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Abstract.  We study the process of propagation of high harmonics 

of optical radiation in an active medium of a plasma-based X-ray 

laser, simultaneously irradiated by an intense optical field of funda-

mental frequency. It is shown that for moderate plasma dispersion 

of the active medium at the frequency of the modulating optical 

field, the energy and relative amplitudes of the harmonics at the 

output of the medium are determined by their phases at the entrance 

to the medium, as well as by the time-delay of the harmonics with 

respect to the modulating field. These dependences are due to inter-

ference of high-order harmonics with a set of multi-frequency fields 

generated by each of the harmonics in the process of coherent scat-

tering in a modulated active medium. The possibilities of using 

these effects to increase the efficiency of harmonic amplification, to 

control the harmonic spectrum, and determine the relative phases at 

the entrance to the medium are discussed on the example of the 

active medium of hydrogen-like Li2+ ions (with a 13.5 nm wave-

length of an inverted transition). 

Keywords: quantum interference, plasma-based X-ray laser, strong 
optical fields, high-order harmonics of optical field, amplification 
of X-ray radiation.

1. Introduction 

The control of the electromagnetic radiation – matter inter-

action on a sub-optical-cycle time scale is one of the most 

topical problems of modern optics. In addition to the deep 

fundamental significance, these studies open up the possibil-

ity of extremely fast (three orders of magnitude faster than 

the microwave electronics allows) electronic current control 

in various media. In addition, the study of strongly nonlin-

ear interaction of electromagnetic radiation with matter 

often requires the development of new theoretical 

approaches, the appearance of which, in turn, stimulates the 

search for new regimes of interaction between radiation and 

matter.

Over the past decade, the interaction of noble gas atoms 

with the radiation of high-order harmonics of an optical laser 

field (usually a sequence of attosecond pulses or a single atto-

second pulse) combined with optical radiation of the funda-

mental frequency (a replica of the field used to generate the 

harmonics) has been actively studied [1 – 8 ] (see also review [9]). 

In these studies, the frequency of one of the harmonics is close 

to the frequency of a transition from the ground state to one of 

the low-lying excited energy levels [2 – 5, 7, 8] or to an autoioni-

sation state of the atoms [1, 6]. The intensity of the optical field 

is insufficient for ionisation or multiphoton excitation of the 

atoms from the ground state, but is large enough to substan-

tially couple (‘dress’) the excited states. The excitation and 

ionisation of the atoms occurs with the participation of har-

monics of various orders and with the absorption of a different 

number of photons of the optical field. In this case, the proba-

bilities of ionisation and population of excited atomic states, as 

well as the probability of absorbing radiation of a certain har-

monic, turn out to be periodic functions (generally anhar-

monic) depending on the delay of the harmonic signal relative 

to the optical field of fundamental frequency with a period 

equal to the half-period of optical radiation. This periodicity is 

due to the interference of the excitation and ionisation paths of 

atoms (or absorption of harmonics of a given order) involving 

a different number of optical field photons, which is construc-

tive or destructive depending on the ratio of the phase differ-

ence between harmonics of adjacent orders and the phase of 

the optical field. A shift and broadening of the excited energy 

levels of gas atoms following the oscillations of the optical field 

strength were also observed [5]. 

In later experiments [10, 11], the generation of high-order 

harmonics of the optical field was studied under similar con-

ditions [when both a moderate-intensity laser field of funda-

mental frequency and seed radiation of harmonics of the 

vacuum ultraviolet (VUV) range are initially present]. It was 

shown that the interference of the paths of ionisation of atoms 

and the generation of electronic wave packets in free space 

leads to a periodic dependence of the intensity of the newly 

generated harmonics on the delay between the VUV radiation 

of the seed and the optical field of fundamental frequency. An 

analysis of the properties of harmonics of various orders 

makes it possible to study the subfemtosecond dynamics of 

atoms in a combined VUV and optical fields. 

In addition, in recent years, the possibility of controlling 

the conductivity of dielectrics and semiconductors on a time 

scale of the order of an optical cycle fractions has attracted 

considerable interest [12 – 16]. For this purpose, a solid-state 

sample is irradiated with an intense and extremely short (with 

a few-cycle duration) optical pulse, which transfers electrons 

to the conduction band and creates holes in the valence band, 
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and also causes intraband transitions over a time of a fraction 

of a femtosecond. Additionally, the sample is irradiated by a 

single attosecond VUV pulse, which allows measuring the 

parameters (for example, the absorption coefficient for the 

VUV radiation) of the medium depending on the delay 

between the probing harmonics and the optical field. In par-

ticular, it was shown that in a certain range of laser field 

intensities, the process of electron excitation is reversible, and 

after the end of the optical pulse, the population of the con-

duction band quickly (with a subfemtosecond delay) returns 

to its original value. 

In this paper, we study the role of interference in the pro-

cess of amplifying high-order harmonics of optical radiation 

in the active medium of a plasma-based X-ray laser, addition-

ally irradiated by the laser field at the fundamental frequency. 

This work deals with the same group of problems as the previ-

ous studies of interference effects in a strong laser field com-

bined with the radiation of its high-order harmonics. 

However, it differs by two fundamentally new features. First, 

we consider an active medium, where energy is transferred 

from matter to field, and not vice versa. Second, the medium 

is a plasma of multiply charged ions, which makes it necessary 

to take into account the propagation effects associated with 

the difference in the phase velocities of the optical and VUV 

fields due to plasma dispersion. 

For the first time, the possibility of amplifying sets of high-

order optical harmonics and sequences of attosecond pulses in 

a modulated active medium of a plasma-based X-ray laser was 

demonstrated in Ref. [17]. However, in [17] the plasma was 

assumed dense for the modulating optical field, so that the 

mutual influence of harmonics on each other in the process of 

amplification was suppressed. On the contrary, the present 

work considers the case of a relatively weak plasma dispersion 

at the frequency of the modulating field. We show that in this 

case each harmonic not only is amplified in the medium, but 

also generates a multi-frequency coherently scattered field at 

the frequencies of other harmonics. A change in the initial 

phases of the amplified harmonics and the modulating field, as 

well as a change in the medium thickness, leads to a change in 

the nature of the interference between the harmonic radiation 

and the set of coherently scattered fields. This, in turn, allows 

controlling the energy characteristics of harmonics, namely, 

the total energy density and relative amplitudes of the harmon-

ics at the output of the modulated active medium. 

2. Theoretical model 

Let us consider a hydrogen-like active medium of a plasma-

based X-ray laser, simultaneously irradiated by an optical 

field with a fundamental frequency W and radiation of its 

three neighbouring high-order harmonics. One of them (the 

central one, we number it as 0) is tuned to resonance with the 

active medium transition (with taking into account the time-

average shift of the energy levels of resonant ions under the 

action of the optical field). The other two harmonics (we 

number them as +1 and –1) are detuned from the resonance 

by ±2 frequencies of the modulating field. In the considered 

case of the three harmonics, it turns out to be possible to 

obtain a simple analytical solution for their amplitudes, which 

includes all the interference effects of interest. 

Thus, the resonant component of the incident field is a 

combination of three linearly polarised high-order harmonics 

with the same amplitudes (amplitude moduli) E0, the central 

frequencies of which are separated by 2W: 

( 0, ) ( )exp ix t tE z
2
1

inc0 w= = - ,

 ( ) ( ) . .exp i c cA t M t2M

M 1

1

# W +

= -

-/ , (1) 

where z0 is the unit vector of polarisation of the harmonic 

radiation; AM (t) = E0 exp(ijM)q(t) is the slowly varying com-

plex amplitude of the Mth harmonic at the input to the 

medium; jM is the phase of the Mth harmonic; and q(t) is the 

Heaviside function. Similarly to Refs [17 – 19], as an active 

medium, we consider a plasma of hydrogen-like ions initially 

populating the excited energy level with n = 2 (where n is the 

principal quantum number). We assume that the frequency of 

the central harmonic, winc, is equal to the frequency of the 

transition between energy levels with n = 1 and n = 2, and that 

winc >> 2W. 

At the same time, the active plasma medium is irradiated 

by a replica of the laser field at the fundamental frequency W 

with linear polarisation coinciding with the polarisation of 

harmonics (1) and amplitude Elas, whose magnitude is below 

the ionisation threshold of the medium: 

( , )x t E t
c

n
xE zlas las

pl
0 JW= - +` j8 B, (2) 

where J is the initial phase of the laser field at the front edge 

of the plasma layer; c is the speed of light in vacuum; npl = 

1 4 /( )N e me e
2 2p W-  is the plasma refractive index at the 

optical field frequency; Ne is the concentration of free elec-

trons; and me and e are the electron mass and charge, respec-

tively. Under the influence of the optical field (2), due to the 

Stark effect, the degenerate energy level with n = 2 is split into 

three sublevels. The energies of two of them, corresponding to 

the eigenstates of the Hamiltonian of hydrogen-like ions in 

the parabolic coordinate system |2ñ = (|2sñ + |2p, m = 0ñ)/ 2  

and |3ñ = (|2sñ – |2p, m = 0ñ)/ 2 , where m characterises the 

projection of the orbital angular momentum of ions on the z 

axis, trace the local value of the electric field (2) in space and 

time due to the linear Stark effect. They also experience con-

stant shift due to the quadratic Stark effect
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where F0 = (2/Z)3Elas /Ea is the normalised amplitude of the 

laser field; Ea » 5.14 ´ 109 V cm–1 is the atomic unit of the 

electric field strength; '  is the Planck constant; and Z is the 

charge number of resonant ions. Thus, the energies of the 

states |2ñ and |3ñ turn out to be modulated by the laser field 

(2). Due to this fact, below we will call field (2) a modulating 

field. The third energy level is doubly degenerate and corre-

sponds to the eigenstates |4ñ = |2p, m = 1ñ and |5ñ = |2p, m = –1ñ. 
The energies of these states under the action of a modulating 

field experience only a constant shift due to the quadratic 
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Stark effect: {1 39 /8}/(8 )m e Z Fe4 5
4

0
2 2

' ' 'w w= = - + . Note 

that the ground state |1ñ = |1sñ also experiences a slight shift 

due to the quadratic Stark effect: ( , )t x m ee1
4
#'w = -

{1 9 /256}/(2 )Z F
2

0
2 2

'+ . 

Note that the dipole moments of the transitions |2ñ ® |1ñ, 
|3ñ ® |1ñ are oriented along the polarisation direction of the 

modulating field, i.e., along the z axis. Accordingly, these 

transitions are resonantly excited by the radiation of harmon-

ics (1), which leads to the appearance of resonant polarisation 

of the medium: 

P(x, t) = Nion(d12 r21 + d13  r31 + c.c.), (4) 

where d12 = z0dtr; d13 = – z0dtr; dtr = (27/35)ea0/Z; a0 is the Bohr 

radius; rij are elements of the density matrix of the medium; 

and Nion is the concentration of resonant ions. The dipole 

moments of the transitions |4ñ ® |1ñ and |5ñ ® |1ñ are oriented 

perpendicular to the z axis; d14 = d15 = iy0dtr. These transitions 

give rise to the generation of amplified spontaneous radiation 

polarised along the y axis, as well as to a decrease in the popu-

lation difference, and hence gain reduction, at the transitions 

|2ñ ® |1ñ and |3ñ ® |1ñ (due to populating the ground state of 

ions). However, as shown in Refs [17, 19], at a sufficiently 

high seeding radiation intensity (1), the influence of amplified 

spontaneous emission can be neglected. Below, in order to 

obtain a sufficiently simple analytical solution, we will con-

sider this condition to be fulfilled and exclude the states |4ñ 
and |5ñ from consideration (in Section 4, we present the results 

of calculations taking these states into account). 

In addition, in order to derive an analytical solution, we 

will assume that the interaction between the electric field of 

harmonics (1) and the medium is linear and the change in the 

population difference at the resonance transitions can be 

neglected (below we present the calculation results taking into 

account the nonlinearity of the medium). We also assume that 

the central frequency of the harmonics radiation is tuned to 

exact resonance with the transitions |2ñ ® |1ñ and |3ñ ® |1ñ, i.e. 

winc = 3me e
4Z 2(1 – 109F0

2/64)/(8 3
' ) º wz. Then, in the approxi-

mation of slowly varying amplitudes for the resonant field 

E(x, t) and polarisation of the medium P(x, t), as well as in the 

resonant (rotating wave) approximation for the density 

matrix elements, the system of equations describing the trans-

formation of field (1) in the modulated active hydrogen-like 

plasma medium will have the form: 

¶
¶ 4
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p
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u u ,

¶
¶
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z z
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31
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u
u u , 

where Ezu  and i1ru  (i = 2, 3) are the slowly varying amplitudes  

of the harmonic fields and the amplitudes of quantum coher-

ences of the medium; Dlas = 3me e
4Z 2F0/(8 3

' ) is the modula-

tion depth of the frequencies of transitions |2ñ ® |1ñ and |3ñ ® 
|1ñ due to the linear Stark effect; ( , 0) ( , 0)n x xtr ii 11r t r t= = - =u u  

is the initial population difference at these transitions (i = 2, 

3); /2
( )

ionz z
0g g G= +  is the relaxation rate of the resonant 

polarisation of the medium; ( )z
0g  is the relaxation rate of reso-

nant polarisation in the absence of a modulating field; 

expm e Z F

F
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F
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F16

3 4 4
3
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ion
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3

4 2
0

0

3

0

3
3
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-c cm m; E  

is the rate of tunnel ionisation from the excited states |2ñ and 

|3ñ under the action of the modulating field; DK = W (1 – npl)/c 

is the contribution to the wave number of the modulating 

optical field due to plasma dispersion; e = 1 – 4pNee
2/(me wz

2) 

» 1 is the plasma permittivity at the central frequency of the 

radiation of harmonics (1); and t = t – x/c is the local time. 

Below we take into account that the relaxation rate of the 

resonant polarisation is much lower than the frequency of the 

optical field, W/gz >> 1. 

We seek a solution for the slowly varying harmonic field 

amplitude Ezu  in the form 

( , ) ( , ) ( ) ( 2 )exp iE x E x M

`

z M

M 1

1

t t q t tW= -

= -

u u/ , (6)

where ( , )E xM tu  are functions of time slowly varying on the 

scale of the optical field cycle at the fundamental frequency. 

The solution to the second equation of system (5) is sought in 

the form 

[ ( )]exp siniP Kxz21 21r r g t t JDW= - - + +Xu t ,

where PW = Dlas /W is the modulation index (a ratio between 

the amplitude of the shift of the excited energy levels due to 

linear Stark effect and the frequency of the modulating field). 

Then, taking into account Eqn (6), the second equation in (5) 

takes the form: 

¶
¶

( ) ( )expi i id n
J P k Kx k

2
tr tr

k

kM

21

1

1

't
r

JD= - - -

3

3

X

= -= -

t //  

 ( , ) ( ) {[ ( 2 ) ] },iE x k MM z# t q t g tW- +expu  (7)

where Jk(PW) is the Bessel function of the first kind of the kth 

order. For brevity, we omit the argument of the Bessel func-

tion: Jk(PW) º Jk. Integrating Eqn (7) in the approximation 

| |EMu  >> ¶ ¶| / )|EM 0t t x=
u , which corresponds to the initial stage 

of field amplification in the medium, and also taking into 

account that W/gz >> 1, we obtain a solution for the coherence  

21ru  in the form 

[1 ( )]expi d n J J
2
tr tr

z

z M k

kM
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1
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3
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u //  
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[ ( 2 ) ( 2 ) ] ( , ) ( ) ( )exp i i ik M Kx k M E x kM# J t q t tD W+ + + expu .

Similarly, we obtain a solution for the coherence 31ru : 
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[ (2 ) (2 ) ] ( , ) ( ) ( ) .exp i i iM k Kx M k E x kM# J t q t tD W- + - -expu

Now substituting Eqns (6), (8) and (9) into the first equation 

of system (5), we obtain equations which describe the trans-

formation of the amplitude of each harmonic of the incident 

field during their propagation through the modulated active 

medium: 



 I.R. Khairulin, V.A. Antonov, O.A. Kocharovskaya378
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where 4 /( )g N n d cion tr trz z0
2

'pw g e=  is the gain of the active 

medium in the absence of modulation. Formally, system (10) 

can be rewritten in the integral form: 
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where F = 2DKx is the normalised coordinate characterising 

the phase shift of the modulating field during its propagation 

in plasma; a(t) = g0 [1 – exp(–gzt)] /(2DK) is the ratio of gain 

coefficient for the resonant radiation to the the contribution 

to the wave number of the modulating optical field due to 

plasma dispersion. It is seen that the first term in each of 

Eqns (11) describes the gain of each harmonic propagating 

independently of the others through the medium with the 

effective gain g0J 22M[1 – exp(–gzt)], where M = 0, ±1 is the 

number of the appropriate harmonic [Eqns (11) account for 

the fact that J–2 = J2]. This gain is time-dependent, since a 

finite time of ~1/gz is required to induce the polarisation 

response of the medium to an incident resonant field with a 

sharp leading edge. It also depends of the frequency and 

intensity of the modulating field via the modulation index PW. 

The remaining terms in Eqns (11) characterise the impact of 

the rest harmonics on the amplitude of the Mth harmonic. 

As shown in Ref. [17], if the plasma is dense, so that the 

phase velocity of the modulating laser field in the medium is 

significantly different from the velocity of light in vacuum, 

and g0/(2DK) << 1, then each harmonic in the spectrum of the 

incident resonant radiation is amplified independently of the 

rest ones. In this case, the effect of the terms in (11) containing 

the integrals can be neglected and the relative phases of the 

harmonics do not change during amplification. If, in addi-

tion, the modulation index PW is chosen such that the squares 

of Bessel functions J 22M of different orders are approximately 

equal to each other (in the case of three harmonics J0
2 = J2

2, see 

Fig. 1), then all harmonics of the incident radiation are 

equally amplified, and at the output from the medium, the 

time profile of the harmonic signal does not change. 

On the other hand, if J0
2 ¹ J2

2, then the harmonic gain 

coefficients are different (Fig. 1), which allows controlling the 

relative amplitudes of the zero and ±1st harmonics at the out-

put of the modulated active medium. At the same time, the 

±1st harmonics have the same gain at any modulation indices 

(since J–2
2 = J2

2), and therefore, in the process of amplification 

in a dense plasma, their amplitudes remain equal. 

Now we consider the case of a lower-density plasma, when 

the phase velocity of the optical field is close to the speed of 

light in vacuum. In this case, as shown in Refs [18, 19], when 

a medium is irradiated with a single resonant harmonic, its 

radiation is effectively scattered by a modulation wave travel-

ling with the phase velocity of the optical field in the medium. 

i = 0, j = 0

i = 2, j = 2

i = 0, j = 2

0

0

0.2

0.4

0.6

0.8

– 0.2
1 2 3 4 5 6 PW

JiJj

Figure 1. Dependences of the products of the Bessel functions of the 

first kind of orders i and j on the modulation indices characterising the 

gains of the zero (solid curve) and ±1st (dashed curve) harmonics, as 

well as the efficiency of their scattering into each other (dotted line).
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Due to this fact, the harmonic generates in the medium a 

combination of spectral components separated from each 

other by twice the frequency of the modulating field. Under 

certain conditions, namely, at the optimum modulation index 

and at the optimal thickness of the medium, which is deter-

mined by the plasma density and the frequency of the modu-

lating field, the spectral components of the coherently scat-

tered field have the greatest amplitude and are in phase with 

the amplified radiation of the incident (resonant) harmonic. 

If such a low-density active plasma medium is irradiated 

by a set of harmonics, each of which is resonant to the corre-

sponding induced spectral line of the gain [17], then the field 

of each harmonic will not only be amplified, but also effi-

ciently generate coherently scattered radiation at the frequen-

cies of the other harmonics. This scattering is described by the 

integral terms in equations (11).

Let us consider, for example, the second term in the first 

equation (11). It characterises the effect of scattering of 

zero-harmonic radiation with a complex amplitude E0u  on 

the amplitude of the minus first harmonic E 1-
u . The effi-

ciency of such scattering is characterised by the product a(t)

J0 J2 » J0 J2 /L (see Fig. 1), which depends on the amplitude 

Elas and frequency W or, equivalently, on the wavelength L = 

2pc/W of the modulating field. For efficient scattering, it is 

necessary to select the values of these parameters optimally. It 

should be borne in mind that, on the one hand, the use of too 

strong a modulating field is unacceptable because of the fast 

ionisation from the excited states of the active medium. On 

the other hand, increasing the wavelength of the modulating 

field is also undesirable, because it reduces the efficiency of 

scattering of the harmonics into each other due to enhanced 

plasma dispersion at the frequency of the modulating field, 

i.e., a decrease in the parameter a(t). 

In addition, the amplitude of the coherently scattered field 

generated by the zero harmonic at the frequency of the minus 

first harmonic substantially depends on the thickness of the 

medium. This is because this field is a sum of partial waves 

generated in previous layers of the medium due to scattering 

of zero-harmonic radiation by a modulation wave moving 

with the phase velocity of the optical field. Since this velocity 

is different from the propagation velocity of harmonics, each 

partial wave is delayed, which is described by the factors 

exp(iF) in the right-hand sides of Eqns (11). As a result, in a 

sufficiently thin layer of the medium, if amplification can be 

neglected, the resulting amplitude of the coherently scattered 

field from the zero harmonic at the frequency of the minus 

first harmonic will be proportional to sin(F/2). Thus, at a 

thickness of the medium corresponding to F = p, the ampli-

tude of the coherently scattered field will be maximal, and at 

a thickness of the medium corresponding to F = 2p, it will be 

minimal. 

It is also seen from Eqns (11) that the resulting amplitude 

of the Mth harmonic substantially depends on the relative 

phases of the harmonics at the input to the medium jM and 

on the initial phase of the modulating field J. If the relation 

between jM, J, and F is such that all terms in Eqns (11) are in 

phase, then due to the constructive interference of coherently 

scattered fields with the radiation of harmonics, the gain of 

the harmonics increases significantly compared to their inde-

pendent gain in a dense plasma [17]. We call this effect inter-

ference amplification of harmonics. At the same time, it is pos-

sible to choose a phase relationship between jM, J, and F 

such that coherently scattered fields are in antiphase with the 

radiation of harmonics, and this will lead to a decrease in 

amplitudes and the total energy of harmonics, compared with 

the case of their independent amplification. We call this effect 

interference suppression of harmonic amplification. Below, we 

will illustrate both of these cases, both based on an analytical 

solution and by numerical solution of a more general nonlin-

ear system of equations for harmonic amplitudes. 

Thus, in a low-density plasma active medium, where the 

phase velocity of the optical field is close to the speed of light in 

vacuum, the spectral characteristics of amplified harmonics sub-

stantially (in the general case, nonmonotonically) depend not 

only on the modulation index PW, but also on the phase of the 

modulating field, relative phases of harmonics, and the thickness 

of the medium. As a result, the coherent control becomes possi-

ble (i) of the transfer of energy from the medium to the field and 

(ii) of the spectral characteristics of the amplified radiation via 

constructive or destructive interference between the amplified 

incident field and coherently scattered fields.

3. Analytical solution 

This section provides simple analytical estimates that show 

the possibility of interference control of the spectral charac-

teristics of the radiation of three harmonics at the output of 

the modulated active plasma medium. To simplify the analy-

sis, we consider the modulation index PW » 1.84. In this case, 

J0 (1.84) = J2 (1.84) º J (Fig. 1), and in a dense plasma the 

harmonics of the incident radiation (1) will be amplified uni-

formly with the gain g0 J 2. At the same time, in a less dense 

plasma, taking into account coherent scattering of the har-

monics into each other, their complex amplitudes will have 

the following form: 

( , )E x1 t-
u  » ( ) [ ( )]exp expE g xJ 1 z0 0

2q t g t- -" ,

 ( ) 2 ( ) ( /2) ( /2 2 )exp sin expi i i iJ1
2

0# j a t J jF F+ + +-6  

 ( ) ( 4 )sin exp i i iJ2 1a t J jF F+ + + @,

( , )E x0 tu  » ( ) [ ( )]exp expE g xJ 1 z0 0
2q t g t- -" ,

 ( ) 2 ( ) ( /2) ( /2 2 )exp sin expi i i iJ0
2

1# j a t J jF F+ - - + -6  

 ( ) ( / ) ( / 2 )sin exp i i iJ2 2 22
1a t J jF F+ + + @, (12)

( , )E x1 tu  » ( ) [ ( )]exp expE g xJ 1 z0 0
2q t g t- -" ,

 ( ) 2 ( ) ( /2) ( /2 2 )exp sin expi i i iJ1
2

0# j a t J jF F+ - - +6  

 ( ) ( 4 )sin exp i i iJ2 1a t J jF F+ - - + - @. 

These expressions are derived from Eqns (11) using the first-

order perturbation theory with a(t) J 2 as a small parameter. 

The energy densities of the considered harmonics in the 

approximation a(t) J 2 << 1 are written as 

( , ) ( , ) ( ) ( /2)sinW x W x J1 4indep1
2

t t a t F= +- 6

 ( / ) ( )cos sin cosJ2 22 1
2

2# a tY Y F Y- + @,

( , ) ( , ) ( ) ( /2)sinW x W x J1 8indep0
2

t t a t F= +6

 ( / )cos cos 21 2# Y Y @, (13)
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( , ) ( , ) ( ) ( /2)sinW x W x J1 4indep1
2

t t a t F= +6

 ( / ) ( )cos sin cosJ2 22 1
2

2# a tY Y F Y+ + @,

where | | / (8 )W EM M
2 p= u  is the energy density of the Mth har-

monic (M = 0, ±1), while ( , ) / ( ) expW x E g J x8 2dein p 0
2

0
2

#pt = 6 6@   

( ( )exp1 zg t- - @ is the energy density of an individual har-

monic (any of the three) propagating independently in a dense 

plasma. In Eqns (13), we use the notations 

( ) /2, ,1 1 0 1 0j jD DY = + - ,

4 , ,2 1 0 1 0J j jD DY F= + + - - , 

where Dj1, 0 = j1 – j0 is the difference between the initial 

phases of the first and zero harmonics, and Dj–1, 0 = j–1 – j0 

is the difference between the initial phases of the minus first 

and zero harmonics. Note that the intensity of the Mth har-

monic differs from its energy density only by a constant factor 

equal to the speed of light in vacuum, i.e., IM = cWM. 

Correspondingly, Eqns (13) also characterise the phase 

dependences of the intensities of the harmonics. 

Let us analyse the impact of coherent scattering on the 

characteristics of amplified harmonics. For this purpose, we 

introduce the efficiency of interference amplification

 

( )
G

J W

W W

3

3

indep

indepM

M

2

1

1

a t

=

-
= -

/
,

which characterises the contribution to the energy density of 

harmonics from coherently scattered fields, as well as the 

quantities characterising the asymmetry of harmonic amplifi-

cation (normalised differences of the energy densities of the 

harmonics of different orders): 

( )
H

J W

W W
,

indep

0 1 2

0 1

a t

D =
- ,   

( )
H

J W

W W
,

indep

1 1 2

1 1

a t

D = -
-

- . 

Substituting expressions (13) into these definitions, we obtain 

( /2) ( /2)sin cos cos sin cosG
3
16

3
4

1 2 2F Y Y F Y= + ,

4 ( /2) ( / ) 2sin cos sin cosH 2,0 1 2 1 2D F Y Y F Y= - - , (14)

8 ( /2) ( /2)sin sin sinH ,1 1 2 1D F Y Y= -- .

It is seen from Eqn (14) that the quantities G, DH0, 1, and 

DH1, –1 depend on the relations between the phases of the har-

monics and the initial phase of the modulating field via 

parameters Y1 and Y2. The last of them also depends on the 

thickness of the medium via the phase incursion F of the 

modulating field in the plasma. Below, we will assume that 

0 £ Y1 < 2p, since the harmonic phase difference multiple of 

2p does not introduce new physical sense, and Y2 can have 

any value, since the thickness of the medium, generally speak-

ing, is not limited by anything. 

From Eqn (14), in particular, it follows that for Y1 = p/2 

and Y2 = p/2, the mutual gain efficiency G of harmonics will 

be zero. This means that the total energy of harmonics will be 

the same as in the case of their independent amplification in a 

dense plasma. In this case, however, the spectrum of harmon-

ics becomes asymmetric, which is directly seen from the val-

ues of the parameters ( /2)sinH 2 2,0 1D F=  and H ,1 1D =-   

4 ( /2)sin2 F- . Thus, for a thickness of the medium satisfy-

ing the condition 2pk < F/2 < (2k + 1)p (k = 0, 1, 2 , … , ), 

W1 < W0 < W–1, while for (2k + 1)p < F/2 < (2k + 2)p, the 

opposite case is realised: W1 > W0 > W–1. If the thickness of 

the medium satisfies the condition F/2 = pk, then the ampli-

tudes of the harmonics will be equal to each other (as in the 

case of their independent amplification), while the amplitudes 

of the coherently scattered fields are equal to zero. 

Next, we find the conditions under which the efficiency of 

interference amplification of harmonics will be maximised or 

minimised. For this purpose, we differentiate G with respect 

to Y1, Y2 and equate the derivatives to zero. Thus, we obtain 

a system of two equations with respect to Y1, Y2: 

( / )sin cos 2 01 2Y Y = , 
(15)

( /2) [ ( / ) ] 0sin cos cos sin2 22 1 2Y Y F Y+ = .

Let us consider the solutions of the system of Eqns (15). If Y1 

= 0, Y2 = 4pk or Y1 = p, Y2 = 2 (2k + 1)p (k is an integer), 

then the efficiency of mutual amplification of harmonics is

( / )sin sinG
3
16 2

3
4

1 F F= + . (16) 

By using Eqn (12), it can be shown that this solution corre-

sponds to the case when coherently scattered fields are in 

phase with the radiation of harmonics, while the harmonics 

themselves are in phase with each other. In this case, the effect 

of interference amplification of harmonics is realised. Note 

that, according to the definition of Y2, such phase matching 

can be realised only for a certain initial phase of the modulat-

ing field J and only for a certain thickness of the medium F, 

which are related as J = –F/4 + Dj–1, 0/2, where the phase shift 

multiple of 2p is omitted, and Dj–1, 0 = –Dj1, 0. 

If Y1 = 0 and Y2 = 2(2k + 1)p or Y1 = p and Y2 = 4pk, 

then

( / )sin sinG
3
16 2

3
4

2 F F= - + . (17) 

In this case, the total coherently scattered field generated by a 

set of harmonics of different orders appears to be in antiphase 

with the radiation of harmonics themselves (which are still in 

phase with each other), which leads to a lower radiation 

energy than in the case of independent amplification of har-

monics in a dense plasma. In this case, the relationship 

between J and F is as follows: J = –p/2 – F/4 + Dj–1, 0/2. 

Thus, a change in the initial phase of the modulating field by 

p/2 relative to case (16) or, similarly, a delay of the harmonic 

signal by a quarter of the period of the optical field at the 

fundamental frequency leads to a transition from maximum 

interference amplification to interference suppression of har-

monics amplification. 

The remaining solutions of system (15) correspond to the 

intermediate efficiency of interference amplification of har-

monics. Thus, if Y1 = p/2, 3p/2 and Y2 = (2k + 1)p, which 

corresponds to Dj1, 0 = –Dj–1, 0 + p and J = –F/4 + Dj–1, 0/2, 

then

sinG
3

4
3 F= - . (18)
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If Y1 = 0 and Y2 satisfies the relation cos(Y2/2) = – 0.5 ´ 

[cos(F/2)] –1, which is realised only when  |cos(F/2)| > 1/2, the 

interference gain efficiency is 

( /2)tan sinG
3
4

3
4

4 F F= - - . (19)

And if Y1 = p and the condition cos(Y2/2) =  0.5/cos(F/2) is 

fulfilled, which again is possible with |cos(F/2)| > 1/2, then 

( /2)tan sinG 4
3
4

5 F F= - . (20)

The dependences of the gain efficiency of harmonics on 

the thickness of the medium in the found ‘ultimate’ interfer-

ence amplification regimes (16) – (20) are shown in Fig. 2. It is 

worth noting that each point on the curves corresponds to 

certain (and, generally, different) values of the initial phase of 

the modulating field and the phases of harmonics at the input 

to the medium, which are interrelated by the appropriate val-

ues of Y1 and Y2 (16) – (20). It is seen that during the propaga-

tion of harmonics through the modulated active medium, the 

effect of their mutual amplification is periodically replaced by 

the effect of interference suppression of amplification. At the 

same time, it should be noted that for any possible (including 

negative) value of the coefficient G, the energy is transferred 

from matter to field, i.e., the radiation of harmonic is ampli-

fied as it propagates through the medium. The coefficient G 

characterises the difference in the spatial dependence of the 

total energy density of harmonics from the exponential func-

tion. The minimum thickness of the medium at which the 

mutual amplification of the three harmonics is greatest cor-

responds to Fopt » 0.76p, with G1(Fopt) » 5.87, G2(Fopt) » 

– 4.12, and G3(Fopt) » – 0.91, while G4 and G5 are not deter-

mined. 

The efficiency of interference amplification of harmonics, 

as well as the asymmetry of their spectrum [see Eqn (14)], sub-

stantially depend on the initial phase of the modulating field 

J (or, which is the same, on the delay between the modulating 

field and the radiation of harmonics). For two ‘ultimate’ com-

binations of the initial phases of harmonics, i.e. all three har-

monics are in-phase, and the first (or minus first) harmonic is 

in antiphase to the in-phase zero and minus first (or zero and 

first) harmonics, and for the optimal value F = Fopt, these 

dependences are plotted in Fig. 3. It can be seen from Fig. 3,a 

that if the incident harmonics are in phase with each other, 

then during amplification the harmonic spectrum remains 

symmetric, i.e., the amplitudes of the ±1st harmonics are 

equal to each other for any value of the parameter J. At the 

same time, depending on the value of J, the amplitude of the 

central component is either greater or smaller than the ampli-

tudes of the ±1st harmonics. Thus, in the case of the most 

efficient interference amplification of harmonics, which is 

realised at J = – 0.19p, Y1 = Y2 = 0 and Dj–1, 0 = Dj1, 0 = 0, 

we have DH0, 1(Fopt) »  2.35 and DH1, –1(Fopt) = 0, i.e., W0 > 

W1 = W–1. When the initial phase of the modulating field 

changes by p/2 namely, at J = 0.31p, the opposite case is 

realised, i.e., the interference suppression of amplification. In 

this case, DH0, 1(Fopt) » –5.09 and DH1, –1(Fopt) = 0, i.e., W0 < 

W1 = W–1. If one of the side harmonics of the incident radia-

tion (1) is in antiphase with respect to other harmonics, for 

example, Dj1, 0 = p and Dj–1, 0 = 0 (Y1 = p/2, Fig. 3b), then 

the dependence of harmonics spectrum asymmetry upon the 

initial phase of the modulating field is more complex. For 

example, if J = – 0.19p (Y2 = p), then DH0, 1(Fopt) » 5.09 and 

DH1, –1(Fopt) = –7.44, i.e., W–1 > W0 > W1; if  J = 0.31p (Y2 = 

3p), then DH0, 1(Fopt) » –2.35 and DH1, –1(Fopt) = 7.44, i.e., 

i = 1
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Figure 2. Dependences of the mutual amplification efficiency of three 

harmonics on the normalised thickness of the medium F for Y1 and Y2 

corresponding to (solid black line) Eqns (16), (solid grey line) (17), 

(dashed line) (18), (dotted line) (19) and (dot-and-dash line) (20).
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Figure 3. Characteristics of harmonic interference amplification de-

pending on the initial phase of the modulating field J. The solid curves 

correspond to the mutual amplification efficiency; the dashed and dot-

ted curves correspond to the normalised differences of energies between 

the zero harmonic and the first one, as well as between the first har-

monic and the minus first one [see Eqns (14)]. The dimensionless thick-

ness of the medium is Fopt = 0.76p; Fig. 3a corresponds to the case of 

in-phase harmonics, Y1 = 0, Fig. 3b corresponds to Y1 = p/2; in this case 

one of the side harmonics (+1st or –1st) is in antiphase with the other 

two harmonics.
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W–1 < W0 < W1. Correspondingly, in this case, a change in 

the initial phase of the modulating field by p/2 leads to a mir-

ror reflection of the harmonic spectrum with respect to the 

zero component. Thus, if the incident field of harmonics (1) is 

not in-phase, interference gain or suppression of amplifica-

tion of harmonics is accompanied by a violation of the sym-

metry of their spectrum. This asymmetry can be of applied 

significance, since it allows correcting the amplitude distor-

tion of the spectrum of harmonics in the process of their 

amplification. 

To conclude this section, we note once again that the best 

conditions for the mutual amplification of three harmonics at 

a modulation index PW » 1.84 are achieved when coherently 

scattered fields constructively interfere with harmonics. This 

is realised when Dj–1, 0 = – Dj1, 0  and J = –F/4 + Dj–1, 0 / 2 

(Y1 = Y2 = 0), and when the amplitudes of the coherently 

scattered fields are maximised, which corresponds to Fopt » 

0.76p (the phase shift by 2p is omitted here). In this case, 

according to Eqn (14), in the regime of the most efficient 

interference amplification, the amplitude of the zero har-

monic will be greater than the amplitudes of ±1st harmonics. 

If the initial phase of the modulating field J is shifted by p/2 

(or, what is the same, the harmonic signal is delayed by a 

quarter of the period of the modulating field), then coherently 

scattered fields will destructively interfere with the radiation 

of amplified harmonics, leading to a decrease in the resulting 

field energy at the output of the medium. Moreover, in the 

regime of interference suppression of amplification at the 

thickness of the medium corresponding to Fopt » 0.76p, the 

amplitude of the zero component will be smaller than the 

amplitudes of ±1st harmonics. 

In Section 4, the results of the analytical theory are com-

pared with the results of numerical modelling, taking into 

account the nonlinearity of the active medium, as well as the 

generation of amplified spontaneous emission from noise. 

4. Results of numerical modelling 

Here we analyse the possibilities of interference control of the 

amplification of high-order harmonics of optical radiation 

based on the numerical solution of Maxwell – Bloch equations 

for the active medium of a plasma-based X-ray laser with 

inversion at the transition n = 1 ® n = 2 in hydrogen-like ions 

Li2+ [20]. For correct description of the amplification of high-

order harmonics in a real active medium, it is necessary to 

take into account the nonlinear effects arising from changes 

in the populations of the ground and excited states of reso-

nant ions. It is also necessary to consider the generation of 

amplified spontaneous radiation of orthogonal polarisation, 

which can overlap in time and space with amplified radiation 

of harmonics and decrease the efficiency of their amplifica-

tion due to an increase in the population of the ground state 

of ions. Both of these factors are taken into account in the 

five-level model of the active medium used below. The model 

is described in detail in Refs [17 – 19] and will not be presented 

here. 

We consider the active medium of a recombination 

plasma-based X-ray laser based on hydrogen-like Li2+ ions 

with a wavelength of oscillation and gain in the vicinity of 

13.5 nm (in the vacuum ultraviolet range). We assume that 

the plasma consists only of resonant ions with a concentra-

tion of Nion = 1.5 ´ 1017 cm–3 and free electrons with a concen-

tration of Ne = 3 ´ 1017 cm–3. We assume the characteristic 

temperature to be 1 eV for ions, and 2 eV for electrons, which 

corresponds to the conditions of the experiment [20] (see also 

[21]). In this case, the characteristic times of collisional and 

radiative relaxation of coherence at the inverted transition of 

the ions are coll
1g-  » 0.425 ps and rad

1G -  » 19.7 ps, respectively. 

Similar to Refs  [17 – 19], we assume that at the initial moment 

of time all resonant ions are equally likely to be in one of the 

excited states with n = 2 with equal probability. In this case, 

the initial population differences between the excited and 

ground state (the difference of the corresponding diagonal 

elements of the density matrix of the active medium) is equal 

to 1/4: ( , 0) ( , 0)n x xtr ii 11r t r t= = - = =u u 25, i = 2, 3, 4, 5. 

Next, we choose the intensity of the modulating field just 

below the tunnelling ionisation threshold from the resonant 

excited states of the ions (so that ionisation does not have a 

significant effect on the amplification of the harmonics sig-

nal), namely: Ilas = 4 ´ 1014 W cm–2. In this case, the charac-

teristic time of tunnel ionisation from the excited states of 

ions is 3.3ion
1G =
-  ps. Taking into account all the relaxation 

mechanisms, the characteristic lifetime of the coherences at 

the resonant transitions |2ñ ® |1ñ and |3ñ ® |1ñ, or, what is the 

same, the build-up time of the resonant polarisation of the 

medium z
1g-  appears to be approximately equal to 395 fs. For 

the considered modulating field intensity, the modulation 

index is PW » 1.84, if the wavelength of the modulating field is 

L = 2pc /W » 0.78 mm. 

For the above parameters of the plasma and the modulat-

ing field, the optimal value of the parameter F » 0.76p found 

in Section 3 corresponds to the thickness of the medium L » 
1.8 mm. The radius of the plasma channel R is assumed to be 

50 mm. 

We accepted that the radiation intensity of a single har-

monic at the entrance to the medium is I0 = cE0
2/(8p) = 1.1 ´ 

108 W cm–2; this corresponds to the field energy density of an 

individual harmonic E0
2/(8p) = 3.7 mJ cm–3. In this case, at the 

considered thicknesses of the medium (up to 3 mm), the 

amplified spontaneous emission turns out to be much weaker 

than the total radiation of the three harmonics, and the gain 

saturation effect at the initial time moments (gzt < 1) can be 

neglected. 

Figure 4 shows the results of numerical calculations of the 

total energy density of the three harmonics Wtotal(x, t) = W–1 

+ W0 + W1 depending on the thickness of the medium x at 

time t = 200 fs, satisfying the condition gzt < 1 (Fig. 4a) and 

depending on the time t at the optimal medium thickness x = 

1.8 mm (Fig. 4b) for different combinations of the initial 

phases of the harmonics and the modulating field. The solid 

curves correspond to the interference amplification of har-

monics: Y1 = Y2 = 0. The initial phase of the modulating field 

is determined up to phase difference between the zero and 

minus first harmonics, so that setting Dj–1, 0 = Dj1, 0 = 0 we 

obtain the optimal value J = –Fopt /4 » –0.19p. In the case 

under consideration, the total energy of harmonics turns out 

to be significantly higher than in the case of their independent 

amplification in a dense plasma (the corresponding solutions 

in Fig. 4 are shown by dotted curves) in full agreement with 

the analytical solution obtained in Section 3. At the same 

time, the dashed curves in Fig. 4 correspond to the conditions 

of the interference suppression of amplification: Y1 = 0, Y2 = 

2p (for Dj–1, 0 = Dj1, 0 = 0 the corresponding initial phase of 

the modulating field is J = –p/2 – Fopt /4 » – 0.69p). In this 

case, the energy of harmonics is significantly lower than in the 

case of their independent amplification in a dense plasma. 

Note that for simulating a dense plasma we increased the 

electron concentration by a factor of 10, assuming that non-



383Interference effects in the high-order harmonic amplification process

resonant ions (e.g., hydrogen ions [22]) are present in the 

plasma. As it is easy to see from Fig. 4a, the dependence of 

the harmonics energy on the thickness of the medium 

(dashed curve) approaches an exponential function with 

insignificant oscillations due to the mutual influence of har-

monics [in this case, it is weak because the parameter a(t) is 

small]. We assumed Dj–1, 0 = Dj1, 0 = J =0 (in a dense plasma, 

the values of these parameters do not play a significant role). 

Note that the characteristic scale of spatial energy oscilla-

tions (‘steps’) in Fig. 4a corresponds to a change in the 

parameter F by 2p. Moreover, the higher the electron con-

centration, the proportionally shorter the period of spatial 

oscillations of the harmonics energy. Thus, in the case of a 

dense plasma (dotted line in Fig. 4a), the concentration of 

electrons is 3 ́  1018 cm–3, and the spatial period of the energy 

oscillations is approximately 0.5 mm. For other solutions, 

this scale is of the order of 5 mm, and the corresponding 

oscillations are shown in Fig. 4a only partially (since the 

maximum considered thickness of the medium is 3 mm). 

Note that the scale of spatial energy oscillations can be used 

to determine the concentration of free electrons in the 

plasma. 

Figure 5 shows the spectra of harmonics in the medium 

having the optimal thickness x = 1.8 mm at the time near t = 

200 fs. They clearly show the possibility of interference con-

trol of the relative amplitudes of harmonics in the process of 

amplification by changing the initial phase of the modulating 

field and/or the initial phases of harmonics at the input to 

the medium. Thus, under conditions of maximum interfer-

ence amplification of harmonics at Dj–1, 0 = Dj1, 0 = 0 and 

J = –Fopt /4 » –0.19p (Fig. 5a) the zero harmonic acquires the 

largest amplitude, while the amplitudes of ±1st harmonics 

are equal to each other: W0 > W1 = W–1. At the same time, in 

the case of interference suppression of harmonic amplifica-

tion at Dj–1, 0 = Dj1, 0 = 0 and J = –p/2 – Fopt /4 » –0.69p 

(Fig. 5b) the situation turns out to be opposite: the amplitude 

of the zero harmonic is significantly smaller than the ampli-

tudes of ±1st harmonics, W0 < W1 = W–1. It is also possible 

to minimise the amplitude of the first or minus first harmonic. 

Thus, if Dj–1, 0 = 0, Dj1, 0 = p and J = –Fopt /4 » –0.19p 

(Fig. 5c), the amplitude of the first harmonic is smaller than 

the amplitude of zero harmonic, which is in turn smaller than 

the amplitude of the minus first harmonic: W–1 > W0 > W1. 

And if Dj–1, 0 = p, Dj1, 0 = 0, and J = –Fopt /4 » –0.19p, the 

opposite result is achieved, i.e., W–1 < W0 < W1, and the 

ratios of amplitudes of the most intense harmonic, which 

experienced average amplification, and the weakest harmonic 

will remain unchanged. Figure 5d shows the spectrum of har-

monics in the case of their amplification in a dense plasma 

(when the electron concentration is 10 times higher than in 

Figs 5a – 5c). As expected, in this case all harmonics are ampli-

fied uniformly. Note that the dependence of the asymmetry of 

the amplified harmonics spectrum on the distribution of their 

initial phases can be used not only to control the amplitudes 

of harmonics (in particular, to compensate for initial spec-

trum asymmetry), but also to determine the relative input 

phases of harmonics from their output amplitudes. 

To observe the interference effects discussed in the paper 

experimentally, it is, first of all, necessary to ensure the unifor-

mity and invariance of the concentration of free electrons, the 

amplitude and initial phase of the modulating field, and the 

initial phases of harmonics, since these parameters primarily 

affect the interference of multifrequency coherently scattered 

fields with the radiation of harmonics. However, the change in 

the role of interference effects (shift of interference maxima and 

minima, changes in the spectral and energy characteristics of 

harmonics), due to the dependence of these parameters on time 

and longitudinal coordinate, can be described in terms of Eqns 

(5) with variable parameters. In this case, of course, the solu-

tion of these equations will have a more complex form than 

(12). As for the transverse inhomogeneities of the concentra-

tion of free electrons, the amplitude and the initial phase of the 

modulating field and the initial phases of harmonics, they will 

lead to a change in the interference characteristics in the cross 

section of the harmonics beam. These effects can be theoreti-

cally simulated using a spatially non-one-dimensional model 

and investigated experimentally by measurements with trans-

verse resolution. Nevertheless, under optimal experimental 

conditions it is desirable to reduce the role of these effects by 

using a sufficiently short pulse of harmonics radiation and a 

sufficiently long pulse of the modulating field (to minimise the 

influence of time dependences of the characteristics of the 

medium and the modulating field). The harmonics should be 

focused into a spot of small diameter (to improve transverse 

uniformity of electron concentration and amplitude of the 

modulating field) and the sample should be sufficiently short 
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Figure 4. Dependences of the total energy density of three harmonics 

on (a) the thickness of the medium at a time moment of 200 fs and (b) 

on local time for the thickness of the medium 1.8 mm. The solid curves 

correspond to J = – 0.19p; dashed lines to J = – 0.69p. The dotted curves 

characterise a plasma in which the concentration of free electrons is in-

creased by a factor of 10 and J = 0. In all cases, it is assumed that Dj–1, 0 = 

Dj1, 0 = 0 (the incident harmonics are in phase with each other). Vertical 

dashed lines in panels (a) and (b) indicate the medium thickness and the 

time, for which panels (b) and (a) are drawn.
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compared to the Rayleigh length of the optical and VUV fields, 

and located at their focus (to ensure longitudinal uniformity of 

the field characteristics). 

5. Conclusions

Thus, we have investigated the interference effects arising in 

the process of amplification of a set of three neighbouring 

high-order harmonics of optical radiation in the active 

medium of a plasma-based X-ray laser, simultaneously irradi-

ated with a replica of the optical field of fundamental fre-

quency. It is shown that in a medium with not too strong 

plasma dispersion at the frequency of the optical field, each of 

the harmonics during amplification generates a coherently 

scattered field at frequencies of other harmonics. The interfer-

ence of coherently scattered fields with the radiation of har-

monics significantly affects the efficiency of energy transfer 

from the active medium to resonant radiation, as well as the 

energy distribution between harmonics of different orders. In 

particular, under certain conditions, the effect of interference 

amplification of harmonics is realised, and due to construc-

tive interference of the radiation of harmonics with coher-

ently scattered fields, the total energy of the amplified radia-

tion appears to be greater than in the case of independent 

amplification of each harmonic in a dense plasma. It is also 

possible to realise the opposite effect, i.e., interference sup-

pression of gain. In this case, coherently scattered fields inter-

fere destructively with radiation of harmonics, and the total 

energy of resonant radiation decreases, as compared to the 

case of independent amplification of harmonics in a dense 

plasma. The considered interference effects substantially 

depend on the relative phases of harmonics at the input to the 

medium and on the initial phase of the optical field of funda-

mental frequency (equivalent to a delay of the harmonics with 

respect to the optical field by a fraction of its period). In par-

ticular, the phases of input harmonics determine the degree of 

asymmetry of the spectrum of amplified output harmonics, 

which can be used both to control the spectrum of harmonics 

during amplification and to determine the initial phases of 

amplified harmonics. In addition, the role of interference 

effects periodically changes with the thickness of the medium, 

which is due to a change in the phase difference between the 

modulating optical field and the radiation of harmonics due 

to plasma dispersion at the optical frequency. In particular, 

the growth of the total energy of harmonics is accompanied 

by its periodic oscillations in space, the scale of which allows 

assessing the concentration of free electrons in the active 

medium. This work is the first study of the interference effects 

arising from the optical (on the scale of an optical field cycle) 

modulation of the parameters of the active medium of a 

plasma X-ray laser in a strong laser field. The results can be 

used both to control the characteristics of high-harmonic 

radiation in the process of amplification, and for diagnostics 

of the parameters of amplified radiation and active medium. 
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