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ABSTRACT

In recent years, advances in construction site image analysis faced challenges, particularly in con-
struction object detection and identifying unsafe actions. Challenges involve complex backgrounds,
varying object sizes, and image quality. Existing methods address spatial and temporal features with
attention mechanisms but often overlook adaptive sampling and channel-wise adjustments, missing
potential spatiotemporal redundancies. This article introduces the Optimized Positioning (OP-Net)
architectures and an attention-based spatiotemporal sampling approach. The OP module is introduced
for object detection, which enhances channel relationships by leveraging global feature affinity
associations. Additionally, we propose an innovative spatiotemporal sampling strategy that adapts to
effectively identify unsafe actions in construction sites. We extensively evaluate the object detection
task using the SODA dataset to showcase the efficacy and effectiveness of our approach. Furthermore,
our unsafe action identification model is benchmarked on the CMA dataset, demonstrating its ability
to achieve new state-of-the-art performance in accuracy while maintaining reasonable computational

efficiency.

1. Introduction

Construction and civil infrastructure projects often entail
complex interactions between individuals and machinery,
each involving unique and dynamic processes [1]. Safety
in the construction industry has been a longstanding global
concern, with significantly higher rates of injuries and fa-
talities compared to other sectors [2]. The importance of
ensuring safety at construction sites has never been more
critical, especially as the industry experiences revitalization
and an increased demand for infrastructure development. To
illustrate, in the UK, the construction sector accounts for
just 5% of the workforce but is responsible for 27% of fatal
injuries, while in the US, construction accounted for nearly
20% of all occupational fatalities in 2016-2017 [3]. Despite
extensive efforts to enhance safety through measures like
Occupational Safety and Health Administration (OSHA)
requirements, accident and mortality rates in construction
have remained persistently high or reached a plateau in
recent years [4]. Studies indicate that a substantial portion
of construction accidents can be attributed to human factors
such as unsafe behavior, lapses in supervision, and a lack of
risk awareness [5]. Cognitive factors play a significant role in
determining the ability of workers to promptly recognize and
respond to hazards in the ever-changing environment of con-
struction sites. Although advanced technologies like virtual
reality have been explored to enhance risk awareness, they
may not fully address the fundamental cognitive limitations
that impact visual search and risk assessment [6].
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Research indicates that a significant proportion of con-
struction accidents, ranging from 70% to 88%, can be at-
tributed to workers’ unsafe behaviors as the immediate cause
[5, 7, 8]. Studies conducted on construction sites have iden-
tified elevated rates of unsafe actions, such as the failure to
use fall protection equipment, in various countries, including
the US, UK, and China. Despite efforts to address these
behaviors through training, their impact has been limited,
with workplace negligence and oversight still contributing
to a significant number of incidents [6]. For instance, it’s
noteworthy that 25% of these risks stem from a lack of
awareness, even after workforce training efforts [9, 6]. In
light of these findings, it becomes evident that alongside
behavioral interventions, exploring the cognitive processes
underlying risk perception, assessment, and response is cru-
cial for improving safety outcomes.

Emerging deep learning and computer vision techniques
are playing a pivotal role in complementing existing safety
practices and tackling human factors within construction-
related risks [10, 11, 12]. Automated monitoring systems
are now capable of capturing activities across construction
sites, enabling the identification of unsafe behaviors and
structural defects for timely intervention. While techno-
logical advancements, such as computer vision-based be-
havior monitoring, offer promising avenues for enhancing
risk detection and awareness, there remains a need for re-
search to effectively integrate these findings into improved
safety management and training programs [11, 12]. Lever-
aging large visual datasets in conjunction with deep learning
has the potential to facilitate more proactive and targeted
risk mitigation strategies on construction sites. In summary,
adopting a multilayered approach that addresses both unsafe
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behaviors and cognitive factors holds great promise in the
ongoing efforts to reduce construction-related accidents.

Video analysis for ensuring construction site safety faces
several challenges, primarily stemming from the redundancy
between frames and the complexity of detecting crucial
information. To address these issues, adaptive sampling
techniques are preferred over fixed sampling rates. This pref-
erence arises from the fact that over-sampling can lead to ex-
cessive computational expenses while under-sampling risks
missing critical visual details. Recent research has delved
into the realm of adaptive temporal and spatial sampling,
aiming to optimize the trade-offs between performance and
efficiency, with a focus on specific action categories [13]. In
terms of spatial sampling within individual frames, adopting
an adaptive approach prevents fixed schemes from either
overlooking important regions or over-processing less sig-
nificant areas. The adoption of intelligent and adaptive sam-
pling techniques is expected to play a vital role in optimizing
video analysis for construction safety monitoring.

Deep convolutional neural networks (CNNs) show promise

for visual analysis on construction sites, but small, dense
objects in complex backgrounds pose challenges. State-of-
the-art approaches leverage strategies like efficient network
design, labeling techniques, and anchor generation to boost
performance [14, 15, 16, 17, 18]. Attention mechanisms that
adjust feature representations are also critical for handling
construction site complexity. Spatial attention focuses on
similarity comparisons between feature positions, enabling
global context modeling [19, 20, 21, 22, 23]. Channel atten-
tion re-weights feature maps based on significance for the
detection task [24, 25]. However, current channel attention
methods lack relational modeling between channels that can
capture feature dependencies. An optimized position atten-
tion mechanism is proposed to enhance channel attention
through feature transformers, improving the handling of
diverse object sizes and backgrounds.

Integrating adaptive sampling techniques and optimized
position attention will enable more efficient and accurate
automated visual monitoring on construction sites. Intel-
ligent frame sampling reduces redundant computations to
improve efficiency while ensuring critical information is
retained. Deep CNNss with attention mechanisms can handle
complex backgrounds and varied object types and sizes.
Tight integration of computer vision techniques with safety
management systems will enable proactive hazard identifi-
cation and prevention on dynamic construction sites.

In this paper, we propose a two-part approach to identify
and analyze risky behaviors in construction sites through
computer vision techniques: first, we develop an object de-
tection model trained on the SODA dataset to locate objects
in videos, and second, we develop a novel spatiotemporal
sampling and utilizing this detection model to identify un-
safe worker actions using the CMA dataset, with the goal
of improving safety management. In summary, the contribu-
tions of the proposed method are as follows:

e We propose an end-to-end network for object de-
tection that utilizes the different proposed attention
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Figure 1: Schematic of the optimized-position methods. (a)
Spatial attention mechanism. (b) Channel attention mecha-
nism. (c) Our proposed optimized-position (OP).

module collaborative learning approach to capture a
more comprehensive feature.

e A novel and effective approach to sampling in the spa-
tiotemporal domain is proposed that involves imple-
menting pre-scan by temporal sampling and skipping
processing and involves enhancing spatial sampling in
the imagined and observed attention.

e We illustrate the performance of the proposed meth-
ods on the object detection task on SODA [26] and
the unsafe behavior recognition task on CMA [27]
datasets. Compared with the baseline equivalents, our
method decreases computational complexity at an ac-
ceptable accuracy loss.

2. Related works

Recent advancements in Al object recognition have in-
troduced the capability to identify multiple objects, repre-
senting a significant leap compared to semantic segmen-
tation and classification, which are limited to recognizing
individual objects. However, one limitation of object recog-
nition is its inability to precisely locate objects within an
image, despite its capacity to differentiate between them.
For the simultaneous identification of multiple objects and
their spatial locations, object detection techniques come into
play. In a study conducted by Son et al. [28], Faster-CNN
with bounding boxes was employed to detect the presence
of construction workers in the industry. While this classifi-
cation approach can identify hazard types, it can only detect
one object at a time, which restricts its direct practical ap-
plication for hazard identification. Furthermore, the absence
of a standardized benchmark for assessing hazard existence,
coupled with a lack of indication regarding their probability
levels, poses challenges. Although Luo et al. [29] used CNN
to detect construction workers’ activities, the study did not
delve into the safety risks associated with construction.

Given the numerous safety risks on construction sites,
there is a pressing need to develop object detection methods
that are tailored to real-life situations. Additionally, object
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detection plays a pivotal role in overlaying as-built mod-
els onto as-planned Building Information Modeling (BIM)
models, enabling the quantification of work completed and
the calculation of percent completion. This involves the iden-
tification of specific construction features using a dedicated
BIM model for a given type of building structure, such as
an RCC structure. Vision datasets are leveraged to identify
various construction features and measure them in terms
of quantity and relative position. Object detection methods
offer a degree of automation based on the chosen technique
and BIM integration, enhancing the efficiency of the process.

2.1. Detecting Unsafe Behavior through Data
Sensing or Image Processing

A broad spectrum of signals originating from workers
on construction sites has been collected for the purpose of
identifying unsafe conditions. Li et al. [30] combined a Con-
volutional Neural Network (CNN) with Long Short-Term
Memory (LSTM) networks, utilizing acceleration signals.
In another study by Bangaru et al. [31], electromyography
and inertial measurements were employed to discern the ac-
tivities of builders. Notably, Antwi-Afari et al. [32] demon-
strated the detection of awkward working positions through
the use of wearable equipment. Jung et al. [33] proposed
a method for human activity classification based on sound
recognition, while Lee et al. [34] developed a novel audio-
based construction safety surveillance system. However, it’s
worth noting that the motion of workers can be affected
by some wearable sensors. These existing approaches may
fall short of fully capturing the features associated with
unsafe conditions due to the limited dimensionality and
restricted information contained in the signals. Moreover,
data cleaning becomes a challenging task, given the poten-
tial interference from other signals present on construction
sites, which can obscure the specific signal required for the
detection of unsafe conditions.

Construction sites can quickly become hazardous when
workers fail to wear the necessary personal protective equip-
ment (PPE), leading to accidents such as fatal falls. The
proper use of PPE holds the potential to prevent numer-
ous injuries and save lives. Several studies have sought
to automate the monitoring of PPE compliance in images
through computer vision (CV) techniques. Fang et al. [35,
36] proposed a systematic method for evaluating whether
PPE should be worn, particularly when working at heights.
Nath et al. [37] employed deep learning methods to detect
whether workers were wearing vests and hard helmets. Ad-
dressing the multi-class challenge of PPE recognition in the
workplace, Xiong and Tang [38] introduced a pose-guided
anchoring framework. To determine whether workers were
wearing helmets, Yang et al. [39] utilized an approach based
on CNN architecture. Chian et al. [40] developed a CV-
based detection method to automatically identify missing
barricades. Fang et al. [41] visually identified construction
workers navigating structures and determined their relative
positions using a visual model. Unlike methods that fo-
cus on recognizing actions in images, these image-based

approaches emphasize the identification and localization
of various objects within an image. While it’s relatively
straightforward to identify unsafe behavior based on the
presence or absence of an object (e.g., a worker not wearing a
helmet), these image-based techniques encounter challenges
when dealing with complex, prolonged unsafe behaviors.
For instance, in scenarios like "Fall Down," evaluating video
frames temporally becomes crucial to accurately discern
whether an object poses a danger, as a single frame may
provide a misleading snapshot of the situation.

2.2. Detecting Unsafe Behavior through Video
Analysis

Numerous studies have endeavored to identify risky ac-
tivities in videos, addressing the challenges posed by the
recognition of harmful actions when working with images
or signals. While several deep learning methods are avail-
able for recognizing actions, two prominent categories stand
out: 3D-CNN-based approaches and two-stream-based ap-
proaches. In two-stream approaches [42, 43, 44], two distinct
networks are employed to process various types of data,
allowing for the effective integration of diverse features with
a high degree of precision. This approach proves invaluable
in obtaining a wide range of features. On the other hand, 3D-
CNN-based approaches [45, 46, 47] operate by extracting
both temporal and spatial features in a single operation using
3D convolutional kernels, extending beyond the capabilities
of 2D convolutional kernels. However, it’s important to note
that 3D CNN-based methods are computationally intensive,
leading some researchers to propose novel convolution func-
tions aimed at reducing computational demands [48, 49, 50].
Furthermore, a variety of modules [51, 52, 53, 54] have been
developed to enhance feature extraction capabilities, and
these can be directly incorporated into networks to improve
their overall performance.

Numerous studies have introduced deep learning ap-
proaches for monitoring construction sites to capture and
identify risky behaviors exhibited by workers and equip-
ment. In many of these studies, workers’ skeletons serve as a
primary modeling component for detecting abnormal behav-
iors. Han and Lee’s study [55] analyzed 2D human skeleton
points using a stereo camera and the point coordinates of the
3D reconstructed human skeleton [56]. They constructed an
action labeling model based on these skeletons. Another ap-
proach, employing skeleton-based modeling, was developed
to address the challenge of occlusion in recognizing con-
struction workers’ actions [57]. Ding et al. [58] proposed a
method that models skeleton points and fuses features in the
temporal domain using a temporal segment Graph Convo-
lutional Network (GCN). Additionally, a machine learning
method was introduced that utilizes a depth sensor camera
to identify motions as observed by the camera [59]. This
approach identifies workers’ actions through their skeletons
rather than relying on their movements in the video. It’s
worth noting that first-phase skeleton extraction models can
be computationally intensive and often lack parallelizability,
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making their performance a critical factor in determining the
ultimate output quality.

The process of identifying worker behaviors from videos
has therefore become easier for researchers. An approach
based on a two-stream architecture as well as a fusion ap-
proach has been proposed by Luo et al. [60] for recognizing
worker actions in construction site videos. Nevertheless, it
is possible to lose information when two streams are merged
by using a simple fusion strategy. The work of Ding et al.
[61] aimed to analyze and recognize employees’ climbs and
dismounts from ladders using a deep learning model based
on LSTM. A video is fed into the LSTM model with 25
feature vectors, which is not a fast method, as it requires
obtaining 25 feature vectors. Using deep activity features
and contextual information, Luo et al. [62] developed an
action recognition model that can combine deep activity fea-
tures with contextual information. Using denser trajectory
data, Yang et al. [63] were able to recognize the actions of
workers.

Construction equipment operation status should also be
monitored at all times. The construction equipment actions
of excavators and trucks were recognized from videos using
a 3D-CNN method developed by Jung et al. [64]. For identi-
fying the working status of excavators, Kim et al. [65] used
two layers LSTM and CNNs. According to Biigler et al. [66],
productivity information regarding excavation operations
was generated through the integration of two vision-based
sensing methods. Recognition of worker action has been
well studied, and CV techniques have been introduced into
the architecture field with great ease. Nevertheless, digital
twin technology is generating exponential amounts of data,
and identifying unsafe behaviors is becoming increasingly
challenging. Since CNNs and LSTMs are based on con-
volution kernels, they are unable to address such demands
adequately: Convolution kernels cannot model long-range
spatial as well as temporal information well because they
cannot extract connections beyond the receptive field. There
are certain advantages of LSTMs when it comes to sequence
modeling because they have long-term memory. When there
are many LSTM layers or the temporal sequence is very long,
parallel computing across layers can be extremely time-
consuming, leading to a very slow computation.

2.3. Points of Departure

Deep networks can be simplified in several ways, pri-
marily by reducing complexity through techniques such as
frame skipping, input region deletion, and layer omission.
During the training phase, [67] suggests stochastically drop-
ping layers as a simplification method. BlockDrop [68]
and SkipNet [69], as part of their training and validation
processes, propose effective layer omission strategies based
on reinforcement learning. RS-Net [70] achieves complexity
reduction by seamlessly integrating features across various
image resolutions and being able to switch between spatial
resolutions. PatchDrop [71] employs reinforcement learning
to eliminate unimportant regions from input images. Time

sampling is a more appropriate choice for general video anal-
ysis applications. In some cases, representing a single frame
is sufficient, making time frame repetition time-consuming
[72]. Given the variable speeds at which different actions
occur, video processing at multiple frames per second has
been utilized [49, 73]. SC-Sampler [74] and ARNet [75]
handle time sampling by employing networks to pre-check
features in specific scenarios. In contrast, the formulation
presented in [76] underscores frame skipping based on spa-
tial redundancy in special cases. Meanwhile, [77] focuses
on considering only partial spatial information in the time
domain. In this study, we explicitly model spatial-temporal
sampling using human attention, with a limited number
of layers for pre-scanning. Our proposed model offers the
unique capability of visualizing attention and hallucinations,
rendering it more understandable.

A trained model can determine regions where it consid-
ers a certain region to be "relevant" within the output by
using gradient-based methods [78? ]. In the natural language
processing domain, self-attention has just recently been pre-
sented as a method of directing deep networks’ attention
[? 1. Computer vision communities have been interested
in such self-attention mechanisms since they allow models
to focus on important regions more [79]. This attention
serves as a mechanism for identifying the important spatial
and temporal frames, thereby enabling adaptive spatial and
temporal sampling. A more recent attention-based approach
is the vision transformer, which has been adopted in several
publications [? ] [80] [81] [82, 83, 84]. The method proposed
in this paper can efficiently interchange the backbone models
with all CNNs that use attention since our algorithm operates
on top of it. The SAN-19 [79] architecture is used in the
study, and the baseline models are optimized to improve
efficiency.

3. Proposed Research Methodology

In this section, we provide a comprehensive overview of
the materials, methodologies, and techniques employed in
our research. Our approach is divided into two fundamental
parts, we begin with introducing our proposed object detec-
tion model developed and trained using the SODA dataset.
This model serves as a crucial component in our pursuit of
identifying and localizing objects within various contexts.
Subsequently, we delve into the second part of our methodol-
ogy, which involves the application of our proposed method
for identifying and analyzing risky behaviors in construction
environment videos. This phase utilizes the CMA dataset to
address safety concerns comprehensively.

3.1. Object Detection
3.1.1. Adjustable Channel Attention

The Channel Attention (CA) module plays a crucial role
in highlighting the most important channels by considering
the interdependencies between them. In CA, queries (Q) are
generated based on keys (K), and values (V') are derived
from these queries within sets of feature maps (M). Both
M’ and M share similar scales with the original M. CA can
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be realized by specifying dimensions W, H, and C for each
set of feature maps, denoted as M € R">HXC  This can be
effectively achieved by constructing a feature map using a set
of features. The implementation of CA can be formulated as
follows:

Simi,j = Ggim (qi’kj)

W= Goom (sim,-,j)

M: = Z Gl (Wi,j’vj)
J

ey

Here, q;, k;, and v; represent the input of CA, and
w

and M; denote similarity, weight, and output,

Sim j, Wij»
respectively. In this context, q; = g, (M;) € Q represents

the i-th query, k; = g, (M;) € K represents the second

key/value pair, and v; = g, (M j) € V represents the third
key/value pair. Functions g,(-), g(-), and g,(-) denote the
transformations for channel queries, keys, and values [85,
86]. The feature maps M consist of two channel features: M
and M;. G;p,, represents the dot product similarity function,
and G, denotes matrix dot multiplication. M represents
the i-th channel feature in M, and its response is computed
based on the enumeration of all possible channels. However,
despite the ability of CA to assign different weights to
different channels, coarse operations (i.e., without grouped
feature representations [87, 86, 88, 89]) fail to enable effec-
tive communication among all channels. Empirical evidence
has demonstrated the importance of such communication in
various computer vision tasks, and this limitation hinders the
effective representation of features.

3.1.2. Optimized-Position (OP)

Based on global feature affinity-pairs, OP can be used
to enhance feature channel relation by setting optimized
weights adaptively based on the feature channel affinity
pairs. Fig. 2 shows its detailed structure. By combining the
multi-head representations and concatenating them with the
optimized features, we produce enhanced feature maps by
using a convolution layer based on the transformer mecha-
nism. To enable richer channel feature representations, we
deploy the multi-head architecture. Multi-head can provide
more feature selection when extracting features in ViT [90]
and DETR [85]. Using more than one head to complement
features is more efficient than learning the same contents
in one head. Based on their analysis work [91], important
multi-head models have one or more specialized functions
that are interpretable, demonstrating the need for multi-head
models.

Firstly, we divide the channel dimension into P parts.
Each structure in each head is an OP module ( B is the batch

size), based on the divided features with shape (B, C/P, H, W).

A similarity matrix in the form of (B, C/P, C/ P) exists for
the n-th head module, which is expressed as follows:

wpC/P.pC/P wP+HC/ PO

sim” = )

WOpEDC/P W P+DC/P.(p+1C/P

In this case, every w represents a scalar of similarity that
can be learned. Following the concatenation of the partial
results from these head modules, we obtain the holistic
output feature maps from the original feature maps with the
same shape. A process similar to the one mentioned above
can be described as:

Weight : wzj =Goom (siml’.fj)

Partial result : M = Z Gl <W:’j,vj’,,> 3)
J
Holistic output: M’ = G, (M:’)

Here, the weights of each channel feature and its normalized
version are denoted by siml’f" and wzj. Several channel fea-
tures contribute to the calculation of the i-th channel feature.
An nth head’s j-th value is denoted by v; ,. Concatenating
features in the channel dimension is done with G,,. A multi-
head OP with O ( PC?) computational complexity has lower
computational complexity than the previous transformer-
based approaches, which have O (P H?*W?) computational
complexity. We propose OP implementations based on pyra-
mid features because they offer three advantages over CA.
Communication within and between feature pyramid layers
is promoted by OP, whereas most previous methods capture
long-range dependencies between features within and across
space. In OP, features are represented in different feature
spaces as a result of the multi-head structure [92, 86]. Con-
sequently, OP can enhance the representation of features.
A construction image is analyzed by OP to detect objects.
In Section 4.1, OP proposes more accurate head network
proposals by increasing feature pyramid representation in
construction images to solve complex background and poor
imaging problems. In both oriented and horizontal tasks,
OP improves state-of-the-art performance dramatically (see
Section 4.1). As follows are two OP implementations of a
pyramid OP show with a base OP implemented on top.

3.1.3. Base OP

We can extract feature maps from arbitrary construction
images using a fully convolutional network. These feature
maps can be used by OP directly to adjust weights for each
channel and improve communication channels. Fig. 2(b)
depicts the detailed architecture of each level of the feature
pyramid (i.e., feature maps with the same scale). Base OP
is implemented on the basic feature maps since it is based
on the basic feature maps. A base OP works on a backbone
network and is a general unit. A wide range of downstream
recognition tasks can be supported by this method, while
other existing head-network-based methods [93, 22] are
more task-specific. Section 4.1 shows the ablation experi-
ments that demonstrate how our base OP improves feature
extraction.

3.1.4. Modified Pyramid OP

There has been extensive research on the effectiveness
of feature pyramids in the computer vision field [94, 95, 96].
A rearranged pyramid OP (MP-OP) is proposed here, which
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Figure 2: Our proposed OP network (OP-Net) deploys OP both on intralayer feature maps and on feature pyramids. Subfigure (a)
shows the overview of the architecture of the OP-Net. Subfigure (b) shows the detailed layout of every feature pyramid. Subfigure
(c) shows the overview of the architecture of the Modified Pyramid OP (MP-OP). Feature maps that utilize the OP-MP module

have better representation capabilities

shows how to implement our OP on a pyramid feature [97,
98, 99]. We have developed an efficient, low-complexity,
and more parameter-light MP-OP, which is applied to the
in-network feature pyramid (see Section 4.1 for details). A
structure of MP-OP modules is shown in Fig. 2(c). These
modules extract feature pyramids from the feature pyramid
network [94]. A level in the feature pyramid is viewed as
a small piece of the input image’s features, i.e., only a
fraction of the input image’s features are captured at each
level. The combination of global and local information is
crucial in feature extraction in order to highlight the most
suitable feature in the channel dimension. Based on works
[94, 96], MP-OP is used to weight different features across
pyramid levels Mg,_ 6. The feature pyramid is illustrated in
Fig. 2(c) with OP applied between the five levels in order
to fully convey the information of each level. We begin by
reducing the channel dimension and activating interpolation
on pyramid features M g,_ ¢ to produce features of the same
scale (same scale as S2), and then we concatenate them into
Mg, _ 6, Which is expressed as:

My, 56 = Ging (Mg2-s6) “4)

An interpolation function Gy, is used to reduce channel

ntp

dimensions and scale. Output feature Mg,_ s has a shape
—

f (B,5,Hy, W,,). After that, MP-OP produces M, by

learning the weight between the query and the key from input

q;.k;, and v;. Interactions can be expressed as

Input : Mg,_ g6
Interpolation : M S2-56
Extraction : q;, k;, v;

Gim (szkj)
Wi = Gpom (sim; )

Output : Ml, = Z Gl (Wi,j’vj)
J

Similarity : sim; ; =

5
Weight: )

1

.. NqiPeg N
Holistic output : Mg, ¢¢ = Gop <M>

~f . ~—Tpeg . .
Afeature M, in MS%—S6 is at the ith level, and (B, 5,Hy, VVsz)

is the shape of Mg)ﬁ g6+ Pyramid features are fully realized

—rpeg
M $2-56° but we need to find a way to feedback to them.

Furthermore, a number of methods have been used in
visual recognition to verify the effectiveness of local and
global information combined, and our method is a global
approach. As a result, we chose to combine our MP-OP
method with the existing local channel attention method. We
choose classic channel attention [100] for this study. Hence,
our proposed MP-OP module has the structure as:

~rave (tpeg) ~TPCg
Weight : Mg, g5 = Guyg (MSZ—S6>
vy —avg (rpeg)
Scale : Mg, o =Mg, ¢ ® Mgy g6 (6)

. o-out —
Output : Mg, ¢ = Geony ( s2-56 D@ Msz—S6> .
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52 through .S6 are the five outputs from M $2—56- A weighted
average of Msz— g6 18 called Mg)ch g6+ For each pyramid’s
level, the mean value is used as the weighting parameter,
which is then resized to the same scale as the original
level feature used by G/, to distinguish between scales. A
matrix cross multiplication is performed by ®, and a channel
concatenation is performed by €D. As with the original

feature pyramid, Msz— g6 is adjusted to the same size. In
order to restore the original size of the channel, we get the

—out .
output Mg, _ ¢ from convolution Gy, -

3.1.5. Network Architecture

For construction image object detection tasks, OP can
boost the model’s ability to learn richer communication
information among feature channels. The purpose of this
article is to develop an OP-Net able to detect oriented and
horizontal objects in construction images. In Fig. 2, you
can see the overall architecture. We propose OP-Net as a
method for transforming pyramid features based on OP and
MP-OP as shown in Fig. 2. A ResNet [101]-based backbone
is deployed on top of [18], which has been pre-trained on
ImageNet [102]. Our feature pyramid is then produced based
on the feature pyramid network [94]. Our feature pyramid
begins by applying base OP to each of the feature maps. A
new feature pyramid is then created in which local and global
communication is realized. A 3x 3 convolution reduces the
dimension of the concatenated features maps to 256 channels
by concatenating the original feature maps and adjusted ones
together. To detect horizontal objects, we use a standard
faster R-CNN [103], which is derived from the head network
of the Rol transformer [18].

3.1.6. Dataset

As part of our experiments, we select a challenging
dataset that is a large-scale dataset from the SODA dataset
[26]. Object detection can be done both horizontally and
orientedly with SODA.

Itincludes oriented and horizontal bounding boxes and is
one of the largest construction image datasets for object de-
tection. 188,282 objects are annotated in 2806 construction
site images, which were captured by different platforms and
sensors, and 15 object categories are common across all the
images in the SODA database like Slogan (SL), Fence (FE),
Hook (HK), Hopper (HO), Electric Box (EB), Cutter (CU),
Handcart (HA), Scaffold (SC), Brick (BR), Rebar (RE),
Wood (WO), Board (BO), Helmet (HE), Vest (VE), and
Person (PE). The images are larger than 1920x1080 pixels
and contain a wide variety of objects oriented differently
and captured in different scales. Our classification consists
of randomly dividing the original images into three sets:
training, testing, and validation, according to the method
described in [26].

3.1.7. Training Setup

In this study, we are using Faster R-CNN [103], which
is combined with ResNet-101 [101] as our backbone. A
feature pyramid with predefined anchors for pyramid levels

S2-S6 is constructed using the FPN [94] as a neck network.
A rotated head network, Rol-transformer [18], is used in
oriented object detection to convert horizontal proposals
into rotated ones. As outlined in [18, 26], all experimental
settings and parameters are strictly consistent. End-to-end
training is applied to the entire network. It is necessary
for the fairness of comparisons to adjust hyperparameters
even though it is conducive to further improving model
performance. We set anchor size as follows in [18] and
[14], for SODA, with aspect ratios of [1/2,1,2] and anchor
strides of [4,8,16,32,64] at each pyramid scale. Our ablation
studies are based on SODA, which does not include any data
augmentation. This allows for a fair comparison and trial
of the proposed method. We only add random rotation to
augmentations like [18], [14], and [22] compared to SOTA
methods on SODA. The number of multi-heads in the base
OP can be determined by P, which is a hyperparameter for
multi-head. If P is high, the dividing feature reduces the
ability of the channel to relationship with each other. We set
S to two in the final network based on the parameter settings
of previous work [96].

As aresult of our study, the learning rate is initially 0.005
and the SGD optimizer performs a weight decay of 0.0001
and momentum decay of 0.95. We set the training epoch for
SODA to 80. Neither multiscale input nor TTA are used in
the testing step. Furthermore, the Colab GPU is used for the
experiments. According to [26], the model is evaluated and
the result distribution is analyzed using the mean average
precision (mAP) of each category and overall. Moreover,
GFLOPs/FPS and model parameters (#Params) are em-
ployed for verifying model efficiency, which is used for
determining model computational complexity and runtime
efficiency.

3.2. Detecting Unsafe Behavior

D= {(V,,,y,,)}flv=1 is a video dataset composed of v,
video sequences and y, ground truth labels. 7' frames are
assumed to be of the same length in all video sequences,

ie., v, = [f;l),féz), ,f,gT)], where each frame is f,gt) €

RHXW>3 vt € {1,...,T}. Consider a classifier F (v,) =
¥, for video with O complexity. In an effort to reduce
the complexity of classifier F while maintaining accuracy,
another classifier F will be constructed. To resolve this issue,
we introduce a spatial sampler S as well as temporal sampler
T like F (£,:7,S) = §,, such that Op < Op. Spatial
sampling picks the top-k regions according to attention map
activation. By comparing each frame’s attention with the
model’s future prediction, the temporal sampler decides
whether to skip it.

3.2.1. Cumulative Global Attention

In this paper, we use a cumulative global attention for-
mulation derived from Zhao et al. [79]. Pairwise attention is
rewritten as

z= ) a(Q(f).K(f)) oV (L) )
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Figure 3: Cumulative attention processes take into account
all the relevant information when extracting features by the
sliding effects. The adjacent contexts of the green (m,), red
(m,), and blue (m,) squares represent local attentions. The
cumulative global attention M is represented by the bottom
grid.

A spatial indices is defined as i, j € R?, a key encoding
is defined as O (f;), a key encoding is defined as K (fj),
a value encoding as V (f;), and a compatibility function
is defined as a softmax. The footprint R(i) defines such
compatibility functions locally. The local attention at i can
then be expressed as follows:

m, = [a(Q(8).K (£))] .j € RG) ®

As well as modeling the underlying relationship between
neighboring footprints, we must also learn to generate such
overlapping attention map, e.g., m; and m,,; overlap. As
a result, a global attention map can be generated more
effectively if the contexts are already encoded. To calculate
it, we used the following formula:

M= m @ 1{RG) ©

In this case, T1{R(i)} represents a function that deletes
locations externally of contexts R (i), as well as @ represents
the product of a; and the contexts associated with it. It is im-
portant to note that m; and R (i) have the same dimension in
the spatial domain, while M as well as ¢(f) (the input feature
map) have the same spatial dimension. We use "attention"
throughout the remaining sections to mean the cumulative
global attention unless stated otherwise.

The kernel window sliding concept is similar to that
of neighboring contexts. Overlapping regions will occur if
the kernel size is larger than the stride. Fig. 3 illustrates
an example where the kernel size is three and stride is
one, resulting in an overlap of two. Due to the duplicated
information in overlapping regions, representing attention as
m; is not efficient. The imagination then learns to generate

(a) Cumulative attention

(b) Input frame (c) local attentions m; from different contexts global attention M. R;

Figure 4: Cumulative attention and local attention are
extracted from the same layer as well as the same input frame.

its future version by averaging them as M ’s. In the updated
manuscript, we have clarified this point.

As shown in Fig. 4a, given the same input as Fig. 4b,
local attentions are combined to create cumulative global
attention over multiple contexts (Fig. 4c). In this example,
the neighboring m; overlap with each other, similar to con-
volution (due to stride is 1). It is easier to learn when we
use M since we don’t need to encode such overlapping
conditions. The worker and the helmet (bottom-left corner)
appear to be the "important regions" of the input frames that
are activated by M. To find the region of interest in the
proposed spatial sampler used from global attention maps.

3.2.2. Space Domain Sampler

In humans, foveal vision is a high-resolution input that is
provided at the exact location where it matters. The spatial
sampler is similar to a fovea in humans. Informally, we
rescale (using the down-sampling weigh d ) and crop f
(W’ <W,H <H ) at k various locations to obtain the
associated high-res and low-res frames, f, , € RH#*W"3 g5
well as f; € R%X% 3, respectively. As a result, our hyper-
parameter d determines where to crop f}, ;, while our spatial
sampler S determines how big the cropping regions should
be. Selecting the regions with the highest summation based
on the entire M, we look for all regions that are connected.
On the basis of the spatial dimension scaling between f and
M. Then, we return those areas to pixel space using linear
projection.

The spatial sampler is shown in Fig. 6. The top-k areas
of the raw frame f are sampled using the attention extracted
from the low-res frame f;. Thus, f}, , maintains the original
resolution of f, while having a lower spatial dimension.
The global average pooling layer was applied to remove the
spatial domain after the feature extractor due to the proposed
method utilizing the same architecture to process frames of
various resolutions. The three-head GRU was applied to pro-
cess the features as the classifier. A strong learning feature
can be encouraged at each resolution by concatenating low-
res and high-resolution features. Our constraint is to make

M. Bonyani et al.: Preprint submitted to Elsevier

Page 8 of 19



Short Title of the Article

35
3
25
»
8
3 2
1.5
1
0.5
0
60 80 100 120 140 160 180 200 220
Input Size
Figure 5: Effect of the various input size on SAN19's
complexity.
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Figure 6: Overall architecture of spatial sampler. The top-
k areas of the raw frame f are sampled using the attention
extracted from the low-res frame f;. The spatial dimension
of the features is eliminated during the final global average
pooling process before they are pooled and sent into the
three-head GRU classifier. Strong learning features at every
resolution are promoted by the heads, which correlate to high-
res, low-res, as well as their concatenation features.

f; and f,,; ’s less complex than f ’s in terms of scaling
weigh d as well as bounding box size W', H'. According
to our complexity analysis in Fig 5, we decide on d = 2 and
H =w'=64.

3.2.3. Imaginary

Predicting future information is the objective of our
imaginary component. We do not need to run any further
inferences if our prediction matches the actual future ob-
servation. In our imaginary component, just the activation
map of attention is generated instead of the entire RGB
frame. The generation of these attention maps is easier than
creating RGB frames, since they can locate important re-
gions of the inputs. M“*" have equal attentions M if the
frame changes are small then It’s moving slowly sufficiently,
thereby imaginary component the future attention from the
current attention if the temporal consistency is assumed. The
formal definition of 7 is as follows:

MDD = T <M(f)> (10)

such that M+D ~ M+D

The imagination is called M+ (predicted attention in
the future). By comparing the structures of input tensors, we
use the SSIM [73] to measure the similarity between M*+D
as well as M“™V. During training, we minimize the loss of
belief in the imaginary:

T
1 _
sz—mg;ssm (T (M), MD) D

SSIM() measures the similarity of the imaginary J (M("l))

to the attention M®, providing an indication of the degree
to which the two images match or diverge. Negative SSIM
scores are minimized because the value of SSIM is between
0 and 1, SSIM with a larger value indicating an increased
similarity.

As part of the training routine, we employ the teacher
forcing technique [104] and create a CNN-LSTM [105] with
two phases of encoder and decoder layers. As the number of
imagined frames increases, the trick is to gradually increase
the input. Our imagination undergoes a rewrite during train-
ing as follows:

T (M), p<F,

MDD = g
J (MD), p>F,

12)

A uniformly randomized population is represented by p
and a teacher forcing ratio by F, € [0, 1]. The imagination

probability from M" is increased by starting with a ratio of
1 and gradually decaying with time. There is no evaluation
for F,, as well as M*D equals J (M®). Imaginaries’ hid-
den memories are initially triggered during both training and
evaluation phases like <T4(r+l) =H (M(f)) » V< fyarm )

The Fig 7 illustrates an example of an imaginary result-
ing from a sequence of frames. The input frame is shown in
the first row of the figure, while the second row shows the
attention extracted from a specific layer. Finally, the third
row of the figure showcases the imaginary element that is
created through our specific process. As our attention is
generated in the future, imagination is missing in the first
frame. Observations indicate that the two hands are the most
active areas of attention here. Similarly, in both attention
and imagination, these regions move in time with the hands.
Consequently, our imagination predicts the future locations
of important regions. A comparison of the structural simi-
larities between imagination and attention is also provided
at the bottom using the negative SSIM scores. We are only
using the imagination for the temporal sampler’s reference,
not to generate a perfect one.

3.2.4. Time Domain Sampler

A video sequence v = [f(l), ,f(T)] is adaptively
selected to represent v by selectively selecting the most
relevant frames based on the temporal sampler. This is close
to how humans process video sequences prior to paying
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Figure 7: The input frame's attention and associated imag-
ination. The lowest SSIM ratings for both imagination and
attention are negative (0 indicates most dissimilar and -1
indicates most similar). The worker's movements are consistent
across input frames in parts of the imagination and attention
that are activated, demonstrating the time-related feature.

attention. When we can reasonably predict a frame’s atten-
tion £, it is considered unimportant. From Section 3.2.1,
a model of layers can be used to retrieve imaginary as well
as attention at any layer. A temporal sampler may choose, as
the temporal sampler does, as long as attention is captured at
layer A < L, the last L — A layers can be skipped. The model
can be run adaptively from layer A.

Considering a deep network of L layers in terms of its
feature extractor, we are able to divide it into two compo-
nents at layer A € {1,..., L}, like ¢f(f) = (j)’j (d)f(f)).
Pre-scanning is done using the first half ¢*, while clas-
sification can be done later utilizing the second half gbf,
augmented with other modalities. A temporal sampler 7
creates the sampling routine through the computation of
v = [¢0, .., 7], like T(v) = [f© x 70| with 7 €
{0, 1}M+1 where t®[m] = 1 represents the possibility of
skipping m frames. The temporal sampler is shown in Fig. 8.
A feature extractor d)f is used to extract the attention M at
time 7. An () sampling vector is generated by concatenating
the feature with the SSIM score and imaginary. Gumbel
Softmax [106] is used to transform the output features into
differentiable sampling vectors.

In order to skip frames, we use the sampling vector as a
starting point. In the case of m* = argmax,, 7)[m], where
m* = 0 and m* € [1, M] denote the number of skipping
frames, there are two possible outcomes. For instance, the
first case skips nothing and continues running the rest of the
network. Therefore, it is the complexity of the full pipeline
Ogun1 - By skipping computation on the subsequent frames,
the second mood also pre-scans the current image. As a
result, recurrent models are able to propagate classification
results and memory. In this case, O, = (9¢/1+ Oy + 07,

where (9¢/1 denotes first half, Oy denotes hallucmator and

Or denotes temporal sampler. O, is the complexity of
running a classifier, spatial sampler as well as other modali-
ties, while O, is the complexity of operating the pipeline’s

of
1%t half SSIM(I®, M®) —

Imagination A7(®
8 e GRU

. = Imaginary — . —>(3heads)

Attention M (-1

Gumbel
. softmax
Sampling vector (t(¥))

! }

Attention M®)

f(t+l) f(t+M)

Figure 8: Overall architecture of temporal sampler. A GRU
is supplied the first half of the model’s attention at time f,
the imagination generated at time # — 1, as well as their SSIM
score to determine the number of frames to ignore in order
to compute the sampling vector 7. Between frames, model
weights are transferred.

remaining sections. Our training policy uses the following
weighted sum reliability loss (f ,) aswell as £, + £, define
as:

class

€ =Npe  Opre + 1~ Ot » (13)

A full inference frame consists of ngy; , while a pre-

scanning frame consists of n,. . Part two of the pipeline,
argmax,, 7[m]
# 0, V¢, might not get any frames if there are no constraints.
The pipeline is run fully at the beginning of the frame
to prevent this scenario. Also, it ensures that we have at
least one frame’s classification result, which helps initialize
memory for recurrent models.

3.3. System Performance Evaluation

The final evaluation of our system is conducted on CMA
[27], using the training and validation splits of [27]. By using
the CMA dataset, the proposed method can be trained to
predict unsafe behavior actions, thus enhancing safety man-
agement in construction workplaces. For the dataset, there
are seven categories of worker behavior on construction
sites, with 105 to 365 clips for each category, resulting in
1595 samples altogether. These actions can be utilized to
train a deep learning model to detect unsafe behaviors such
as distraction, improper use of personal protective equip-
ment, and safety performance degradation. For instance, the
"Talk" and "Smoke" actions can be associated with worker
distraction and potential safety hazards, while the "Lack
of Safety Equipment" action can indicate improper use of
personal protective equipment. Every clip lasts 1-9 seconds
and has a resolution of 400 x 300 — 1920 x 1080. The
frames per second of every video clip are fixed at 30 and
the clips contain only one action. Due to # and samplers are
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based on attention from vision information, RGB inputs are
used as the guiding modality of the system. The FLOPS per
frame are also reported for the system’s efficiency. FLOPS
are proportional to time and energy consumed during infer-
ence. Accumulated FLOPS as well as average FLOPS per
frame used for the experiments with a temporal sampler
since model complexity varies over time. Furthermore, we
report the tradeoff criteria, which are expressed as GFLOPS
per accuracy, for comparing effectiveness among different
models. An average accuracy of one percent is measured by
the amount of computation required.

3.4. System Implementation

We extract features using SAN19 as the backbone (equiv-
alent to ResNet50) with pairwise self-attention [79]. The
attention maps in Fig. 9 are based on the bottleneck layers
of SAN19, with inputs sized 112 x 112 X 3, positioned in
the top-right corner. It is evident that the later layers result
in attention maps that are smaller and more concise, which
suggests that imagination of the future is easier. Fig. 10
depicts the names of bottleneck layers on the horizontal axis.
The vertical axis showcases the accumulation of FLOPs
as more layers are added. This demonstrates how FLOPs
increase with the inclusion of additional layers in the model.
Our experiments show an appropriate balance between
performance and complexity at layer3-0 of SAN19, so we
extract attention from there with a dimensionality of 7 x
7 x 32. Conv-LSTM with 32 hidden dimensions is the
imaginary. The encoder and decoder use a 3 x 3 and 32
channel kernels for the 2D conversion layer. This action
classifier uses a three-head GRU for the cropped high-res
RGB (local) as well as low-res RGB (global) features, which
are then joined together by the primary GRU. In order
to improve feature extraction, the multiple heads design
focuses the network’s attention on the prominent features in
the cropped regions, minimizing the network’s dependency
on the low-resolution input. We use the same 2 layers and
1024 hidden dimensions for the temporal sampler as well as
the GRU classifier.

3.5. Dataset

By using the CMA dataset, deep learning algorithms can
be trained to predict unsafe behavior actions, thus enhancing
safety management in construction workplaces. The dataset
includes seven classes of basic worker actions. These actions
can be utilized to train a deep learning model to detect unsafe
behaviors such as distraction, improper use of personal pro-
tective equipment, and safety performance degradation. For
instance, the "Talk" and "Smoke" actions can be associated
with worker distraction and potential safety hazards, while
the "Lack of Safety Equipment" action can indicate improper
use of personal protective equipment.

Multiple phases of training are involved in the training of
the entire system. For both low- and high-resolution inputs,
we train both of them with FC classifiers. An SGD with
momentum of 0.9 and learning rate of 0.003 is used with
a weight decay of 0.0001 at epochs 30, 60, and 90 to train
the models with 110 epochs as well as the cross-entropy loss

Figure 9: SAN19 is Used to extract attention. Located in the
top-left corner of the figure is the input frame. There is a
disparity between the earlier and later layers of attention, which
indicates more fragmented regions. A bi-linear interpolation
method is used to visualize the attention maps across different
layers to improve visibility. The reason for the lack of normal-
ization in the color mapping of the visualization is the variation
in value ranges across different layers.

FLOPS (1¢8)
- -

Figure 10: Accumulated complexity is achieved through a
combination of various layers of the SAN19 model with a size of
112x112x3, each one contributing to the overall architecture
of the model. This complexity allows for detailed insights into
the underlying structure and dynamics of the SAN19 model.

[107]. For other models, feature extraction module weights
are frozen and used. In order to train the imaginary, the
loss of belief ¢} ;¢ from Eq. 11 is used in conjunction
with the teacher forcing routine described in [104]. The
decay factor of F, in our experiment is 0.96, and the warm-
up period (fyam ) is five frames. The module of spatial
sampler with the three-head FC is trained utilizing £,

class —
Zi:l 0,7, where ¢, is the cross-entropy as well as scaled
by the corresponding factor 6. The training process involves
the end-to-end training of the temporal sampler alongside
the fixed spatial sampler as well as the pre-trained three-
head classifier. This training procedure utilizes the total loss
0.7, + €. » In Which £, represents the reliability loss as
defined in Eq. 13, scaled by the corresponding factor 6,.
Our sampling models are trained with Adam optimizer [108]
for 50 epochs. This phase of feature extraction focuses on

M. Bonyani et al.: Preprint submitted to Elsevier

Page 11 of 19



Short Title of the Article

extracting spatial features only instead of temporal ones.
Therefore, we sample only three frames for feature extraction
modules during this phase. For better comparison with other
frameworks, we use a total of 10 frames for sampling.

4. Preliminary Results and Performance
Analysis

4.1. Object Detection Performance

In the context of object detection on the SODA dataset,
we observe a range of state-of-the-art methods. Notably,
our novel method denoted as "Ours" in Table 1, stands
out with a remarkable mAP of 85.27%, signifying superior
object detection accuracy. What’s equally impressive is the
model’s efficiency, requiring only 61.98 million parameters,
making it an attractive choice for real-world applications
with computational constraints. Comparing this against es-
tablished YOLO variants, YOLOVS5 delivers strong results
with an mAP of 67.04% and a relatively compact model at
7.01 million parameters. In contrast, YOLOv3 lags behind
with an mAP of 57.43%. Notably, "Customize YOLOv4"
demonstrates an impressive mAP of 81.47%, though it lacks
information about the number of parameters, limiting its
broader applicability. Overall, our method exhibits a com-
pelling balance of high accuracy and model efficiency, po-
sitioning it as a top contender for object detection on the
challenging SODA dataset. However, the choice of the best
model should consider specific application requirements and
computational resources.

Our study is based on SODA[26] and attempts to detect
objects in construction site images in the following ways:

1. Testing the efficacy and efficiency of various feature
extraction networks using our proposed approaches;

2. Checking the efficiency of the two proposed attention
using base OP and MP-OP;

3. Comparing our proposed methods with different at-
tention structures;

4. Improving the detection of construction objects using
RPN input;

5. Showing that different scales have mismatched error
rates;

6. demonstrating some visual results.

4.1.1. Different Feature Extraction Networks

In Table 2, the experimental results on SODA’s test set,
comprising ResNet-50, ResNet-101, and ResNet-152, show
different backbone network results. Using the combination
of our module and GFLOPs/FP.S, #Params and mAP,
we compare improvements in GFLOPs/FPS, #Params
and mAP. Our attentions are combined with the backbone,
so we observe a 3.95, 4.7, and 3.57 percent increase in
mAP for ResNet-50, ResNet-101, and ResNet-152, respec-
tively. Furthermore, model efficiency is compared based
on #Params and GFLOPs/FPS. It involves around 155
GFLOPs increment, with an average of 1.80M model param-
eters, and a reduction in performance of around 5-10 FPS.

Table 1
Comparison with state-of-the-art methods on SODA [26].

Methods mAP(%)  #Params (M)
YOLOV3 [109] 57.43 8.67
YOLOV5 [109] 67.04 7.01

YOLOv7-tiny [110] 55.26 6.01
Scaled-YoLOv4 [111] 67.21 8.06
YOLOX [112 66.48 8.94
YOLOR [113 65.77 52.50
SOC-YOLO [114] 68.00 7.20
YOLOV7 [110] 65.77 36.48

Customize YOLOV3 [26] 71.22 -

Customize YOLOv4 [26] 81.47 -
Ours 85.27 61.98

Our experiments are based on ResNet-101 due to its mAP
and computational complexity.

4.1.2. Proposed Units

According to Table 3, we have calculated the combined
performance of our proposed units on ResNet-101. The
bounding box mAP improves 0.93% and 2.55% when OP
base and MP-OP are used. To illustrate the trend of perfor-
mance change, Fig. 11 shows the mAP radar chart for each
category. Our proposed OP-Net model can increase mAP by
as much as 4.7% when base OP and MP-OP are combined
(i.e., our proposed OP-Net), with some categories showing
very significant improvements (BO 7.13%, RE 6.31%, and
SL 5.87%). By using base OP, and MP-OP, we were able to
further improve feature presentation capabilities. According
to the model efficiency, the base OP brings 0.59M model
parameters with 51.53 GFLOPs, while the MP-OP brings
0.61M with 51.89 GFLOPs. This combination produces an
increment of 154.95 GFLOPs and 1.79M model parameters.
As a result of our proposed OP, GFLOPs increase from
289.25 to 444.22, after calculating the similarity matrix to
features. According to Table 4, when adding the multi-head
structure in our OP module, #Params reduce 0.36M and
mAP increments by 0.65%.

4.1.3. Improving RPN Input for Construction Object
Detection

A significant benefit of OP-Net is its ability to address
complex background problems and low image quality. Con-
struction images have more complex backgrounds due to
overhead shots from different angles that show geological
structures, different-sized objects, and different object cate-
gories. It is detrimental to learning object features in con-
struction object detection when the imaging quality is poor.
This directly affects the training of the modeling algorithms.
As aresult, we reorganize pyramid OP by implementing base
OP on pyramid features. Depending on the maximum re-
sponse layer, pyramid features generate proposals smaller or
larger than those in the region proposal network (RPN)[103].
Because of this, the ROI module will be more difficult
to train the detection box when the object proposals are
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Figure 11: Radar chart for each category of object in SODA
[26] dataset. Different detectors are represented by different
colored lines. This figure represents the mAP value.
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Figure 12: A comparison of the error rate for the baseline
method of SODA [26] and the proposed method. The lower
the better.
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accurate or not. By using OP-Net, the model is able to
learn more detailed relation information both between layers
and within layers of pyramids. The OP operation should be
performed for pyramid features before adding them to the
region proposal network.

4.1.4. Error Rates

As a means of demonstrating the impact of the proposed
method on each feature level, we define mismatching error
rates at different scales within the feature pyramid, that is,
objects chosen at different levels are not always consistent
with the ground truth. According to Fig. 12, deploying our
proposed method (i.e., combining base and MP-OP) resulted
in a reduction of mismatching error rates for the layers in the
feature pyramid. It is evident that the error rates for high-
level features are lower than those for low-level features that
are meant for small objects. In levels S2 to S6 there is a 0.2%
reduction, 0.2% reduction, 0.1% reduction, 0.2% reduction,
and 1.5% reduction in error rate. As a result, our method’s
effectiveness can be further confirmed.

Table 2
A comparison of the effectiveness of the proposed methods
with different networks for extracting features on SODA [26].

Backbone +Ours  GFLOPs / FPS  #Params (M) mAP(%)
X 212.30/25.1 4120 79.91
ResNet-50 7 365.30/14.7 4298 83.86
X 290.31/21.0 60.21 80.57
ResNet-101 — 44331/133 61.98 8527
X 366.33/17.2 75.88 80.74
ResNet-152 v/ 523.19/12.3 77.65 8431

Note: "+ Ours" denotes the architecture of our proposed
base OP and MP-OP attention on the backbone networks.

Table 3
A comparison of different attentions on the SODA [26] test
set and ResNet-101 [101] is the backbone.

Base v v v v
Base OP X v X v
OP-MP X X v v

SL 70.36 72.81 74 76.23
FE 72.61 70.14 74.67 77.54

HK 91.01 92.11 90.3 94.73

HO 90.1 91.77 93.49 95.64

EV 77.44 75.82 78.87 80.31

CuU 87.29 88.14 90.35 91.64

HA 90.06 91.8 90.12 93.48

SC 89.32 91.12 92.37 93.16

BR 88.71 89.97 90.57 92.95

RE 67.39 69.13 73.12 73.7

WO 89.59 90.71 92.68 94.27

BO 86.37 90.05 91.19 93.5

HE 62.18 60.86 64.8 66.34

VE 73.87 75.02 71.5 78.12

PE 72.19 72.98 72.81 77.51
mAP(%) 80.57 81.5 83.12 85.27
#Params 60.21 60.78 60.8 61.98

GFLOPs/FPS | 289.25/20.8 340.8/19.1 341.14/17.1 444.22/13.4
Table 4

A comparison of the effectiveness of our proposed multi-head
methods on SODA [26].

Baseline OP  Multi-head | GFLOPs / FPS  #Params (M) | mAP(%)
v 4 X 461.49/11.9 62.34 84.62
v 4 4 443.31/13.3 61.98 85.27

Note: "OP" denotes our proposed OP attention on the
backbone. "Multi-head" indicates combine multi-head
structure in OP blocks.

4.2. Detecting Unsafe Behavior

In the context of developing a model for detecting unsafe
worker behavior in construction sites through video analysis,
this comparison of state-of-the-art methods on the CMA
dataset serves as a valuable reference for understanding the
trade-offs between computational efficiency and accuracy.
The presented Table 5 illustrates a range of models with
varying characteristics, including model size, FLOPS, mAP,
and an efficiency trade-off computed as FLOPS over mAP
Comparing models with different backbones is also possible
with this metric (lower means better).
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Table 5
Comparison with state-of-the-art methods on CMA [27].

Table 6
A comparison of baselines and spatial sampler S results. In
order to determine the complexity of the model, we include

; 0
Model Size FLOPS mAP(%) Tradeoff the average number of floating-point operations (FLOPS).
CNN+LSTM [115] 224 22.08 36.4 0.606 Using the Trade-off, we show the amount of FLOPS needed
AVSlowFast [73] 224 39.13 242 1.616 to achieve each accuracy level, based on the average accuracy
—'Il:gm Eg ;gi 12285 7746?13 822; p(.ircentage for each _action.. Our ba.seline SAN1.9.was retrainfad
TSM [118] 354 329 530 0396 with TBN [116]' using dlfFerent input m(?dalltles. A spatial
Stowfast [40] 531 36.6 781 0.468 sampler model is symbolized by S, wh_||e the n.umt.)er of
R3D [110] 294 1008 705 1557 extracted ROls is re.presented by k Spatial s.amplmg is not
R(2+1)D [120] 254 1172 81.9 1431 performed when S is selected. With S;, spatial samples are
TEA [121 554 35.0 30.6 0434 more accurate than baselines and have less complexity.
ViT-B [? 224 134.8 78.3 1.721 Model Backbone Size  FLOPS mAP(%) Trade-off
VIT-L [7] 224 4772 81.9 5.826 SAN1O-base  Res50 224 160.64  90.72 1.771
Swin-B [122] 224 1210 84.7 1.428 S SANIO 112 13824 9056 1.527
Swin-L [122] 224 272.1 87.4 3.113 S, SAN19 112 140.16 91.23 1.725
MViT-B [123] 224 1995 816 2.444 S, SAN19 112 14248  90.04 1582
TimeSformer [124] 224 178.6 82.9 2.154 S SAN19 112 145.80 88.77 1.642
STR-Transformer [27] 224  202.3 88.7 2.280
SAN19-base 224  160.64 90.72 1.77
Ours 112 44.62 93.86 0.475

Among the models, the proposed model stands out as
particularly noteworthy. Despite having a compact size of
112, it achieves an impressive mAP of 93.86, making it
highly accurate in identifying unsafe behaviors on construc-
tion sites. What sets this model apart is its remarkable effi-
ciency trade-off of 0.475, signifying a minimal requirement
of computational resources (FLOPS) to achieve high accu-
racy. This efficiency is particularly advantageous in real-
world applications, where computational resources may be
limited or cost-effectiveness is a key concern. In contrast,
models like "TBN" and "TEA" offer impressive accuracy
with minimal computational requirements. "TBN" achieves
an mAP of 74.83 with just 150.95 FLOPS, while "TEA"
attains an mAP of 80.6 with 35.0 FLOPS. These models ex-
hibit the most favorable trade-offs in terms of computational
efficiency.

These findings are of critical importance in the context
of your research, where practical deployment of a model in
construction sites demands a consideration of computational
constraints. The proposed model’s superior efficiency trade-
off is a compelling feature for real-world applications, as it
ensures the timely and cost-effective identification of unsafe
behaviors.

4.2.1. Quantitative Analysis

The comparison begins by examining spatial sampling,
denoted by models S, with varying numbers of extracted
ROIs. The baseline "SAN19-base" model, which does not
employ spatial sampling, achieves an mAP of 90.72 with a
FLOPS requirement of 160.64. As spatial sampling is intro-
duced with S;, we observe variations in FLOPS, reflecting
model complexity. An increase in the number of extracted
ROIs, from S, to Sj, results in a corresponding rise in
computational complexity.

The key insight from this analysis is the trade-off be-
tween computational complexity and model accuracy. As
spatial sampling becomes more granular, there is a no-
ticeable trade-off in terms of computational resources and
accuracy. For instance, S achieves the highest mAP at 91.23
with a relatively modest increase in FLOPS compared to the
baseline, striking a good balance. In contrast, S; achieves
a lower accuracy (88.77) but demands significantly more
FLOPS, underscoring the importance of selecting the appro-
priate level of spatial granularity for the given application.

The second phase of the comparison explores the inter-
play between spatial sampling (S;) and various temporal
sampling configurations (7,,). Notably, spatial sampling
(Sp) exhibits an mAP of 90.56 with 138.24 FLOPS. Intro-
ducing temporal sampling (7;,) causes a tolerable loss of
accuracy compared to the scenario without spatial sampling
(Sp)-

As the number of frames that the temporal sampler is al-
lowed to ignore increases (from 7; to 7), the overall compu-
tational complexity decreases significantly. This reduction in
computational complexity comes with an associated trade-
off in model performance. However, 73, combined with S,
emerges as an optimal choice, achieving an mAP of 93.86
with a relatively low FLOPS requirement, resulting in an
impressive efficiency trade-off of 0.475. This emphasizes
the importance of carefully balancing spatial and temporal
sampling strategies.

4.2.2. Qualitative Analysis

Beyond quantitative metrics, qualitative aspects play
a crucial role. Models with efficient trade-offs, such as
S| combined with 73, exhibit a high degree of accuracy
in detecting unsafe behaviors while significantly reducing
computational demands. These models exhibit a favorable
trade-off between model performance and computational
efficiency.
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A comparison between the spatial and temporal sampling on CMA using spatial sampler § and temporal sampler J. M is the
number of frames that the temporal sampler is allowed to ignore in a block, when 7,, is the temporal sampler. Skipped frame
percentage (%), pre-scan percentage (%), and fully processed percentage (%) are listed in the table, as well as the FLOPs, as
well as the average computational saving of its Spatial Sampler counterpart. Only the first row in this table has spatial sampling,
which is copied from the other Table 6. There is a tolerable loss of accuracy when using temporal samplers compared to when
spatial sampling is not performed (S;).

Model  Full (%) Skip (%) Prescan (%) FLOPs mAP(%) Trade-off Speed up (x)
So 100.00 00.00 0.00 138.24 90.56 1.527 -
T:.S, 58.03 00.00 41.97 85.99 92.81 0.927 1.59
T,S, 50.82 00.00 49.18 82.07 92.98 0.883 1.70
7., S, 50.03 00.00 49.97 84.06 93.52 0.899 1.77
T, S5 50.00 00.00 50.00 88.17 93.06 0.947 1.78
T, T, 33.59 14.06 52.35 54.02 92.52 0.584 2.59
7, T 34.05 14.36 51.59 57.01 91.94 0.620 2.45
7,.T, 35.06 12.75 52.19 60.99 92.23 0.661 2.43
T, T, 32.26 15.03 52.71 59.27 91.23 0.650 2.63
75, S, 25.63 26.00 48.37 42.09 91.64 0.459 3.30
ARH 25.97 25.47 48.55 44.62 93.86 0.475 3.12
7..S, 2562 2576 48.61 4504 93.23 0.493 3.22
75, S5 25.87 25.19 48.93 48.41 92.73 0.522 3.22
TS, 20.53 34.81 44.66 35.08 89.85 0.390 4.02
T:. S, 21.76 32.07 46.17 37.96 89.89 0.422 3.65
TS, 24.42 35.54 40.04 42.95 90.35 0.475 3.44
T4, S, 20.83 34.64 44.53 38.98 88.56 0.440 3.93

In terms of speedup, the comparison demonstrates that
models with efficient trade-offs lead to substantial improve-
ments in computational efficiency. For instance, S; com-
bined with 73 achieves a speedup of 3.12, indicating that it
processes video data more than three times faster than the
baseline model (S). This speedup is particularly significant
for real-time applications and resource-efficient implemen-
tations.

Overall, this detailed comparison highlights the intricate
relationship between spatial and temporal sampling strate-
gies and their influence on model complexity, accuracy,
and computational efficiency. Optimal sampling strategy
selection can significantly enhance model efficiency without
compromising the ability to detect unsafe worker behavior in
construction sites. Researchers and practitioners can lever-
age these insights to make informed decisions about the most
suitable sampling strategies for their specific applications,
keeping in mind the critical trade-offs between accuracy and
computational resources.

5. Conclusions

The detection of construction objects is complicated due
to a complex background and poor image quality. Spacetime
feature adjustments are typically approached with elaborate
attention mechanisms that are arduous in their computa-
tional complexity. For enhanced channel relation, we pro-
posed OP attention that could determine adjust weights by

channel. Through extensive experiments on construction im-
age object detection, we implemented OP on a feature pyra-
mid network that is the backbone of a standard object detec-
tion network. A small computational overhead is required for
the proposed OP-Net to achieve state-of-the-art performance
on challenging benchmarks. mAP radar charts displayed
robust trends for object detection in each category. As we
explore OP-Net’s application to more natural scenes, we will
explore applying it to different types of subjects. As well
as semantic segmentation, object re-identification, and other
visual tasks, OP-Net is being explored in other directions.
Also, to efficiently recognize unsafe actions in videos from
construction sites, this paper proposes a spatial and temporal
sampling strategy based on attention that adaptively samples
the videos. A high-resolution object of the inputs frames
and a low-resolution global inputs frames are provided by
the spatial sampler. By evaluating the present attention with
the previous imagination, the temporal sampler searches and
determines the sampling technique. This study confirms that
our proposed method for sampling procedure on top of a
different model supporting a self-attention mechanism is
feasible. Simpler methods with alternative models can result
in competitive complexity as well as performance. Future
work should explore real-time, adaptive approaches that
leverage temporal-spatial sampling techniques and relational
attention models to detect unsafe behaviors. Extend the
proposed spatial and temporal sampling strategy to real-time
monitoring of construction sites. Implementing a real-time
system can provide immediate alerts and interventions for
unsafe actions, thus enhancing on-site safety.
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