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A B S T R A C T
Resource allocation has always been a critical challenge for construction project planning, and it
affects the cost, duration, and quality of the projects. However, current methods mainly focus on a
single project and lack integrated planning and optimization across a construction company’s multiple
projects. This paper describes a simulation of an Autonomous Resource Allocation (ARA) model
using Deep Reinforcement Learning (DRL) agents and methods like Double Deep Q-Networks and
combined experience replay to develop and test ARA algorithms based on data harvesting from
the Internet of Things (IoT) devices. The results show that DRL can successfully perform ARA by
capturing the complex interactions among resource allocation features, without needing retraining
when situations change. It shows promising future possibilities for construction companies to improve
resource utilization and project performance for larger and more complex construction projects.

1. Introduction
In today’s highly competitive construction industry, re-

source management is an important management tool that
contributes to improving the performance of construction
companies with several projects [1, 2]. Indeed, it is possi-
ble to maximize the company’s profit by allocating limited
resources rationally among competitive objectives, based
on the rule of effectiveness [3]. Additionally, the appropri-
ate allocation of resources in construction projects plays a
critical role in the planning process as it directly impacts
cost, duration, and quality [4]. In addition, the resources
available for construction projects are limited, and several
activities compete for the same resources [5, 6]. Scheduling
by Critical Path Method (CPM) which is a widely accepted
project planning technique, does not consider the limitations
of these resources [6, 7, 8] and just assumes that activity can
begin once its predecessor has finished. As such, in order for
a project to succeed, constraints such as schedule deadlines
and resources must be met at the same time [9].

However, construction companies do not resource load
their schedules frequently since it is very time-consuming.
They often create CPM manually using Primavera or Mi-
crosoft Project and rarely use intelligent computing and
automation. Furthermore, the typical complexities of con-
struction projects are not taken into account by CPM because
it is not a dynamic process and has many challenges to
be used in practice unless for monthly updates [9, 10, 5].
Therefore, day-to-day update of the project is very diffi-
cult and time-intensive since it involves loads of manual
steps for a lot of re-sequencing schedules [9, 6]. The first
challenge is to allocate resources to different construction
processes according to what is needed, when and where it
is needed, and what is available [11]. In most classical plan-
ning methods, the project plan is developed at the planning
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phase and it is expected to be executed according to that
plan, regardless of any possible changes during the project
implementation [4]. However, there are numerous methods
used for the optimization of resource allocation and leveling,
giving better results compared to traditional methods [2].
In fact, resources must be leveled in the project to avoid
difficulties in the construction works due to variations in
resource use [12].

Research on optimization of the use of resources by con-
struction companies primarily involves methods of schedul-
ing individual construction projects, rather than a portfolio,
taking into account limitations in resource availability. In
the meantime, designing an optimum schedule including
resource planning for a single building structure (e.g., with
a minimum construction cycle) and its implementation ac-
cording to the schedule do not guarantee a construction
company’s efficiency. Moreover, guaranteeing a construc-
tion company’s efficiency requires considering the broader
context of portfolio management, addressing resource con-
straints, adapting to dynamic changes, improving commu-
nication and coordination, and making optimization trade-
offs. Also, the role of the management staff of a construction
company is to maintain a balance between the production
capacity of a company and the portfolio of orders [13, 14].
In this way, computerized decision-support systems and
optimizing methods can enhance the quality of management
decisions [15, 16]. Using a computer-based resource man-
agement system, construction companies can keep track of
daily updates on their resources, make corrections based on
the previous progress of their work on all sites, and update
their goals weekly. The purpose is to implement tasks that
will help to stick to deadlines for completing construction
stages [3, 16].

Autonomous Resource Allocation (ARA) applies effi-
cient and safe resource allocation methods regarding re-
source constraints and objectives such as time [17, 18].
These methods include coverage resource allocation (CRA)
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Figure 1: Agent construction company interactions for ARA
problem.

[19, 20] for the projects and data harvesting (DH) from
Internet of Things (IoT) nodes [21, 22]. Also, CRA and DH
methods form the foundation of the ARA system, ensuring
effective resource allocation considering both project bound-
aries and real-time data from IoT devices. Typically, CRA is
used to manage resources between the start and end points
of the projects, with the goal of covering all points’ resource
allocation in the project of interest. As far as possible, CRA
covers the target project considering obstructions such as
constraints in resources [23].

In the construction company, DH scenario involves ARA
collecting data from IoT devices distributed throughout the
projects’ sites, as is shown in Fig. 1, through an alternating
line-of-sight (LoS) and non-line-of-sight (NLoS) link [24].
There are many similarities between a DH problem and a
CRA problem when presented as an reinforcement learning
(RL) problem, since both have very similar constraint sets.
The only major difference is the goal function. In previous
research, CRA and DH have been studied separately [22, 25,
26, 27, 28]. It is shown that both problems are solvable with
deep reinforcement learning (DRL) by putting spatial data of
the construction project’s company simulation into the DRL
agent via layers of convolutional networks [29, 30, 31].

To address the challenges associated with the use of
simulation maps as a direct input in the presence of a
substantial amount of portfolio information, alternative ap-
proaches need to be considered. Large amount of portfolio
information makes it problematic to use simulation maps
as a direct input because the network’s size, training pa-
rameters, and training time increase [32]. Our novel so-
lution is to leverage the portfolio and individual project
information in an integrated manner, allowing for a more
manageable and scalable resource management system. This
enables the agent to have a holistic understanding of the
available resources across different projects. By providing
general portfolio information and incorporating localized
details from individual project simulations, the ARA system
can strike a balance between efficiency and accuracy in

resource allocation. This approach enables the system to
overcome the limitations posed by large portfolio datasets
while still maintaining the necessary level of detail for
effective decision-making.

The DRL provides the possibility of solving both dis-
tinctly different problems, namely DH and CRA problems,
with the same approach, despite the fact that numerous
resource allocation algorithms exist for each problem [33,
34, 35, 36]. As a result, DRL agent learning the management
approaches is generalized over a large environment that
has variable situations. It does not need retraining when a
new resource allocation scenario is encountered as well as
recomputing when a new scenario is encountered by changes
in situations. Previous studies [37, 38, 39, 40, 41], usually
consider only a single scenario when they are determining
optimal resource allocation. ARA control tasks are usually
nonconvex optimization problems or NP-hard in many in-
stances [42, 43]. So, the DRL concept is suitable in this
domain due to its adaptability, computational efficiency, and
the complexity of DRL inference. Integer programming [44]
and dynamic programming [45] are mathematical models
that are often used to find the exact approach to resource
allocation [46], which is an NP-hard problem. However, if
the practical projects under study are large or complex, these
methods may not be computationally feasible or may result
in a "combinatorial explosion" problem [47, 48]. These
methods include [49, 50, 51, 52] which use priority rules
reflecting multiple variables, including the critical index
of the activity, the duration, and the minimum late finish
time. In spite of this, there are few other heuristic rules that
consistently perform better than all others [53]. However,
it would be no basis for choosing one rule over another.
It is also possible to become trapped within local optima
using the general heuristic methods [54]. Tabu search (TS),
simulated annealing (SA), and genetic algorithms (GAs) are
the three methods of metaheuristics. Repetitive improve-
ments on current solutions are used in SA to achieve better
solutions. SA has been applied for resource allocation by
[49, 54, 55]. As iterations progress, TS improves the feasible
solution so that a local optimum traps it to reach a global
one. There are several papers using it to reexamine resource
allocation, including [54, 56, 57]. GA has been applied to
perform resource allocation based on evolutionary and ge-
netic mechanisms [54, 58, 59, 60]. However, reinforcement
learning which is similar to how learning occurs in nature
is an area of machine learning. Taking action depends on
the outcomes derived from previous actions by an entity
called an agent. A positive reinforcement or encouragement
of the behavior would reinforce or increase the importance
of the action and its actions leading up to it and vice
versa (see Fig. 2). The RL approach is based on Markov
Decision Processes [61] and differs from supervised learning
because it does not require labeled inputs-outputs [62]. In
construction projects, the states are unique, and supervised
machine learning is impossible since there is no dataset
of actions or consequences. There is one type of ARA
on which all mentioned approaches focus, and the agent
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Figure 2: Q-Learning workflow for resource allocation in the construction company.

does not attempt to combine information from portfolio
and individual projects. On the other hand, compression
of portfolio information reduces computational complexity,
but the approach is not RL-based and does not take into
account individual projects’ information with high precision
and hard resource constraints. Overall, to our knowledge,
none of the previous studies utilized the methods of parallel
processing portfolio and individual projects information that
can be applied to various types of resources for ARA. As a
result, the main contribution of this paper is a novel approach
to ARA in construction companies by leveraging DRL and
simulation maps. The integration of CRA and DH enables
efficient resource allocation while considering constraints
and objectives.

In summary, we suggest the contributions of the pro-
posed method are shown below, and we also summarize all
abbreviations used through the context in Table 1.

• We propose a novel approach for processing simula-
tion information portfolios to feed up Deep Reinforce-
ment Learning.

• We propose a novel design reward function to assign
efficient resources in different portfolio scenarios.

• Using data harvesting and IoT for information gather-
ing of construction sites.

• The performance and effectiveness of our proposed
method was evaluated under the comprehensive set of
experimental results in different simulated scenarios.

2. Related Work
ARA in construction project management is a multiface-

ted challenge, involving the optimization of limited re-
sources such as labor, equipment, and materials. In this
section, we delineate the landscape of resource allocation ap-
proaches, categorizing them into three categories. Through
this categorization, we aim to present a comprehensive
overview of existing solutions while paving the way for the
introduction of our proposed Deep Reinforcement Learning-
based Portfolio-Project Integration Model.
2.1. Metaheuristic Approaches

Metaheuristic approaches have proven instrumental in
tackling resource allocation problems by employing inno-
vative search algorithms. Notable techniques include GAs,
Ant Colony Optimization (ACO), and Particle Swarm Opti-
mization (PSO).

GAs, for instance, have demonstrated effectiveness in
optimizing resource allocation by minimizing project du-
ration under limited resources [63, 64]. However, chal-
lenges arise in selecting appropriate parameter values for
specific projects, demanding expert knowledge. Similarly,
ACO leverages the collective intelligence of ants to opti-
mize resource allocation in repetitive project activities [65].
Despite their promise, metaheuristic approaches exhibit
limitations, such as computational intensity and difficulty
in finding globally optimal solutions, especially in complex
and nonlinear resource allocation problems.
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Table 1
The list of the abbreviation is used in this paper.

Abbreviation Description
ACO Ant Colony Optimization
ARA Autonomous Resource Allocation
CPM Critical Path Method
CR Coverage Ratio

CRA Coverage Resource Allocation
CRAR Coverage Ratio And Resources
DDQN Double Deep Q-Network

DH Data Harvesting
DRL Deep Reinforcement Learning
ES Early Start
GA Genetic Algorithms
IoT Internet of Things
KPI Key Performance Indicator
LAS Look-Ahead Schedule
LAS Look-Ahead Schedule
LF Late Finish
LoS Line-of-Sight
MitC Mitigation Controller
NLoS Non-Line-of-Sight

POMDP Partially Observable Markov Decision
Process

PSO Particle Swarm Optimization
ReLU Rectified Linear Unit
RL Reinforcement Learning
SA Simulated Annealing

SNR Signal-To-Noise Ratio
TS Tabu Search
TSP Traveling Salesman Problem

2.2. Mathematical Approaches
Complementing metaheuristic methods, researchers have

explored mathematical optimization models and techniques.
Huang et al. [66] proposed a GA-based mathematical model
for large-scale projects, showcasing improved resource al-
location efficiency. Rostami and Bagherpour [67] employed
mixed-integer linear programming to address decentralized
multi-project scheduling problems. While these approaches
offer unique perspectives, they are not without limitations,
relying on accurate input data and assumptions.
2.3. Deep Reinforcement Learning Approaches

The application of Deep Reinforcement Learning (DRL)
in construction project management has gained significant
attention for its ability to handle complex and nonlinear re-
source allocation problems. In recent studies, DRL has been
successfully employed to address various challenges in con-
struction resource allocation. Addressing uncertainties in
preventive actions decision-making within infrastructure as-
set management, Asghari et al. propose a holistic framework
that incorporates RL model training [68]. The framework
considers deterioration, hazards, and cost fluctuations as un-
certainties, while also integrating managerial aspects. Multi-
agent RL models are constructed and trained for intervention
actions, showcasing improved expected utilities and cost
reduction compared to traditional optimization algorithms.

Focusing on the adaptive control of labor and material
flows in construction projects, Jiang et al. present a model
based on Deep Reinforcement Learning. Using a partially
observable Markov decision process, the study establishes
a mathematical model for resource flow optimization [69].
The proposed DRL-based method demonstrates superior
performance compared to conventional optimization meth-
ods, offering adaptability to diverse project scenarios. To en-
sure timely completion of construction projects, Kammouh
et al. introduce the Mitigation Controller (MitC), combining
nonlinear stochastic optimization techniques and probabilis-
tic Monte Carlo analysis [70]. MitC automates the search
for the most effective mitigation strategies on-the-run, con-
sidering project manager goal-oriented behavior, contractual
performance schemes, and stochastic dependence between
construction activities. Soman et al. introduce a novel Look-
Ahead Schedule (LAS) generation method using reinforce-
ment learning and linked-data based constraint checking
[71]. The proposed method demonstrates the capability to
generate conflict-free LAS faster than conventional methods,
providing decision support for look-ahead planning meet-
ings. By integrating linked-data based constraint checking
within the reward function, the study extends existing knowl-
edge in the construction informatics domain.

The rationale for our study is grounded in the observed
limitations of existing research in the field of resource allo-
cation within construction companies. The existing research
has predominantly focused on scheduling individual con-
struction projects while they considering resource availabil-
ity constraints. However, our study seeks to extend beyond
this approach by emphasizing the importance of portfo-
lio-level resource allocation. To overcome the limitations
identified in existing approaches, we propose the integration
of Deep Reinforcement Learning techniques. RL leverages
trial and error, learning, and adaptive decision-making, of-
fering a dynamic and robust solution for resource allocation.
Unlike traditional methods, RL can handle complex and
nonlinear resource allocation problems, providing adaptive
strategies by continuously learning and adapting to changing
project conditions.

In the following section (Section 6), we present our Deep
Reinforcement Learning-based Portfolio-Project Integration
Model, aiming to enhance the effectiveness and efficiency of
resource allocation in construction companies. This model
addresses the gaps identified in traditional approaches, offer-
ing a promising avenue for the advancement of autonomous
resource allocation in construction project management.

3. Problem Formulation for Resource
Allocation Modeling

3.1. Unification of Construction Company
Simulation and ARA Model

In the following, it is shown how two parts of the prob-
lem are separated: the construction portfolio information and
the individual projects’ target, which can make the problem
description universal.
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Considering a square grid of size 𝐶 × 𝐶 ∈ ℕ2 with a
portfolio of size 𝑚, where ℕ is the set of natural numbers.
Individual projects’ start/finish boundaries, constraints of
resources, and other obstacles such as delays in DH make
up the construction company simulation. It can be described
by a tensor 𝐂 ∈ ℝ𝐶×𝐶×3, in which ℝ = {0, 1} and
start/finishing individual projects make up project-layer 1,
constraints of resources and obstacles make up project-layer
2, and obstacles alone make up project-layer 3.

Constant individual projects 𝑘 is maintained by the ARA
through this construction company simulation as it occupies
individual projects. Therefore, its project can be defined in
terms of 𝐩(𝑡) ∈ ℕ2. A collision-avoidance strategy and
constraints on resources restrict the selection of individual
projects by the ARA. The ARA must start and end its tasks
without exceeding its minimum delay time determined by
its initial resource level in any project that belongs to the
start and finish projects. Every time a step in the action is
completed and set to 𝑟0 ∈ ℕ at time 𝑡 = 0, the resource level
of the project 𝑟(𝑡) decrements by 1.

The following subsection delves into the specific objec-
tives and definitions related to the target project and the
DH component. Moreover, we focus on minimizing delay
time and ensuring coverage within the information field
based on the target project, while the DH component in-
volves data harvesting from IoT devices scattered across the
construction portfolio. By unifying the construction project-
layer description, both problems can be addressed using deep
reinforcement learning based on a neural network.
3.2. Target Project and Objectives Definitions

1) CRA: When allocating resources for coverage, the
objective is to minimize delay time or project time, such that
falls inside the information of a construction sensor installed
on the individual project. TP(𝑡) ∈ ℝ𝐶×𝐶 can describe the
target project, where each resource describes whether a pro-
ject needs to be covered. Each project can be classified as
belonging to the current field of information by using 𝐕(𝑡) ∈
ℝ𝐶×𝐶 to indicate whether it belongs to it. This work uses
a simulation field of information with a 5𝑥5 size adjacent
to the current position of the ARA. The V(𝑡) calculation
also takes into account obstructions of Line-of-Sight. This
prevents the ARA from looking around the corner.

As a result, the target project develops in accordance
with Eq. 1,

𝑇𝑃 (𝑡 + 1) = 𝑇𝑃 (𝑡) ∧ ¬𝑉 (𝑡) (1)
There are two types of logical operators ∧ and ¬ which rep-
resent logical "and" and "negations". Starting and finishing
points of the projects as well as constraints of resources can
be covered by targets, whether stopped projects are in the
construction company simulation or not. We try to complete
as much of the target project within the minimum time delay
as possible.

2) DH: In contrast, wireless data harvesting is utilized
to obtain information on residual resources from 𝑀 ∈
ℕ terminal IoT devices scattered across the construction

portfolio at simulation, with 𝑚 ∈ [1,𝑀] situation given by
𝐮𝑚 ∈ ℕ2. The ARA must collect a certain amount of data
𝐷𝑚(𝑡) ∈ 𝐼 from each device. According to the usual log-
resource loss model with Gaussian shadow fading, over the
selected device𝑚, their data throughout𝐶𝑚(𝑡) is determined,
whether the ARA includes stopped projects or not. One
device at a time communicates with the ARA, which is
selected regarding the most available data resources and the
highest resource requirements. In [21], the performance of
the link and multiple access protocols are described in more
detail. In each device, data evolves in accordance with Eq.
2,

𝐷𝑚(𝑡 + 1) = 𝐷𝑚(𝑡) − 𝐶𝑚(𝑡) (2)
Every project can have a device. Data harvesting must collect
all the data from the devices within the shortest possible time
frame and with minimum delay in order to collect as much
data as possible.

3) Unifying Construction Project-Layer Description:
𝐃(𝑡)
∈ 𝐼𝐶×𝐶 is the target project layer which can be used to
describe both problems. According to (1), CRA provides the
target project layer through T(𝑡). Target project-layers in DH
show how much data is available in each project in which one
of the devices is located, so that project u𝑚 has value 𝐷𝑚(𝑡)and is evolving according to (2). The value of a project is 0
if a device does not exist in the project or 1 if all the device
data have been collected. Deep reinforcement learning based
on a neural network with the same structure can solve both
problems since their state representations are similar.
3.3. IoT Modeling

Several key models of the ARA-based resource alloca-
tion are presented in the following. In order to implement
the RL approach, the construction site’s dynamic needs to
be simplified to a certain extent. We make explicit our
assumptions whenever possible.

IoT cameras, integrated with advanced sensors and con-
nectivity capabilities, offer a comprehensive monitoring sys-
tem that captures valuable data on construction resources.
These intelligent cameras leverage the power of computer
vision, artificial intelligence, and cloud computing, enabling
remote access to real-time video feeds and valuable insights
[72]. By deploying IoT cameras strategically across con-
struction sites, project managers gain a high-level overview
of resource utilization, enabling them to make informed
decisions and optimize resource allocation.

One of the key advantages of IoT cameras in construction
resource monitoring is their ability to provide a continuous
and uninterrupted stream of data. Construction sites are
dynamic environments with constantly changing conditions
and activities [73]. IoT cameras capture and transmit visual
information, allowing stakeholders to monitor automatic
construction progress, identify bottlenecks, and assess the
availability of essential resources such as materials, ma-
chinery, and personnel. This real-time monitoring facilitates
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proactive decision-making, reducing downtime and delays
that may arise from resource shortages or unexpected events.

Our assumptions are explicit whenever suitable. Our
approach also introduces the concept of communication time
slots in addition to decision time slots, since communication
systems are typically operated on a longer timescale than
ARA’s decision resource management system. A number
of communication time slots 𝛾 ∈ ℕ are divided into each
decision time slot 𝑡 ∈ [0, 𝑇 ]. After that, 𝑛 ∈ [0, 𝑁] with
𝑁 = 𝛾𝑇 becomes the communication time index. There
are A𝑛 = g𝑡∕𝛾 seconds in one communication time slot
𝑛. As a result, we choose 𝛾 a sufficiently large number of
communication time slots so that the ARA decision can
be made linearly between 𝐩𝑙(𝑡) and 𝐩𝑙(𝑡 + 1), within each
communication time slot. 𝑑 ∈ D is the d-th loT device.
𝐺𝑑(𝑡) ∈ ℝ+represents the amount of data that must be
collected by each sensor over the course of the decision
𝑡 ∈ [0, 𝑇 ]. An initial volume is set for the device data volume
at the start of a decision𝐺𝑑(𝑡 = 0) = 𝐺𝑑,init . Over the course
of a decision, each IoT node’s data volume changes based
on the communication time index 𝑛, which is expressed as
𝐺𝑑(𝑛) in conjunction with 𝑛 ∈ [0, 𝑁], 𝑁 = 𝛾𝑇 . There is
a log-distance path loss and shadow fading between ARA
and 𝐷 IoT devices during communication over LoS/NLoS
point-to-point channels. At time 𝑛, the 𝑑-th device can send
the maximum information rate by Eq. 3,

𝐼𝑅max
𝑙,𝑑 (𝑛) = log2

(

1 + SNR𝑙,𝑑(𝑛)
) (3)

Considering the amount of information accessible at the 𝑑-
th device 𝐺𝑑(𝑛), the effective information rate is given as
shown in Eq. 4,

𝐼𝑅𝑙,𝑑(𝑛) =
{

𝐼𝑅max
𝑙,𝑑 (𝑛), 𝐺𝑑(𝑛) ≥ R𝑛𝐼𝑅max

𝑙,𝑑 (𝑛)
𝐺𝑑(𝑛)∕𝛿𝑛, otherwise. (4)

The Signal-To-Noise Ratio (SNR) is modeled as a Gaus-
sian random variable in Eq. 5.

SNR𝑙,𝑑(𝑛) =
𝑇𝑃𝑙,𝑑

𝜎2
⋅ 𝑔𝑙,𝑑(𝑛)−𝛼𝜀 ⋅ 10𝜂𝜃∕10 (5)

While 𝑇𝑃𝑙,𝑑 , 𝜎2, 𝑔𝑙,𝑑 , and 𝛼𝑒 are Transmit power, receiver
Gaussian noise power, camera-device distance, and path loss
exponent, respectively. It is worth noting that construction
sites present various challenges that impede the smooth
propagation of signals, leading to a significant influence of
propagation parameters on the conditions of LoS as well
as NLoS. The equation represented as Eq. 5 denotes the
SNR averaged over small-scale fading. It is essential to
highlight that our newly proposed approach is model-free,
eliminating the need for any specific channel transmission
model. Although a more precise and intricate model could
potentially be used in conjunction with our approach, Eq. 5
already encompasses the crucial aspects for data collection
of the urban channel, namely the correlation between SNR
and the variables 𝑔𝑙,𝑑 and the conditions 𝑒 ∈ {𝐿𝑜𝑆,𝑁𝐿𝑜𝑆}.

Overall, the integration of IoT cameras and the un-
derlying equations plays a crucial role in addressing re-
source allocation challenges through the RL approach. IoT
cameras, equipped with advanced sensors and connectivity
capabilities, establish a comprehensive monitoring system
that captures real-time data on construction resources. The
continuous stream of data from IoT cameras enables proac-
tive decision-making and reduces downtime caused by re-
source shortages or unforeseen events. In the context of the
presented equations, the communication time slots and de-
cision time slots facilitate efficient communication between
the ARA system and IoT cameras. The equations, such as
Eq. 4 and Eq. 5, establish the foundation for modeling the
information rate and signal-to-noise ratio, enabling effective
data collection and transmission. Through simulation and
iterative RL processes, the ARA system can learn and adapt
its resource allocation strategies based on the real-time data
obtained from IoT cameras. This integrated IoT-camera-
equation framework provides a valuable tool for addressing
resource allocation challenges in construction sites, ulti-
mately improving project performance and resource effi-
ciency.
3.4. RL Formulation

The following approach can be applied to both dis-
tinct allocations of resource problems, despite the fact that
there are a variety of methods for solving them separately.
Typically, individual projects are connected by resources’
limitations into a graph, and each project is covered by
an allocation of resources in classical CRA approaches.
As a result, CRA becomes an instance of the traveling
salesman problem (TSP), which can be handled by standard
approaches, such as [74], but at the expense of exponentially
increasing time complexity. IoT devices can serve as nodes
in a graph and distances between them as edge costs in
a TSP. However, the conversion doesn’t take into account
communications between the device and the ARA while
traveling to or from the device. A sequential visit of all
devices isn’t usually the optimal behavior in DH problems.
Instead, information can already be obtained more efficiently
by building a LoS link farther away, or the ARA may have
to hover near a device for an extended period to collect
information in large quantities. It is not trivial to model and
solve these constraints with classical techniques, coupled
with stochastic communication channel models and multiple
access protocol options. It is often not possible to cover or
collect all the data for both problems due to the constraints
of ARA and resources. With the DRL methodology, we can
directly combine all of the resource allocation goals and
constraints without approximations.

The following subsection introduces the concept of Par-
tially Observable Markov Decision Processes (POMDPs)
and explains how they can be utilized to model resource
allocation problems. It provides a detailed understanding of
the state space, action space, and reward functions within
the POMDP framework, allowing for the application of
RL techniques to effectively address the resource allocation
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challenges.

4. Resource Allocation Simulation through
Partially Observable Markov Decision
Processes
According to challenges of resource allocation within

dynamic and partially observable environments, the ap-
plication of POMDPs emerges as a powerful framework.
POMDPs, as highlighted by Kaelbling et al. [75] and Sutton
and Barto [76], address challenges arising from partial ob-
servability, uncertainty, and sequential decision-making. In
our context, deploying POMDPs is motivated by the inher-
ent complexities of construction company portfolio simula-
tions, where the availability of information is limited, and
decision-making must account for dynamic project states
[77].

To grasp the essence of our POMDP-based approach, it’s
essential to dissect the components encapsulated within the
POMDP tuple ( ,, 𝑃 , 𝑅,Ω,, 𝛾):

1.  and  denote the state space and action space,
respectively. In our scenario,  encapsulates informa-
tion about the construction company’s portfolio sim-
ulation, target projects, situational details, and time
delays.

2. The transition probability function 𝑃 ∶  × × ↦
ℝ captures the likelihood of transitioning between
states given an action, reflecting the dynamism of the
construction environment.

3. The reward function 𝑅 ∶ ×× ↦ ℝ encapsulates
various aspects, including positive rewards for infor-
mation collection, safety considerations, penalties for
decision delays, and resource allocation efficiency.

4. Ω and  ∶  ↦ Ω define the observation space and
observation function, respectively. These elements in-
troduce the concept of partial observability, acknowl-
edging the limitations in perceiving the entire con-
struction environment.

5. The discount factor 𝛾 ∈ [0, 1] differentiates between
the valuation of long-term and short-term resource
allocation rewards, contributing to the temporal aspect
of decision-making.

A pivotal aspect of our methodology is the introduction
of a unified representation of the resource state within the
state space  . By unifying these diverse elements, we fa-
cilitate a holistic view for autonomous resource allocation
problems, streamlining decision-making processes. The use
of POMDPs in our resource allocation simulation offers
practical advantages. It enables the ARA to make-decision
through a complex construction landscape with incomplete
information, dynamically adapting to evolving project states.
This adaptability is crucial in scenarios where the ARA must
contend with uncertainties, project constraints, and the need
for efficient resource allocation. To unify the ARA problems,
a unified representation of the resource state is introduced to

integrate into a cohesive and manageable structure. The state
space  is defined as:

 = ℝ𝐶×𝐶×3
⏟⏟⏟

Construction Company
Portfolio Simulation

× 𝐼𝑀×𝑀
⏟⏟⏟
Target
Project

× ℕ2
⏟⏟⏟
Situation

× ℕ
⏟⏟⏟

TimeDelay

(6)

Let’s delve into the components that constitute this
unified representation:
Construction Company Portfolio Simulation (ℝ𝐶×𝐶×3):
The construction company’s portfolio simulation is encap-
sulated in a three-dimensional matrix, incorporating essen-
tial details such as project start and end points, resource
constraints, and the status of ongoing projects. This matrix,
denoted as 𝐂, provides a comprehensive snapshot of the
construction landscape.

To simulate the company portfolio as shown example in
Table 7 in a 3D matrix, we need to map the table columns and
rows into the dimensions of the matrix. Since the table repre-
sents different simulation scenarios with various parameters,
this paper considers each dimension of the matrix to repre-
sent one aspect of the scenario. Let’s define the dimensions
of the matrix as follows for Table 7 as an example:

Dimension 1 : This dimension can represent the number
of projects, where 0 corresponds to 5 projects and 1 corre-
sponds to 10 projects. Dimension 2 : This dimension can
represent the number of tasks per project, where 0 corre-
sponds to 5 tasks, 1 corresponds to 10 tasks, 2 corresponds
to 20 tasks, and 3 corresponds to 40 tasks. Dimension 3:
This dimension can represent the number of resource types,
where 0 corresponds to 10 resource types, 1 corresponds to
20 resource types, and 2 corresponds to 40 resource types.

A pseudo-code representation of the algorithm to create
and populate the 3D matrix based on the provided table is
illustrated in Algorithm 1.

Target Project Information (𝐼𝑀×𝑀 ): Within the uni-
fied state space, we allocate space for target project informa-
tion represented by the matrix 𝐼𝑀×𝑀 . This matrix captures
critical details about individual projects, including their ex-
istence, discovery status, and potential resource availability.
Situational Context (ℕ2): Situational context is incorpo-
rated as a two-dimensional vector, denoted asℕ2. This vector
encapsulates relevant information about the construction
environment, contributing to the contextual awareness of the
ARA.
Time Delay (ℕ): Acknowledging the temporal dimension,
we include a scalar representing time delay within the unified
state space. This temporal information is crucial for guiding
the ARA in making decisions considering the evolving na-
ture of the construction projects.

First Author et al.: Preprint submitted to Elsevier Page 7 of 22



Short Title of the Article

Algorithm 1 Simulation process of construction company
portfolio
Require: Initialize the 3D matrix with zeros.
Ensure: values = Create the random values for the number

of project, task, and resource.
1: Output = matrix
2: for 𝑖 ← 1 to 𝐶 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 do
3: 𝑝𝑟𝑜𝑗_𝑖𝑑𝑥 ← 𝑓𝑙𝑜𝑜𝑟(𝑖∕𝐶) ⊳ index of the project
4: 𝑡𝑎𝑠𝑘_𝑖𝑑𝑥 ← 𝑓𝑙𝑜𝑜𝑟(𝑖∕𝐶) ⊳ index of the tasks per

project.
5: 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜_𝑣𝑎𝑙𝑢𝑒𝑠 ← 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]
6: for 𝑗 ← 0 to 3 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑡𝑦𝑝𝑒 do
7: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜_𝑣𝑎𝑙𝑢𝑒𝑠[𝑗]
8: 𝑚𝑎𝑡𝑟𝑖𝑥[𝑝𝑟𝑜𝑗_𝑖𝑑𝑥][task_idx][j]←

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑣𝑎𝑙𝑢𝑒
9: end for

10: end for

Consider the unified representation components 𝑠(𝑡) ∈
 are

𝑠(𝑡) = (𝐂,𝐃(𝑡),𝐩(𝑡), 𝑟(𝑡)) (7)
Let’s break down the interpretation of each component:

• 𝐂 denotes the construction company portfolio simu-
lation,capturing the holistic view of the construction
company’s portfolio simulation. It includes details
about project timelines, resource constraints, and the
status of stopped projects.

• 𝐃(𝑡) represents project indicating whether there is
any more data at the device on construction portfolio
simulation or whether any more individual projects
need to be discovered at time 𝑡. It accounts for the
existence of data, the need for project discovery, and
other project-specific details.

• 𝐩(𝑡) represents the ARA state at time 𝑡 and captures
the ongoing decision-making process.

• 𝑟(𝑡) represents the ARA remaining decision of in-
dividual project at time 𝑡. It is a critical parameter
guiding the ARA in managing time-sensitive resource
allocation decisions.

The action 𝑎(𝑡) ∈  of the ARA at time 𝑡 is listed as one of
the alternative actions

 = { next, previous, assign, ignore, hold }

The reward function plays a pivotal role in shaping
the decision-making process of the ARA. It is designed to
provide a quantitative measure of the desirability of differ-
ent states and actions, guiding the ARA towards optimal
resource allocation strategies. Tuning parameters within the
reward function allows for flexibility in adapting to different
construction scenarios and project priorities. The reward
function’s adaptability is crucial for ensuring that the ARA

can dynamically adjust its decision-making strategies based
on the evolving nature of the construction projects. There are
four elements that make up the generalized reward function
𝑅(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1)) :

• 𝑟𝑐 (positive): used to cover the reward derived from
the collected information or the number of new target
projects covered, comparing 𝑠(𝑡 + 1) and 𝑠(𝑡).

• 𝑟𝑠𝑐 (negative) When an ARA must avoid colliding
with a project or constraints of resources, a safety
controller penalty will be imposed.

• 𝑟dec (negative) represents the penalty When the ARA
does not complete the tasks or make decisions. This
component encourages the ARA to prioritize tasks
efficiently, penalizing delays or failure to complete
assigned tasks within the defined time frame.

• 𝑟delay (negative) penalty for residual resource penalizes the de-
lay in resource utilization due to the safe initiation
(time delay gets zero) of individual projects. It as-
sesses the ARA’s ability to manage time effectively. It
rewards decisions that contribute to minimizing delays
in task execution, ensuring timely project completion.

These reward elements capture various aspects of the
ARA’s decision-making process and the associated trade-
offs including information coverage, safety considerations,
task completion penalties, and time delay management. By
considering these rewards, the RL framework can guide the
ARA in making optimal resource allocation decisions while
considering safety, completion of tasks, and minimizing
delays. The POMDP formulation, as outlined above, guides
the ARA in making optimal decisions under fluctuating
project statuses, unforeseen delays, and changing resource
requirements challenging conditions.

The next subsection provides a detailed explanation of
the construction company portfolio simulation processing.
These processed simulation maps play a crucial role in the
subsequent stages of the methodology, aiding in improving
the agent’s performance and facilitating the interpretation of
the resource state.
4.1. Construction Company Portfolio Simulation

Processing
It is necessary to use two simulation map processing

steps in order to facilitate the interpretation of the large
resource state presented in Eq. 6. Also, for the purpose
of improving the agent’s performance, the simulation map-
ping should be centered around its position. By using this
approach, the resource state representation size is further
increased, which is an advantage. Moreover, the centered
simulation map is presented as two inputs: detailed indi-
vidual project information, showing the agent’s unreliable
surroundings, and squeezed portfolio information, showing
the whole portfolio. This is how the three functions are math-
ematically described, which compose the main contribution
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Figure 3: Portfolio and Individual Project Information Simulation Mapping with DDQN architecture.

of this work. An illustration of the data pipeline can be found
in Fig. 3.

Given a tensor 𝐀 ∈ 𝐼𝐶×𝐶×𝑛 describing the layers of
the construction company portfolio, a centered tensor B ∈
𝐼𝐶𝑚×𝐶𝑚×𝑛 with 𝐶𝑚 = 2𝐶 − 1 is defined as follows:

𝐁 = 𝑓center
(

𝐀,𝐩, 𝐱pad
) (8)

According to the following definition of the centering func-
tion:

𝑓center ∶ 𝐼𝐶×𝐶×𝑛 × ℕ2 × 𝐼𝑛 ↦ 𝐼𝐶𝑚×𝐶𝑚×𝑛 (9)
The components of 𝐁 according to the components of 𝐀 are
defined as:

𝐛𝑖,𝑗 =
⎧

⎪

⎨

⎪

⎩

𝐚𝑖+𝑝0−𝐶+1,𝑗+𝑝1−𝐶+1, 𝐶 ≤ 𝑖 + 𝑝0 + 1 < 2𝐶
∧𝐶 ≤ 𝑗 + 𝑝1 + 1 < 2𝐶

xpad , otherwise
(10)

The padding value 𝐱pad is effectively applied to the project
layers of the construction company portfolio of 𝐀. There is a
vector value of dimension 𝐼𝑛 in 𝐚𝑖,𝑗 ,𝐛𝑖,𝑗 , and a vector value
of dimension 𝐱pad . There are two problems, namely con-
straints and stopped projects. To solve them, the construction
layers are padded with [0, 1, 1, 0]T. Centering is qualitatively
explained in [21] and illustrated with an example. Portfolio
and individual project information simulation mapping can-
not be performed without using the tensor 𝐁 ∈ 𝐼𝐶𝑚×𝐶𝑚×𝑛,
which is the result of the simulation map centering function
in which portfolio simulation map scaling is called 𝑝𝑜𝑟𝑡 and
project simulation map size is called 𝑝𝑟𝑜𝑗. At the initial step,
the simulation map of an individual project must be created
according to:

𝐗 = 𝑓project (𝐁, 𝑝𝑟𝑜𝑗) (11)
by using the individual project simulation map function
defined by:

𝑓project ∶ 𝐼𝐶𝑚×𝐶𝑚×𝑛 × ℕ ↦ 𝐼proj ×𝑝𝑟𝑜𝑗×𝑛 (12)

When 𝑋 is compared to 𝐵, the following elements are
presented:

𝐱𝑖,𝑗 = 𝐛
𝑖+𝐶−∣ 𝑙2

]

,𝑗+𝐶−
⌈

𝑙
2 ∣

(13)

As a result of this operation, a size 𝑙× 𝑙 central crop has been
obtained.

In order to create the portfolio simulation map, the
following criteria are used:

𝐘 = 𝑓portfolio (𝐁, 𝑝𝑜𝑟𝑡) (14)

𝑓portfolio ∶ 𝐼𝐶𝑀×𝐶𝑀×𝑛×ℕ ↦ ℝ
|

|

|

|

𝐶𝑚
port

|

|

|

|

×
|

|

|

|

𝐶𝑚
port

|

|

|

|

×𝑛 (15)

𝐘 is composed of the following elements when compared to
𝐁 :

𝐲𝑖,𝑗 =
1

𝑝𝑜𝑟𝑡2

𝑝𝑜𝑟𝑡−1
∑

𝑢=0

port-1
∑

𝑣=0
𝐛𝑝𝑜𝑟𝑡,𝑖+𝑢,𝑝𝑜𝑟𝑡,𝑗+𝑣 (16)

which is an operation equal to the average pooling.
By using 𝑙 and 𝑔, respectively, we can parameterize the

functions 𝑓project and 𝑓portfolio . Project simulation maps are
larger when 𝑙 is increased, whereas the average pooling of
individual projects is larger when 𝑔 is increased, resulting in
portfolio simulation maps being smaller.

These simulation processing steps allow for a more man-
ageable representation of the construction company portfo-
lio and individual projects. The resulting simulation maps
provide focused and compact information that is conducive
to effective decision-making by the agent. The data pipeline,
as illustrated in Figure 3, showcases the flow of information
from the construction company portfolio to the creation
of individual project and portfolio simulation maps, high-
lighting the importance of these processing steps in the
methodology. In ‘Site32’, the model architecture consists of
two convolutional branches, portfolio and individual project.
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For portfolio, the initial input size at layer 1 is 21x21x4, rep-
resenting a 4-channel input image with a spatial dimension
of 21x21. This input undergoes convolutional operations,
resulting in an output size of 17x17x16 in layer2. The
subsequent layer, layer2, further transforms this feature map
to a size of 13x13x16. Simultaneously, individual project
starts with an initial input size of 17x17x4, which is pro-
cessed through convolutional layers to produce an output
size of 13x13x16 in conv layer 2. The two branches are
then concatenated, creating a composite feature map that
is fed into a three fully connected layer with a size of 256
neurons. In ‘Site50’, there are adjustments in the input sizes
for both branches. For portfolio, the initial input size at layer
1 is now 19x19x4, leading to a conv layer 2 output size of
15x15x16. Similarly, individual project maintains the same
input size configuration as in State 1 (17x17x4), resulting
in an identical conv layer 2 output size of 13x13x16. The
concatenated feature maps from both branches are then
passed through three fully connected layers with a size of
256 neurons, maintaining consistency with ‘Site32’.

The POMDP formulation provides the theoretical foun-
dation for modeling the resource allocation problems, while
the simulation processing steps enhance the practical imple-
mentation of the methodology. By combining the POMDP
formulation with simulation processing techniques, the met-
hodology achieves a comprehensive and practical approach
to solving resource allocation problems. The simulation
maps generated through the processing steps serve as inputs
to the POMDP framework, allowing for more accurate and
focused decision-making by the agent. As a result, these
components provide a powerful framework for addressing
resource allocation problems, enabling effective decision-
making in complex and dynamic construction company en-
vironments.

The following subsection introduces the observation
space Ω, consisting of individual project and portfolio
observations, and outlines the mapping functions to generate
these observations. The use of partial observability and com-
pression techniques improves the efficiency and scalability
of the methodology, enabling the agent to effectively han-
dle resource allocation problems in a resource-constrained
environment.
4.2. Observation Construction Company Portfolio

Simulation
The observation space, denoted by Ω, is defined as the

product of two components: Ω𝑙 and Ω𝑔 . Ω𝑙 represents the
observation of individual projects, while Ω𝑔 represents the
observation of the portfolio. The individual project obser-
vation is a fundamental element of the observation space,
capturing detailed information about each project within
the construction company portfolio like project progress
status and resource requirements and constraints. Also, the
portfolio observation provides a holistic view of the entire

construction company portfolio, allowing the ARA to under-
stand the broader context in which resource allocation deci-
sions are made such as aggregate resource utilization across
all projects and global resource constraints and availability.

Ωwhich is the observation company portfolio simulation
for the agent, is given as follows:

Ω = Ω𝑙 × ℕ × Ω𝑔

When Ω𝑙 = ℝproj × proj ×3 × 𝐼proj ×𝑝𝑟𝑜𝑗 and Ω𝑔 =

𝐼
|

|

|

𝐶𝑚
port

|

|

|

×||
|

𝐶𝑚
port

|

|

|

×3×𝐼
⌊

𝐶𝑚
port |×|

𝐶𝑚
port

⌋

are applied to the project and
portfolio simulation map, respectively, and the project-layers
are compressed using the average pooling, the company
portfolio layers become real instead of boolean. By using
the tuple, we define the observations 𝑜(𝑡) ∈ Ω :

𝑜(𝑡) =
(

𝐂𝑝𝑟𝑜𝑗(𝑡),𝐃proj (𝑡),𝐂𝑝𝑜𝑟𝑡(𝑡),𝐃𝑝𝑜𝑟𝑡(𝑡), 𝑟(𝑡)
) (17)

A project and portfolio observation of the company port-
folio simulation is represented by 𝐂𝑙(𝑡) and 𝐂𝑔(𝑡) in the
observation. A project observation is D𝑙(𝑡), and a portfolio
observation is D𝑎(𝑡). There is a similar time delay 𝑟(𝑡) for
the ARA in the resource state. Because the ARA moves
along a time-dependent path, both the project and portfolio
simulation observations are time-dependent. The mapping
function  ∶  ↦ Ω describes how the resource state
is transformed into observation resources as shown in Eq.
18. The function defines the observation components based
on the project and portfolio simulation maps. It utilizes
the functions 𝑓project and 𝑓portfolio to create the project and
portfolio observations, respectively. These functions employ
the centered simulation maps generated in the previous
subsection and apply the necessary compression techniques
to obtain the desired observation representations.

𝐂proj (𝑡) = 𝑓project
(

𝑓center
(

𝐂,𝐩(𝑡), [0, 1, 1]T
)

, proj )

𝐃proj (𝑡) = 𝑓project
(

𝑓center (𝐃(𝑡),𝐩(𝑡), 0), 𝑝𝑟𝑜𝑗
)

𝐂port (𝑡) = 𝑓portfolio
(

𝑓center
(

𝐂,𝐩(𝑡), [0, 1, 1]T
)

, port )

𝐃port (𝑡) = 𝑓portfolio
(

𝑓center (𝐃(𝑡),𝐩(𝑡), 0), port )
(18)

In this case, the issue is intentionally transformed into a
partially visible Markov decision processes resource Ω by
supplying it to the agent instead of the resource state  .
Project simulation maps are restricted in size, and portfolio
simulation maps are averaged. Hence, partial observability
results show that partial reliability does not exacerbate the
problem unsolvable for memoryless agents, as well as that
the neural network becomes significantly smaller after com-
pression, resulting in substantially less training time.

The simulation processing steps presented in Subsection
4.1 serve as a preprocessing stage to create simulation maps,
which are then utilized in the construction of observation
resources discussed in Subsection 4.2. The simulation maps,
representing the construction company portfolio and indi-
vidual projects, are centered and compressed to provide
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focused and concise information. These maps, along with
the time delay information, form the observation resources
that enable the agent to make informed decisions.

By combining the simulation processing techniques with
the construction of observation resources, the methodology
achieves a comprehensive approach to solving resource al-
location problems. The simulation maps provide a realistic
and interpretable representation of the construction envi-
ronment, while the observation resources enable the agent
to effectively navigate and allocate resources within this
environment. As a result, these components form a cohesive
framework for addressing resource allocation problems. The
simulation processing steps provide focused information,
while the observation resources offer a partially observable
view of the resource state, enhancing the efficiency and
effectiveness of the decision-making process.

These techniques and parameters contribute to the ef-
ficient learning and decision-making process of the agent
in solving the resource allocation problems within the con-
struction company simulation.
4.3. Double Deep Reinforcement Learning -

Neural Network
A reinforcement learning approach can be used to solve

the POMDP outlined above, specifically double deep Q-
networks (DDQNs) [43]. According to DDQNs, each pair
of state-action values is approximated as follows:

𝑄𝜋(𝑠(𝑡), 𝑎(𝑡)) = 𝔼𝜋

[ 𝑇
∑

𝑘=𝑡
𝛾𝑘−𝑡𝐼(𝑠(𝑘), 𝑎(𝑘), 𝑠(𝑘 + 1))

]

(19)

An agent approximates the state-action values using a dis-
count factor 𝛾 and an expectation over the policy 𝜋. A replay
memory stores (𝑠, 𝑎, 𝑟, 𝑠′) the experiences (𝑠(𝑡), 𝑎(𝑡), 𝑖(𝑡), 𝑠(𝑡+
1)) that the agent collects as it explores the construction com-
pany simulation, omitting temporal information to converge
to the optimal Q-value. 𝜃 and 𝜃̄ are used to parametrize two
Q-networks. 𝜃 updates the first Q-network by reducing and
minimizing the squared difference between the current Q-
value estimate and the target value as described in Eq. 20.
The target value is calculated based on the reward 𝑟(𝑠, 𝑎) and
the maximum Q-value of the next state.

𝐿(𝜃) = 𝔼𝑠,𝑎,𝑠′∼

[

(

𝑄𝜃(𝑠, 𝑎) − 𝑌
(

𝑠, 𝑎, 𝑠′
))2

]

(20)
The replay memories are based on experiences. The target
value is as follows:

𝑌
(

𝑠, 𝑎, 𝑠′
)

= 𝑟(𝑠, 𝑎)+𝛾𝑄𝜃̄

(

𝑠′, argmax
𝑎′

𝑄𝜃
(

𝑠′, 𝑎′
)

)

(21)

A soft update parameter 𝜏 ∈ (0, 1] is applied to the parame-
ters of the second Q-network as 𝜃̄ ← (1−𝜏)𝜃̄+𝜏𝜃. Moreover,
The second Q-network parameters gradually approach the
parameters of the first Q-network. As a means of addressing
training sensitivity to replay memory size, Zhang and Sutton
[78] propose combined experience replay. This technique

helps stabilize the training process by sampling experiences
from multiple replay memories.

Fig. 3 depicts how both Q-networks are designed using
neural networks. Project and portfolio observation compo-
nents are generated by stacking and centering the target
resource assignment and construction company simulation
around the ARA. The constructed tensors are put into two
branches of convolutional layers which then flatten and con-
catenate with the remaining time to the start point of individ-
ual projects before passing through three hidden layers using
Rectified Linear Unit (ReLU) activation functions [79]. Em-
ploying a SoftMax function for exploration or argmax func-
tion for exploitation, a layer without an activation function
represents the Q-values directly. To determine scalability,
the flatten layer should be of a size that provides adequate
scalability. It is calculated by the following equation:

𝑁 = 𝑛𝑐

(

(

proj −𝑛𝑘

⌊

𝑆𝑘
2

⌋)2
+
(

∣
𝐶𝑚
port

⌋

− 𝑛𝑘

⌊

𝑆𝑘
2

⌋

)2
⎞

⎟

⎟

⎠

+1

(22)
with 𝑛𝑐 representing the number of kernels, 𝑛𝑘 representing
the number of convolutional layers, and 𝑠𝑘 representing
the number of kernel sizes. A portfolio-project construction
company simulation processing scenario with 𝑝𝑜𝑟𝑡 = 1 scal-
ing parameter and 𝑝𝑟𝑜𝑗 = 0 size parameter means that there
will be no down-sampling and no additional project simula-
tion map. In Table 2, the used parameters for evaluation were
listed. Also, determining appropriate parameters is a crucial
step to ensure the model’s effective performance. Parameters
like learning rate, batch size, the number of convolution
and fully connected layers, Number of kernels, Convolution
kernel width, and the number of hidden units are considered
as hyperparameters, were determined through a grid search.

As a result, the combination of DDQNs and the neural
network architecture presents a promising approach for tack-
ling the resource allocation challenges in the construction
industry. By leveraging reinforcement learning techniques
and neural network modeling, the ARA can learn effective
strategies for allocating resources in dynamic and partially
observable environments, improving the overall efficiency
and performance of construction projects.
4.4. Simulation Setup

The ARA decides in two different construction company
simulations. In Fig. 4 (a and c), ’Site32’ has a grid of 32
by 32 projects with two starting and finishing points on
the top left and bottom right corners. Stopped projects are
also presented along with regular construction site patterns.
There are a start point and a finish point around the target
project in the ’Site50’ scenario Fig. 4 (b and d). Stopped
projects are more prominent at the bottom of the simulation
map since they are generally larger and more spaced out. As
the ’Site50’ simulation map shows, it includes roughly larger
projects. The legend for the plots provided by Table 3 shows
the project sizes for the scenarios.
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Table 2
Hyperparameters for two different construction company simulations.

Description 32*32 50*50 Parameters
Trainable weight 1,176,302 979,694 ‖𝜃‖
Project construction company simulation size 17 17 𝑝𝑟𝑜𝑗
Portfolio construction company simulation scaling 3 5 𝑝𝑜𝑟𝑡
Number of convolution layers 2 2 𝑛𝑘
Number of kernels 16 16 𝑛𝑐
Convolution kernel width 5 5 𝑠𝑘
Number of fully connected layers 3 3 𝑓𝑘
Number of neurons 256 256 ℎ𝑘

CRA: In this process, project sizes with different start
and finish times and resource types are randomly sampled
and layered, creating partially connected target projects. As
an evaluation metric, the allocation of resources is tradition-
ally used for CRA. This metric does not provide meaningful
comparisons unless full coverage can be achieved. In this
work, time delay which is constraining CRA is explored
since full coverage is rarely feasible. Therefore, coverage
ratio (CR) and coverage ratio and resources (CRAR) are
defined as the evaluation metrics, which are both equally
weighted if the ARA achieved success in resource alloca-
tion and zero otherwise. The CR is defined as the ratio of
the number of target projects covered by the ARA to the
total number of target projects in the construction company
simulation. It measures the ARA’s ability to successfully
allocate resources and achieve coverage. The CRAR metric
combines the CR with the consideration of time constraints.
It assigns equal weight to both coverage and resource allo-
cation success. The CRAR is calculated as follows:

𝐶𝑅𝐴𝑅 = 𝐶𝑅 ∗ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑐𝑐𝑒𝑠𝑠 (23)
The CRAR metric is beneficial due to combining both goals,
namely achieving high coverage and considering time con-
straints that impact target resources.

By utilizing randomly generated target projects as a base-
line, the methodology enables meaningful comparisons of
the ARA’s performance across different scenarios. This ap-
proach allows for the evaluation and comparison of resource
allocation strategies in dynamic construction environments,
highlighting the effectiveness of the proposed methodology.
As a result, the simulation provides an accurate assessment
of the ARA’s ability to achieve coverage while efficiently
allocating resources within the given time constraints.
4.5. Data Harvesting

DH involves the ARA determining communication lev-
els with devices by construction company simulation con-
stant individual projects. The data rate is calculated using
the same communications’ channel parameters such as [21]
for distance, random shadow fading, and LoS conditions.
Similar to CRA, the size of the resources is not a relevant
metric. Because of randomly changing connections, data
amounts, and minimum time delays of IoT devices, all data

cannot be collected in all scenarios. As a result, CR is used
as the evaluation metric to describe the ratio of the obtained
and accessible information, as soon as the information is
gathered across all devices. Based on the CRA, the full infor-
mation set and resource allocation performance are shown in
one normalized metric by the CRAR in this context.

Overall, the motivation for DH lies in the need for a
continuous and uninterrupted stream of information to fa-
cilitate proactive decision-making in dynamic construction
environments. The continuous stream of data allows the
RL model to adapt and learn optimal resource allocation
strategies, addressing the dynamic nature of construction
sites. Also, this paper introduces communication time slots
to align the operation of communication systems with the
decision time slots of the ARA system. This integration
ensures that the collected data is efficiently utilized within
the RL framework, emphasizing the synergy between data
harvesting and RL-based decision-making. Equations such
as Eq. 4 and Eq. 5 are instrumental in modeling information
rate and signal-to-noise ratio, essential for effective data
collection and transmission. The integration of these equa-
tions into our framework showcases the interplay between
IoT data and RL processes in shaping resource allocation
strategies. Through simulation and iterative RL processes,
our ARA system learns and adapts based on real-time data.
This iterative learning process is powered by the continuous
data stream, demonstrating the indispensable role of data
harvesting in creating the autonomous resource allocation.

5. Performance Evaluation
Approximately 20-50% of the available projects were

covered by CRA agents trained on target projects containing
3-8 resources. A ’Site32’ decision range of 50-150 steps
was used, while a ’Site50’ decision range of 150-250 steps
was used. A DH scenario involves placing 3-10 devices
in the project at random locations. Each device contains
5.0-20.0 data units. A detailed analysis of four scenarios
is presented. According to Fig. 4 (a and b), the agents in
the CRA scenarios are able to find most of the resources
they need to complete the target project. There is some
coverage for projects which do not require much resources.
The coverage of small projects is incomplete since detours
are avoided. While most of the target projects are efficiently
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Figure 4: Examples of simulating CRA and DH scenarios using the Monte Carlo approach for the ARA system. The subfigure
(a) and (b) illustrate CRA and DH of “Site32” scenarios, respectively. Likewise, subfigure (c) and (d) illustrate CRA and DH of
“Site50” scenarios, respectively. The subfigure (c and d) shows excellent performance from the agents in the DH scenarios. This
scenario results in a collection ratio of 99.1% as small bits of information are left at the green and gray devices by the agent.

covered, there are a few exceptions. Fig. 4 (c and d) shows
excellent performance from the agents in the DH scenarios.
This scenario results in a collection ratio of 99.1% as small
bits of information are left at the green and gray devices by
the agent. It uses only 92 out of 150 possible decisions to
find a concise resource. ’Site50’ demonstrates that the agent
collected all the data and returned them by some decision
steps left over. Two million steps were completed by all four
agents. According to the results of a Monte Carlo simulation
using 1000 Monte Carlo scenarios (Table 4), the allocation
of resources performed by all four agents is good, but that of
the Site50 agent is marginally better.

A representation of the ARA algorithm and scheduling
optimized for the projects of a construction contractor is pro-
vided in Fig. 5. The Gantt chart is depicted for a construction
portfolio containing several tasks of a number of ongoing

projects. In fact, the company has six projects in its portfo-
lio, including one that has been stopped completely. These
projects are different in size, tasks, and required resources
at the same time. Also, a number of tasks, including civil,
electrical, and mechanical, are running in parallel while two
have been stopped. In addition, three types of resources
are available depending on the task type, namely human
resources, material, and equipment. Based on the duration
and immediate predecessors and successors, the determined
tasks are scheduled, and Early Start (ES), Late Finish (LF),
and float are defined. The amounts of available resources
are reported daily through DH, collected from IoT across
all projects. Then, the resources are allocated to active tasks
considering their reported requests for different resources.
This process is performed in a way that the projects would
be completed in the shortest possible time without or with
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ES LF D F 1 2 3 4 5 6 7 8 9 10 11
Human resource 4

Material 40
Human resource 2

Material 10
Electrical-Task 5 - - 2 8 5 2 Stopped

Human resource 9
Material 80

Equipment 3
Human resource 3

Material 45
Human resource 3

Material 20
Human resource 6

Material 90
Equipment 3

Human resource 5
Material 55

Civil-Task 1 - - 1 5 3 1 Stopped
Human resource 4

Material 35
Human resource 7

Material 80
Equipment 2

6 Civil-Task 3 - - 2 6 3 2 Stopped

R-Rqst Resource Request 10 10 8 9 7 5 10 12 11 12 9
ES Early Start 100 100 90 100 70 50 90 70 70 70 50
LF Late Finish 0 5 6 5 3 4 5 6 7 9 6
D Duration 0 30 60 60 60 70 70 60 50 40 30
F Float 18 17 17 19 16 20 19 19 18 19 8

Earlier Finished 250 250 180 180 170 150 150 140 100 100 90
Delayed 5 5 5 3 4 4 4 4 3 3 3

Timeline (day)

1
Mechanical-Task 1 1 8 4 4 Active

Electrical-Task 3 1

Project Task Resource R-Rqst Schedule Status

2
Civil-Task 7 1 6 4

3

Mechanical-Task 3 1 7 6

Electrical-Task 4

Civil-Task 10 2 8 4 3

Legend Daily Available Resources: 

Active

5

Electrical-Task 5 2

Civil-Task 10 1 7 6 1 Active

4
Mechanical-Task 2 2 6

Active2 5 3

2 6 3

Active

1 Active

2

2

3 8 4 Active

Active

4 1

Active

Equipment

Human resource- Mechanical

Human resource- Electrical
Material- Mechanical

Material- Electrical
Human resource - Civil

Material - Civil

Figure 5: Autonomous resource allocation and optimized scheduling for a sample scenario in projects of a construction company.

Table 3
Legends for DH and CRA simulation plots of Fig. 4.

Mode Description Symbol

Start and finishing point

Stopped projects

DDQN Input Projects’ loss wireless links

IoT device

CRA: Remaining target project

DH: Summation of resource

DH: Updating while communicating with green device

Visualization DH: Deciding while communicating with green device

CRA: Not covered and covered resource

Actions without communication

minimum delays and penalties. Furthermore, regarding the
optimum resource utilization is one of the objectives of this
model. That is to say, the selected project (s) for resource
allocation every day should be the one(s) that use(s) as many
available resources as possible, which helps with resource-
leveling. Overall, Fig. 5 shows only an example of what

Table 4
Averaging of random scenario Monte Carlo simulations over
1000 iterations was used to determine performance metrics.

Metric Site32: CRA Site32: DH Site50: CRA Site50: DH
Due time 98.6% 98.4% 98.2% 99.4%
CR 71.8% 85.6% 83.5% 77.5%
CRAR 72.3% 83.5% 81.1% 77.2%

the ARA model can do. Actually, this model can also be
employed in larger or smaller companies. Moreover, the
model can be utilized in every stage of the project, both from
the beginning and the middle of the project as can be seen in
Fig. 5.

In the Gantt chart as shown in Fig. 5, the best duration
for the portfolio was determined by the proposed RL-based
model, as expected. First, there were many violations of
resource constraints in this portfolio, so intervention was
required to remove them. However, doing these interven-
tions manually would not be desirable, since it is very time-
consuming especially when it is required immediately by
the managers in meetings. In this case, manually solving a
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Table 5
Flatten layer size for a comparison between two different strategies of simulation map processing, 𝑝𝑜𝑟𝑡 and 𝑝𝑟𝑜𝑗.

Portfolio construction company Project construction company simulation scaling 𝑝𝑟𝑜𝑗
simulation scaling 𝑝𝑜𝑟𝑡 9 17 25 33

2 8,581 9,751 13,189 18,455
3 2,751 4,003 7,339 12,704
5 274 1,543 4,882 10,254
7 33 1,323 4,631 10,015

Table 6
A comparison between two different strategies of simulation map processing in terms of the training time speedup.

Portfolio construction company Project construction company simulation scaling 𝑝𝑟𝑜𝑗
9 17 25 33

simulation scaling 𝑝𝑜𝑟𝑡 CRA DH CRA DH CRA DH CRA DH
2 2.7 2.3 2.3 2.0 1.8 1.5 1.2 1.1
5 3.4 2.9 3.1 2.4 2.0 1.8 1.6 1.4
7 4.3 3.5 3.4 3.1 2.5 2.3 1.8 1.6

small problem could take a lot of time. As such, it cannot
be repeated several times to analyze different situations
during a meeting. However, it is possible to produce similar
results within seconds employing automated methods such
as GA and RL. Indeed, both of them are capable of auto-
matically generating resource allocation avoiding violating
constraints. In forthcoming meetings, such algorithms can
be used to instantly compute the effects of made decisions,
in a short time. The GA takes a minute for computation,
while the RL algorithm only takes a second. The problem
becomes complicated when GA should be adapted to more
complex portfolios. Actually, GA is expected to perform
slower as the number of projects and resources increases and
resources become more constrained. Nevertheless, it was
found out that even when CPU time was taken into account,
the RL algorithm performed significantly better than the GA,
for generating solutions, in terms of computational time. In
addition, the RL algorithm maintains its quality in producing
optimal solutions regardless of scale or complexity, whereas
the effectiveness of the genetic algorithm’s result reduces.
As a result, an RL-based approach always outperforms a GA-
based approach with regard to processing time. Based on the
achieved results, the proposed RL approach in this paper
demonstrates its capability to support upcoming planning
by allocating resources for different scenarios in real time.
Therefore, it enables project managers to interactively assess
the impact of different strategies and constraints on project
duration and then make the optimal decision. As part of
this method, the IoT and automated DH technologies are
incorporated to assist project managers to plan ahead for
error-free resource management.
5.1. Portfolio-Project Parameter Evaluation

Our study tested multiple situations by single agent with
different variables on the CRA and DH problems in order to

determine whether the new hyper-parameters have a signifi-
cant impact on the performance. To test each possible com-
bination, three agents for four values of 𝑝𝑟𝑜𝑗 as well as four
values of port were trained. Furthermore, three agents were
trained without project and portfolio construction company
simulation processing which would correspond to 𝑝𝑟𝑜𝑗 = 0
and 𝑝𝑜𝑟𝑡 = 1. Based on 200 Monte Carlo scenarios, 51
agents were created for the CRA and DH problems. There
was a difference between the previous assessment and this
one because 150-300 decision steps were used. Following
are the parameters selected according to (19) and the flatten
layer size, as can be seen in Table 5. The CRAR values for
the CRA and DH problems are shown in Fig. 4 (a and b),
respectively, for each agent’s flatten layer size. The training
process is significantly faster than that for agents without
portfolio and project simulation map processing. Parameters
are more important in the DH problem than in the CRA
problem, as can be seen in Table 6. Flattening layers are
generally more effective up to a point when they have a
larger thickness. CRAR can be zero for some runs for both
problems because of a large flatten layer. In this case, the
agent does not properly allocate resources due to a lack
of learning. As DH agents don’t use the portfolio-project
simulation map approach, they have a very low CRAR score
since they don’t learn how to allocate consistently. Table 2
shows that the agents with 𝑝𝑟𝑜𝑗 = 17 and 𝑝𝑜𝑟𝑡 = 5 or
𝑝𝑜𝑟𝑡 = 3 present the best performance in both scenarios
despite their small flatten layer sizes of only 33 neurons.
Apart from these two parameter combinations, the agents
with 𝑝𝑜𝑟𝑡 = 7 and 𝑝𝑟𝑜𝑗 = 9 also perform well with these
parameters.

A comparison of the time for resource allocation using
various strategies is presented in Table 6, which shows
that CRA and DH will be able to train with the proposed
method of portfolio simulation processing faster than when
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no portfolio simulation processing is used. As a result, in
the proposed method, there is no limitation in scheduling
and allocating resources according to the number of projects.
Although increasing the number of projects makes GA im-
practical due to the computation time, it will not change
the computation time for resource allocation and project
scheduling in the proposed method. Also, it can lead to non-
optimal scheduling and allocation by the GA.
5.2. DRL Evaluation

We compare the performance of three RL algorithms,
namely our approach without individual project informa-
tion (A), our approach with individual project information
(B), and our approach with individual project information
and simulation processing (C), in the context of resource
allocation in construction companies as shown in Fig. 6.
The performance is evaluated based on Fig. 6 in terms of
reward achieved at the different iterations of the training,
the time required for convergence, and overall performance.
The results provide insights into the effectiveness and weak-
nesses of these algorithms in improving resource allocation
simulations in the construction industry.

Our approach without individual project information (A)
demonstrates consistent improvement in reward over the
training process, with reward values decreasing from -75 at
the start to -15 at both the half and end training process. This
indicates that A’s resource allocation strategy effectively
adapts and optimizes over time. However, the time required
for convergence remains relatively high, decreasing from 90
units at the start to 40 units at the end. This suggests that
A may have a slower convergence rate compared to other
methods. Overall, A’s performance can be considered slow
in terms of convergence.

Our approach with individual project information (B)
exhibits a similar pattern of reward improvement, though the
magnitude of rewards is lower compared to A. The reward
values decrease from -38 at the start to -12 at the half and
-10 at the end. This suggests that B’s resource allocation
strategy is effective, but may not achieve the same level of
optimization as A. In terms of convergence time, B shows
a moderate performance, with a reduction in time from 90
units at the start to 38 units at the end. The moderate con-
vergence assessment indicates that B’s strategy may require
additional iterations to reach an optimal solution.

Our approach with individual project information and
simulation processing (C) stands out with significantly bet-
ter reward values compared to both A and B. The reward
decreases from -18 at the start to -7 at the half and further
to -2 at the end. This indicates that C’s resource allocation
strategy outperforms the other methods in terms of opti-
mizing project outcomes. However, the time required for
convergence is relatively high, decreasing from 90 units at
the start to 35 units at the end. This suggests that C may take
faster to converge compared to other methods. Nevertheless,
C achieves a high level of convergence, indicating its strong
potential for effective resource allocation.

A demonstrates consistent improvement in reward through-
out the project but has a relatively slower convergence rate.
B achieves moderate rewards and convergence, suggesting
room for further optimization. C outperforms both A and B
in terms of reward but has a faster convergence time. These
findings contribute to the understanding of RL methods
for resource allocation in construction and provide valu-
able insights for decision-making in construction project
management. Future research should focus on exploring
the underlying mechanisms of C and further improving the
performance of RL algorithms for resource allocation in
construction.

Table 7 provides a comprehensive overview of the dif-
ferent simulated construction scenarios used to evaluate the
ARA system in ‘Site50’ simulation. The scenarios are inten-
tionally diverse to test performance across varied conditions.
The number of projects ranges from just 5 in the simplest
scenario to 40 in the most complex, with correspondingly
increasing numbers of tasks per project from 5 to 80. This
represents construction environments from smaller scale
projects with few activities to large multifaceted programs.

The number of resource types also scales from 10 to 20
across the scenarios. Along with the growth in constraints
of all types - precedence, discrete resource, disjunctive,
logical, and parallel - this reflects the increasing complexity
of constraints and dependencies that have to be navigated
for successful resource allocation. At the low end, Scenario
1 has 30 precedence and 20 discrete resource constraints
among its 5 projects and 10 resource types. At the high end,
Scenario 8 has a robust 209 precedence constraints and 21
parallel constraints with its 40 projects, 80 tasks per project,
and 20 and 40 resource types.

Table 8 provides insightful performance comparisons
between the GA and DDQN approaches across the scenario
testing. On project duration, DDQN outperforms GA by 3-
583 days across the board, with its optimized allocation able
to complete projects much faster than the GA benchmark.
The advantages are even more pronounced on processing
time, with DDQN finishing in seconds to minutes while
GA takes minutes to over an hour. This demonstrates the
computational efficiency gains of DDQN for resource op-
timization. Further, DDQN achieves CR 79-81% versus 67-
75% for GA and CRAR of 80-82% versus 67-78% for GA.
This quantifies the substantially higher coverage realized by
DDQN for target project completion and resource allocation
within time constraints.

In Figs. 7 and 8, we present the number of resources
used per day for DDQN and GA across two representative
simulation scenarios based on Table 7. Each scenario reflects
a different level of complexity in terms of project size, task
distribution, and resource constraints. As depicted in the
figures, DDQN consistently achieves more efficient resource
allocation compared to GA in both scenarios. Specifically,
DDQN demonstrates a smoother and more balanced utiliza-
tion of resources over time, leading to optimized project du-
rations [80]. In contrast, GA exhibits more fluctuations and
inefficiencies in resource usage, resulting in longer project
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Table 7
Different simulation scenarios are described in detail.

Simulation Scenario Number of Project Number of Tasks per Projects Number of Resource type Number of Constraints of each type in the simulation scenario
Precedence Discrete resource Disjunctive Logical Parallel

1 5 5 10 30 20 4 10 10
2 5 10 20 58 40 6 10 12
3 10 10 10 82 20 9 10 5
4 10 20 20 110 40 4 10 9
5 20 20 10 69 20 5 10 14
6 20 30 20 123 40 5 10 14
7 40 40 10 167 20 8 10 18
8 40 80 20 209 40 9 10 21

Figure 6: The effect of using simulation maps processing and project information on resource allocation and optimized scheduling.
Method A is our approach without individual project information. Method B is our approach with individual project information,
just including portfolio information. Method C is our proposed method with simulation information processing

Table 8
Comparison of performance of DDQN and GA in different
simulated scenarios.

Simulation Scenario Project duration (Day) Processing time CR(%) CRAR(%)
GA DDQN GA DDQN GA DDQN GA DDQN

1 30 27 53 s 3 s 75.42 80.54 77.23 80.39
2 77 69 1 m59 s 7 s 75.67 79.23 78.92 80.04
3 230 187 8 m46 s 19 s 73.82 79.82 74.11 80.46
4 405 236 14 m39 s 35 s 72.12 80.92 72.34 81.54
5 512 218 24 m48 s 54 s 71.02 80.67 70.71 82.16
6 696 305 30 m8ss 102 s 70.02 81.73 70.13 81.82
7 822 328 52 m29 s 151 s 68.89 81.32 68.51 82.43
8 957 374 1 h33 m38 s 205 s 67.82 80.33 67.11 80.58

durations [80]. These findings align with the performance
metrics presented in Table 8, where DDQN consistently out-
performs GA in terms of project duration, CR, and CRAR.
By visually demonstrating the superiority of DDQN in re-
source allocation efficiency, Figs. 7 and 8 provide further
insight into why DDQN leads to shorter project durations
compared to GA.

Together, the scenario testing highlights that DDQN’s
reinforcement learning approach delivers faster, more op-
timal, and effective resource allocation across diverse and
complex simulated construction environments compared to
traditional GA optimization. The results powerfully validate
it as an exciting new technique for improving construction
planning.

Figure 7: Comparison of resource allocation between DDQN
and GA based on scenario 1 on Table 7 and the effect of
resource allocation on project duration.

5.2.1. Reward Function Evaluation
Table 9 provides a comprehensive insight into the in-

fluence of different reward components on the performance
of the ARA system in two construction company simula-
tions (Site32 and Site50). The positive reward component
(𝑟𝑐) consistently demonstrates its significance in enhancing
the Due Time metric, showcasing its efficacy in promoting
the timely completion of projects. Moreover, this positive
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Figure 8: Comparison of resource allocation between DDQN
and GA based on scenario 2 on Table 7 and the effect of
resource allocation on project duration.

Table 9
Effect of Reward Function Components on Performance Met-
rics.
Reward Component Metric Site32: CRA Site32: DH Site50: CRA Site50: DH

𝑟𝑐 (Positive)
Due Time 95.6% 96.4% 95.2% 96.4%
CR 70.8% 83.3% 81.7% 75.7%
CRAR 71.3% 81.5% 79.1% 76.6%

𝑟𝑠𝑐 (Negative)
Due Time 94.5% 95.8% 94.9% 95.2%
CR 70.2% 83.9% 82.1% 76.8%
CRAR 70.5% 82.7% 80.5% 76.1%

𝑟𝑑𝑒𝑐 (Negative)
Due Time 96.8% 95.2% 95.9% 96.5%
CR 71.5% 84.2% 80.4% 76.2%
CRAR 71.1% 82.1% 81.2% 75.8%

𝑟delay (Negative)
Due Time 99.2% 99.1% 99.2% 99.7%
CR 68.1% 74.0% 77.2% 71.3%
CRAR 69.0% 76.5% 77.4% 73.0%

𝑟𝑐 + 𝑟delay

Due Time 98.4% 98.1% 99.0% 99.5%
CR 70.5% 84.8% 82.9% 77.3%
CRAR 71.0% 83.3% 81.5% 76.4%

𝑟𝑐 + 𝑟𝑠𝑐
Due Time 97.9% 98.0% 98.1% 98.4%
CR 71.0% 84.2% 82.3% 77.1%
CRAR 71.8% 82.8% 80.8% 76.3%

𝑟𝑐 + 𝑟𝑑𝑒𝑐
Due Time 98.1% 98.3% 98.4% 98.7%
CR 71.3% 84.5% 82.7% 77.2%
CRAR 71.7% 83.1% 81.0% 76.5%

𝑟𝑐 + 𝑟𝑑𝑒𝑐 + 𝑟𝑠𝑐 + 𝑟delay

Due Time 98.6% 98.4% 98.2% 99.4%
CR 71.8% 85.6% 83.5% 77.5%
CRAR 72.3% 83.5% 81.1% 77.2%

impact extends to the CR and CRAR, signifying its role in
improving resource allocation success and overall coverage.

Conversely, the negative safety controller penalty (𝑟𝑠𝑐)introduces a subtle dynamic. While it marginally reduces
the Due Time metric, it concurrently leads to improvements
in CR and CRAR. This suggests that penalizing the ARA
for colliding with projects or resource constraints serves to
enhance safety and resource allocation success, thus high-
lighting the delicate trade-offs involved in balancing safety
considerations with efficiency.

Similarly, the negative decision penalty (𝑟𝑑𝑒𝑐) exhibits
a minor reduction in the Due Time metric but contributes
positively to CR and CRAR. This outcome suggests that pe-
nalizing incomplete tasks encourages the ARA to prioritize
and make decisions efficiently, aligning with the overall goal
of optimal resource allocation.

The most significant impact is observed with the nega-
tive delay penalty (𝑟delay), which significantly improves the
Due Time metric. This penalty effectively incentivizes the
ARA to manage time more judiciously, resulting in timely

project completion. Moreover, CR and CRAR benefit from
this penalty, underscoring the crucial role of time manage-
ment in resource allocation success.

The combinations of these individual reward compo-
nents provide further insights into the delicate balance re-
quired for an effective reward function. The combination
of 𝑟𝑐 + 𝑟delay maintains high Due Time metrics while im-
proving CR and CRAR, suggesting a balanced approach
between meeting deadlines and efficient resource allocation.
Combining 𝑟𝑐 + 𝑟𝑠𝑐 demonstrates positive impacts across
all metrics, emphasizing the importance of considering both
positive rewards and safety constraints for optimal perfor-
mance. Meanwhile, the combination of 𝑟𝑐 + 𝑟𝑑𝑒𝑐 strikes a
balance, leading to improvements in CR and CRAR without
compromising Due Time significantly. The comprehensive
combination of all reward components in 𝑟𝑐 + 𝑟𝑑𝑒𝑐 + 𝑟𝑠𝑐 +
𝑟delay yields high Due Time metrics and well-balanced im-
provements in CR and CRAR, underscoring the efficacy of
considering all aspects in the reward function for a holistic
and effective performance. Overall, the proposed reward
function, as encapsulated in the last row of the table, show-
cases not only the novelty but also the efficacy of integrat-
ing diverse elements to achieve a comprehensive and bal-
anced performance across various construction scenarios.
This approach considers safety, resource allocation success,
decision-making efficiency, and timely project completion,
making it a robust and adaptable framework for Autonomous
Resource Allocation in dynamic construction environments.

6. Discussions
Similar to any other research project, this study has

some limitations. However, our main motivation was to
address the limitations of existing approaches in resource
management. DRL’s design, our proposed model, allows us
to model the system dynamics smoothly and capture the
complex interactions among features of resource allocation.

One limitation of the proposed ARA system in this paper
is that it does not consider the detailed aspects of simulation,
such as transportation logistics and resource preparation.
While the system incorporates CRA and DH methods to
optimize resource allocation, it does not fully capture the
intricacies involved in transportation planning or the prepa-
ration of resources for construction projects.

Transportation logistics play a significant role in efficient
resource management. Factors such as the availability of
transportation modes, route optimization, and scheduling are
crucial for the timely delivery of resources to the project
sites. Ignoring these transportation details may result in
suboptimal allocation and delays in resource deployment,
ultimately affecting the overall efficiency of the construction
company.

Additionally, the preparation of resources, such as pre-
fabrication or assembly of components off-site, can signif-
icantly impact project timelines and resource utilization.
Failing to consider these aspects in the simulation may
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limit the system’s ability to optimize resource allocation
comprehensively.

The simplification of data collection in our simulation
is a deliberate choice aimed at maintaining the simplifica-
tion of the simulation. As indicated in Table 8, our model
demonstrates a commendable level of generalizability even
as the number of projects and resources increases. This
generalizability implies that the model’s effectiveness is not
compromised by the simplified data collection approach.
Importantly, this robust performance holds true even as the
system navigates diverse scenarios, showcasing its ability to
adapt to complex resource allocation dynamics. The inclu-
sion of additional constraints such as transportation logistics
and resource preparation would undoubtedly enhance the
realism of the simulation, we view these aspects as avenues
for future research. The current study focuses on the macro-
level optimization of resource allocation, and the deliber-
ate simplification allows us to emphasize the core princi-
ples of our innovative ARA system. The decision to add
more constraints, including those related to preparation and
transportation, can be considered in subsequent research to
further refine and expand the integrated resource allocation
system.

Although our suggested ARA system presents an innova-
tive approach for macro-level resource allocation optimiza-
tion, it also recognizes the necessity of a smooth integra-
tion with project-specific knowledge. In order to achieve
this integration, the decision-making and communication
pathways between the micro and macro levels of project
management must be carefully considered. Analyzing the
intricacies of this collaboration, we recognize the impor-
tance of empowering project managers with tools to input
project-specific constraints and preferences into the ARA
system. Through the provision of an interface, project man-
agers may offer their sophisticated comprehension of issues
encountered in the field, enabling the system to modify its
optimization tactics to more closely conform to the specifics
of each project. The ARA system’s practical usefulness is
reinforced by this analytical cooperation, which not only
improves resource allocation accuracy but also cultivates a
sense of ownership and participation among project man-
agers. Moreover, this collaborative framework’s creation of a
feedback loop is essential. The ARA system facilitates regu-
lar contacts between portfolio management and project man-
agers, which allow for ongoing learning and adaptation. The
system may be improved over time by feeding back dynamic
changes, unanticipated obstacles and issues unique to the
project. This analytical feedback loop ensures that the ARA
system remains responsive to the ever-changing demands
of construction projects, ultimately enhancing its efficacy
and relevance in real-world scenarios. Overall, the bridge
between project managers and portfolio management in the
context of the ARA system extends beyond a mere exchange
of information; it is a symbiotic relationship that leverages
the strengths of both micro and macro perspectives. By
empowering project managers with decision-making input
and establishing a feedback loop, our methodology not only

optimizes resource allocation but also creates a collabora-
tive ecosystem that thrives on adaptability and continuous
improvement.

DRL models, including the one proposed in our study,
strike a delicate balance between exploration and exploita-
tion during the learning process. This balance allows the
model to systematically explore a wide range of potential re-
source allocation strategies while exploiting learned knowl-
edge to refine the decision-making process. By maintaining
this equilibrium, our ARA system significantly reduces the
risk of being trapped in local optima and, instead, converges
toward more globally optimal solutions. Also, our paper
presents a thorough set of experimental results that reinforce
the efficacy of our approach in achieving global optima.
We demonstrate the ARA system’s consistent performance
across diverse scenarios, substantiating its ability to navi-
gate complex resource allocation dynamics and providing
evidence of its resilience against local optima. These exper-
imental validations serve to emphasize the robustness and
practical applicability of our proposed methodology.

There is no explicit or rigorous mathematical proof for
DRL models, due to their black box feature extraction nature.
However, our paper presents a comprehensive set of experi-
mental results that validate the performance of our proposed
method. Objective Key Performance Indicators (KPIs) such
as CRA and DH were employed to assess the effectiveness
of our model across various scenarios. Extensive experi-
ments were conducted to demonstrate the efficiency of our
approach in handling resource management portfolios and
accurately allocating resource. Additionally, we conducted a
detailed analysis to understand the contribution of different
sizes of projects to the overall performance. These anal-
yses, complemented by visualizations, provide compelling
evidence supporting the effectiveness of DRL in resource
management tasks.

7. Conclusions
As the construction industry is highly competitive, opti-

mal resource management is one of the most important roles
of the project manager. Computer application software offers
the advantage of accurate resource management which dis-
tinguishes them from manual methods. The main objective
of this paper is to present a general solution for Autonomous
Resource Allocation (ARA) that can be applied to two
distinct objectives, coverage resource allocation (CRA) and
data harvesting (DH). The reward function was designed
to combine specific objectives with decision constraints
so that DDQNs could efficiently assign resources in both
scenarios. In this paper, a novel portfolio-project simulation
map processing scheme was presented that determines how
simulation map parameters affect the learning performance
of the DRL agent, allowing large simulation maps to be
directly fed into convolutional layers.

The proposed model is beneficial for numerous projects
of different sizes and with different amounts of resources.
In spite of previous methods such as the GA, this model
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eliminates the computational weaknesses in terms of time
and complexity. In fact, a few seconds are required to per-
form calculations of optimal resource allocation, resource
leveling, and scheduling of projects. Furthermore, the pro-
posed model is designed in such a way that it can schedule
the rest of the tasks from any stage of the project. Due to the
very short time required for doing calculations and providing
results by this model, it can be used in every phase of the
project with the improvements of the model in the future.
For instance, using this model in decision-making meetings
enables senior managers to make the optimal decision.

The next step is to examine the remaining hindrances
to the application of our method to even larger construction
company simulation, namely micro-alternation of decisions
through macro-actions or options. In the future, it will also
be possible to perform experiments with realistic ARA sim-
ulators using the combination of the presented high-level
resource allocation approach and the low-level time delay
controller. The performance of resource allocation will be
further examined by investigating irregular projects and non-
convex obstacles. Also, future research explore integrating
transportation planning algorithms and resource preparation
strategies within the ARA system to overcome these limita-
tions. By incorporating these details into the simulation and
decision-making processes, the system would have a more
holistic view of resource management, enabling it to make
more accurate and efficient allocation decisions.
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