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Construction site safety is a paramount concern, given the high rate of accidents and fatalities 
in the sector. This study introduces a novel approach to analyzing construction accident 
reports by employing advanced Large Language Models (LLMs), specifically GPT-3.5, GPT-
4, Gemini Pro, and LLaMA 3. Our research focuses on the classification of key attributes in 
accident reports: root cause, injury cause, affected body part, severity, and accident time. 
The results reveal that GPT-4 achieves significantly higher accuracy across most attributes. 
Gemini Pro demonstrates superior performance in the "Injury Cause" classification, while 
LLaMA 3 excels in classifying "Severity" and "Root Cause." GPT-3.5, although lagging behind 
GPT-4, exhibits commendable accuracy. The insights gained from this study are vital for the 
construction industry, as they indicate the potential for developing more precise and effective 
safety measures. These findings could lead to a reduction in the frequency and severity of 
accidents, thereby enhancing worker safety. 

 
 

1. Introduction 
Maintaining high safety performance for construction 
companies has been challenging in many countries. 
Construction workers are often exposed to hazardous 
working environments on site that can lead to major injury or 
loss of life. According to reports from the International Labor 
Organization [1], more than 3 million deaths are caused by 
work-related accidents and diseases, with nearly 330,000 
fatalities and work accidents. Additionally, the construction 
industry constitutes approximately one of six fatal accidents. 
Due to the high rate of accidents and fatalities in the 
construction sector, it is crucial to analyze previous incidents 
to prevent injuries and improve the safety of construction 
workers. 
 
Understanding the root and injury causes of construction 
accidents is vital for preventing future occurrences. The "Fatal 
Four" - Falls, Struck-by, Caught in/between, and 
Electrocution - are the primary contributors to construction 
fatalities, accounting for a significant portion of accidents. For 
instance, between 2011 and 2020, over 25,000 fatal incidents 

in construction involved these causes, with Falls (35.1%), 
Struck by (17.1%), Caught in/between (5.8%), and 
Electrocution (7.7%) being the predominant ones [2]. 
Identifying these specific causes helps in targeting safety 
measures more effectively. Additionally, insights into the 
affected body parts, accident timing, and severity are critical 
for developing comprehensive risk management strategies. 
This data assists in crafting targeted safety protocols and 
emergency response plans, reducing the likelihood of severe 
injuries and fatalities. 
 
Previous construction safety research has utilized various 
methodologies for accident analysis and classification. Studies 
have incorporated various machine learning and natural 
language processing techniques, including traditional 
classifiers like Support Vector Machines (SVM), decision trees, 
ensemble methods, and advanced deep learning approaches 
such as Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) [3-8]. For example, Goh and 
Ubeynarayana 2017 [4] utilized SVM and other classifiers to 
effectively categorize construction accident narratives, 
achieving high precision and recall across different accident 
causes.  
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Furthering the capabilities of text analysis, Zhang in 2022 [6] 
introduced a hybrid structured deep neural network that 
incorporates Word2Vec to enhance the semantic analysis of 
accident causes. This approach improved the classification's 
accuracy by leveraging deep learning to capture nuanced 
semantic relationships in accident data, demonstrating a 
significant advance over traditional models. Similarly, Luo et 
al. in 2023 [8] employed Convolutional Neural Networks 
(CNNs) specifically tailored for the construction industry, 
allowing for an advanced parsing and understanding of 
complex textual patterns in accident reports. This 
methodology enhanced the granularity with which accident 
causes were identified and analyzed, providing deeper 
insights into the contributory factors and mechanisms of 
accidents. 
 
While these methods have been effective, they do not fully 
exploit the capabilities of modern Large Language Models 
(LLMs), which can process and understand large volumes of 
unstructured text data with greater contextual awareness. 
This represents a significant gap in the current research 
landscape, as LLMs offer the potential for deeper and more 
accurate insights into accident reports. Additionally, current 
studies often lack a comprehensive attribute analysis, which 
is essential for fully understanding construction accidents. A 
deeper exploration of crucial attributes, including accident 
causes, severity, affected body parts, and timing of accidents, 
can provide more targeted and effective safety measures. 
 
In this study, we employ advanced Large Language Models 
(LLMs), such as GPT, Gemini, and LLaMA, to enhance the 
classification and understanding of key attributes in 
construction accident reports. These attributes include root 
cause, injury cause, affected body part, severity, and accident 
timing. This research introduces the pioneering application of 
state-of-the-art language models for detailed and nuanced 
analysis of construction accident reports, significantly 
improving the accuracy of classifying complex report 
attributes, which is critical for developing targeted and 
effective safety measures and providing a strong foundation 
for enhancing safety protocols in the construction industry, 
potentially reducing the frequency and severity of accidents. 

2. Background 

2.1. Evolution of Text Classification 
In the realm of Natural Language Processing (NLP), text 
classification, akin to other NLP tasks, has experienced 
significant evolution. Earlier on, text classification depended 
on traditional machine learning models such as Naive Bayes, 
Support Vector Machine (SVM), K-Nearest Neighbor, and 
Random Forest. These were often combined with text 
representation techniques like Bag-Of-Words, Word2Vec, 
and N-gram [9]. While effective for foundational classification 
tasks, these methods required extensive feature engineering 
and often struggled to capture the subtleties of language and 
its contextual nuances. 
 
The emergence of neural network-based methods marked a 
notable advancement in text classification. Leveraging deep 
learning, these methods autonomously learn and extract 
textual features, thereby minimizing the need for manual 

feature engineering. Techniques such as Recurrent Neural 
Networks (RNNs), Convolutional Neural Networks (CNNs), 
and Graph Convolutional Networks (GCNs) have been integral 
and successful in this domain [10-14]. However, these 
methods occasionally encounter challenges in fully grasping 
the entire scope of language context, particularly in 
interpreting complex sentence structures and diverse 
language usage. 
 
In parallel, Large Language Models (LLMs) have risen as a 
pivotal development in NLP tasks, including text classification. 
Rooted in sophisticated architectures like transformers—a 
variant of neural networks—LLMs can process and 
comprehend extensive volumes of text with exceptional 
accuracy. Their architecture is particularly adept at tasks 
demanding deep contextual understanding and in-context 
learning [15], significantly advancing the potential for complex 
NLP applications. This advancement has allowed LLMs to 
surpass the previous limitations of earlier methods, 
demonstrating remarkable performance in various text 
classification scenarios [16-18]. 

2.2. Large Language Models (LLMs) 
Large Language Models (LLMs) are a class of deep learning 
models designed to understand, generate, and sometimes 
translate human language. They are characterized by their 
immense size, containing hundreds of billions of parameters, 
and are trained on vast text corpora to perform a wide array of 
language tasks [19]. The architectures of LLMs can be broadly 
categorized into three types[18].  
 
The first type is encoder-only models like BERT [20]. These 
models focus on understanding the context of a given text. 
They use a masked language model objective during pre-
training, where random tokens are masked out, and the model 
learns to predict them, thus gaining a deep understanding of 
language context and word relationships. 
 
Decoder-only models, such as GPT [21], form the second type. 
These models use a unidirectional approach where each token 
can only attend to previous tokens in the sequence. This 
architecture is particularly suitable for tasks that involve 
generating text, as the model is trained to predict the next 
token in a sequence based on the tokens that came before it. 
 
The third type comprises encoder-decoder models like T5 [22]. 
Encoder-decoder models consist of an encoder component to 
understand the input text and a decoder component to 
generate the output text. This architecture allows for a 
comprehensive approach to text processing, encompassing 
understanding and generating capabilities in a unified 
framework.  
 
LLMs have demonstrated various advanced capabilities that 
significantly enhance their utility in various applications. 
Notable examples include zero-shot learning, in-context 
learning, fine-tuning, and step-by-step reasoning [23-25].  
 
Zero-shot learning is a key feature where LLMs, as zero-shot 
learners, can answer queries they have never explicitly 
encountered before. This capability allows them to respond to 
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user questions without requiring examples in the prompt [24].  
 
In-context learning, introduced by the developers of GPT [15], 
enables LLMs to understand and respond to prompts using 
contextual cues within the text. This approach is bolstered by 
few-shot learning, allowing these models to adapt to new 
tasks with minimal examples quickly. Unlike traditional 
models requiring extensive training, few-shot learning equips 
LLMs, like GPT, to perform tasks effectively with limited 
training instances, streamlining their adaptability to diverse 
applications. 
 
Fine-tuning is another approach where LLMs can be fine-
tuned in various ways to enhance their performance on 
specific tasks. Transfer Learning involves fine-tuning pre-
trained models with task-specific data [22]. Instruction-tuning 
allows models to perform new tasks simply by reading 
instructions describing the task [23]. 
 
Step-by-step reasoning, facilitated by strategies like chain-of-
thought (CoT) prompting [26], enables LLMs to process tasks 
that require multiple logical steps. This is particularly useful in 

complex problem-solving scenarios, allowing LLMs to provide 
more coherent and logically structured outputs. 

3. Methodology  
Building on the foundational knowledge of LLMs outlined in the 
previous sections, we aim to apply these technologies within 
the domain of construction safety. Utilizing the advanced 
capabilities of LLMs—such as zero-shot learning, in-context 
learning, and their ability to interpret vast amounts of 
unstructured text data—we conduct a comprehensive analysis 
of construction accident reports. Our methodology is 
structured into four distinct stages, as depicted in Figure 1, 
designed to leverage these models to categorize and analyze  
key attributes from the reports effectively. 

3.1. Data Preparation  
The initial phase of our methodology involves the 

preparation of data, which is crucial for ensuring the integrity 
and consistency of the input for model training and testing. We 
extract accident reports from the Occupational Safety and 
Health Administration (OSHA) database [27] spanning from 

 
Fig. 1 The four-stage methodology framework encompassing Data Preparation, Model Utilization, Implementation, and Evaluation.  

 
2002 to 2023. This comprehensive dataset allows us to cover 
a wide range of incidents, reflecting the evolving nature of 
workplace hazards and safety measures over two decades. 
 
For fine-tuning BERT and its variants, we meticulously 
curated a subset of 1,000 reports specifically for root cause 
classification. This focus was chosen because fine-tuning 
LLMs requires a substantial amount of data, and root cause 
provides a clear baseline for classifying the underlying 
reasons behind incidents, facilitating direct comparison with 
more advanced models such as GPT, Gemini, and LLaMA. 
Furthermore, we designated an additional set of 185 reports 
to test all models' performance. This test set was carefully 
chosen to ensure the representation of all classes within each 
predefined attribute, with an average of 50 reports per class. 
Special consideration was given to reports detailing 
sequential events, particularly those elucidating the 
connection between root cause and injury cause, to enrich 
the model's understanding of causality in workplace 
accidents. 
 
 
 
 
Table 1 Example Annotation of an Accident Report  

Attribute Details 

Report 

At 1:00 p.m. on January 25, 2017, an 
employee was working in a suspended 
ceiling grid installing fire sprinkler piping. The 
employee came into contact with live 
electrical wiring and was pulled off a ladder 
by his Foreman, resulting in both falling to the 
floor. The employee injured his shoulder on 
impact with the concrete floor. 

Injury Cause Fall 

Root Cause  Electrocution 

Body Part Shoulder 

Severity Non-fatal 

Accident Time 1:00 p.m. 
 
Our annotation process, conducted manually by the authors, 
involved detailing each report according to the following 
predefined attributes, which are crucial for understanding 
construction accidents and commonly reported in accident 
documentation: 

• Root Cause: Identifies the fundamental reason for the 
accident occurrence, categorized into types such as 
caught in/between, electrocution, falls, and struck-by 
incidents. This helps in understanding underlying 
factors for long-term safety improvements. 
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• Injury Cause: Specifies the direct cause of the injury, 
which may or may not be directly related to the root 
cause. It is essential for targeting specific safety 
interventions. 

• Body Part: Indicates the body part affected, such as 
head, hand, leg, back, finger, torso, arm, etc. This 
information is significant for assessing the impact of 
accidents and tailoring protective measures. 

• Severity: Classifies the accident's outcome in terms 
of severity, ranging from non-fatal to fatal, helping 
prioritize safety measures and resource allocation. 

• Accident Time: Records the time at which the 
accident occurred, providing temporal context useful 
for identifying high-risk periods and planning safety 
operations. 

An example of how these attributes are applied is provided in 
Table 1, which presents the annotation of a specific accident 
report. This detailed annotation approach allows for the 
comprehensive classification and analysis of accident reports, 
which is essential for our study's accurate application of LLMs. 

3.2. Model Utilization  
This phase involves the application of the following LLMs: 
BERT and its variants, GPT-3.5, GPT-4, Gemini Pro, and 
LLaMA. 

• BERT & Variants: As foundational encoder-only 
models, BERT and its derivatives such as RoBERTa 
and DeBERTa enhance the interpretative depth by 
processing words in context to all other words within 
a sentence. These models are fine-tuned on our 
dataset specifically for the targeted approach of 
identifying the root cause of accidents. This focus is 
necessitated by the substantial data requirements 
for effective fine-tuning and provides a clear baseline 
for performance comparison across models. 
 

• GPT-3.5, GPT-4, Gemini Pro, & LLaMA 3: The GPT 
series [28], including GPT-3.5 and GPT-4, are state-
of-the-art decoder-only models that utilize layers of 
transformer blocks with multi-head self-attention 
mechanisms and feedforward neural networks, 
designed for generating text by predicting the next 
word in sequences. Gemini [29], developed by 
Google’s DeepMind, is known for its robust handling 
of complex datasets through its advanced decoder-
only model employing multi-query attention. We 
selected Gemini Pro for our study due to its 
enhanced capabilities and efficiency in processing 
extensive datasets. Similarly, LLaMA 3 [30], 
introduced by Meta, is a cutting-edge decoder-only 
model that incorporates advanced reasoning 
capabilities and instruction fine-tuning. We selected 
the 70B parameter model of LLaMA 3 for its 
demonstrated improvements in performance. LLaMA 
3 utilizes grouped query attention and extended 
token sequences, making it particularly adept at 
processing extensive and complex text data. In our 
study, a zero-shot learning approach is utilized for 
these models. Universal prompts were meticulously 

engineered to standardize the classification process 
across the different models. These prompts were 
crafted to be clear and concise, aligning precisely with 
the input expectations of each model to ensure 
optimal performance. This design process involved 
careful consideration of the models' capabilities in 
context understanding and text generation, which is 
critical for accurate classification. Detailed information 
about the specific prompts used for each attribute in 
our study, including their exact wording and structure, 
is provided in Table 2. This approach facilitates a 
direct and fair comparison of model performance 
across a consistent set of tasks. 

 
Table 2 Classification Prompts Used in the Study 

Attribute Prompt 

Injury Cause 

Determine the Injury Cause of the accident in 
the report. Your answer should be strictly one 
of the following: ’Electrocution’, ’Struck 
by’, ’Fall’, or ’Caught in/between’ without any 
additional text or explanations. 

Root Cause  

Determine the Root Cause of the accident in 
the report. Your answer should be strictly one 
of the following: “Struck by,” ’’Caught 
in/between,’’ Fall,’’ Electrocution,’ 
or ’Unspecified’ without any additional text 
and explanations. 

Body Part 

Determine the Severity of the incident in the 
report. Your answer should be strictly one of 
the following: ’Fatal’ or ’Nonfatal’ without any 
additional text or explanations. 

Severity 

Determine the main Body Part affected in the 
accident. Provide only and strictly the main 
body part affected without any additional text 
or explanations. If the information is not 
available, say ’Unspecified’. 

Accident Time 

Determine the Accident Time of the accident 
in the report. The answer should strictly be in 
the format HH:MM am/pm. If the information 
is not available, say ’Unspecified’. Do not 
include the date and any other additional text 
and explanations. 

3.3. Implementation 
The implementation utilizes Python for all computational tasks. 
We use specific APIs for each model with tailored 
hyperparameters to optimize their performance for the 
interaction with the LLMs. 
 
The GPT-3.5 and GPT-4 models are accessed via the OpenAI 
API's Completion endpoint. The settings for these models 
include using "get-3.5-turbo" and "get-4" as the Model Names, 
with a Temperature of 1, Top P of 1, and both Frequency 
Penalty and Presence Penalty set to 0.0. The 'Best Of' 
parameter is set to 1. This configuration aims to harness the 
GPT models' generative capabilities while ensuring output 
diversity. 
 
In the case of the Gemini Pro model, our approach involved 
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interfacing with the Google Generative AI API, specifically 
employing the Generate Content endpoint. The configuration 
for the Gemini Pro model ("gemini-pro") involves a 
Temperature setting of 0.9, and Top P and Top K are set to 1. 
Additionally, safety settings are implemented to block content 
categories like harassment, hate speech, sexually explicit, 
and dangerous content at medium and above thresholds, 
ensuring responsible use of the model. 
 
For LLaMA 3, we utilized the Ollama Library [31], interfacing 
with a locally hosted model set to a 70B parameter scale. The 
model configuration includes a Temperature of 1 and Top P of 
1, optimized for generating precise and contextually relevant 
outputs. 
 
In addition to these LLMs, the Hugging Face's Transformer 
Library [32] is employed to operationalize BERT and its 
variants. The BERT models are fine-tuned with a Learning 
Rate of 1e-5, employing 12 Attention Heads, a Hidden Size 
of 768, and an Embedding Size of 512. This setup aligns with 
standard BERT model configurations, making them suitable 
for diverse text classification tasks. 

3.4 Validation and Evaluation 
The validation of the models is performed using the manually 
annotated dataset detailed in the Data Preparation section, 
serving as the ground truth for verification. This rigorous 
evaluation process aims to quantify model accuracy 
comprehensively and explore the specifics of any 
misclassifications through detailed error analysis. 
 

• Accuracy Metric: The primary measure for assessing 
the models' prediction accuracy against the 
annotated dataset. It is calculated as the ratio of 
correctly predicted instances (True Positives and 
True Negatives) to the total number of cases. The 
formula for accuracy is given by: 

 
Equation (1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

 
TP represents True Positives, TN represents True Negatives, 
and Total is the total number of instances. 
 

• Error Analysis: This part of the study involves a 

detailed examination of the instances where the 
models misclassified certain attributes in the accident 
reports. By analyzing these errors, we gain insights 
into each model's specific challenges and limitations 
in accurately interpreting the complex narratives of 
construction accident reports. 

4. Results and Discussion  

4.1. Accuracy Results  
Our analysis revealed varied performances across the LLMs 
utilized (Table 3). GPT-4 consistently outperformed GPT-3.5, 
demonstrating superior accuracy in classifying injury cause, 
root cause, severity, body part affected, and accident time. 
Remarkably, GPT-4 achieved perfect accuracy in determining 
the accident time, with a score of 100%. LLaMA 3 also 
achieved a perfect score of 100% in accident time 
classification, along with high scores of 95.65% in root cause 
and 99.46% in severity, closely aligning with the performance 
of GPT-4 in these attributes. The Gemini Pro model, while 
excelling in classifying the injury cause with an accuracy of 
96.74%, demonstrated a marked disparity in accident time 
classification, scoring only 17.93%. LLaMA 3 also showed a 
strong performance with 96.20% accuracy in the injury cause 
classification, closely matching Gemini Pro. BERT and its 
variants showed consistent results, particularly in root cause 
classification, with scores in the mid-80s range, suggesting 
their less effective capabilities in this classification task. 
  
Table 3 Accuracy Results 

Attribute 
GPT-
3.5 
(%) 

 
GPT-
4 (%) 

 
Gemi

ni 
Pro 
(%) 

LLaMA3-
70b (%) 

BRET, 
RoBERT, 

DeBERTa(%
) 

Injury 
Cause 

91.85 
94.02 96.74 96.20  

Root 
Cause 

94.57 97.83 89.67    95.65 
83.30, 
83.80,  
83.62 

Body Part 79.89 99.46 88.04 66.30  

Severity 88.04 94.57 86.96 99.46  

Accident 
Time 

94.57 
100.0 17.93 100.00  
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Fig. 2 Confusion matrices for injury cause and root cause classification using GPT-4, Gemini Pro, and LLaMA 3, with 
predicted classes on the horizontal axis and ground-truth classes on the vertical axis 

 

4.2. Error Analysis  

4.2.1. Injury Cause and Root Cause  
Table 3 shows that GPT-4, Gemini Pro, and LLaMA 3 
exhibited strong performance in classifying "Injury Cause," 
with each model demonstrating high accuracy. GPT-4, in 
particular, also stood out in accurately classifying "Root 
Cause," closely followed by LLaMA 3, which showed minimal 
misclassifications and effectively handled nuanced textual 
data. Analyzing the confusion matrices for these 
classifications (Figure 2), we observe distinct 
misclassification patterns from GPT-4, Gemini Pro, and 
LLaMA 3, revealing their interpretative strategies. 
 
In the "Injury Cause" classification task, both GPT-4 and 
Gemini Pro have shown a pattern of misclassification where 
"Caught in/between" incidents are incorrectly classified as 

"Struck by." LLaMA 3 similarly misclassified one report as 
“Struck by” instead of the correct “Caught in/between,” 
although it more frequently made the opposite error, 
misclassifying “Struck by” incidents as “Caught in/between.” 
The common error of mislabeling "Caught in/between" as 
"Struck by," especially in GPT-4 and Gemini Pro, as depicted 
in the confusion matrices, might be due to the models' 
overemphasis on the verbs and agents suggesting motion or 
impact, which are prevalent in descriptions of "Struck by" 
events. For instance, in an accident where an employee is 
pinned against a trailer by a moving vehicle, both models are 
prone to categorizing the incident as "Struck by." This 
misclassification could arise from the models prioritizing the 
active dynamics of the incident—the hitting or colliding—over 
the passive but more accurate state of being "Caught 
in/between." 
 
Furthermore, a similar pattern of misclassification by GPT-4, 
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Gemini Pro, and LLaMA 3 is observed, with "Fall" incidents 
being classified as "Electrocution." This points to an over-
sensitivity to the context in which electrical elements are 
mentioned, even when they are not directly implicated in the 
cause of the fall. The models seem to be swayed by the 
presence of such terms in the text, leading to a 
misidentification of the cause as "Electrocution." This is 
evident from the confusion matrices where cases that should 
have been classified under "Fall" are instead categorized 
under "Electrocution" due to the models’ potential 
misinterpretation of the electrical context as the dominant 
factor rather than as a secondary or unrelated aspect of the 
accident. This suggests that new strategies are required to 
better distinguish between the direct causes of accidents in 
such complex reports. 
 
The "Root Cause" attribute analysis reveals divergent GPT-4, 
Gemini Pro, and LLaMA 3 performances. GPT-4 shows a 
relatively strong capability in identifying "Root Cause" with 
few misclassifications. However, it exhibits occasional 
confusion, such as categorizing a "Struck by" incident as 
"Caught in/between" and vice versa, suggesting a need for 

more nuanced differentiation within the model’s decision-
making process. On the other hand, Gemini Pro struggles 
significantly in this area, with a tendency to misclassify 
incidents like "Electrocution," "Fall," and "Caught in/between" 
as "Struck by." These errors suggest that Gemini Pro, more so 
than GPT-4, might assign undue importance to certain 
narrative elements that are not definitive of the "Struck by" 
category. Similarly, LLaMA 3 demonstrates a pattern where it 
favors “Caught in/between” classifications in scenarios 
involving both “Struck by” and “Caught in/between” dynamics, 
a tendency also observed in the “Injury Cause” classification. 
This indicates a potential model bias toward interpreting these 
incidents as more passive than they might be, particularly in 
complex accident scenarios with multiple dynamics. The 
pattern of misclassifications for Gemini Pro and the observed 
tendencies of LLaMA 3 implies a potential systemic challenge 
in discerning the initiating action from the resultant state in 
complex accident scenarios. Addressing these discrepancies 
may involve revisiting the classification approach or the prompt 
structure for Gemini Pro and LLaMA 3 to improve their 
understanding of the causal sequences commonly reported in 
construction accidents.

 

Fig. 3 Top words in reports incorrectly classified as “Fatal” by GPT-3.5 and Gemini Pro (more than 5 occurrences) 
 
The confusion matrices highlight areas where sophisticated 
AI models like GPT-4, Gemini Pro, and LLaMA 3 may struggle 
with the complex nature of construction accident reports, 
especially when analyzing accident causes. The 
misclassifications indicate an opportunity to refine these 
models further to capture the nuances of sequential and 
layered events more effectively. While the current 

methodology is a solid foundation, enhancements in the 
models’ interpretation of contextual cues through more 
detailed prompts or targeted fine-tuning could improve 
performance in future analyses. 
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4.2.2. GPT-3.5 vs. GPT-4 vs. Gemini Pro vs. LLaMA 
3: Performance Discrepancies 
The performance discrepancies among GPT-3.5, GPT-4, 
Gemini Pro, and LLaMA 3, as detailed in Table 3, illustrate 
distinct misclassification patterns across various attributes. 
 
For Gemini Pro, the notably lower accuracy in the "Accident 
Time" classification might be attributed to a conservative 
strategy in interpreting the strict time format (HH: MM am/pm) 
specified in the prompt (see Table 2). The model possibly 
defaults to "Unspecified" if not confident in extracting a 
precise time, a potential reason for its high rate of unspecified 
responses. 
 
In the classification of "Severity", GPT-3.5 and Gemini Pro 
exhibited a marked tendency to overestimate the severity of 
accidents. As demonstrated in Figure 3, a discernible pattern 
emerges from the frequency analysis of terms within 
misclassified reports. Despite the occurrence of the word 
"treated" in most of these reports, which could suggest non-
fatal outcomes, both models exhibited an inclination to predict 
outcomes as "Fatal". This misclassification bias was 
particularly pronounced in hospitalization incidents, with 
"hospital" being a predominant term. The models seem to 
overvalue the implications of hospitalization, likely due to its 
association with severe injuries, as suggested by the 
commonality of words such as "transferred" and "fall" in the 
misclassified reports. Such terms may have led the models to 
infer a critical level of injury, thereby defaulting to the most 
severe "Fatal" category despite the actual non-fatal nature of 
the events. Conversely, GPT-4 and LLaMA 3 performed much 
better in accurately classifying severity, with LLaMA 3 
achieving an impressive accuracy of 99.46%. This high level 
of accuracy indicates that LLaMA 3 effectively avoids the 
overestimation bias observed in GPT-3.5 and Gemini Pro, 
demonstrating a superior ability to interpret contextual cues 
and differentiate between fatal and non-fatal outcomes more 
accurately. 
 
In the classification of "Body Part" injured, significant 
discrepancies were observed between the models GPT-3.5, 
Gemini Pro, GPT-4, and LLaMA 3, each revealing distinct 
capabilities in interpreting incomplete injury descriptions. 
Notably, GPT-4 frequently and correctly inferred the involved 
body part in scenarios where it was not explicitly mentioned, 
such as an asphyxiation incident where GPT-4 accurately 
identified "Chest" as the injured body part—a detail 
particularly missed by Gemini Pro, and less frequently by 
GPT-3.5 and LLaMA 3, which did manage to identify "Chest" 
correctly in some similar cases. This illustrates GPT-4's 
advanced contextual inference capabilities. In contrast, GPT-
3.5 and LLaMA 3 sometimes incorrectly inferred body parts, 
with GPT-3.5 associating "Head" with falls and "Torso/Trunk" 
with caught-in/between accidents. LLaMA 3 also exhibited a 
tendency to infer specific body parts in such unspecified 
scenarios: predicting "Torso" in caught in/between accidents, 
"Heart" in electrocution cases, and "Head" in falls. This 
reflects a tendency to over-generalize based on the accident 
type rather than the specific details provided. Gemini Pro 
often defaulted to "Unspecified," avoiding potentially incorrect 

specific predictions but at the cost of valuable diagnostic detail. 
For example, in a case where an employee was caught 
between an I-beam and a safety bar on a lift, leading to 
mechanical asphyxiation, GPT-4, GPT-3.5, and LLaMA 3 
correctly identified the "Chest," while Gemini Pro did not 
specify any body part. Additionally, when incidents explicitly 
involved multiple body parts, GPT-3.5 and GPT-4 were able to 
correctly identify these complex scenarios, whereas Gemini 
Pro continued to classify these as "Unspecified," underscoring 
its cautious yet often under-informative approach that 
contrasts sharply with the more assertive predictive models of 
the other three.  
 
These variations in model performance highlight the intricacies 
of utilizing LLMs for text classification in the safety domain. 
While GPT-4 demonstrates proficiency in context 
understanding, Gemini Pro, LLaMA, and GPT-3.5 bring their 
unique strengths and face distinct challenges. The analysis 
underscores the importance of model choice and configuration 
in achieving accurate classification results. 

5. Conclusion  
Our research utilizing LLMs, notably GPT-3.5, GPT-4, Gemini 
Pro, and LLaMA 3, has significantly enhanced the analysis and 
classification of construction accident reports. This study 
focused on key attributes such as root cause, injury cause, 
affected body part, severity, and accident time. The results 
demonstrate that these LLMs, particularly GPT-4, have 
achieved high accuracy across most attributes. GPT-4 
consistently outperformed GPT-3.5, while Gemini Pro excelled 
in classifying "Injury Cause." LLaMA 3 distinguished itself by 
accurately classifying “Severity” and “Root Cause.” These 
findings hold great promise for the construction industry, 
indicating the potential to develop more precise and effective 
safety measures, which could reduce the frequency and 
severity of accidents.  
 
However, it is important to acknowledge the limitations 
inherent in our approach. While effective for most attributes, 
the zero-shot learning approach may not always capture the 
complex causal relationships as effectively as domain-specific 
models trained directly on construction accident data. 
Additionally, the study focuses primarily on the "Fatal Four" 
causes of construction accidents, potentially overlooking other 
less common but impactful causes. Addressing these broader 
categories in future research could provide a more 
comprehensive understanding of accident causes. 
 
Future research should also explore the broader application of 
LLMs in construction safety, especially in predictive analytics. 
This expansion could further revolutionize safety management 
practices and contribute to creating safer work environments. 
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