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ABSTRACT

Wearable robot control in complicated contexts requires an understanding of human locomotion intent
and behaviors. However, signals from human-robot interfaces are typically reliant on the user, leading
to poor performance of the model trained on training user when applied to new end-point users.
This study aims to address this problem by developing a novel Teacher-Student-Learning (TSL)
approach using Heterogeneous Ensemble Hypotheses (HEH) to achieve unsupervised user-agnostic
adaptation. The motivation behind using the Teacher-Student-Learning architecture is to leverage
the diverse features extracted by HEH while maintaining computational efficiency. HEH reduces the
difference between labeled training users and unlabeled end-point users by incorporating multiple
diverse feature generators to extract a wide range of features, thereby increasing classification accuracy
and reducing variance. However, this approach sacrifices efficiency due to the ensemble nature of
HEH. To address this trade-off, the knowledge from HEH is distilled into a single network using TSL,
ensuring precision and efficiency. The proposed approach is evaluated on two publicly available human
locomotion datasets and a 2D moon dataset. Experimental results demonstrate the effectiveness of the
proposed method, outperforming all other methods. Tested with three datasets, the proposed method
can classify end-point users’ data with an average accuracy of 98.9%, 96.7%, and 96.9% while yielding
alow processing time (1 ms). Compared to a benchmark method, the suggested strategy improves the
average accuracy by 1.5% and 7.2% for categorizing the target users’ locomotor modes and stabilizes
the learning curves. The proposed method represents a significant contribution to the field of human
activity recognition and human intent prediction for human-robot interaction systems, enhancing the

efficiency and generalization capacity of these systems.

1. Introduction

Wearable robotic devices, such as exoskeletons [1, 2],
powered prostheses [3, 4], as well as supernumerary robotic
limbs [5], are predicted to help people restore their mo-
bility, increase load carrying capacity, and improve energy
economy. Wearable robots appear to have a bright future,
however, creating an intelligent and adaptable controller for
a wearable robot still presents difficulties. A wearable robot’s
controller typically consists of low, middle, and high-level
controllers arranged in a hierarchical design [6]. The middle-
level controller switches its control settings in response to
a prediction of the planned locomotion mode made by the
high-level controller. The assistive force curve [2], swing
trajectories [7], and joint impedance parameters [8] are ex-
amples of possible control configurations. The middle-level
controller sets the settings of the low-level controller, which
is then responsible for activating the joint position control
or torque control. It is possible to preprogram and tune the
control parameters of various locomotor modes for a variety
of individuals [1, 9, 2, 10]. How and when to transition
between various locomotor modes (e.g., standing, walking,
sprinting, and ascending stairs) is still a major challenge. In
order to seamlessly transition between different locomotor
modes, wearable robots must first promptly ascertain the
wearer’s intention [11, 12].
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Human intent is often complex and varies widely, mak-
ing it challenging to accurately anticipate and plan for.
According to prior research, EMG and IMU signals offer
a unique insight into how humans interact with robots,
providing insight into how robots can effectively understand
and respond to human intent [3, 13, 11, 14]. Numerous
categorization techniques have been put forth to categorize
the recorded human-robot communications and use that data
to infer the human locomotion mode [11, 13, 15]. There
is a statistical discrepancy between two datasets which can
lead to poor performance for existing classification methods
when compared with a new dataset [13, 16]. However, the
distribution difference is typical for signals pertaining to
human-robot interfaces. The signals of the human-robot
interface are user-centric because various users have vary-
ing muscles, skin tones, as well as patterns of mobility.
The user’s physical condition (i.g., limb weariness and skin
conductivity) as well as the sensor location can both affect
the interface signals, even for the same individual. It is not
possible for the current approaches to capture and identify
significant signals of various users and train a new model
for every new user in order to properly determine a human’s
intent to move [15, 17].

The use of user-independent sensors, including vision
sensors, is one way to address the issue of user-dependency.
Vision sensors have the ability to see their surroundings
in advance, which allows them to reasonably forecast how
people will move [18, 19, 20, 21]. Zhang et. al [22] have
shown that a visual perception system trained on a single
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healthy user’s dataset can be used directly to precisely tune a
powered prosthesis’s control modes and help various above
knee amputees walk on challenging Environments without
the need for additional new user training. Moreover, these
findings have confirmed that most visual perception systems
don’t require various user data. However, when a person
wears the gadget and changes states, like from standing to
walking, visual sensors might not pick up on it. Thus, to
completely understand human intent, the signals from the
human-robot interaction still appear to be required.

Every sensor selection involves certain trade-offs: al-
though correctly interpreting interface signals to determine
human intent is crucial, user dependence is an unavoidable
issue. How may the interface signals’ reliance on the user
be reduced? The disparity in interface signal distribution
among topics is a significant contributor to user reliance.
Reducing the distribution disparity will also reduce user re-
liance. Domain adaptation is a popular technique for tackling
this issue [23, 24, 25] as illustrated on Table 1. Data from
the training user domain and data from the end-point user
domain are the two types of data used in this technique.
There is a disparity between the two domains; the training
user domain data are labeled, while the end-point user do-
main data are unlabeled. Using labeled training user domain
and unlabeled end-point user domain data, the classifier is
trained by unsupervised domain adaption techniques. The
learned classifier may be utilized to categorize the end-point
user data with a reasonable degree of accuracy after training.
Maximum classifier discrepancy (MCD) [24] and domain-
adversarial neural networks (DANN) [23] are two common
domain adaption techniques. Ganin et al. proposed DANN
consists of a domain classifier, a label classifier, as well as
a feature generator. The generator have competition with the
domain classifier. The objective of the classifier is to differ-
entiate between the characteristics derived from the data of
the training users’ domain as well as the data of the end-point
users’ domain. To trick the domain classifier into thinking
it can’t tell these characteristics apart, the feature generator
looks for identical hidden features in both the end-point
and the training user domain data. Furthermore, significant
characteristics that the label classifier can reliably classify
must be extracted via the feature generator. Although DANN
performs well, it ignores feature classes. Global adaptation
may occasionally fail because of inconsistent differences
between training and end-point user data across distinct
classes. Saito et al. [24] developed MCD, which comprises
of two classifiers and a feature generator, as a solution
to this problem. The feature generator, the two classifiers,
and themselves are antagonistic. The generator is utilized
to reduce the difference between the classifiers, while the
classifiers are utilized to maximizing it. As a result, the clas-
sifiers are optimized to provide more accurate predictions,
while the feature generator is optimized to generate features
with the least variance. Due to its ability to align the features
of two domains in each class, MCD is recognized to perform
better than DANN after training.

Images are usually classified using the domain adap-
tion techniques that are currently in use. Predicting human
movement intent and categorizing signals from the human-
robot interaction have received little attention in domain
adaptation research. An unsupervised User-Agnostic adap-
tion technique akin to MCD was suggested in our earlier
research [26]. Convolutional neural networks (CNNs) can
anticipate the end-point users’ intention to move after it
was trained using labeled data from the training user as
well as unlabeled data from the end-point users. The MCD
single feature generator may not be capable of capturing
the full complexity of the data and all the hidden features
from the input data [27, 28]. This thought experiment pro-
vides insight into the theoretical implications of this study.
The aforementioned problem may be solved via ensemble
learning [29, 30], albeit at the expense of efficiency, by
extracting a variety of features and improving generalization
ability. But with wearable robots, efficiency is also vital. Is
it feasible to pick up many characteristics at once and yet
be effective? In addition, supervised validation data of the
intended users were needed in order to assess the neural
network’s efficiency during training and establish when to
terminate it. If the destination subject does not have a labeled
validation set, will the network overfit the training users’
dataset?

The current work creates Teacher-Student-Learning (TSL)
and Heterogeneous Ensemble Hypotheses (HEH), a novel
unsupervised User-Agnostic adaptation technique, to ad-
dress these problems. The Heterogeneous Ensemble Hy-
potheses [31], which relies on the usage of two intelligent
agents as opposed to one, is the source of inspiration for
the several distinct hypotheses that make up the proposed
HEH. Evry hypothesis is made up of a classifier as well
as a feature generator. We assume that by optimizing the
difference between several feature generators, the HEH may
learn a variety of features. Then, acquiring knowledge from
the pseudo labels of HEH and TSL, which is only a single
a classifier as well as a feature generator and is a student
of HEH, may acquire knowledge from HEH. As a result,
the TSL can both stay efficient and improve its capacity for
generalization. Additionally, the overfitting issue is resolved
in this article by using a lightweight model. Fig. 1 depicts
the overall architecture of the suggested TSL.

In addition, the primary motivation lies in addressing the
challenge of creating intelligent and adaptable controllers
for wearable robots by accurately anticipating the wearer’s
locomotion intent. The existing approaches face limitations
due to the complexity and variability of human intent, lead-
ing to user-dependent interfaces. The paper proposes a novel
unsupervised User-Agnostic adaptation technique, leverag-
ing TSL and HEH, to overcome these challenges. By in-
tegrating multiple theories and refining loss functions, the
proposed method effectively forecasts the user’s unlabeled
locomotor modes while preventing overfitting without re-
quiring labeled end-point user data. The contributions in-
clude providing a theoretical justification for learning fea-
tures from multi-view data, restructuring the model topology
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Table 1

Recent works in user-agnostic adaptation and their relation to the proposed method.

Work Approach Novelty

Ganin et al. [23] Domain-Adversarial Neural Networks (DANN)

- Focuses on global adaptation, which may fail due to inconsistent differences between training and end-point user data across classes.

Saito et al. [24] Maximum Classifier Discrepancy (MCD)

- Aligns features of two domains in each class, performing better than DANN

- However, the single feature generator may not be able to capture the full complexity of the data and all the hidden features

Zhang et al. [26]  Unsupervised User-Agnostic adaptation using CNNs

- Requires supervised validation data of the intended users to assess the neural network’s efficiency during training.

- To overfit on the training users’ dataset when the target subject does not have a labeled validation set.

Proposed method ~ TSL and HEH

- Provides a theoretical justification for learning a complete set of features using multi-view data and ensemble methods.

- Integrates multiple theories to effectively predict unlabeled locomotor modes.
- Restructures the model to prevent overfitting without labeled end-point user data and predic in real-time.
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Figure 1: An overview of the TSL and HEH. The first human-robot interaction signals are used to extract low-level information
like the standard deviation and mean. The HEH teacher network is the first to identify the end-point user characteristics. The

goals of HEH's training are to reduce the classifier discrepancy's upper bound 7,
focuses on minimizing the training user error and entropy of output predictions that called £, and Z

To further improve accuracy, HEH also
respectively. Additionally,

uped *

eop!

HEH seeks to improve the accuracy of the classifier by maximizing the feature discrepancy ¢,,. The student network is trained
using the teach predictions of HEH, which are effectively pseudo labels, following training. While end-point users’ locomotor
patterns may be reliably predicted by both TSL and HEH, the latter is significantly more effective.

for improved generalization, and achieving state-of-the-art
accuracy levels in identifying locomotor intent and actions.
Overall, the paper’s contributions enhance clarity by offering
a comprehensive solution to the user-agnostic adaptation of
human locomotion intent, advancing the field of wearable
robotics towards more intelligent and adaptable systems. The
following are the main contributions of the current paper:

e Providing a theoretical justification for why a portion
of features can be learned from multi-view data using
the MCD single feature generator and how TSL and
HEH are able to learn the entire set of features.

e Integrating several theories, refining the loss func-
tions, and condensing the information to precisely
and effectively forecast the target subject’s unlabeled
locomotor modes.

e Restructuring the model topology to prevent overfit-
ting without the need for labeled end-point users data.

e Reaching cutting-edge accuracy levels (94.4% and
97.4%) in identifying the target subject’s locomotor
intent and actions on two public datasets.

The organizational structure of the paper is as follows:
Section 2 introduces the Methodology, comprising subsec-
tions dedicated to 2.1 Theoretical Foundation and 2.2 Net-
work Architecture. Following this, Section 3 presents the
Result and Discussion, where the outcomes of the study are
analyzed and interpreted.

2. Methodology

Before delving into the specifics of the proposed TSL
and HEH for recognition human intent, In order to logi-
cally illustrate the drawbacks of the single model approach
utilized in MCD and how the proposed method (HEH and
TSL) overcome those drawbacks, the present part builds a
thought experiment. Real data are typically "multi-view," as
stated in [32, 27], meaning that they may have several hidden
properties that may be used to categorize the input data.
When there is a difference between the end-point users and
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training user domain, Proposition 1 shows that the single
learner may not be capable of capturing the full complexity
features of the multi-view data and all the hidden features
from the input, which reduces the learner’s capacity for
generalization.
Proposition 1: Let’s say we have two linear binary classifiers
(Bcl and Bcz) and a feature generator (Fg). Let the source
and destination data be, respectively, S, and T,.S, and
T, have labels S, € {0,1} and 7}, € {0,1}, respec-
tively. Let 0}, 05,03, and their three Concealed agnostic-
feature be ||o)|| = |oaf| = |lo3]] = 1 exist in every
piece of S, source data. By using supervised learning, it
is possible to extract the linear combination of the hidden
features, ¢;0, + ¢,0, + ¢30;3, from the feature generator F,.
These are the coefficients of various hidden features, denoted
by {ci >01]ie({l,2, 3}}. Since the classifier’s activation
function is set to ReLU, B (Fy(x)) > 0. If B (Fy(x)) > 0,
the prediction is = 1, otherwise y = 0.

Due to the differences between the training and end-point
users’ domains, only a portion of the end-point users’ data

er, , (B Ba) = Ergs e, Hcl (F, (S,)) =2 (F, (S,)

=r
1-—
+ 3r[BC1(c]o])—Bcz(clol)|+
1-
=<r+ 3") [Cl BC] (O])_BCZ(OI)’-'-CZ
1+2
S -;) r[cl BC] (01)|+Cl BCZ(OI)|+C2

@

Thus, if S, only has one feature, o;, then Fg (Sx) = c;0;,i €
{1,2,3}.If and only if { B (o,.) 1By (oi) <0
| i € {1,2,3}, the maximum value is attained.

For each i in the range {1, 2,3}, to maximize the
er, , (B.1:Bea) » Bei (07) By (0;) < 0. Since j € {1,2}
and B (0;) >0

3B, B (0;) = 0,i € {1,2,3},j € (1,2 3)

Due to the fact that B;; and B, were taught to accurately

B (€205) = B (0202)| +

(ratio = r,r < 1) has all three of the hidden characteristics
(01, 0,, and 03). Assume that there is just all Concealed
agnostic-feature (01, 0,,and 03) inthe £ end-point users’
data. F, may not be able to capture all the features of the end-
point users’ domain after training /3., and B, to maximize
their discrepancy. Also, this limitation arises as F, concur-
rently attempts to minimize classifier discrepancy within the
same domain. This implies that 3¢ € {¢,¢y,¢53},¢ = 0.
Since B, and B, are linear:

B (Fg(x)) =B (clol +cr0, + c3o3) =
c1B; (01) + ¢;B (07) + ¢3B.1 (03)
B, (Fg(x)) = By, (€101 + €0, + €303) =
c B, (01) +cyBy (02) + 3B, (03)

ey

Then, in the end-point users’ domain, the classifier dis-
crepancy is:

il

BC] (C]O] + C202 + C303) - B02 (CIOI + C202 + C303)‘

B (€303) = By (0303)”
By (02) = B (02)| +c3|Bey (03) = By (03)”

B (o)

BC] (02)| + C2

B02 <02)| +C3 Bcl (O3)’ + C3

where #M | and #M, denote the number of elements in the
corresponding sets, M| and M,.

Without sacrificing generality, we may suppose that
B (01) = 1B (0) = By (03) = 0and B, (o)) =
0, B, (0y) = By (03) = Lif #M| + #M, = 3.

Owing to 1 and 4:

By (Fy (Sy)) = ¢1Bgy (01) + 2B, (02) + ¢3B, (03)

recognize source data: =¢ >0
B, (F, (S =B B B
B (Fg (Sx)) =B (6101 +cr0, + C303) _c2c( -fc( ;)()) v (Ol) Tt (02) Tt (03)
-t 3
= ClBCl (01) +CZBCI (02) +C3BCI (03) > O (6)
Bcz (Fg (Sx)) = B02 (Clol + 0202 + C303)
= CIBCZ (01) + C2BC2 (02) + C3BC2 (03) >0
“
Integrating 3 and 4, it can be learned:
#Ml +#M2 S {3,4},f0r il S Ml and
(%)
i2 S Mz, Bcl <Oi1> = BCZ (oiz) =0
M. Bonyani et al.: Preprint submitted to Elsevier Page 4 of 19
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Training the F, to reduce the classifier discrepancy is the
final stage in the MCD process.

min eT (Bcl,Bcz) =

€1,€2,C3
. 1+2r
min
€1,€2,C3
By (07) = Cchz(Oz)l
‘ o (0 )—C3 (03)l
= IIlll’l 1 [C C C]
L’l 62C3 1»52:%3

(N

The criterion of reducing the model discrepancy is met when
ci =0forsomei € 2,3 because ¢l +¢c2+¢3 > cl +c2
and cl +c2+ ¢3 > cl + ¢3 due to the conditions {ci > O |
i € {1,2,3}}, and this is further supported by equations 6
and 7.

Given that if S only includes feature 0;,i € {2,3}, then
Ji € (2,3}, k; = 0,B(F, (S,)) = 0. Then, 1 — I~ is the
target accuracy.

If a classifier can identify two features, then F, not
be able to capture all the features of the end-point users’
domain, which is 3k € {cl,cz,c3} ,c = 0, as per the
symmetry in the MCD training result for the single model.
The target accuracy in this instance is 1 — L

Without sacrificing generality, we may suppose that
B (01) = 1,B.; (0y) = By (03) = 0if #M| +#M, = 2.
In contrast, By, (0,) = By, (03) =0, B, (0,) = 1.

Minimizing the classifier discrepancy in this instance is
equivalent to:

min T, (B
€1,€2,C3

BCZ) =

cl»

. 1+2r
min

€1,69,¢3 3
¢ Bey (01) — By (01)|
+ |CZBCI (02) - CZBCZ (02)| +

|C3Bc1 (03) - 3By (03)|
1+ 2r

®

[e) + ¢,

where the likelihood of each event is 50% and the value of
c3 can be either 1 or 0, as it has no effect on the outcome.
If, however, S, just has feature o5, then B (Fg (Sx)) = 0.

The desired level of precision is 1 — L Based on the
two scenarios mentioned above, there’s a strong likelihood (
p > 50% ) that the single F, will not be able to capture all
the features. Furthermore, for the single learner in this paper,
the end-point users’ accuracy is 1 — L

Only a portion of the characteristics may be learned
by the lone student. Ensemble many learners, on the other
hand, could learn every characteristic. We shall show in

Proposition 2 that feature generators can learn all features

by optimizing feature diversity.

Proposition 2: Let us consider three feature generators F, .
ng and F . The linear combination of three concealed
agnostlcfeature ¢;10;+c€;p0,+C;305, may be learned by each

feature generator. ||o;|| = ||0,|| = ||o3|| = 1. Following the

|c 1By ( 0 1) — ¢, B, ( 0 1)| optimization of feature diversity (Manhattan distance):

3
£ra=Es|Y, |ng(5) - Eie“’3]Fg’_(S)| ©)
i=1

The group of three students will discover all hidden features:
di,0; >0,Vj € {1,2,3}, ie{l,23} (10)

Proof: Proposition 1 states that feature discrepancy is:

|

) - Eic1 3 F, (Sy)

3
€14 = AEs. lZ |F,_ (S,
i=1

where A, and 4, denote the ratios, respectively, of the sample
numbers of the end-point user and training user data to the
total sample numbers.

The Manhattan distance is calculated as follows:

3
2o

i=1

3 3
=2 leillolll = X leil (12)
i=1 i=1

Hence:

3 3
Cra= (’15 + ’11’) Z 2 |cij - Eie[1,3]cij|
N
A3 - Z 2 |cii - Eie[1,3JCij| (13)

= (fls + /1:1 22r> Z Z )cij - Eie[1,3]cij’

i=1 j=1

Il
—
~.
Il
—_

}N}/}ithout loss of generality, we can assume ¢;; < ¢,; < ¢3;.
en:
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3
Z ‘cij - Eie[1,3]cij| = Eicr1 3165 — ¢1j + ¢35 — Eigp1 31615+

i=1

|C2j _Eie[l,S]cij’
clj +C2/- +C3j
Cj — T —

2(, _aite
3\¥ 2
4

<3 (e3 =)

:C3j_clj+

=C3j—C1j+

(14)

where the maximum value is achieved when ¢,; = ¢3; or
¢y; =cjjand¢y; =0.

Maximizing the feature discrepancy will therefore result
inmin{c;; | i € {1,2,3}} = 0 as well as max{c;; | i €
{1,2,3}} > 0. For each j in the interval j € {1,2,3},
argmax i € {1,2,3}¢;;,¢;; > 0.. We shall thus discover
all three concealed agnostic-feature.

Every feature generator ought to pick up at least two
concealed agnostic-features, in Eq. 6. As a result, Fg (Sx) =
¢, 0+ ¢;,0,.,j # m, and for any S, that only has one
0y, 3i = argmin;g(;53y,¢;; =0 [ 1 # j.

According to Eq. 2, this paper shown B (om) X
Bo (om) < 0 due to the B, are trained to enhance the
discrepancy between classifiers, as demonstrated in Eq. 2.
Consequently, 5,0, = 0,3n € {1,2}. Eq. 4 states that the
training user data must be correctly classified:

By, (ng (Sx)> >0

Bein (€10 + €i,0,,) > 0 (15)
¢y B0, +0>0
Bcinol >0

In summary B, <ng (SX)> = ¢, B, (0;) > Oforeach .S,
that includes feature o;, where 3i € {1,2,3}andn € {1,2}.
Consequently, in this theoretical experiment, the ensem-
ble learners’ end-point users accuracy is 100%.
Proposition 3: Distillation of Knowledge Assume that the
teacher ensemble learners are { Fg;}, B, |
n € {1,2},i € {1,2,3}} as illustrated in Proposition 2.
This demonstrates the power of pseudo labels in enabling
a student model with Distillation knowledge when utilized
Just one F, and one B to classify the intent of all end-
point users F, () = ¢,,0; + €0, + ¢;03 > 0, indicating

{Bs(0;)>0]j€{1,2,3}}and{c;; >0 j € {1,2,3}}.

Proof. The soft label is then used by the student learner
to train and identify .S, that solely contains feature

0;. B, (ng (Sx)> > 0, as demonstrated in Proposition

2 forn € {1,2} and Ji € {1,2,3}. Next, the soft label
7(S,) > 0, which is the ensemble learners’ average, is

shown. Once the cross entropy between j (Sx) and
By (ng (Sx)> has been minimized, B, (FgY (Sx)) > 0.
Given that single feature o, is present in S,

By, (ng (sx)) = By, (¢,,0;) = ¢;; B (0,) > 0
— ¢;; > 0and B (oj) >0,j€e{l,2,3}

(16)

In a theoretical setting, the aforementioned theorems
highlight the drawbacks of the solitary learner as well as the
benefits of the TSL and HEH. The TSL and HEH strengths
and specifics of its implementation will be covered in more
detail in the sections that follow.

2.1. Theoretical Foundation

This paper proposes TSL and HEH, which has the po-
tential to learn a variety of characteristics and reduce the
upper limit of the error in forecasting end-point user intent.
A subset of features can only be learned by a single learner,
as explained before. Furthermore, using an Neural Network
(NN) does not ensure that the global optimum will be found
because of the huge number of parameters in the network.
In addition, the optimization process of the unsupervised
user-agnostic adaptation is complex and challenging due to
the loss function characterized by non-convex. The problem
could be mitigated by grouping many students. However,
the main justification for creating HEH is that learning
integration is only beneficial if the learners provide unique
predictions.
Proposition 4. The average hypothesis u is considered for
all the individual hypotheses u,., and denote the hypothesis
errors H,, errors p, as well as the discrepancy between p,
and u as € (yc) ,e(w), and 7 (yc) respectively. The () is
calculated as follows:

e(w) =e.e(p.) —e.l (k) (17)

Input data and label are represented by .S and y. e stands for
the expected. Additionally,

e(u) = eg(u(S) — ),

£ (ne) =es (B(S) =)’ (18)
£ (o) = e (1c(S) — A(S))*
Proof.

et (1) = eces (H(S) — H(S))
= eces [Ho(S) =y = (pe(S) = y)]’
=eeg [(ﬂc(S) — )2+ (ke(S) - y)z]
—2eces [(4(S) =) (H(S)=y)] (19
= eces [ (1e($) = 2)* = (ke($) - ¥)7]
= eceg (Ho(S) = )" —es (1(5) = )’
=e.e (ue) — (.
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Algorithm 1 User-Agnostic Adaptation using TSL and HEH
1: procedure USER-AGNOSTIC-ADAPTATION
2: Input:
3: Source domain dataset Dg = {(x;, yi)}izs1 with
Ng labeled examples

4: Target domain dataset Dy = {x j}jl\iTl with Np
unlabeled examples

5: Output: Adapted model 3] capable of classifying
target domain data

Initialization:

. np

ng feature generators { F g’ }i gl for HEH
B =

np =N, XNB, [ Fy

9: np, classifiers {B%) with ng /p.

k=1

classifiers per generator
10: Single classifier B; for final decision
11: Optional domain classifiers { D" }ZlD: , for adap-

tation
12:

. . nf

13: for each Fé in {Fg’}’.j do
14: Train Fé using 7 loss on D to extract features
15: Extract diverse features F; = {Fg‘(x) | x € DgU

Dr}
16: end for "

. F, .

17: Combine extracted feature sets {Fi}ij using en-

nF,
semble: F,,, = {(Fgl(x), - Fy ¥(x))|x € Dgu Dy}

18:

19: Apply Teacher-Student Learning:

20: Teacher Phase:

21 for each (Fé, B) pair do

22: Train using £, €54, € £4> € eop l0SSES

23: Use ensemble {(Fé, Bk} to predict pseudo-
labels D?seudo — {(xj’ yj})seudo)}j’\/:1

24: end for

25: Student Phase:

26:  Train /3 on D’fe”do using 7, loss to match teacher
predictions

27: Optional: Use { D"} and adversarial loss to further
adapt 3

28:

29: Evaluate 5’ on target domain data and benchmark
datasets

30: Output: The adapted efficient model 5;
31: end procedure

Therefore, £(ji) = e.e (4. ) — €.£ (1)

If the disparity between the hypotheses is not zero,
Proposition 4 shows that the average hypothesis’s can pro-
vide more accurate and more reliable predictions than indi-
vidual hypotheses. If the gap between the hypotheses widens
and the accuracy of each individual hypothesis increases, the
average hypothesis’ accuracy will also jump. Because HEH
may enhance the disparity between distinct hypotheses, it
can raise the accuracy of anticipating the subject’s purpose.

The second rationale for suggesting HEH is that it could
reduce the inaccuracy of the & ( yc) in the end-point users.
Also, the estimating the disparity between hypotheses is easy
and does not need data labels, estimating the inaccuracy of
€ ( yc) in the end-point users’ domain-where endpoint users
labels are unavailable - is more difficult. By calculating the
upper bound of each & ( [,lc) at the end-point users’ domain,
the current study tackles this problem.

Proposition 5. Assume that u is a hypothesis made up of a
classifier B, and a feature generator F, such that y = B oF,.
Let.S F, and TFg be the changed end-point and training users
domains using F,, and let B be the classifier space. The
upper bound of the end-point users intent classification error

gTFg (Bc) is:

er,, (Bo) S A+es,  (Be) +dpap, <SFg9TFg) /2,

_ (20)
A= Banel%s <£SF g (Be) + T, (Bc)> ’
dBCABC <SngTFg> =
2D
2 sup 8Tpg (BCI’BCZ) — &5y (BCI’BCZ)
BCIBCZEC &

B (F($) - 3]

Ber (Fy(9)) = Bor (Fy(9)]]
22)

€p (Bc) = CF($)~D [

€p (BCI’B(Q) = €F(S)~D [

where the classification errors of 3, as well as two clas-

sifiers discrepancy, B, and B, in the domain D <D =S F,

or Tp, ), are denoted by the variables £, (B, ) and e, (B, B,).

respectively. The B A -distance is shown by d g 55 <S Fy» TFg ),

where A stands for the integrated error in the converted end-
point and training user users domain, sup for the upper limit,
as well as e for the expectation.

Proof: A triangle inequality for classification error was
demonstrated by [33, 34] for any classification functions
Be1, Bey, and Bz, where € (¢, ¢y) < & (cp,¢3) + € (¢, ¢3).
Therefore, based on Eq. 23, where ¢* = argmin B.eB,

(es,, (B) +es, (B.))-

Propositions 4 and 5 show that by decreasing the train-
ing user error, the integrated error, the B A -distance
as well as increasing the discrepancy of hypotheses, HEH
not only reduces the error upper bound, but also ensures
more accurate predictions in the end-point user domain. It
is possible to derive the matching loss functions that might
reduce the end-point users’ error. This section will provide a
detailed introduction to a number of potential loss functions
and the theoretical underpinnings that support them.
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er, , (B) <er,  (BS)+er, , (B B)
<er,, (BY)+es, , (BoB)+ |5TF (BuB) —¢s, , (B.B.)
Sfrpg(Bc*)"‘EsF (B,) +es,
<eg (BC)+/1+|5T (B..B) —es, , (B B)
<eg b(BL)+/1+sup|sT B (Bus Ba) €5,
—e5, (B)+A+dy s (SF,T )/2

2.1.1. Training User Error

The end-point users’ error and the training users error
have a positive correlation, according to Proposition 5. Re-
ducing the crossentropy between the labels S, of the training
user data .S, and the classification results is a straightforward
way to reduce the error on the training user domain:

N
£y =es.p, Z ~I[n=S,]logP, (y1S,) (24)

n=1

using the expectation operator denoted by e. The ex-
pected probability is illustrated by P, for class n. An indi-
cator function, denoted as I [n = Sy] , can be represented as
follows:

z[nzsy]={1’ =3, (25)

0, otherwise

This is a piecewise function that outputs 1 when » is
equal to .S, and 0 otherwise.

2.1.2. Integrated Error Minimization

The classifier space capacity as well as the bias between
the training user and end-point users domains determine the
minimal combined error A. It is unlikely to construct a HEH
that processes well in both the training user and end-point
users domains if the minimal integrated error A is really
big, according to B [35]. If the classifier space has a large
enough capacity, 4 is often small. Since the classifiers in
this study are neural networks with big enough parameters to
construct a high-capacity classifier space, it may be assumed
that A is modest.

2.1.3. Distance Minimization

The B, AB_-distance is the last item in Eq. 19 after the
training user error &g, . (BC) and the combination error 4
are minimized. The difference between the disagreement
of B, and B, on the converted training user domain and
that in the end-point users’ domain is measured by the
B.AB_-distance in Eq. 19. Following optimization, the clas-
sifier domain may shift towards the location characterized
by the lowest training user error. This shift occurs during
the initial training of F, and BB using the cross-entropy
loss ¢ described in equation Eq. 20. The objective is to

L (BO) +|er, , (BuB) —es, , (B

B.*)

cr

(23)

(B B)|

cl>

minimize the training user error throughout this process.
The disagreement between two random /3, on the training
user’s domain in the optimized classifier space B, will be
modest, implying a small &g, (Be1, Bey). Consequently,
the B, AB_-distance demonstrates that a minor modification
to the classifier in the training user domain can lead to a
significant modification in the classifier in the end-point
users’ domain. The disagreement upper bound of 5, and
B, at the end-point users should be minimized to decrease
the B.AB, - distance:

min  sup

CF,(S)~ | Bey (Fo(S) —
TF y By BuEB, Fg()TFg[ ot (Fy

Bey (Fy(S) ]
(26)

Although the classifiers’ disagreement may be quanti-
fied, its upper bound is not immediately quantifiable. We
transform equation Eq. 21 into a min-max problem to deter-
mine the upper bound. Two distinct classifiers, B;; and B,
can alter the discrepancy, and a feature generator, F,, can al-
ter the converted end-point user domain, TFg. The classifiers
B.; and B, have been learned to identify the discrepancy
upper bound of hypotheses as well as to maximize the
discrepancy between each other. To minimize the classifier
discrepancy, F, is learned to reduce its upper bound. This
step aims to enhance the model’s performance by reducing
discrepancy in its classifier. The entire procedure may be
finished by:

min max e )7, || Ber (Fe($) = Bea (F(S) 1] @7

F, B,
B.1, B, and Fg in (22), respectively, are insufficient
to train the hypotheses in this study. The rationale is that
in order to further reduce the goal error, the current study
incorporates a number of distinct hypotheses, including sev-
eral feature generators F, and classifiers B, . The decrease
of classifier discrepancy f 4 after adding more classifiers
should be:

upc
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ng I nBC

MPCd - Z Z fupcd’

i=1l j=

N
iy _
fupcd - eTxNDT lz <
1

P;ij (TleX)_PrI; (TleX)

YT, 1 T,) = By, (Fy, (T2) ) Inl k= ns G = D)+,
P =e gy, B (T 1T)]
(28)

Hence, provided a hypothesis F, called generator as

well as Bck called classifier, ffi) od denotes the loss of classi-

fier disagreement. Pij (T | T, ) denotes class n predictions
in the case when F, and BB, make up the hypothesis and T,

is the input.The 1n1t1a1 end- pomt user domain is indicated by
Dr, and the average prediction of many hypotheses with F,

as their generator is P! (T, | T,)

2.1.4. Feature Discrepancy Maximization

Proposition 2 shows that in addition to the classifier
discrepancy, maximizing the feature discrepancy is also
required to discover the whole set of hidden features. Fur-
thermore, as Proposition 4 demonstrates, the correctness
of each hypothesis as well as the hypothesis variety can re-
duce the end-point users’ error of the integrated hypotheses.
Therefore, in order to maximize the feature discrepancy, the
current work constructs aloss £ :

np g

Cra=es |, |ng(5) - e[e[l,anng(S)| @
i=1

2.1.5. Classifier Confidence Maximization

Using the cluster assumption, HEH can help to reduce
the end-point users’ error in their hypotheses. In unsuper-
vised learning, where the data labels are undisclosed, the
application of clustering techniques enables the analysis of
the unlabeled dataset, revealing its intrinsic characteristics.
Similarly, the unsupervised domain adaptation may benefit
from the clustering method. By assuming the samples aligns
with clusters, it can be segmented into distinct groups. The
expectation is that data within each cluster should share
the same category classification [36]. Consequently, high-
density zones shouldn’t be crossed by the decision border.
The conditional entropy loss can be minimized in order to
achieve this goal [37]:

np. N g

eop Z Z T Nngj point I:Plj (Ty | TX)Tln P’J (Ty | Tx)] )

j=1i=

PU (Ty | Tx) = Bck (ng (TX)> k= nBc(i - 1)+J

(30)

)/N],

A few benefits come with reducing conditional entropy.
Initially, the domain where the end-point users’ data is
dense may not be included in the optimized hypothesis
space and the hypothesis space may be further restricted.
Consequently, since altering the decision boundary in low-
density areas won’t result in a significant classifier disagree-
ment in the end-point user domain, the B,AB_- distance

dp aB, <S Fyr T F, ) may be reduced. Then, when the B, AB,-

distance decreases, the upper bound of the goal error will
drop as well. Second, the end-point users’ data density
information may be used by the decision boundary to limit
its options, which might result in a suitable prior probability
distribution and improve performance.

2.1.6. Feature Generator Optimization

The optimization process of the feature generator of
the proposed model (TSL & HEH) involves a sophisticated
multi-step approach aimed at enhancing the model’s abil-
ity to adapt to end-point user’s data by leveraging labeled
training users’ data. This process is crucial for user-agnostic
adaptation, particularly in applications like classifying lo-
comotion intent and activities without direct labeling of the
end-point user’s data. The optimization process is precisely
designed to minimize overfitting, maximize feature discrep-
ancy, and ensure efficient and accurate prediction of the end-
point user’s locomotion modes. The optimization process of
the feature generator is divided into three main steps, each
targeting specific aspects of the model’s performance:
Minimization of Source Classification Error and Max-
imization of Feature Discrepancy: Initially, the feature
generators and classifiers are trained to minimize the training
users classification error (L) while maximizing the feature
discrepancy (L, ). This step aims to ensure that the model
can accurately classify the labeled training users’ data while
encouraging the feature generators to produce diverse rep-
resentations that capture different aspects of the data. The
optimization formula for this step is given by:

min L
8isCk

—&eLag €29}

where g; represents the feature generators, ¢, the classifiers,
and &, is a constant weight for the loss function L, ,.
Maximization of Classifier Discrepancy and Minimiza-
tion of Entropy Loss: After the initial training, the clas-
sifiers are further optimized to maximize the classifier dis-
crepancy (L, ) and minimize the entropy loss (L,). This
phase freezes the feature generators to focus on enhancing
the classifiers’ ability to distinguish between different classes
confidently. The optimization formula for this phase is:

rrgin Ly—-¢. Ly, +6.L,, (32)
where &, and &, are constant weights for the loss functions
L, . and L,, respectively.
Minimization of the Upper Bound of Classifier Discrep-
ancy: In the final step, the focus shifts back to the feature
generators, which are now trained to minimize the upper
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Figure 2: The suggested HEH and TSL and HEH's network design and training procedures are shown in B; and F,, which stand
for a classifier and a feature generator, respectively. The notation in the convolutional layer uses a superscript to represent the
input feature channels and a subscript to denote the output feature channels. Subsections 2.2 and 2.3 cover training procedures

and loss functions.

bound of the classifier discrepancy (thus decreasing the
CAC-distance) and maximize the feature discrepancy. This
step aims to refine the feature generators’ ability to transform
the end-point user’s data into feature spaces that align well
with the training users data, facilitating accurate classifica-
tion of the end-point users data. The optimization formula
for this step is:

minL; . —
i

 +éL, (33)
where g; represents the feature generators.

The optimization process of the feature generator in the
proposed model (TSL & HEH) is a carefully structured
approach that leverages the strengths of ensemble learn-
ing and knowledge distillation. By iteratively focusing on
minimizing training users error, maximizing feature and
classifier discrepancies, and minimizing entropy loss, the
framework aims to achieve high accuracy in unsupervised
user-agnostic adaptation tasks. This multi-step optimization
process ensures that the model can effectively learn from
labeled training data and generalize to unlabeled end-point
users data, achieving state-of-the-art accuracy levels on pub-
lic datasets.

2.2. Network Architecture

A neural network typically involves a delicate balance
between its generalization and fitting capabilities. With more
parameters and the ability to learn deeper features, a big
network may overfit the training dataset, particularly in situ-
ations where the earlystop time is not determined by a end-
point user validation set. Although a small neural network
could match the training dataset more precisely than a big
network, a lightweight neural network might be superior at
generalization. The ensemble approach is used in this study
to address this problem. Because it can help poor learn-
ers generate accurate predictions, the ensemble technique
is appealing [38]. The ensemble method’s generalization

capacity can outperform that of a strong learner even when
individual learner is poor. Furthermore, even a single learner
can acquire information from the ensemble learner following
the distillation of knowledge. Because of this feature, we are
able to create a lightweight neural network (see Fig. 2) that
increases efficiency and prevents overfitting.

Here, a convolutional neural network serves as the fea-
ture generator. In the first two convolutional layers, the
kernel size and stride are (1 X 1) and 1, respectively. The
capabilities of a multi-layer perceptron (MLP) in extracting
deeper characteristics can be likened to those exhibited by
these two layers. The third layer’s kernel size is identical to
the input image’s size. This layer performs the convolution of
each feature, resulting in a comprehensive global feature vec-
tor. To normalize signal amplitudes across diverse sensors
and channels, batch normalization is implemented after each
conv layer and preceding the activation function (ReLu6).

In this article, the classifier is constructed using three
fully connected layers. The global feature is mapped to
vector size 64 by the top two MLP using a ReLu6 and
batch normalization. These hidden features are mapped to
the input image’s classification scores in the final MLP.

In the HEH, there are 25 classifiers and 5 feature gener-
ators. To accomplish the min-max training goal, five classi-
fiers share each generator. The input data is mapped to five
distinct distributions using five generators. Voting on the
categorization findings of each hypothesis determines the
human purpose category based on the highest probability.
Effective TSL is trained using the mean predictions of the
HEH as pseudo-labels. The efficient TSL comprises a single
F, and single B,.
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2.2.1. Training steps

In subsection 2.2, the theoretical foundations of loss
functions were presented. How to integrating train the net-
works based on these functions is explained in the current
section.

Phase 1. The F, and B, are initially trained to reduce
the training user classification error, according to the anal-
ysis presented in subsection 2.2. In order to increase the
feature discrepancy, the feature generators are additionally
optimized:

nip £,=Gnpui € [1,an] ke [1,an : nBC] (34)
where & is the loss function ¢ ;4 constant weight.
Also, in order to maximize the B, AB_-distance, the

classifier discrepancy should be increased to determine the
discrepancy upper bound. Additionally, to leverage the clus-
ter assumption and enhance classifier confidence, it is imper-
ative to minimize entropy loss. The feature generators F, are
frozen throughout this phase. The training of B involves
using the training user error, entropy, as well as classifier
discrepancy loss.

MinZs = &5, Cupea + Eeop eop k € [1, n, - nBC] (35)
Ck

where £,.q and 7 s constant weights are represented
by &, and &, , respectively.

By optimizing the classifiers, we can determine the max-
imum classifier discrepancy, thus providing an improved
model. The training of feature generators focuses on mini-
mizing the discrepancy upper bound, subsequently reducing
the B AB_ - distance once the upper bound is established.
Furthermore, the average hypothesis’s error is minimized
by optimizing the feature discrepancy. It is also important
to minimize the entropy loss to separate the characteristics
of various classes into distinct clusters. Classifiers B, are
frozen in this stage. Also, F, are trained to maximize feature
discrepancy, decrease upper bound classifier discrepancy,
and raise classification confidence by modifying the end-
point users’ domain to match the training user domain:

min £ypeq =€ g + Ecop Loopri € [1, an] (36)

geop

To reach a fixed epoch, these three processes are repeated
numerous mini-batches at a time.

The pseudo labels for each end-point user of data may
be obtained by the HEH model after training. Cross-entropy
reduction between predictions of the proposed method (TSL
and HEH) and pseudo-labels guides the training of the TSL
architecture.

N
I’pts = ETX~DT Z _Pn (yteacher I Tx) 10g Pn (ystudent I Tx)

n=1

Table 2
Configuration of the proposed method on different datasets.

Dataset DSADS and ENABL3S Moon
#Generators 5 5
#Classifiers 25 25
Generator architecture CNN ANN
Global feature Size 256 32
§Fg 5 3
& 5 3
Eoop 0.01 1
Epochs 100 50
Optimizer Adam Adam
Learning rate 2x 107 1x1073
Batch size 256 200
(37)

where Yicacher a0d Ygugene represent the teacher’s (HEH)
and student’s predictions of T}, respectively.

2.2.2. Experimental Setup

In line with other studies [24], we began by carrying
out a pre-experiment to categorize 2D interweaving moon
spots. Fig. 3 displays the training user samples, which are
a lower as well as an upper moon. Each of the two moons,
designated O and 1, has 1600 samples based on the Gaussian
noise N(0,0.06). The training user data is translated and
rotated to create the end-point users’ data. Fig. 3 displays
the translations and the rotation angles. Fig. 3 illustrates the
performance visualized by drawing the binary classifier’s
decision border. The network size was further reduced due
to the dataset only containing two features. Table 2 provides
the network design as well as hyper-parameters utilized on
the moon experiment.

Two publicly available datasets are used in this article to
assess how well the suggested strategies work. Northwestern
University’s Encyclopedia of Able-bodied Bilateral Lower
Limb Locomotor Signals (ENABL3S) is one dataset [39].
Also, the Bilken University-provided Daily and Sports Ac-
tivities Data Set (DSADS) is used to evaluate the proposed
method [40]. The creators of these two datasets have previ-
ously segmented and filtered the signals; their publications
[40, 39] provide the specific processing techniques used. Ten
healthy users’ signals were recorded from experiments for
ENABL3S [39]. The locomotion modes that the users were
requested to walk on varied terrains as well as inversions
of standing (St), stair ascent (SA), ramp ascent (RA), level
ground walking (LW), ramp descent (RD), as well as stair
descent (SD). Filtered signals of joint angle, IMU, as well
as EMG are included in ENABL3S [39]. A sliding window
with a width of 300 ms divided the filtered signals into
segments. Human aim is not always obvious, and it can
be challenging to pinpoint exactly when it manifests. Thus,
prior studies used gait events, such as heel-contact and toe-
off, to determine the duration of transitioning between var-
ious locomotor modes [41, 11, 22]. The segmented signals
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can be used to forecast the intention of movement because
each segment selected 300 ms before the gait occurrences.

Next, the segmented samples were used to extract the
low level features. The waveform length, mean absolute
value, number of zero-crossing points, number of changing
slope signs, as well as coefficients of a sixth-order autore-
gressive model are the ten superficial properties of EMG
signals. From each channel of the joint angle and IMU data,
six characteristics were extracted: the standard deviation,
mean, minimum, maximum, the beginning value, as well as
the end value. In this research, the features of the IMU and
EMG are molded into a 33%12 picture with single channel.

Eight healthy participants were asked to complete 19
distinct tasks in DSADS, such as jumping, sitting, standing,
running, as well as riding a bike [40]. Five 9-axis IMUs’
worth of signals are included in DSADS [40]. A 5-second
window was used to segment the recorded signals. The
segmented signals’ derived characteristics are identical to
the IMU signals’ in ENABL3S. A 45x6 single-channel pic-
ture is created by reshaping the extracted features. DSADS
cannot be utilized to anticipate human intent since it lacks a
transition between various motion types.

There are 9,000 and 22,000 signal segments in the
DSADS and ENABL3S datasets, respectively. Each user’s
data were shuffled at random and split into a test set (30%)
and a training set (70%). The absence of a validation set
explained by the assumption that the end-point users dataset
is unlabeled, and the inability to acquire a labeled end-
point users validation set for the purpose of fine-tuning the
neural network or figuring out the early-stop time. Each
experiment included a leave-one-subject-out test, in which
an end-point user was chosen and the remaining individuals
served as training user. The labeled training user dataset as
well as the unlabeled end-point user dataset were used to
train the suggested HEH. To assess the effectiveness of user-
agnostic adaptation, the HEH was assessed using the test
set following a predetermined number of epochs of training.
Once an experiment was completed, a new user was chosen
as the test user for the following experiment, and so on until
all users were transversed.

Experiments were conducted to compare the suggested
HEH and TSL with various state-of-the-art methods, such as
CNN (convolutional neural network), SVM (support vector
machines), ANN (artificial neural networks), DFA [42],
MCD [24], MMD [43], CORAL [44], and DANN [23].
Only the source training datasets were used for training and
testing LDA, SVM, ANN, and CNN. This paper considers
these four models as baseline models. The DANN, CNN,
MMD, DFA, MCD, CORAL, HEH, as well as the proposed
method utilized the same architecture for label classifier
and feature generator. DANN contains a domain classifier.
The training technique and loss functions of the benchmark
method utilized in the previous study were the same as those
of MCD, but the benchmark method’s network size was
substantially bigger.

3. Result and Discussion

In this section, we present our findings organized into
subsections focusing on specific datasets, statistical test, and
feature diversity. The subsections provide detailed analyses
of the Moon, ENABL3S, and DSADS datasets, likely dis-
cussing patterns, trends, and unique characteristics observed
within each dataset. Furthermore, we explore the statistical
test and diversity of features across these datasets, examining
their impact on the overall analysis and discussing implica-
tions for future research or applications.

3.1. Moon Dataset

It was discovered that the TSL and HEH, which consist
of just one classifier and one feature generator, can effec-
tively learn from HEH and outperform other approaches on
moon dataset with various translations and rotation degrees.
The suggested TSL and HEH may more precisely identify
and illustrate in Fig 3 the decision boundary that categorizes
the moon dataset. The proposed TSL and HEH outperform
both of ANN and DANN with P-value<0.002 in terms of
performance, with 97.9% accuracy that was achieved after
50 epochs of training. The P-value indicating the probability
of the null hypothesis being true, is computed using One-
way ANOVA with a post hoc test. If the P-value is less than
0.05, the difference is considered significant. In addition,
the proposed method (TSL and HEH) outperforms MCD in
terms of classification accuracy by 4.8%, the difference is
not statistically significant (P-value = 0.07). Compared to
the other three approaches, TSL and HEH’s classification
accuracy standard deviation is at least 1% lower, suggesting
that TSL and HEH is a more stable approach.

The suggested TSL and HEH have steeper learning
curves than the alternative approaches. After around thirty
epochs of training, all networks reach a plateau. Compared
to MCD, the suggested TSL and HEH’s plateau is higher and
more stable. One explanation might be because the HEH’s
various generators and classifiers reduce the variation in
classification accuracy, allowing the TSL and HEH to learn
from the reliable pseudo-labels provided by the HEH. All
networks, with the exception of TSL and HEH, reach a peak
accuracy before crossing the plateau, but after additional
training, the accuracy declines. This event highlights the
significance of the validation set in assisting with the early-
stop time determination as well as the stability of the TSL
and HEH. The network’s performance following specific
epochs might be significantly poorer than its maximum
performance if the validation set is absent. As seen in 3,
the suggested TSL and HEH reduces this issue and attains
a greater stability.

3.2. ENABLS3S Dataset

The suggested HEH outperformed all existing approaches
on ENABL3S [39], predicting end-point users’ locomotor
intent more correctly (mean= 95.6%) and steadily due to
standard deviation (std) equal to 1.6 as shown in Table
2. Nonetheless, the HEH inference time of up to 5.8 ms
can be the reason for the identification findings’ temporal
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Table 3

Inference time and accuracy of categorizing and recognizing the intent locomotion modes for the training and end-point users of
DSADS [40] as well as ENABL3S [39] and utilizing state-of-the-art approaches. The standard deviation is indicated by Std. The
inference time shows how long it takes to identify each human intent online.

Dataset ENABL3S DSADS
Users Training End-point Training End-point
Models Mean(%) Std(%) Mean(%) Std(%) Time(ms) Mean(%) Std(%) Mean(%) Std(%) Time(ms)
SVM 89.7 1.3 78.6 6.8 0.2 96.6 1.0 81.8 6.6 0.2
LDA 92.2 0.2 85.3 3.9 0.2 98.4 0.1 92.2 3.3 0.2
CNN 96.9 0.3 88.5 5.4 1.0 99.1 0.4 90.2 6.1 1.0
ANN 93.8 0.4 87.2 34 0.3 98.2 0.5 83.7 9.5 0.3
MCD [24] 95.2 1.2 93.8 1.8 1.0 98.9 0.5 95.5 45 1.0
CORAL [44] 96.5 0.4 91.6 3.4 1.0 99.1 0.2 91.8 4.3 1.0
MMD [43] 96.3 0.6 92.9 2.2 1.0 99.2 0.2 95.6 3.3 1.0
DFA [42] 94.9 1.7 91.7 3.0 1.0 98.6 0.7 92.4 3.3 1.0
DANN [23] 96.4 0.3 88.7 4.8 1.0 99.3 0.2 91.3 5.2 1.0
HEH (Ours) 96.5 0.7 95.6 1.6 5.8 99.3 0.4 98.2 4.3 5.2
TSL & HEH (Ours) 97.4 0.7 96.7 1.6 1.0 99.7 0.4 98.9 4.1 1.0
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Figure 3: Decision boundaries and learning curves of several techniques used in the training phase to categorize. The training
user data for two distinct classes are represented by the green and red dots. The desired data, shown by blue dots, should fall
into two groups but isn't given a title. The average performance in five trials is shown by the line in term of accuracy, and the

shaded area by the standard deviation.

delay. The inference time might be reduced by the TSL and
HEH to 1 ms following knowledge distillation. The TSL and
HEH’s classification accuracy jumped to 96.4%, however the
jump was not significant (P-value = 0.08). The improvement
demonstrates the benefit of using an appropriate network
design for assessing human locomotion intent, even though
it is statistically significant. The suggested HEH further
increases classification accuracy using the same classifier
as well as generator architecture; this improvement is 1.8%

more than with MCD, however the difference is not sta-
tistically notable (P-value =0.12). Additionally, the HEH
method’s performance is 2.3% greater than the benchmark
methods, and this difference is statistically significant (P-
value= 0.04). Even though TSL and HEH only use one
classifier and one feature generator, it nevertheless out-
performs MCD and the benchmark technique in terms of
classification accuracy by 2.9% and 3.4%, respectively. Also,
the difference is statistically significant (P-value=0.029).
Thus, the performance of recognizing the locomotion intent
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Figure 4: learning curves for several techniques used in the training process to categorize the end-point users set of the ENABL3S
dataset. Ten separate leave-one-user-out trials were used to calculate the average classification accuracy. The shady area and the
line show the standard deviation and mean of these results, respectively.

of end-point users may be improved by both refining the
network design and mixing different hypotheses. Knowledge
distillation has the potential to improve network efficiency
while maintaining high performance, which is advantageous
for real-time locomotion intent identification.

The proposed method (HEH and TSL), developed for
predicting the locomotion intent of end-point users, exhibit
significant improvement compared to non-adapted approach
such as ANN, SVM, CNN, and LDA (P-value=0.002),
as shown in Table 2. This suggests the effectiveness of
the proposed approach in successfully transferring learned
features from the training user domain to the end-point
users’ domain. The performance of end-point users using
TSL, HEH, and MCD significantly surpasses that of DANN
(P-value=0.004). This observation implies that the domain
classifier might not operate effectively when domain biases
are inconsistent across classes, and it faces difficulties in
matching features belonging to each class between the
two domains. Moreover, in comparison to non-adversarial
domain adaptation methods such as CORAL and MMD,
the proposed approach (TSL and HEH) along with MCD
achieves higher classification accuracy (P-value=0.017).
This underscores that matching features within each class
yields better results than matching features globally.

Because the training user data is tagged, it makes sense
that the training user intent recognition accuracy is bet-
ter than the end-point users’ result. The potential of the
CNNs designed in this paper is validated by the significantly
higher training user classification accuracy (P-value= 0.02)
achieved with deep neural networks (e.g., MCD, DANN,
CNN) compared with shallow classifiers (ANN, LDA, and
SVM). The suggested convolutional neural network’s re-
duced size and ability to calculate in parallel with a GPU
have resulted in inference times for MCD, DANN, CNN,
DFA, CORAL, MMD, and the proposed method (TSL and
HEH) that are comparable to shallow classifiers.

The precision of anticipating the intention of end-point
users to move varies depending on the type of sensor used.
Utilizing all of the sensors results in a greater classifica-
tion accuracy than utilizing only some of them, as Fig. 4
illustrates. Despite appearing to be the least accurate in

identifying locomotor modes, EMG signals can neverthe-
less enhance classification accuracy if combined with addi-
tional sensors (such as angle and IMU sensors). Notably, the
suggested method (TSL and HEH) outperforms alternative
techniques for every possible combination of sensors, thus
confirming the suggested TSL and HEH’s efficacy.

While utilizing the validation data to finish the process
of training early does not guarantee the highest accuracy, the
overfitting issue appears to be minimal on ENABL3S. The
suggested HEH approach starts to converge after 50 train-
ing epochs, exhibiting modest variance post-convergence.
In contrast, other approaches display fewer stability during
training, posing a risk of achieving lower accuracy after a
specific number of epochs if ensemble diverse hypotheses
are not incorporated.

3.3. DSADS Dataset

The suggested method (TSL and HEH) outperformed all
existing approaches on DSADS [40] for diverse human ac-
tivities like riding a bicycle, playing basketball, and jogging,
predicting end-point users’ locomotor intent more correctly
(mean = 98.1%, std = 4.1%), as depicted in Fig. 5 and Table
3. This achievement is notably superior (P-value = 0.011) in
comparison to the DFA methods employed in [42].

Remarkably, the MCD technique outperforms the DFA
method in end-point user classification accuracy by 3.1%,
and this increase is statistically significant (P-value = .037).
This finding indicates that when the dataset is short, net-
work design optimization is required to prevent overfitting.
After training for around 20 epochs, as seen in Fig. 5,
the DFA method technique initially reaches the maximum
performance before beginning to overfit the training set. The
ultimate performance of the DFA method is much less than
the peak performance after 100 training epochs. Both MCD
and the proposed method (TSL and HEH) become more
stable during training as the neural networks’ size is reduced,
and they reach a jump after 50 training epochs. The proposed
method (TSL and HEH) learning curves are more stable than
MCD’s, however, indicates that TSL and HEH improves the
classification’s stability.

Regarding DSADS, the end-point user categorization
accuracy is not significantly impacted by the sensor location.
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Figure 5: learning curves for several techniques used in the training process to categorize the DSADS dataset’s end-point test
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The individuals wore five IMUs on their various body parts:
the torso (T), right arm (RA), left arm (LA), right leg (RL),
and left leg (LL). The suggested TSL and HEH functions
as well with a single sensor as it does with all the sensors
combined, with the exception of the left leg’s IMU. TSL and
HEH performs better than any other approaches, regardless
of the sensor used.

Surprisingly, LDA can still categorize end-point users
individuals’ locomotor modes with 92.2% accuracy. This
accuracy is even better than that achieved by CNN, although
the difference is not considered notably (P-value = 0.28). Al-
though, this is an analytical technique, real-time computing
may be done with great efficiency (inference time = 0.2 ms).
Sometimes just training user data is reachable to train the
classifier since the end-point users label as well as end-point
users’ data are unavailable. In these circumstances, LDA
still appears to be a straightforward yet effective strategy for
recognizing class in a small manifold space while ensuring
a respectable degree of generalization. When utilizing the
proposed method (TSL and HEH), provided the end-point
users data are available, the accuracy achieved is substan-
tially greater (P-value = 0.012) than with LDA, while the
cost is still efficient at 1.0 ms.

3.4. Statistical Test

The results of one-way ANOVA with post hoc test com-
paring the proposed methods (TSL & HEH) with other
methods on both the ENABL3S and DSADS datasets are
presented in Table 4. The P-values indicate the signifi-
cance of the differences in classification accuracy between
the proposed methods and each of the other methods. The
proposed methods show statistically significant differences
compared to several baseline approaches on the ENABL3S
dataset. Notably, when compared to SVM, LDA, CNN, and
ANN, the proposed methods demonstrate highly significant
differences (P < 0.01), suggesting superior performance in
classifying locomotion intent for end-point users. However,
the differences between the proposed methods and MCD,
CORAL, MMD, and DFA are marginally significant (0.01
< P < 0.05), indicating a slightly weaker but still notable
advantage.

Table 4

Comparison of one-way ANOVA with post hoc test results for
the proposed methods (TSL & HEH) with other methods on
ENABL3S and DSADS datasets.

Approach P-value (ENABL3S) P-value (DSADS)
SVM 0.002 0.011
LDA 0.002 0.012
CNN 0.002 0.021
ANN 0.002 0.003
MCD [24] 0.029 0.023
CORAL [44] 0.017 0.014
MMD [43] 0.017 0.026
DFA [42] 0.014 0.011
DANN [23] 0.004 0.006

On the DSADS dataset, the differences in classification
accuracy between the proposed methods and the baseline ap-
proaches are generally less pronounced but still significant.
The proposed methods outperform SVM, LDA, CNN, ANN,
MCD, and DFA with statistically significant differences (P
< 0.05), suggesting their effectiveness in predicting loco-
motion intent for diverse human activities. The differences
between the proposed methods and CORAL, MMD, and
DANN are marginally significant, indicating a moderate
advantage of the proposed methods.

Finally, the ANOVA results underscore the effectiveness
of the proposed methods (TSL & HEH) in improving clas-
sification accuracy for predicting human locomotion intent,
particularly when compared to traditional and state-of-the-
art approaches. These findings support the suitability of
the proposed methods for real-world applications requiring
accurate and user-agnostic adaptation of locomotion intent
recognition systems.

3.5. Features diversity

This paper visualizes the concealed agnostic-feature
adapted by various generators as well as the non-adapted
features to additional confirmation whether the suggested
method extracts varied features by t-SNE [45]. Every gen-
erator has the ability to enhance the balance between the
training and end-point users’ features, as seen in Fig. 6. The
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training users’ characteristics disperse deterrently from the
end-point user features in the absence of adaptation. Fol-
lowing adaptation, the majority of the same class’s training
user and end-point user traits are found in the same area.
Furthermore, the predicted feature distributions for various
generators differ from one another, and every generator
converts the feature into a distinct feature domain.

In order to categorize the locomotion of the end-point
users and their desire to intent without labeling their data,
this paper suggested the heterogeneous ensemble hypotheses
and Teacher-Student-Learning. This paper sought to address
the concerns about the absence of a validation set of the end-
point users data, a network with large parameters may overfit
the training user data as well as only a small subset of the
features might be learned by a single generator. Therefore,
multiple generators must be trained to capture all the desired
features. By merging several classifiers and feature gener-
ators, improving loss functions, as well as light-weight the
basic model, the suggested TSL and HEH achieved the afore-
mentioned goals. Three distinct datasets were utilized to as-
sess the proposed TSL and HEH, and it was contrasted with
other techniques such as deep classifiers, shallow classifiers,
and the state-of-the-art model. According to experimental
results, TSL and HEH outperformed all other approaches
with average classification accuracy of 98.9%, 96.7%, and
96.9% on the test set of datasets of the DSADS, ENABL3S,
and moon. The suggested TSL and HEH method’s viability
has been confirmed by these findings. Furthermore, because
it only used one classifier and one feature generator to
learn features from the teacher network (HEH), the proposed
method (TSL and HEH) maintained its efficiency (inference
time = 1 ms). This supported the theory that a light-weight
student model could acquire features from the pseudo labels
of a teacher model.

These improvements were driven by a combination of
factors, which are explored in detail below.

Initially, it is preferable to use two agents. As seen in
Figs. 3, 5, and 4, the suggested HEH outperformed the
MCD in end-point user classification accuracy by 5.0%,
2.9%, and 3.4%, respectively, while having identical feature
generator and classifier network architectures. Theoretically,
lowering the MCD loss functions might lower the end-point
user error upper bound. Nevertheless, MCD might only
discover a portion of the hidden characteristics and only uses
one feature generator. Furthermore, using backpropagation
to train feature generators and classifiers does not ensure
that the global minimum of MCD loss functions will be
discovered. A neural network may become stuck in the local
minima for a number of reasons, including its huge param-
eter number and non-convex loss function. The limitations
of multi-objective optimization are another factor. Eq. 20
has several elements, such as the training user error and the
B.AB__distance between the training and end-point user
domains. There may be a clash between these two goals.
Obtaining the global optimum for each loss function may
be less successful than optimizing numerous loss functions
to strike a balance between them. As a result, even after

training, the MCD can still make mistakes. Although HEH
cannot completely resolve this issue, it can be somewhat
resolved. Every hypothesis has the potential to be incorrect,
but it is rare for many hypotheses to be incorrect at the
same time. Reducing the classification error can be achieved
by voting all of the hypothesis’ findings. Additionally, the
diverse-feature loss prevents the network from becoming
stuck in the same local minima by forcing the many base
learners to learn distinct parameters.

The proposed method’s (TSL and HEH) feature gen-
erator and classifier have trainable parameters of around
1.63x10° and 4.21x10*, respectively. The lack of a vali-
dation set led to a preset training epoch number as there
was no basis for determining early stopping during training.
The DFA method’s end classification accuracy was much
less accurate than its maximum performance. The training
process curves for the MCD, HEH, as well as the proposed
method stabilized when the network was lightened as shown
in Fig. 4. The smaller feature generator is the single factor
contributing to the steadier training process curves, given the
loss functions of the DFA approach and MCD are identical.
Notably, the ENABL3S dataset does not appear to overfit
the DFA technique, suggesting that the learning curve may
be stabilized by either expanding the dataset or shrinking the
neural network size. In practice, obtaining a big data collec-
tion could be challenging, therefore choosing an appropriate
network size is still crucial.

The class of the end-point users’ data that is not labeled
is difficult to guess. To infer their categories, it is there-
fore necessary to make use of some internal data features.
Clustering can be used to identify groups of similar data
points, providing insights into the underlying structure of
the data. Using the cluster attribute for unsupervised user-
agnostic adaptation makes sense. The cluster assumption is
validated by the retrieved characteristics. The samples in the
equivalent class are related to each other than the points in
other classes (different colors), as Fig. 6 illustrates. various
types of points have various clearances. Consequently, it
makes sense to encourage the Classification line to shift
far from the dense regions by using an entropy loss func-
tion. During the first training period, points from various
courses may mix together. The loss entropy function can be
detrimental in this situation. The suggested HEH method’s
feature generators, however, have a variety of loss functions,
such as minimizing classifier discrepancy and training users’
classification errors. Entropy loss has a lower weight than
the two loss functions mentioned above. As a result, during
the neural network’s first training phase, the two loss func-
tions mentioned above will predominate. The characteristics
will become distinct clusters after the disparity between
the classifier and the training users errors are reduced. The
clearances between various feature clusters increase with
adaptation, as seen in Fig. 6. The entropy loss will become
more significant in training as the features are transformed
into distinct clusters, hence reducing the goal classification
error.
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Figure 6: The display of the adapted features that were taken from five HEH feature generators and the non-adapted features
projected using t-SNE. The end-point users’ data is represented by the dark-colored dots, and the training users’ data by the
light-colored points. Points that share the same hue are members of the same class. Every feature is taken out of the training set.
Features belonging to the same class concentrate in a comparable location after adaptation, and there is more clearing between

various clusters than there was previously.

This paper has some shortcomings. First, training users’
signals were not immediately recognized by the suggested
HEH. Some shallow characteristics, including the standard
deviation and the mean, were initially taken out of the
training users signals in order to reduce the size of the train-
ing users’ data and improve the algorithm’s performance.
Although these characteristics did decline the amount of
data that needed to be processed, some crucial information
can be lost. The deep CNN may also be used to extract
additional features that are independent of the user for unsu-
pervised user-agnostic adaption. Second, although labeling
the end-point user data is not necessary for unsupervised
User-Agnosticadaptation, it is still necessary to capture the
end-point user data. The problem can grow even worse in
particular cases where there is neither end-point users label
nor end-point users’ data available. Our only option in these
circumstances is to train a stable classifier inside the training
user domain. Figs. 5 .4, and Table 3 demonstrate that even
though the CNN was solely trained on training users’ data, it
was still able to achieve 88.5% and 90.2% mean performance
on training users’ data. Nevertheless, CNN’s classification
accuracy on the end-point users’ data is significantly worse
and fewer consistent than that of unsupervised domain adap-
tation techniques (e.g., the proposed method and MCD),
and its generalization capacity remains inadequate. The bias
between the training and end-point users domains is the
cause of this constraint, and if the end-point users’ data or
end-point users’ labels are unavailable, there is not much we
can do. To further increase the performance on the end-point
users’ domain in this extreme case, it could be preferable to
gather a small sample of the end-point users’ data and create
semi-supervised learning, data augmentation techniques, as
well as few-shot learning.

4. Conclusions

Supervised learning (SL) requires a significant amount
of data to accurately classify new signals. With humans,
it is difficult to accurately capture and label data due to
the complexity of the signals and the variation in people’s

behavior. Although, SL can correctly categorize the loco-
motion intent, but it is typically impractical for researchers
and users alike to gather and label many signals in order
to well learn the features of new user. The end-point users
data label was not necessary for the unsupervised user-
agnostic adaptation technique known as Heterogeneous En-
semble Hypotheses (HEH) and Teacher-Student-Learning
(TSL), which was presented in this study. Following the
labeled training users data and unlabeled end-point users
data training, the proposed method (TSL and HEH) was able
to classify the end-point users’ modes and locomotor intent
with high accuracy. The suggested TSL and HEH, in contrast
to earlier techniques, could learn a variety of features and
resolved the overfitting problem by adding the end-point
users data cluster property, lightweight the base model, and
training a variety of feature generators and classifiers. Two
public datasets of human movement and a 2D moon dataset
were used to empirically test and conceptually illustrate the
performance of the TSL and HEH. According to experimen-
tal results, the HEH could categorize end-point users’ data
from the DSADS, ENABL3S, and moon data set with an
average accuracy of 98.9%, 96.7%, and 96.9%, respectively.
In contrast to the BM approach used in the earlier study,
the suggested HEH reduced the inference time to 1 ms,
harmonious its training process, and enhanced accuracy by
1.3% and 7.1%. The efficacy of the suggested TSL and HEH
for unsupervised user-agnostic adaptation was confirmed by
these outcomes. The suggested TSL and HEH may help
wearable robots anticipate the end-point users’ intended
mobility without labeling the data, enhancing wearable robot
intelligence and human-robot interaction.

In the future, we are considering the utilization and
creation of datasets from different domains to investigate
the generalization and reliability of our approach further. By
diversifying the datasets used in our research, we aim to gain
insights into how our methodology performs across various
real-world situations and scenarios.
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