. The40

following are the specific contributions made by this paper:41

(1) To increase the generalization and resilience of the42

model, on-the-fly data augmentation techniques are used to43

semantic enlarge the original dataset. (2) DFE is proposed To44

improve the feature extraction performance for small tools.45

(3) To achieve lighter weight and richer feature representa-46

tions, an IFF is suggested. (4) To enhance the background47

interference discriminating capability, an ASH is employed.48

In comparison to sophisticated object identification algo-49

rithms, the suggested technique achieves greater detection50

accuracy for small tools in complicated construction site51

conditions while displaying superior robustness, adaptation,52

and generalization in unstructured sites. This approach may53

also be used in monitoring safety and robots that are used in54

construction sites.55

The lightweight and efficient nature of our proposed56

LSTD model, demonstrated by the significant reduction57

in parameters (73%) and computations (28%) compared to58

YOLOv5, makes it a promising candidate for integration59

into existing safety monitoring systems or robotic platforms60

used on construction sites. Although explicit evaluations61

on edge devices were not conducted in this study, the low62

computational requirements and compact architecture of our63

model suggest its suitability for deployment on resource-64

constrained devices or embedded systems commonly found65

in construction site monitoring setups. The ability to accu-66

rately detect and localize small construction tools in real67

time is crucial for enabling proactive safety measures and68

interventions. By integrating our LSTD model into on-site69

monitoring systems, potential hazards such as tools being70

dropped, misplaced, or left in high-risk areas can be iden-71

tified in a timely manner. This real-time awareness can72

trigger various safety protocols and warning mechanisms73

to mitigate risks and prevent accidents. For instance, upon74

detecting a tool in an unauthorized or hazardous zone, auto-75

mated alerts or notifications can be sent to site supervisors76

or workers in the vicinity, prompting immediate action to77

secure the tool or evacuate the area if necessary. Addition-78

ally, real-time tool tracking can support the implementation79

of standardized tool storage and management procedures,80

ensuring that tools are properly accounted for and stored81

in designated areas when not in use. Furthermore, the in-82

tegration of our LSTD model with robotic platforms or83

autonomous systems employed for construction site mon-84

itoring can enable autonomous detection and response to85

potential hazards. Robots equipped with our model could86

actively patrol the site, identifying and flagging instances of87

misplaced or dropped tools, and even potentially retrieving88

or securing them to prevent accidents.89

While the current study focuses on demonstrating the90

lightweight and accurate performance of our LSTD model,91

future work should involve explicit evaluations on various92

edge devices and embedded systems commonly used in93

construction site monitoring scenarios. By assessing the94

model’s inference times and resource requirements on these95

target platforms, we can further validate its real-time ca-96

pabilities and suitability for deployment in practical safety97

M. Soleymani et al.: Preprint submitted to Elsevier Page 12 of 16



Short Title of the Article

monitoring applications. Moreover, additional research can1

explore the seamless integration of our model with exist-2

ing safety monitoring systems, robotic platforms, and site3

management software. Developing user-friendly interfaces,4

alert mechanisms, and decision-support tools based on real-5

time tool detection outputs can facilitate the adoption of our6

approach and enhance its practical impact on construction7

site safety.8

The need for lightweight models for detecting small9

objects in construction sites arises from several practical10

considerations. In this case, construction sites often have11

limited access to high-performance computing resources,12

making it challenging to deploy computationally intensive13

models on-site. Lightweight models can be more easily14

deployed on edge devices or embedded systems with modest15

hardware capabilities. To put it in another way, edge devices16

and robotic systems used for on-site monitoring may have17

power and battery constraints, making it essential to use effi-18

cient models that minimize energy consumption while main-19

taining high accuracy. Also, in many construction safety20

scenarios, real-time monitoring and immediate detection of21

potential hazards are crucial. Small tools, despite their size,22

can pose significant risks if mishandled or left unattended.23

A lightweight model can enable faster inference times, al-24

lowing for more responsive safety monitoring and hazard25

detection. Specific examples where immediate detection of26

small tools is essential include:27

• Small tools inadvertently dropped from heights can28

pose serious risks to workers below. Immediate de-29

tection of such incidents can trigger alerts or safety30

measures to prevent injuries.31

• Certain tools, if used incorrectly or in unauthorized32

areas, can create hazardous situations. Real-time de-33

tection can enable timely interventions or safety re-34

minders.35

• Misplaced or stolen tools can disrupt workflows and36

potentially lead to unsafe practices. Immediate de-37

tection can aid in tool tracking, management, and38

accountability.39

• By integrating small tool detection with worker track-40

ing, unsafe behaviors or proximity violations involv-41

ing tools can be identified and addressed promptly.42

While modern robots may have GPU capabilities to run43

computationally intensive models, the use of lightweight44

models can still offer advantages in terms of power effi-45

ciency, reduced hardware requirements, and the potential for46

deploying multiple models concurrently for various safety47

monitoring tasks. Furthermore, as construction sites evolve48

and incorporate more edge devices, sensors, and Internet49

of Things (IoT) technologies, the demand for efficient and50

lightweight models will become increasingly important to51

enable real-time safety monitoring and decision-making at52

the edge.53

As can be observed from the results of the ablation54

experiment (Table 6), the addition of ASH increases the pa-55

rameters, while also achieving overall better results. Anchor-56

based detectors are somewhat more sophisticated since they57

need to do clustering analysis before the learning phase in58

order to identify the ideal anchor set. The act of moving59

detection results between hardware adds extra delay in par-60

ticular specific edge applications. Conversely, the anchor-61

free method can increase detection speed and has a simpler62

decoding logic [43]. As a result, by using the without anchor63

approach to decrease the parameters and increase speed, the64

model may be further improved.65

With an accuracy of just 87.3%, the robustness of the66

model (Table 7) shows that the LSTD model’s detection67

ability in the misty scenario is rather weak. The model’s68

detection efficacy may be lowered in the misty conditions,69

which might result in missed detections. As a result, in order70

to enhance the model’s adaptability to this setting and bolster71

the LSTD model’s resilience, it is feasible to include an even72

greater number of misty conditions input in the training.73

Comparisons with smaller or lightweight state-of-the-74

art architecture showed that LSTD earned the highest mAP,75

demonstrating the effectiveness of our improvement efforts76

based on extracting useful features. Extracting relevant fea-77

ture information from tiny targets is the main goal of the78

DFE. The lightweight aspect of the model is maintained79

while acquiring richer feature representations through the80

use of the IFF. The model’s detection performance is further81

improved by the use of ASH. Furthermore, it is allowed to82

slightly raise the parameter of LSTD in order to considerably83

enhance detection precision, even though the parameter size84

is not minimum.85

4.9. Limitation86

This study presents promising results and significant87

advancements in small tools detection in construction en-88

vironments, however, it still has some limitations, like any89

other research project. Nonetheless, our primary goal was to90

overcome the shortcomings of current methods for detecting91

small tools in intricate and unstructured construction sites.92

The design of the proposed method allows us to model93

the system dynamics smoothly with fewer parameters and94

computation and capture the complex interactions among95

features. Firstly, the effectiveness of our proposed LSTD96

model can be influenced by environmental conditions such97

as illumination levels and mistiness. While we have demon-98

strated robustness across various scenarios, including in-99

tense illumination, subdued illumination, and misty condi-100

tions, further research may be needed to enhance the model’s101

adaptability to extreme environmental conditions. Addition-102

ally, although our proposed LSTD model achieves superior103

performance with relatively fewer parameters compared to104

some state-of-the-art models, there is ongoing research to105

optimize model complexity further without compromising106

detection accuracy. Striking a balance between model com-107

plexity and efficiency is crucial for real-world deployment.108

While our lightweight approach is designed to be suitable for109
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edge device deployment, we did not explicitly implement or1

test the model on actual edge devices in this study. Future2

work will involve evaluating the model’s performance and3

conducting experiments on various edge computing plat-4

forms to validate its real-time capabilities and resource ef-5

ficiency in practical construction site monitoring scenarios.6

However, the proposed method has specific advantages over7

those methods, especially in the context of the task we8

focus on, where we are interested in detecting small tools9

in intricate and unstructured construction sites, and extract-10

ing comprehensive features when applying ASH, DFE, and11

IFF. Also, it is true that the proposed method falls within12

the broader domain of small object detection, we want to13

emphasize that our focus is specifically on detecting small14

tools in intricate and unstructured construction sites.15

One limitation of our study is that, while the dataset16

was carefully curated to include variations in factors such17

as background diversity, occlusions, and resolution changes,18

our experimental evaluation primarily focused on the impact19

of fog and lighting conditions on the model’s performance.20

Due to the lack of comprehensive metadata in the dataset21

regarding other factors, we were unable to quantitatively22

evaluate the robustness of our approach to these additional23

challenges. While this dataset aimed to capture a diverse24

range of real-world conditions encountered in construction25

sites, the explicit evaluation of our model’s performance26

under varying levels of occlusion, background complexity,27

and resolution changes was not conducted. Future work28

should incorporate detailed annotations and controlled ex-29

periments to assess the model’s resilience to these factors,30

which are known to influence the performance of object31

detection methods in practical scenarios. Furthermore, col-32

lecting and annotating additional data with an emphasis on33

these specific factors would enable a more comprehensive34

evaluation of our approach’s capabilities and potential lim-35

itations in handling the full spectrum of challenges present36

in construction site environments. However, it’s essential to37

note that the data utilized in our study is a small tools dataset38

[11], currently the largest dataset available for this specific39

domain. This dataset comprises real-world image capture in40

standard settings, providing a diverse range of construction41

site contexts. We have meticulously processed these images42

to enable comprehensive testing of our proposed model’s43

detection capabilities for different small tools in intricate and44

unstructured construction sites. As a limitation, it is crucial45

to highlight that due to the unique labeling process and the46

distinctive number of classes in the used datasets compared47

to other existing datasets, we faced challenges in testing our48

model on alternative datasets to evaluate the generalization49

of the proposed method. The lack of a standardized labeling50

schema and class distribution in other datasets limits the51

direct applicability of our model beyond the used datasets.52

Despite these constraints, we have conducted a series of53

extensive experiments on the dataset [11] to showcase the54

effectiveness of our proposed in detecting small tools in55

intricate and unstructured construction sites.56

Also, our future research directions include refinement57

of environmental adaptability, further investigation into58

techniques to enhance the model’s adaptability to extreme59

environmental conditions, such as misty environments or60

varying illumination levels. Additionally, tailoring the LSTD61

model for specific applications within the construction62

domain, considering factors such as camera placement,63

scene complexity, and tool diversity, to optimize detection64

performance is a priority. Furthermore, incorporating real-65

time feedback mechanisms into the LSTD model to enable66

continuous learning and adaptation in dynamic construction67

environments is an important avenue for exploration. By68

addressing these limitations and pursuing future research69

directions, we aim to further advance the field of small tools70

detection in construction environments and contribute to the71

development of safer construction practices.72

5. Conclusions73

This paper presents LSTD, a Lightweight Small object74

detection architecture for difficult and unstructured con-75

struction sites. By utilizing on-the-fly data augmentation76

techniques, the mAP, recall, and precision are increased77

by 3.1%, 2.7%, and 2.6%, respectively, in comparison to78

the original dataset. In comparison to the PAN + FPN79

architecture in the YOLOv5, the DFE + IFF architecture80

achieves a 73% decrease in parameters and a 27% reduction81

in computation. The advantages of CBAM integration allow82

the LSTD to reach the highest precision (85%) and mAP83

(87.3%). In addition, it increases the LSTD capacity to84

concentrate on small tool areas. The influence of the DFE +85

IFF network topology is further demonstrated by the ablation86

experiment, whereby the CBAM module enhances accuracy87

and the ASH module effects more on recall. Additionally, the88

study shows that misty condition in construction sites has a89

more significant effect on the LSTD’s detection ability than90

illumination. The suggested object identification approach91

obtains the greatest mAP (87.3%) when compared to other92

cutting-edge techniques.93

To automate the monitoring of safety in construction94

sites, the proposed LSTD model could be incorporated into95

robotic systems to monitor onsite small tools for worker96

safety enhancement and tool tracking and management. Fur-97

ther study will investigate more to make sure it can reach98

the necessary speed and accuracy when deployed on edge99

devices. To further enhance the model’s capacity to discrim-100

inate between small tools, it is also worthwhile to investigate101

the incorporation of complicated construction site environ-102

ments into the model input. Also, given the properties of103

small tools, it is promising to investigate ways to improve104

BB generation techniques or create loss functions that are105

more suited for small object recognition in order to improve106

small tools detection performance.107
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