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Construction site safety is a paramount concern, given the high rate of accidents and fatalities
in the sector. This study introduces a novel approach to analyzing construction accident
reports by employing advanced Large Language Models (LLMs), specifically GPT-3.5, GPT-
4, Gemini Pro, and LLaMA 3. Our research focuses on the classification of key attributes in
accident reports: root cause, injury cause, affected body part, severity, and accident time.
The results reveal that GPT-4 achieves significantly higher accuracy across most attributes.
Gemini Pro demonstrates superior performance in the "Injury Cause" classification, while
LLaMA 3 excels in classifying "Severity" and "Root Cause." GPT-3.5, although lagging behind
GPT-4, exhibits commendable accuracy. The insights gained from this study are vital for the
construction industry, as they indicate the potential for developing more precise and effective
safety measures. These findings could lead to a reduction in the frequency and severity of
accidents, thereby enhancing worker safety.

1. Introduction

in construction involved these causes, with Falls (35.1%),
Struck by (17.1%), Caught in/between (5.8%), and

Maintaining high safety performance for construction Electrocution (7.7%) being the predominant ones [2].

Construction workers are often exposed to hazardous
working environments on site that can lead to major injury or
loss of life. According to reports from the International Labor
Organization [1], more than 3 million deaths are caused by
work-related accidents and diseases, with nearly 330,000
fatalities and work accidents. Additionally, the construction
industry constitutes approximately one of six fatal accidents.
Due to the high rate of accidents and fatalities in the
construction sector, it is crucial to analyze previous incidents
to prevent injuries and improve the safety of construction
workers.

Understanding the root and injury causes of construction
accidents is vital for preventing future occurrences. The "Fatal
Four" - Falls, Struck-by, Caught in/between, and
Electrocution - are the primary contributors to construction
fatalities, accounting for a significant portion of accidents. For
instance, between 2011 and 2020, over 25,000 fatal incidents
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measures more effectively. Additionally, insights into the
affected body parts, accident timing, and severity are critical
for developing comprehensive risk management strategies.
This data assists in crafting targeted safety protocols and
emergency response plans, reducing the likelihood of severe
injuries and fatalities.

Previous construction safety research has utilized various
methodologies for accident analysis and classification. Studies
have incorporated various machine learning and natural
language processing techniques, including traditional
classifiers like Support Vector Machines (SVM), decision trees,
ensemble methods, and advanced deep learning approaches
such as Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) [3-8]. For example, Goh and
Ubeynarayana 2017 [4] utilized SVM and other classifiers to
effectively categorize construction accident narratives,
achieving high precision and recall across different accident
causes.
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Furthering the capabilities of text analysis, Zhang in 2022 [6]
introduced a hybrid structured deep neural network that
incorporates Word2Vec to enhance the semantic analysis of
accident causes. This approach improved the classification's
accuracy by leveraging deep learning to capture nuanced
semantic relationships in accident data, demonstrating a
significant advance over traditional models. Similarly, Luo et
al. in 2023 [8] employed Convolutional Neural Networks
(CNNs) specifically tailored for the construction industry,
allowing for an advanced parsing and understanding of
complex textual patterns in accident reports. This
methodology enhanced the granularity with which accident
causes were identified and analyzed, providing deeper
insights into the contributory factors and mechanisms of
accidents.

While these methods have been effective, they do not fully
exploit the capabilities of modern Large Language Models
(LLMs), which can process and understand large volumes of
unstructured text data with greater contextual awareness.
This represents a significant gap in the current research
landscape, as LLMs offer the potential for deeper and more
accurate insights into accident reports. Additionally, current
studies often lack a comprehensive attribute analysis, which
is essential for fully understanding construction accidents. A
deeper exploration of crucial attributes, including accident
causes, severity, affected body parts, and timing of accidents,
can provide more targeted and effective safety measures.

In this study, we employ advanced Large Language Models
(LLMs), such as GPT, Gemini, and LLaMA, to enhance the
classification and understanding of key attributes in
construction accident reports. These attributes include root
cause, injury cause, affected body part, severity, and accident
timing. This research introduces the pioneering application of
state-of-the-art language models for detailed and nuanced
analysis of construction accident reports, significantly
improving the accuracy of classifying complex report
attributes, which is critical for developing targeted and
effective safety measures and providing a strong foundation
for enhancing safety protocols in the construction industry,
potentially reducing the frequency and severity of accidents.

2. Background

2.1. Evolution of Text Classification

In the realm of Natural Language Processing (NLP), text
classification, akin to other NLP tasks, has experienced
significant evolution. Earlier on, text classification depended
on traditional machine learning models such as Naive Bayes,
Support Vector Machine (SVM), K-Nearest Neighbor, and
Random Forest. These were often combined with text
representation techniques like Bag-Of-Words, Word2Vec,
and N-gram [9]. While effective for foundational classification
tasks, these methods required extensive feature engineering
and often struggled to capture the subtleties of language and
its contextual nuances.

The emergence of neural network-based methods marked a
notable advancement in text classification. Leveraging deep
learning, these methods autonomously learn and extract
textual features, thereby minimizing the need for manual
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feature engineering. Techniques such as Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs),
and Graph Convolutional Networks (GCNs) have been integral
and successful in this domain [10-14]. However, these
methods occasionally encounter challenges in fully grasping
the entire scope of language context, particularly in
interpreting complex sentence structures and diverse
language usage.

In parallel, Large Language Models (LLMs) have risen as a
pivotal development in NLP tasks, including text classification.
Rooted in sophisticated architectures like transformers—a
variant of neural networks—LLMs can process and
comprehend extensive volumes of text with exceptional
accuracy. Their architecture is particularly adept at tasks
demanding deep contextual understanding and in-context
learning [15], significantly advancing the potential for complex
NLP applications. This advancement has allowed LLMs to
surpass the previous limitations of earlier methods,
demonstrating remarkable performance in various text
classification scenarios [16-18].

2.2. Large Language Models (LLMs)

Large Language Models (LLMs) are a class of deep learning
models designed to understand, generate, and sometimes
translate human language. They are characterized by their
immense size, containing hundreds of billions of parameters,
and are trained on vast text corpora to perform a wide array of
language tasks [19]. The architectures of LLMs can be broadly
categorized into three types[18].

The first type is encoder-only models like BERT [20]. These
models focus on understanding the context of a given text.
They use a masked language model objective during pre-
training, where random tokens are masked out, and the model
learns to predict them, thus gaining a deep understanding of
language context and word relationships.

Decoder-only models, such as GPT [21], form the second type.
These models use a unidirectional approach where each token
can only attend to previous tokens in the sequence. This
architecture is particularly suitable for tasks that involve
generating text, as the model is trained to predict the next
token in a sequence based on the tokens that came before it.

The third type comprises encoder-decoder models like T5 [22].
Encoder-decoder models consist of an encoder component to
understand the input text and a decoder component to
generate the output text. This architecture allows for a
comprehensive approach to text processing, encompassing
understanding and generating capabilities in a unified
framework.

LLMs have demonstrated various advanced capabilities that
significantly enhance their utility in various applications.
Notable examples include zero-shot learning, in-context
learning, fine-tuning, and step-by-step reasoning [23-25].

Zero-shot learning is a key feature where LLMs, as zero-shot
learners, can answer queries they have never explicitly
encountered before. This capability allows them to respond to
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user questions without requiring examples in the prompt [24].

In-context learning, introduced by the developers of GPT [15],
enables LLMs to understand and respond to prompts using
contextual cues within the text. This approach is bolstered by
few-shot learning, allowing these models to adapt to new
tasks with minimal examples quickly. Unlike traditional
models requiring extensive training, few-shot learning equips
LLMs, like GPT, to perform tasks effectively with limited
training instances, streamlining their adaptability to diverse
applications.

Fine-tuning is another approach where LLMs can be fine-
tuned in various ways to enhance their performance on
specific tasks. Transfer Learning involves fine-tuning pre-
trained models with task-specific data [22]. Instruction-tuning
allows models to perform new tasks simply by reading
instructions describing the task [23].

Step-by-step reasoning, facilitated by strategies like chain-of-
thought (CoT) prompting [26], enables LLMs to process tasks
that require multiple logical steps. This is particularly useful in

complex problem-solving scenarios, allowing LLMs to provide
more coherent and logically structured outputs.

3. Methodology

Building on the foundational knowledge of LLMs outlined in the
previous sections, we aim to apply these technologies within
the domain of construction safety. Utilizing the advanced
capabilities of LLMs—such as zero-shot learning, in-context
learning, and their ability to interpret vast amounts of
unstructured text data—we conduct a comprehensive analysis
of construction accident reports. Our methodology is
structured into four distinct stages, as depicted in Figure 1,
designed to leverage these models to categorize and analyze
key attributes from the reports effectively.

3.1. Data Preparation

The initial phase of our methodology involves the
preparation of data, which is crucial for ensuring the integrity
and consistency of the input for model training and testing. We
extract accident reports from the Occupational Safety and
Health Administration (OSHA) database [27] spanning from

[ Data Preparation Model Utilization [ Implementation ] [ Evaluation
N GPT-3.5/GPT-
BERT & Variants
OSHA Database ANNOTATION 4/GemeniPro, & Methods Accuracy & Precision
(Only for Root Cause)
LLaMA-3
<0 ®
EH ! {3 #
o-n o
ATTRIBUTES | OpenAL's API: Completion Endpoint ‘
+ Root Cause | Google Generative Al API: Generate Content |
Endpoint racy Tor
OSHA DATABASE » Injury Cause Fine-Tuning Zero-Shot Prompting - Accur acy F,um.
o B Metric Analysis
*  Severity Ollama Library
* Body Part
* Accident Time | Hugging Face: Transformer Library |

Fig. 1 The four-stage methodology framework encompassing Data Preparation, Model Utilization, Implementation, and Evaluation.

2002 to 2023. This comprehensive dataset allows us to cover
a wide range of incidents, reflecting the evolving nature of
workplace hazards and safety measures over two decades.

For fine-tuning BERT and its variants, we meticulously
curated a subset of 1,000 reports specifically for root cause
classification. This focus was chosen because fine-tuning
LLMs requires a substantial amount of data, and root cause
provides a clear baseline for classifying the underlying
reasons behind incidents, facilitating direct comparison with
more advanced models such as GPT, Gemini, and LLaMA.
Furthermore, we designated an additional set of 185 reports
to test all models' performance. This test set was carefully
chosen to ensure the representation of all classes within each
predefined attribute, with an average of 50 reports per class.
Special consideration was given to reports detailing
sequential events, particularly those elucidating the
connection between root cause and injury cause, to enrich
the model's understanding of causality in workplace
accidents.

Table 1 Example Annotation of an Accident Report

Attribute Details
At 1:00 p.m. on January 25, 2017, an
employee was working in a suspended
ceiling grid installing fire sprinkler piping. The
Report employee came into contact with live
P electrical wiring and was pulled off a ladder
by his Foreman, resulting in both falling to the
floor. The employee injured his shoulder on
impact with the concrete floor.
Injury Cause Fall
Root Cause Electrocution
Body Part Shoulder
Severity Non-fatal
Accident Time 1:00 p.m.

Our annotation process, conducted manually by the authors,
involved detailing each report according to the following
predefined attributes, which are crucial for understanding
construction accidents and commonly reported in accident
documentation:

e Root Cause: Identifies the fundamental reason for the
accident occurrence, categorized into types such as
caught in/between, electrocution, falls, and struck-by
incidents. This helps in understanding underlying
factors for long-term safety improvements.

https://www.sciopen.com/journal/2958-3861 | https://mc03.manuscriptcentral.com/jic | Journal of Intelligent Construction
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Injury Cause: Specifies the direct cause of the injury,
which may or may not be directly related to the root
cause. It is essential for targeting specific safety
interventions.

e Body Part: Indicates the body part affected, such as
head, hand, leg, back, finger, torso, arm, etc. This
information is significant for assessing the impact of
accidents and tailoring protective measures.

e Severity: Classifies the accident's outcome in terms
of severity, ranging from non-fatal to fatal, helping
prioritize safety measures and resource allocation.

e Accident Time: Records the time at which the
accident occurred, providing temporal context useful
for identifying high-risk periods and planning safety
operations.

An example of how these attributes are applied is provided in
Table 1, which presents the annotation of a specific accident
report. This detailed annotation approach allows for the
comprehensive classification and analysis of accident reports

)

which is essential for our study's accurate application of LLMs.

3.2. Model Utilization

This phase involves the application of the following LLMs:
BERT and its variants, GPT-3.5, GPT-4, Gemini Pro, and
LLaMA.

e BERT & Variants: As foundational encoder-only
models, BERT and its derivatives such as RoBERTa
and DeBERTa enhance the interpretative depth by
processing words in context to all other words within
a sentence. These models are fine-tuned on our
dataset specifically for the targeted approach of
identifying the root cause of accidents. This focus is
necessitated by the substantial data requirements
for effective fine-tuning and provides a clear baseline
for performance comparison across models.

e GPT-3.5, GPT-4, Gemini Pro, & LLaMA 3: The GPT
series [28], including GPT-3.5 and GPT-4, are state-
of-the-art decoder-only models that utilize layers of
transformer blocks with multi-head self-attention
mechanisms and feedforward neural networks,
designed for generating text by predicting the next
word in sequences. Gemini [29], developed by
Google’s DeepMind, is known for its robust handling
of complex datasets through its advanced decoder-
only model employing multi-query attention. We
selected Gemini Pro for our study due to its
enhanced capabilities and efficiency in processing
extensive datasets. Similarly, LLaMA 3 [30],
introduced by Meta, is a cutting-edge decoder-only
model that incorporates advanced reasoning
capabilities and instruction fine-tuning. We selected
the 70B parameter model of LLaMA 3 for its
demonstrated improvements in performance. LLaMA
3 utilizes grouped query attention and extended
token sequences, making it particularly adept at
processing extensive and complex text data. In our
study, a zero-shot learning approach is utilized for
these models. Universal prompts were meticulously

(it A 2 2w | Sci@pen

engineered to standardize the classification process
across the different models. These prompts were
crafted to be clear and concise, aligning precisely with
the input expectations of each model to ensure
optimal performance. This design process involved
careful consideration of the models' capabilities in
context understanding and text generation, which is
critical for accurate classification. Detailed information
about the specific prompts used for each attribute in
our study, including their exact wording and structure,
is provided in Table 2. This approach facilitates a
direct and fair comparison of model performance
across a consistent set of tasks.

Table 2 Classification Prompts Used in the Study
Attribute

Prompt

Determine the Injury Cause of the accident in
the report. Your answer should be strictly one
"Struck
by’, ’Fall’, or 'Caught in/between’ without any

Injury Cause of the following: ’Electrocution’,

additional text or explanations.

Determine the Root Cause of the accident in
the report. Your answer should be strictly one

“Struck by,” "Caught
Fall,” Electrocution,’
or 'Unspecified’ without any additional text

of the following:
Root Cause . )
in/between,

and explanations.

Determine the Severity of the incident in the
report. Your answer should be strictly one of
the following: 'Fatal’ or 'Nonfatal’ without any
additional text or explanations.

Body Part

Determine the main Body Part affected in the
accident. Provide only and strictly the main
body part affected without any additional text
or explanations. If the information is not
available, say 'Unspecified’.

Severity

Determine the Accident Time of the accident
in the report. The answer should strictly be in
the format HH:MM am/pm. If the information
is not available, say 'Unspecified’. Do not
include the date and any other additional text
and explanations.

Accident Time

3.3. Implementation

The implementation utilizes Python for all computational tasks.
We use specific APIs for each model with tailored
hyperparameters to optimize their performance for the
interaction with the LLMs.

The GPT-3.5 and GPT-4 models are accessed via the OpenAl
API's Completion endpoint. The settings for these models
include using "get-3.5-turbo" and "get-4" as the Model Names,
with a Temperature of 1, Top P of 1, and both Frequency
Penalty and Presence Penalty set to 0.0. The 'Best Of
parameter is set to 1. This configuration aims to harness the
GPT models' generative capabilities while ensuring output
diversity.

In the case of the Gemini Pro model, our approach involved
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interfacing with the Google Generative Al API, specifically
employing the Generate Content endpoint. The configuration
for the Gemini Pro model ("gemini-pro") involves a
Temperature setting of 0.9, and Top P and Top K are set to 1.
Additionally, safety settings are implemented to block content
categories like harassment, hate speech, sexually explicit,
and dangerous content at medium and above thresholds,
ensuring responsible use of the model.

For LLaMA 3, we utilized the Ollama Library [31], interfacing
with a locally hosted model set to a 70B parameter scale. The
model configuration includes a Temperature of 1 and Top P of
1, optimized for generating precise and contextually relevant
outputs.

In addition to these LLMs, the Hugging Face's Transformer
Library [32] is employed to operationalize BERT and its
variants. The BERT models are fine-tuned with a Learning
Rate of 1e-5, employing 12 Attention Heads, a Hidden Size
of 768, and an Embedding Size of 512. This setup aligns with
standard BERT model configurations, making them suitable
for diverse text classification tasks.

3.4 Validation and Evaluation

The validation of the models is performed using the manually
annotated dataset detailed in the Data Preparation section,
serving as the ground truth for verification. This rigorous
evaluation process aims to quantify model accuracy
comprehensively and explore the specifics of any
misclassifications through detailed error analysis.

e  Accuracy Metric: The primary measure for assessing
the models' prediction accuracy against the
annotated dataset. It is calculated as the ratio of
correctly predicted instances (True Positives and
True Negatives) to the total number of cases. The
formula for accuracy is given by:

Equation (1)
TP+TN

Accuracy = Totdl

TP represents True Positives, TN represents True Negatives,
and Total is the total number of instances.

e Error Analysis: This part of the study involves a

detailed examination of the instances where the
models misclassified certain attributes in the accident
reports. By analyzing these errors, we gain insights
into each model's specific challenges and limitations
in accurately interpreting the complex narratives of
construction accident reports.

4. Results and Discussion

4.1. Accuracy Results

Our analysis revealed varied performances across the LLMs
utilized (Table 3). GPT-4 consistently outperformed GPT-3.5,
demonstrating superior accuracy in classifying injury cause,
root cause, severity, body part affected, and accident time.
Remarkably, GPT-4 achieved perfect accuracy in determining
the accident time, with a score of 100%. LLaMA 3 also
achieved a perfect score of 100% in accident time
classification, along with high scores of 95.65% in root cause
and 99.46% in severity, closely aligning with the performance
of GPT-4 in these attributes. The Gemini Pro model, while
excelling in classifying the injury cause with an accuracy of
96.74%, demonstrated a marked disparity in accident time
classification, scoring only 17.93%. LLaMA 3 also showed a
strong performance with 96.20% accuracy in the injury cause
classification, closely matching Gemini Pro. BERT and its
variants showed consistent results, particularly in root cause
classification, with scores in the mid-80s range, suggesting
their less effective capabilities in this classification task.

Table 3 Accuracy Results

BRET,
GPT- GPT-  Gemi ROBERT,
Attribute 35  4(%) i "7'51"'&?;' DeBERTa(%
(%) Pro )
(%)
Injury 94.02  96.74 96.20
91.85
Cause
Rt 83.30,
% 9457 9783 8967  95.65 83.80,
Cause
83.62
Body Part 79.89  99.46  88.04 66.30
Severity 88.04 9457  86.96 99.46
Accident 1000  17.93 100.00
i 94.57
Time
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Fig. 2 Confusion matrices for injury cause and root cause classification using GPT-4, Gemini Pro, and LLaMA 3, with
predicted classes on the horizontal axis and ground-truth classes on the vertical axis

4.2. Error Analysis

4.2.1. Injury Cause and Root Cause

Table 3 shows that GPT-4, Gemini Pro, and LLaMA 3
exhibited strong performance in classifying "Injury Cause,"
with each model demonstrating high accuracy. GPT-4, in
particular, also stood out in accurately classifying "Root
Cause," closely followed by LLaMA 3, which showed minimal
misclassifications and effectively handled nuanced textual
data. Analyzing the confusion matrices for these
classifications  (Figure 2), we observe distinct
misclassification patterns from GPT-4, Gemini Pro, and
LLaMA 3, revealing their interpretative strategies.

In the "Injury Cause" classification task, both GPT-4 and
Gemini Pro have shown a pattern of misclassification where
"Caught in/between" incidents are incorrectly classified as

it | Sci@pen

"Struck by." LLaMA 3 similarly misclassified one report as
“Struck by” instead of the correct “Caught in/between,”
although it more frequently made the opposite error,
misclassifying “Struck by” incidents as “Caught in/between.”
The common error of mislabeling "Caught in/between" as
"Struck by," especially in GPT-4 and Gemini Pro, as depicted
in the confusion matrices, might be due to the models'
overemphasis on the verbs and agents suggesting motion or
impact, which are prevalent in descriptions of "Struck by"
events. For instance, in an accident where an employee is
pinned against a trailer by a moving vehicle, both models are
prone to categorizing the incident as "Struck by." This
misclassification could arise from the models prioritizing the
active dynamics of the incident—the hitting or colliding—over
the passive but more accurate state of being "Caught
in/between."

Furthermore, a similar pattern of misclassification by GPT-4,
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Gemini Pro, and LLaMA 3 is observed, with "Fall" incidents
being classified as "Electrocution." This points to an over-
sensitivity to the context in which electrical elements are
mentioned, even when they are not directly implicated in the
cause of the fall. The models seem to be swayed by the
presence of such terms in the text, leading to a
misidentification of the cause as "Electrocution." This is
evident from the confusion matrices where cases that should
have been classified under "Fall" are instead categorized
under "Electrocution” due to the models’ potential
misinterpretation of the electrical context as the dominant
factor rather than as a secondary or unrelated aspect of the
accident. This suggests that new strategies are required to
better distinguish between the direct causes of accidents in
such complex reports.

The "Root Cause" attribute analysis reveals divergent GPT-4,
Gemini Pro, and LLaMA 3 performances. GPT-4 shows a
relatively strong capability in identifying "Root Cause" with
few misclassifications. However, it exhibits occasional
confusion, such as categorizing a "Struck by" incident as
"Caught in/between" and vice versa, suggesting a need for

more nuanced differentiation within the model’'s decision-
making process. On the other hand, Gemini Pro struggles
significantly in this area, with a tendency to misclassify
incidents like "Electrocution," "Fall," and "Caught in/between"
as "Struck by." These errors suggest that Gemini Pro, more so
than GPT-4, might assign undue importance to certain
narrative elements that are not definitive of the "Struck by"
category. Similarly, LLaMA 3 demonstrates a pattern where it
favors “Caught in/between” classifications in scenarios
involving both “Struck by” and “Caught in/between” dynamics,
a tendency also observed in the “Injury Cause” classification.
This indicates a potential model bias toward interpreting these
incidents as more passive than they might be, particularly in
complex accident scenarios with multiple dynamics. The
pattern of misclassifications for Gemini Pro and the observed
tendencies of LLaMA 3 implies a potential systemic challenge
in discerning the initiating action from the resultant state in
complex accident scenarios. Addressing these discrepancies
may involve revisiting the classification approach or the prompt
structure for Gemini Pro and LLaMA 3 to improve their
understanding of the causal sequences commonly reported in
construction accidents.

hospital
building

line

treated
construction
finger
ladder

roof

Words

transported
admitted
employed
fall
fractured
power

services

Frequency

Fig. 3 Top words in reports incorrectly classified as “Fatal” by GPT-3.5 and Gemini Pro (more than 5 occurrences)

The confusion matrices highlight areas where sophisticated
Al models like GPT-4, Gemini Pro, and LLaMA 3 may struggle
with the complex nature of construction accident reports,
especially when analyzing accident causes. The
misclassifications indicate an opportunity to refine these
models further to capture the nuances of sequential and
layered events more effectively. While the current

methodology is a solid foundation, enhancements in the
models’ interpretation of contextual cues through more
detailed prompts or targeted fine-tuning could improve
performance in future analyses.

https://www.sciopen.com/journal/2958-3861 | https://mc03.manuscriptcentral.com/jic | Journal of Intelligent Construction
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4.2.2. GPT-3.5 vs. GPT-4 vs. Gemini Pro vs. LLaMA
3: Performance Discrepancies

The performance discrepancies among GPT-3.5, GPT-4,
Gemini Pro, and LLaMA 3, as detailed in Table 3, illustrate
distinct misclassification patterns across various attributes.

For Gemini Pro, the notably lower accuracy in the "Accident
Time" classification might be attributed to a conservative
strategy in interpreting the strict time format (HH: MM am/pm)
specified in the prompt (see Table 2). The model possibly
defaults to "Unspecified" if not confident in extracting a
precise time, a potential reason for its high rate of unspecified
responses.

In the classification of "Severity", GPT-3.5 and Gemini Pro
exhibited a marked tendency to overestimate the severity of
accidents. As demonstrated in Figure 3, a discernible pattern
emerges from the frequency analysis of terms within
misclassified reports. Despite the occurrence of the word
"treated" in most of these reports, which could suggest non-
fatal outcomes, both models exhibited an inclination to predict
outcomes as "Fatal". This misclassification bias was
particularly pronounced in hospitalization incidents, with
"hospital" being a predominant term. The models seem to
overvalue the implications of hospitalization, likely due to its
association with severe injuries, as suggested by the
commonality of words such as "transferred" and "fall" in the
misclassified reports. Such terms may have led the models to
infer a critical level of injury, thereby defaulting to the most
severe "Fatal" category despite the actual non-fatal nature of
the events. Conversely, GPT-4 and LLaMA 3 performed much
better in accurately classifying severity, with LLaMA 3
achieving an impressive accuracy of 99.46%. This high level
of accuracy indicates that LLaMA 3 effectively avoids the
overestimation bias observed in GPT-3.5 and Gemini Pro,
demonstrating a superior ability to interpret contextual cues
and differentiate between fatal and non-fatal outcomes more
accurately.

In the classification of "Body Part" injured, significant
discrepancies were observed between the models GPT-3.5,
Gemini Pro, GPT-4, and LLaMA 3, each revealing distinct
capabilities in interpreting incomplete injury descriptions.
Notably, GPT-4 frequently and correctly inferred the involved
body part in scenarios where it was not explicitly mentioned,
such as an asphyxiation incident where GPT-4 accurately
identified "Chest" as the injured body part—a detalil
particularly missed by Gemini Pro, and less frequently by
GPT-3.5 and LLaMA 3, which did manage to identify "Chest"
correctly in some similar cases. This illustrates GPT-4's
advanced contextual inference capabilities. In contrast, GPT-
3.5 and LLaMA 3 sometimes incorrectly inferred body parts,
with GPT-3.5 associating "Head" with falls and "Torso/Trunk"
with caught-in/between accidents. LLaMA 3 also exhibited a
tendency to infer specific body parts in such unspecified
scenarios: predicting "Torso" in caught in/between accidents,
"Heart" in electrocution cases, and "Head" in falls. This
reflects a tendency to over-generalize based on the accident
type rather than the specific details provided. Gemini Pro
often defaulted to "Unspecified," avoiding potentially incorrect
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specific predictions but at the cost of valuable diagnostic detail.
For example, in a case where an employee was caught
between an |-beam and a safety bar on a lift, leading to
mechanical asphyxiation, GPT-4, GPT-3.5, and LLaMA 3
correctly identified the "Chest," while Gemini Pro did not
specify any body part. Additionally, when incidents explicitly
involved multiple body parts, GPT-3.5 and GPT-4 were able to
correctly identify these complex scenarios, whereas Gemini
Pro continued to classify these as "Unspecified," underscoring
its cautious yet often under-informative approach that
contrasts sharply with the more assertive predictive models of
the other three.

These variations in model performance highlight the intricacies
of utilizing LLMs for text classification in the safety domain.
While GPT-4 demonstrates proficiency in context
understanding, Gemini Pro, LLaMA, and GPT-3.5 bring their
unique strengths and face distinct challenges. The analysis
underscores the importance of model choice and configuration
in achieving accurate classification results.

5. Conclusion

Our research utilizing LLMs, notably GPT-3.5, GPT-4, Gemini
Pro, and LLaMA 3, has significantly enhanced the analysis and
classification of construction accident reports. This study
focused on key attributes such as root cause, injury cause,
affected body part, severity, and accident time. The results
demonstrate that these LLMs, particularly GPT-4, have
achieved high accuracy across most attributes. GPT-4
consistently outperformed GPT-3.5, while Gemini Pro excelled
in classifying "Injury Cause." LLaMA 3 distinguished itself by
accurately classifying “Severity” and “Root Cause.” These
findings hold great promise for the construction industry,
indicating the potential to develop more precise and effective
safety measures, which could reduce the frequency and
severity of accidents.

However, it is important to acknowledge the limitations
inherent in our approach. While effective for most attributes,
the zero-shot learning approach may not always capture the
complex causal relationships as effectively as domain-specific
models trained directly on construction accident data.
Additionally, the study focuses primarily on the "Fatal Four"
causes of construction accidents, potentially overlooking other
less common but impactful causes. Addressing these broader
categories in future research could provide a more
comprehensive understanding of accident causes.

Future research should also explore the broader application of
LLMs in construction safety, especially in predictive analytics.
This expansion could further revolutionize safety management
practices and contribute to creating safer work environments.
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