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Interference effects in the high-order harmonic amplification process
in the active medium of a plasma-based X-ray laser modulated

by an optical field

I.R. Khairulin, V.A. Antonov, O.A. Kocharovskaya

Abstract. We study the process of propagation of high harmonics
of optical radiation in an active medium of a plasma-based X-ray
laser, simultaneously irradiated by an intense optical field of funda-
mental frequency. It is shown that for moderate plasma dispersion
of the active medium at the frequency of the modulating optical
field, the energy and relative amplitudes of the harmonics at the
output of the medium are determined by their phases at the entrance
to the medium, as well as by the time-delay of the harmonics with
respect to the modulating field. These dependences are due to inter-
ference of high-order harmonics with a set of multi-frequency fields
generated by each of the harmonics in the process of coherent scat-
tering in a modulated active medium. The possibilities of using
these effects to increase the efficiency of harmonic amplification, to
control the harmonic spectrum, and determine the relative phases at
the entrance to the medium are discussed on the example of the
active medium of hydrogen-like Li** ions (with a 13.5 nm wave-
length of an inverted transition).

Keywords: quantum interference, plasma-based X-ray laser, strong
optical fields, high-order harmonics of optical field, amplification
of X-ray radiation.

1. Introduction

The control of the electromagnetic radiation—matter inter-
action on a sub-optical-cycle time scale is one of the most
topical problems of modern optics. In addition to the deep
fundamental significance, these studies open up the possibil-
ity of extremely fast (three orders of magnitude faster than
the microwave electronics allows) electronic current control
in various media. In addition, the study of strongly nonlin-
ear interaction of electromagnetic radiation with matter
often requires the development of new theoretical
approaches, the appearance of which, in turn, stimulates the
search for new regimes of interaction between radiation and
matter.
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Over the past decade, the interaction of noble gas atoms
with the radiation of high-order harmonics of an optical laser
field (usually a sequence of attosecond pulses or a single atto-
second pulse) combined with optical radiation of the funda-
mental frequency (a replica of the field used to generate the
harmonics) has been actively studied [1-8 ] (see also review [9]).
In these studies, the frequency of one of the harmonics is close
to the frequency of a transition from the ground state to one of
the low-lying excited energy levels [2—5, 7, 8] or to an autoioni-
sation state of the atoms [1, 6]. The intensity of the optical field
is insufficient for ionisation or multiphoton excitation of the
atoms from the ground state, but is large enough to substan-
tially couple (‘dress’) the excited states. The excitation and
ionisation of the atoms occurs with the participation of har-
monics of various orders and with the absorption of a different
number of photons of the optical field. In this case, the proba-
bilities of ionisation and population of excited atomic states, as
well as the probability of absorbing radiation of a certain har-
monic, turn out to be periodic functions (generally anhar-
monic) depending on the delay of the harmonic signal relative
to the optical field of fundamental frequency with a period
equal to the half-period of optical radiation. This periodicity is
due to the interference of the excitation and ionisation paths of
atoms (or absorption of harmonics of a given order) involving
a different number of optical field photons, which is construc-
tive or destructive depending on the ratio of the phase differ-
ence between harmonics of adjacent orders and the phase of
the optical field. A shift and broadening of the excited energy
levels of gas atoms following the oscillations of the optical field
strength were also observed [5].

In later experiments [10, 11], the generation of high-order
harmonics of the optical field was studied under similar con-
ditions [when both a moderate-intensity laser field of funda-
mental frequency and seed radiation of harmonics of the
vacuum ultraviolet (VUV) range are initially present]. It was
shown that the interference of the paths of ionisation of atoms
and the generation of electronic wave packets in free space
leads to a periodic dependence of the intensity of the newly
generated harmonics on the delay between the VUV radiation
of the seed and the optical field of fundamental frequency. An
analysis of the properties of harmonics of various orders
makes it possible to study the subfemtosecond dynamics of
atoms in a combined VUV and optical fields.

In addition, in recent years, the possibility of controlling
the conductivity of dielectrics and semiconductors on a time
scale of the order of an optical cycle fractions has attracted
considerable interest [12—16]. For this purpose, a solid-state
sample is irradiated with an intense and extremely short (with
a few-cycle duration) optical pulse, which transfers electrons
to the conduction band and creates holes in the valence band,
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and also causes intraband transitions over a time of a fraction
of a femtosecond. Additionally, the sample is irradiated by a
single attosecond VUV pulse, which allows measuring the
parameters (for example, the absorption coefficient for the
VUV radiation) of the medium depending on the delay
between the probing harmonics and the optical field. In par-
ticular, it was shown that in a certain range of laser field
intensities, the process of electron excitation is reversible, and
after the end of the optical pulse, the population of the con-
duction band quickly (with a subfemtosecond delay) returns
to its original value.

In this paper, we study the role of interference in the pro-
cess of amplifying high-order harmonics of optical radiation
in the active medium of a plasma-based X-ray laser, addition-
ally irradiated by the laser field at the fundamental frequency.
This work deals with the same group of problems as the previ-
ous studies of interference effects in a strong laser field com-
bined with the radiation of its high-order harmonics.
However, it differs by two fundamentally new features. First,
we consider an active medium, where energy is transferred
from matter to field, and not vice versa. Second, the medium
is a plasma of multiply charged ions, which makes it necessary
to take into account the propagation effects associated with
the difference in the phase velocities of the optical and VUV
fields due to plasma dispersion.

For the first time, the possibility of amplifying sets of high-
order optical harmonics and sequences of attosecond pulses in
a modulated active medium of a plasma-based X-ray laser was
demonstrated in Ref. [17]. However, in [17] the plasma was
assumed dense for the modulating optical field, so that the
mutual influence of harmonics on each other in the process of
amplification was suppressed. On the contrary, the present
work considers the case of a relatively weak plasma dispersion
at the frequency of the modulating field. We show that in this
case each harmonic not only is amplified in the medium, but
also generates a multi-frequency coherently scattered field at
the frequencies of other harmonics. A change in the initial
phases of the amplified harmonics and the modulating field, as
well as a change in the medium thickness, leads to a change in
the nature of the interference between the harmonic radiation
and the set of coherently scattered fields. This, in turn, allows
controlling the energy characteristics of harmonics, namely,
the total energy density and relative amplitudes of the harmon-
ics at the output of the modulated active medium.

2. Theoretical model

Let us consider a hydrogen-like active medium of a plasma-
based X-ray laser, simultaneously irradiated by an optical
field with a fundamental frequency €2 and radiation of its
three neighbouring high-order harmonics. One of them (the
central one, we number it as 0) is tuned to resonance with the
active medium transition (with taking into account the time-
average shift of the energy levels of resonant ions under the
action of the optical field). The other two harmonics (we
number them as +1 and —1) are detuned from the resonance
by %2 frequencies of the modulating field. In the considered
case of the three harmonics, it turns out to be possible to
obtain a simple analytical solution for their amplitudes, which
includes all the interference effects of interest.

Thus, the resonant component of the incident field is a
combination of three linearly polarised high-order harmonics
with the same amplitudes (amplitude moduli) £, the central
frequencies of which are separated by 20

E(x=0,1)= %zo exp(—iwinct),

X Zl:AM(t)exp(—iMZQt) +cc., (1)

M=-1

where zj is the unit vector of polarisation of the harmonic
radiation; A4 ,,(¢) = Eyexp(ipy)0(?) is the slowly varying com-
plex amplitude of the Mth harmonic at the input to the
medium; ¢, is the phase of the Mth harmonic; and 6(¢) is the
Heaviside function. Similarly to Refs [17-19], as an active
medium, we consider a plasma of hydrogen-like ions initially
populating the excited energy level with n = 2 (where n is the
principal quantum number). We assume that the frequency of
the central harmonic, w;,., is equal to the frequency of the
transition between energy levels with n =1 and n = 2, and that
Dine >> 20,

At the same time, the active plasma medium is irradiated
by a replica of the laser field at the fundamental frequency €2
with linear polarisation coinciding with the polarisation of
harmonics (1) and amplitude Ej,q, whose magnitude is below
the ionisation threshold of the medium:

— Tpl

Elas(-x, t) = 20Eas [Q(t - TX) + ﬂ], (2)
where ¢ is the initial phase of the laser field at the front edge
of the plasma layer; ¢ is the speed of light in vacuum; n, =
V1= 4nN.e*/(m. %) is the plasma refractive index at the
optical field frequency; N, is the concentration of free elec-
trons; and m, and e are the electron mass and charge, respec-
tively. Under the influence of the optical field (2), due to the
Stark effect, the degenerate energy level with n = 2 is split into
three sublevels. The energies of two of them, corresponding to
the eigenstates of the Hamiltonian of hydrogen-like ions in
the parabolic coordinate system [2) = (|2s) + [2p,m = 0)/v2
and |3) = (|2s) — |2p,m = 0))/v/2, where m characterises the
projection of the orbital angular momentum of ions on the z
axis, trace the local value of the electric field (2) in space and
time due to the linear Stark effect. They also experience con-
stant shift due to the quadratic Stark effect

4 72
hwa (1, __meeZ
2(5,%) 82
21 12 Fpl
{1 + SF 3Focos|Q(t — Tx)+ I}
s 3)
hws (1, x) = — Me€ Z~
() 82

{1+ %F& ~ 3Fycos|Q(r - %x)-{- I}
where Fy = (2/Z)*E,,/E, is the normalised amplitude of the
laser field; E, ~ 5.14 x 10° V cm™' is the atomic unit of the
electric field strength; 7 is the Planck constant; and Z is the
charge number of resonant ions. Thus, the energies of the
states |2) and |3) turn out to be modulated by the laser field
(2). Due to this fact, below we will call field (2) a modulating
field. The third energy level is doubly degenerate and corre-
sponds to the eigenstates |[4) =|2p,m = 1) and |5) = 2p,m =—1).
The energies of these states under the action of a modulating
field experience only a constant shift due to the quadratic
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Stark effect: hws = hws = —mee* Z {1 + 39F3/8} /(8k%). Note
that the ground state |1) = |1s) also experiences a slight shift
due to the quadratic Stark effect: hwi(f,x) = —mee® X
Z2{1 + 9F$1256} 1 (2h?).

Note that the dipole moments of the transitions |2) - |1),
|3) = |1) are oriented along the polarisation direction of the
modulating field, i.e., along the z axis. Accordingly, these
transitions are resonantly excited by the radiation of harmon-
ics (1), which leads to the appearance of resonant polarisation
of the medium:

P(x,1) = Nion(d12p21 + di3p31 + c.c), 4
where d), = zody; dy3 = —2ody; diy = (2713%)eay/ Z; ay is the Bohr
radius; p; are elements of the density matrix of the medium;
and N,,, is the concentration of resonant ions. The dipole
moments of the transitions |[4) - |1) and |5) - |1) are oriented
perpendicular to the z axis; dy4 = d5 = iyd,,. These transitions
give rise to the generation of amplified spontaneous radiation
polarised along the y axis, as well as to a decrease in the popu-
lation difference, and hence gain reduction, at the transitions
[2) = |1) and |3) — |1) (due to populating the ground state of
ions). However, as shown in Refs [17, 19], at a sufficiently
high seeding radiation intensity (1), the influence of amplified
spontaneous emission can be neglected. Below, in order to
obtain a sufficiently simple analytical solution, we will con-
sider this condition to be fulfilled and exclude the states |4)
and |5) from consideration (in Section 4, we present the results
of calculations taking these states into account).

In addition, in order to derive an analytical solution, we
will assume that the interaction between the electric field of
harmonics (1) and the medium is linear and the change in the
population difference at the resonance transitions can be
neglected (below we present the calculation results taking into
account the nonlinearity of the medium). We also assume that
the central frequency of the harmonics radiation is tuned to
exact resonance with the transitions [2) = [1) and |3) - |1), i.e.

Wine = 3mee*Z2(1 - 109F/64)/(8 7*)=w.. Then, in the approxi-
mation of slowly varying amplitudes for the resonant field
E(x,7) and polarisation of the medium P(x,7), as well as in the
resonant (rotating wave) approximation for the density
matrix elements, the system of equations describing the trans-
formation of field (1) in the modulated active hydrogen-like
plasma medium will have the form:

%: ‘“tciz;j\’gndn(pzl—ﬁn),

6[321 ~ " o ENF dlrf’llr

o = [Fvet 1Auscos(Qr + AKx + )b — 1557 Sn B O
03t _ [—y:— 1Ascos (21 + AKx + 9)]p31 + et
or ) . o

where E; and pi (i = 2,3) are the slowly varying amplitudes
of the harmonic fields and the amplitudes of quantum coher-
ences of the medium; Ay, = 3m.e*Z2F,/(8%#°) is the modula-
tion depth of the frequencies of transitions |2) - [1) and |3) —»
[1)duetothelinearStarkeftect; ni: = pii(x,7 = 0) — pi1(x,7 = 0)
is the initial population difference at these transitions (i = 2
3); y.= Y2 + Lon/2 is the relaxation rate of the resonant
polarlsatlon of the medium; { is the relaxation rate of reso-
nant polarisation in the absence of a modulating field;

_mee*Z® /3R 3 2
Fion = 16K [Fo ( )e eXp( 3Fo)

is the rate of tunnel ionisation from the excited states |2) and
|3) under the action of the modulating field; AK = Q(1 —n,)/c
is the contribution to the wave number of the modulating
optical field due to plasma dispersion; ¢ = 1 — 4nN e/ (m.w?)
~ | is the plasma permittivity at the central frequency of the
radiation of harmonics (1); and 7 = ¢ — x/c is the local time.
Below we take into account that the relaxation rate of the
resonant polarisation is much lower than the frequency of the
optical field, Qfy. >> 1.

We seek a solution for the slowly varying harmonic field
amplitude E; in the form

E.(x,7) = Zl:EM(x,r)O(r)exp (—12M&r), (6)
M=—1

where Ey(x,7) are functions of time slowly varying on the
scale of the optical field cycle at the fundamental frequency.
The solution to the second equation of system (5) is sought in
the form

P21 = Pa1exp[—y.t — iPosin(Qt + AKx + )],

where Po = A,/ is the modulation index (a ratio between
the amplitude of the shift of the excited energy levels due to
linear Stark effect and the frequency of the modulating field).
Then, taking into account Eqn (6), the second equation in (5)
takes the form:

65);1 _ dmnu Zlk;:k(PQ)exp( ikAKx — lkﬂ)
X En(x,0)0(@) expily: — i(k + 2M) Q]t}, @

where J,(Pg) is the Bessel function of the first kind of the kth
order. For brevity, we omit the argument of the Bessel func-
tion: Ji(Po) = J;. Integrating Eqn (7) in the approximation
|Ev| >> t|0Ew/0t)|-= 0, which corresponds to the initial stage
of field amplification in the medium, and also taking into
account that 2/y, >> 1, we obtain a solution for the coherence
P21 in the form

—i%[l exp(—y:1)] Z S i
Yz M=—-1k=—-oc (8)

xexpli(k + 2M)AKx + i(k + 2M) 9 Ev(x,7)0(t) exp(ikQr).

P21 =

Similarly, we obtain a solution for the coherence psi:

psl—ld“n"[l exp(—y:7)] Z ZJzMJk
M=-1k=-o0 (9)

Xexp[i(2M — k) AKx+1(2M — k)3 Eu(x,7)0(7) exp(—ikQr).

Now substituting Eqns (6), (8) and (9) into the first equation
of system (5), we obtain equations which describe the trans-
formation of the amplitude of each harmonic of the incident
field during their propagation through the modulated active
medium:
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Lt = qoll - exp(~y:00@) 3 E-y

+ go[1 — exp(—y.7)]0(z) JoJ2 exp (i28) Eo exp (iI2AKx)

+ go[1 — exp(—y.7)]0(v) J7 exp (i4) Ei exp (i4AKX),

9L — goll = exp(—y:1))6(0) I3 Eo (10)
+ go[1 — exp(—y.7)]0(z) JoJ2exp (—i28) E_i exp(—i2AKX)

+ o[l — exp(—y:1)]10(x) JoJ2exp (i28) E1 exp (i2AKx),

9= ol = exp(-y-1]0(0) 2

X

+ o[l — exp(—y:1)]10(x) JoJ2exp(—i2#) Eyexp (—i2AKx)
+ go[1 — exp(—7:7)]0(t)J7 exp (—i4d) E_ exp (—i4AKx),

where go = 4nw; Nionniedit/ (hey. v/ €) is the gain of the active
medium in the absence of modulation. Formally, system (10)
can be rewritten in the integral form:

E_ = Eoexp(ip-1)0(t)exp{goxJ3[1 — exp(—y.7)|}

+a(r)0(r)exp{goxJi[1 — exp(—y.7)|}JoJ2exp (i24})

o .
xf Evexpl-a(@)J2d +i®']dd’ + a(1)0(7)
0

x exp{goxJ7[l — exp(—y.7)|}J7 exp(i4d)
o . 5 )
Xf Eiexpl-a(r)J: @' + 2®'|dD’,
0
Eo = Eoexp(ipo)0(r)expigoxJi[1 — exp(—y:1)]} +
+a(1)0(x)exp{goxJi[1 — exp(—y.7)[} JoJrexp (—i2#)

[
xfo Eorexpl-a(@)Jd® — id|dd + a(1)0(r)

x exp{goxJi[l — exp(—y.0)]}JoJ2exp (i2¢)

[
xf Erexpla@) i @ +id]dd, (11)
0

Ey = Eyexp(ip1)0(r)exp{goxJ3 [l — exp(—y.1)]}
+a(t)0(t)exp{goxJi[1 — exp(—y.1)[}JoJrexp(—i28)
[
xf Evexpl-a(@)J2® — id|dd’ + a(1)0(r)
0
xexp{goxJ3[1 — exp(—y:7)]}J3 exp(—idd)
[
X f Erexpl-a(@)J3d — 2@ |dd,
0

where @ = 2AKx is the normalised coordinate characterising
the phase shift of the modulating field during its propagation
in plasma; a(r) = go[1 — exp(-y.7)]/(2AK) is the ratio of gain

coefficient for the resonant radiation to the the contribution
to the wave number of the modulating optical field due to
plasma dispersion. It is seen that the first term in each of
Eqns (11) describes the gain of each harmonic propagating
independently of the others through the medium with the
effective gain goJ3,[1-exp(-y.r)], where M = 0, +1 is the
number of the appropriate harmonic [Eqns (11) account for
the fact that J_, = J,]. This gain is time-dependent, since a
finite time of ~1/y. is required to induce the polarisation
response of the medium to an incident resonant field with a
sharp leading edge. It also depends of the frequency and
intensity of the modulating field via the modulation index Pg,.
The remaining terms in Eqns (11) characterise the impact of
the rest harmonics on the amplitude of the Mth harmonic.

As shown in Ref. [17], if the plasma is dense, so that the
phase velocity of the modulating laser field in the medium is
significantly different from the velocity of light in vacuum,
and go/(2AK) << 1, then each harmonic in the spectrum of the
incident resonant radiation is amplified independently of the
rest ones. In this case, the effect of the terms in (11) containing
the integrals can be neglected and the relative phases of the
harmonics do not change during amplification. If, in addi-
tion, the modulation index Pg is chosen such that the squares
of Bessel functions J3,, of different orders are approximately
equal to each other (in the case of three harmonics J§ = J7, see
Fig. 1), then all harmonics of the incident radiation are
equally amplified, and at the output from the medium, the
time profile of the harmonic signal does not change.

JiJ;
" —i=0,j=0
-—i=2,j=2
08 —i=0,j=2
0.6F
0.4
0.2 RSN
....... e N
"""""" . \\\ ’,¢~
Q== =" S
~0.2 1 1 1 1 1 1
0 1 2 3 4 5 6 Po

Figure 1. Dependences of the products of the Bessel functions of the
first kind of orders i and j on the modulation indices characterising the
gains of the zero (solid curve) and *Ist (dashed curve) harmonics, as
well as the efficiency of their scattering into each other (dotted line).

On the other hand, if J§ # J3, then the harmonic gain
coefficients are different (Fig. 1), which allows controlling the
relative amplitudes of the zero and + 1st harmonics at the out-
put of the modulated active medium. At the same time, the
+ Ist harmonics have the same gain at any modulation indices
(since Jj = J22), and therefore, in the process of amplification
in a dense plasma, their amplitudes remain equal.

Now we consider the case of a lower-density plasma, when
the phase velocity of the optical field is close to the speed of
light in vacuum. In this case, as shown in Refs [18, 19], when
a medium is irradiated with a single resonant harmonic, its
radiation is effectively scattered by a modulation wave travel-
ling with the phase velocity of the optical field in the medium.
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Due to this fact, the harmonic generates in the medium a
combination of spectral components separated from each
other by twice the frequency of the modulating field. Under
certain conditions, namely, at the optimum modulation index
and at the optimal thickness of the medium, which is deter-
mined by the plasma density and the frequency of the modu-
lating field, the spectral components of the coherently scat-
tered field have the greatest amplitude and are in phase with
the amplified radiation of the incident (resonant) harmonic.

If such a low-density active plasma medium is irradiated
by a set of harmonics, each of which is resonant to the corre-
sponding induced spectral line of the gain [17], then the field
of each harmonic will not only be amplified, but also effi-
ciently generate coherently scattered radiation at the frequen-
cies of the other harmonics. This scattering is described by the
integral terms in equations (11).

Let us consider, for example, the second term in the first
equation (11). It characterises the effect of scattering of
zero-harmonic radiation with a complex amplitude Ey on
the amplitude of the minus first harmonic £.i. The effi-
ciency of such scattering is characterised by the product a(r)
JoJy &~ JyJy/A (see Fig. 1), which depends on the amplitude
E,,, and frequency 2 or, equivalently, on the wavelength A =
2mc/§2 of the modulating field. For efficient scattering, it is
necessary to select the values of these parameters optimally. It
should be borne in mind that, on the one hand, the use of too
strong a modulating field is unacceptable because of the fast
ionisation from the excited states of the active medium. On
the other hand, increasing the wavelength of the modulating
field is also undesirable, because it reduces the efficiency of
scattering of the harmonics into each other due to enhanced
plasma dispersion at the frequency of the modulating field,
i.e., a decrease in the parameter (7).

In addition, the amplitude of the coherently scattered field
generated by the zero harmonic at the frequency of the minus
first harmonic substantially depends on the thickness of the
medium. This is because this field is a sum of partial waves
generated in previous layers of the medium due to scattering
of zero-harmonic radiation by a modulation wave moving
with the phase velocity of the optical field. Since this velocity
is different from the propagation velocity of harmonics, each
partial wave is delayed, which is described by the factors
exp(i®) in the right-hand sides of Eqns (11). As a result, in a
sufficiently thin layer of the medium, if amplification can be
neglected, the resulting amplitude of the coherently scattered
field from the zero harmonic at the frequency of the minus
first harmonic will be proportional to sin(®/2). Thus, at a
thickness of the medium corresponding to @ = m, the ampli-
tude of the coherently scattered field will be maximal, and at
a thickness of the medium corresponding to @ = 2, it will be
minimal.

It is also seen from Eqns (11) that the resulting amplitude
of the Mth harmonic substantially depends on the relative
phases of the harmonics at the input to the medium ¢,, and
on the initial phase of the modulating field #. If the relation
between ¢, 7, and @ is such that all terms in Eqns (11) are in
phase, then due to the constructive interference of coherently
scattered fields with the radiation of harmonics, the gain of
the harmonics increases significantly compared to their inde-
pendent gain in a dense plasma [17]. We call this effect inter-
ference amplification of harmonics. At the same time, it is pos-
sible to choose a phase relationship between ¢,,, 7, and @
such that coherently scattered fields are in antiphase with the
radiation of harmonics, and this will lead to a decrease in

amplitudes and the total energy of harmonics, compared with
the case of their independent amplification. We call this effect
interference suppression of harmonic amplification. Below, we
will illustrate both of these cases, both based on an analytical
solution and by numerical solution of a more general nonlin-
ear system of equations for harmonic amplitudes.

Thus, in a low-density plasma active medium, where the
phase velocity of the optical field is close to the speed of light in
vacuum, the spectral characteristics of amplified harmonics sub-
stantially (in the general case, nonmonotonically) depend not
only on the modulation index Pg, but also on the phase of the
modulating field, relative phases of harmonics, and the thickness
of the medium. As a result, the coherent control becomes possi-
ble (i) of the transfer of energy from the medium to the field and
(i1) of the spectral characteristics of the amplified radiation via
constructive or destructive interference between the amplified
incident field and coherently scattered fields.

3. Analytical solution

This section provides simple analytical estimates that show
the possibility of interference control of the spectral charac-
teristics of the radiation of three harmonics at the output of
the modulated active plasma medium. To simplify the analy-
sis, we consider the modulation index Po ~ 1.84. In this case,
Jo(1.84) = J,(1.84) = J (Fig. 1), and in a dense plasma the
harmonics of the incident radiation (1) will be amplified uni-
formly with the gain g,J2. At the same time, in a less dense
plasma, taking into account coherent scattering of the har-
monics into each other, their complex amplitudes will have
the following form:

E i(x,7) ~ Eof(r)exp{goxJ*[l — exp(—y.7)]}
X[exp (ip-1) + 2a(t)J *sin (P/2) exp (1D/2 + 128 + o)

+a(r)J*sin Pexp(iD + 47+ ip1)],

Eo(x,7) ~ Eof(v)exp{goxJ?[1 — exp(-y:0)]}
X[exp (ipo) + 2 (v) J*sin (D/2)exp(—iD/2 — 28 + ip-1)

+ 2a(t)J?sin (D) exp (iD/2 + 128 + ip1)], (12)

Ei(x,7) ~ EoB(v)exp{goxJ[1 — exp(~y-0)]}
X[exp (ip1) + 2a(z)J* sin (P/2)exp (—iD/2 — 128+ ipo)
+a(t)J?sin Pexp(—i® — 49+ ip_1)].
These expressions are derived from Eqns (11) using the first-
order perturbation theory with a(r) J? as a small parameter.
The energy densities of the considered harmonics in the
approximation a(r) J? << 1 are written as
W1 (x,7) = Windep(xX,7)[1 + 4 (t) J?sin (D/2)
X cos(W1/2 — W) + 2a(t)J?sin Dcos W),
Wo(x,7) = Windep(x,7)[1 + 8 (r)J*sin (P/2)

X cos ¥icos(W2/2)], (13)
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Wi(x,7) = Windep(x,7)[1 + 4 (t)J*sin(P/2)
X cos(W2/2+ W)+ 2a(r)J*sin Dcos ¥>),

where Wi = |Eu|*/(8m) is the energy density of the Mth har-
monic (M =0, 1), while Whaep (x,7) = [E5/(8m)]exp[2g0J *x X
(1 — exp(— y:7)] is the energy density of an individual har-
monic (any of the three) propagating independently in a dense
plasma. In Eqns (13), we use the notations

Yy = (Ap1o+ Ap-1,0)/2,
V) = &+ 49+ Apro— Ap-1,0,

where Ap; o = ¢ — ¢y is the difference between the initial
phases of the first and zero harmonics, and Ap_; o = ¢_; — ¢
is the difference between the initial phases of the minus first
and zero harmonics. Note that the intensity of the Mth har-
monic differs from its energy density only by a constant factor
equal to the speed of light in vacuum, ie., I}, = cW),.
Correspondingly, Eqns (13) also characterise the phase
dependences of the intensities of the harmonics.

Let us analyse the impact of coherent scattering on the
characteristics of amplified harmonics. For this purpose, we
introduce the efficiency of interference amplification

1

Z WM -3 I/Vindep
—M=-1 000

3a (‘L') Jz I’Vindep '
which characterises the contribution to the energy density of
harmonics from coherently scattered fields, as well as the
quantities characterising the asymmetry of harmonic amplifi-
cation (normalised differences of the energy densities of the
harmonics of different orders):

Wo— Wi
a (T) -12 Wndep ’

W — W,

AHo 1 = W=
o a(T)J2 Wndep

H 1=

Substituting expressions (13) into these definitions, we obtain

G= %sin(dﬂ)cos W cos(W2/2) + %sin Dcos ¥,

AHo,1 = 4sin(®/2)cos(W2/2 — W) — 2sin @cos ¥, (14)

AH,,—1 = —8sin(P/2)sin(W>/2)sin ;.

It is seen from Eqn (14) that the quantities G, AH, ;, and
AH, _, depend on the relations between the phases of the har-
monics and the initial phase of the modulating field via
parameters ¥ and ¥,. The last of them also depends on the
thickness of the medium via the phase incursion @ of the
modulating field in the plasma. Below, we will assume that
0 < ¥ < 2m, since the harmonic phase difference multiple of
21 does not introduce new physical sense, and ¥, can have
any value, since the thickness of the medium, generally speak-
ing, is not limited by anything.

From Eqn (14), in particular, it follows that for ¥; = n/2
and ¥, = 1/2, the mutual gain efficiency G of harmonics will
be zero. This means that the total energy of harmonics will be
the same as in the case of their independent amplification in a
dense plasma. In this case, however, the spectrum of harmon-
ics becomes asymmetric, which is directly seen from the val-

ues of the parameters AHo, = 22 sin(@/2) and AH, - =
—4+/2sin(®/2). Thus, for a thickness of the medium satisfy-
ing the condition 2nk < @2 < 2k + )n (k =0,1,2,...,),
W, < Wy, < W, while for 2k + 1)n < @/2 < (2k + 2)m, the
opposite case is realised: W, > W, > W_,. If the thickness of
the medium satisfies the condition @/2 = nk, then the ampli-
tudes of the harmonics will be equal to each other (as in the
case of their independent amplification), while the amplitudes
of the coherently scattered fields are equal to zero.

Next, we find the conditions under which the efficiency of
interference amplification of harmonics will be maximised or
minimised. For this purpose, we differentiate G with respect
to ¥, ¥, and equate the derivatives to zero. Thus, we obtain
a system of two equations with respect to ¥, ¥>:

sin ¥\ cos(¥2/2) = 0, (15)

sin(¥2/2)[cos W1 + 2cos(P/2)sin ¥1] = 0.

Let us consider the solutions of the system of Eqns (15). If ¥,
=0, ¥, =4nk or ¥, =rn, ¥, =2 2k + 1)n (k is an integer),
then the efficiency of mutual amplification of harmonics is

G = 18sin(@12) + $sin . (16)

By using Eqn (12), it can be shown that this solution corre-
sponds to the case when coherently scattered fields are in
phase with the radiation of harmonics, while the harmonics
themselves are in phase with each other. In this case, the effect
of interference amplification of harmonics is realised. Note
that, according to the definition of ¥,, such phase matching
can be realised only for a certain initial phase of the modulat-
ing field # and only for a certain thickness of the medium @,
which are related as =-®/4 + Ap_; (/2, where the phase shift
multiple of 2r is omitted, and Ap_; o = -Ap o.

If¥ =0and ¥, =22k + l)w or ¥| = n and ¥, = 4nk,
then

Gzz—?sin(rp/zwr%sm@. (17)

In this case, the total coherently scattered field generated by a
set of harmonics of different orders appears to be in antiphase
with the radiation of harmonics themselves (which are still in
phase with each other), which leads to a lower radiation
energy than in the case of independent amplification of har-
monics in a dense plasma. In this case, the relationship
between ¢ and @ is as follows: & = —n/2 — @4 + Ap_; (/2.
Thus, a change in the initial phase of the modulating field by
/2 relative to case (16) or, similarly, a delay of the harmonic
signal by a quarter of the period of the optical field at the
fundamental frequency leads to a transition from maximum
interference amplification to interference suppression of har-
monics amplification.

The remaining solutions of system (15) correspond to the
intermediate efficiency of interference amplification of har-
monics. Thus, if ¥, = n/2, 3n/2 and ¥, = 2k + 1)r, which
corresponds to Ap; o = —Ap_; o + mand d=-D/4 + Ap_; (/2,
then

G3:—%sin<15. (18)
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If ¥, = 0 and ¥, satisfies the relation cos(¥,/2) = —0.5 x
[cos(@/2)]!, which is realised only when |cos(@/2)| > 1/2, the
interference gain efficiency is

G4:—%tan(¢/2)—%sin@. (19)

And if W] = © and the condition cos(¥,/2) = 0.5/cos(P/2) is
fulfilled, which again is possible with |cos(®/2)| > 1/2, then

Gs = 4tan(PD/2) — %sin @, (20)

The dependences of the gain efficiency of harmonics on
the thickness of the medium in the found ‘ultimate’ interfer-
ence amplification regimes (16)—(20) are shown in Fig. 2. It is
worth noting that each point on the curves corresponds to
certain (and, generally, different) values of the initial phase of
the modulating field and the phases of harmonics at the input
to the medium, which are interrelated by the appropriate val-
ues of ¥; and ¥, (16)—(20). It is seen that during the propaga-
tion of harmonics through the modulated active medium, the
effect of their mutual amplification is periodically replaced by
the effect of interference suppression of amplification. At the
same time, it should be noted that for any possible (including
negative) value of the coefficient G, the energy is transferred
from matter to field, i.e., the radiation of harmonic is ampli-
fied as it propagates through the medium. The coefficient G
characterises the difference in the spatial dependence of the
total energy density of harmonics from the exponential func-
tion. The minimum thickness of the medium at which the
mutual amplification of the three harmonics is greatest cor-
responds to @y & 0.76m, with Gi(Pyp) ~ 5.87, Go(Pyp) ~
—4.12, and G3(P,p) ~ —0.91, while G4 and Gs are not deter-
mined.

Figure 2. Dependences of the mutual amplification efficiency of three
harmonics on the normalised thickness of the medium @ for ¥| and ¥,
corresponding to (solid black line) Eqns (16), (solid grey line) (17),
(dashed line) (18), (dotted line) (19) and (dot-and-dash line) (20).

The efficiency of interference amplification of harmonics,
as well as the asymmetry of their spectrum [see Eqn (14)], sub-
stantially depend on the initial phase of the modulating field
7 (or, which is the same, on the delay between the modulating
field and the radiation of harmonics). For two ‘ultimate’ com-
binations of the initial phases of harmonics, i.e. all three har-

monics are in-phase, and the first (or minus first) harmonic is
in antiphase to the in-phase zero and minus first (or zero and
first) harmonics, and for the optimal value @ = @, these
dependences are plotted in Fig. 3. It can be seen from Fig. 3,a
that if the incident harmonics are in phase with each other,
then during amplification the harmonic spectrum remains
symmetric, i.e., the amplitudes of the *1st harmonics are
equal to each other for any value of the parameter #. At the
same time, depending on the value of 7, the amplitude of the
central component is either greater or smaller than the ampli-
tudes of the x1st harmonics. Thus, in the case of the most
efficient interference amplification of harmonics, which is
realised at #=-0.197, ¥) = ¥, =0and Ap_; o = Ap; o = 0,
we have AH (@) &~ 2.35 and AH; (D) =0, 1.6, Wy >
W, = W_;. When the initial phase of the modulating field
changes by m/2 namely, at ¢ = 0.31x, the opposite case is
realised, i.e., the interference suppression of amplification. In
this case, AH |(Pop) ~ —5.09 and AH| _{(Py,) =0, 1.e., W) <
W, = W_,. If one of the side harmonics of the incident radia-
tion (1) is in antiphase with respect to other harmonics, for
example, Ap; o = wand Ap_, o = 0 (¥; = n/2, Fig. 3b), then
the dependence of harmonics spectrum asymmetry upon the
initial phase of the modulating field is more complex. For
example, if ##=-0.197 (¥, = ), then AH,, (D) = 5.09 and
AH| _((Dop) =-7.44,1e., W > Wy > Wisif =0.31n (¥, =
3n), then AH\ ((Dop) & —2.35 and AH, _|(Dyp,) = 7.44, ie.,

Figure 3. Characteristics of harmonic interference amplification de-
pending on the initial phase of the modulating field . The solid curves
correspond to the mutual amplification efficiency; the dashed and dot-
ted curves correspond to the normalised differences of energies between
the zero harmonic and the first one, as well as between the first har-
monic and the minus first one [see Eqns (14)]. The dimensionless thick-
ness of the medium is @, = 0.76m; Fig. 3a corresponds to the case of
in-phase harmonics, ¥; = 0, Fig. 3b corresponds to ¥, = n/2; in this case
one of the side harmonics (+1st or —1st) is in antiphase with the other
two harmonics.
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W_, < Wy < W,. Correspondingly, in this case, a change in
the initial phase of the modulating field by n/2 leads to a mir-
ror reflection of the harmonic spectrum with respect to the
zero component. Thus, if the incident field of harmonics (1) is
not in-phase, interference gain or suppression of amplifica-
tion of harmonics is accompanied by a violation of the sym-
metry of their spectrum. This asymmetry can be of applied
significance, since it allows correcting the amplitude distor-
tion of the spectrum of harmonics in the process of their
amplification.

To conclude this section, we note once again that the best
conditions for the mutual amplification of three harmonics at
a modulation index Pg ~ 1.84 are achieved when coherently
scattered fields constructively interfere with harmonics. This
is realised when Ap_; o = —A¢p; o and 7 = -D/4 + Ap_; (/2
(¥, = ¥, = 0), and when the amplitudes of the coherently
scattered fields are maximised, which corresponds to @, ~
0.76m (the phase shift by 2n is omitted here). In this case,
according to Eqn (14), in the regime of the most efficient
interference amplification, the amplitude of the zero har-
monic will be greater than the amplitudes of +1st harmonics.
If the initial phase of the modulating field # is shifted by 7/2
(or, what is the same, the harmonic signal is delayed by a
quarter of the period of the modulating field), then coherently
scattered fields will destructively interfere with the radiation
of amplified harmonics, leading to a decrease in the resulting
field energy at the output of the medium. Moreover, in the
regime of interference suppression of amplification at the
thickness of the medium corresponding to @, & 0.76m, the
amplitude of the zero component will be smaller than the
amplitudes of % 1st harmonics.

In Section 4, the results of the analytical theory are com-
pared with the results of numerical modelling, taking into
account the nonlinearity of the active medium, as well as the
generation of amplified spontaneous emission from noise.

4. Results of numerical modelling

Here we analyse the possibilities of interference control of the
amplification of high-order harmonics of optical radiation
based on the numerical solution of Maxwell —Bloch equations
for the active medium of a plasma-based X-ray laser with
inversion at the transition n = 1 - n =2 in hydrogen-like ions
Li?* [20]. For correct description of the amplification of high-
order harmonics in a real active medium, it is necessary to
take into account the nonlinear effects arising from changes
in the populations of the ground and excited states of reso-
nant ions. It is also necessary to consider the generation of
amplified spontaneous radiation of orthogonal polarisation,
which can overlap in time and space with amplified radiation
of harmonics and decrease the efficiency of their amplifica-
tion due to an increase in the population of the ground state
of ions. Both of these factors are taken into account in the
five-level model of the active medium used below. The model
is described in detail in Refs [17—-19] and will not be presented
here.

We consider the active medium of a recombination
plasma-based X-ray laser based on hydrogen-like Li** ions
with a wavelength of oscillation and gain in the vicinity of
13.5 nm (in the vacuum ultraviolet range). We assume that
the plasma consists only of resonant ions with a concentra-
tion of Ny, = 1.5x 10'7 cm™ and free electrons with a concen-
tration of N, = 3 x 10'7 cm=. We assume the characteristic
temperature to be 1 eV for ions, and 2 eV for electrons, which

corresponds to the conditions of the experiment [20] (see also
[21]). In this case, the characteristic times of collisional and
radiative relaxation of coherence at the inverted transition of
the ions are yen ~ 0.425 ps and I'ny ~ 19.7 ps, respectively.
Similar to Refs [17—-19], we assume that at the initial moment
of time all resonant ions are equally likely to be in one of the
excited states with n = 2 with equal probability. In this case,
the initial population differences between the excited and
ground state (the difference of the corresponding diagonal
elements of the density matrix of the active medium) is equal
to 1/4: ne = pi(x,t = 0)— pu(x,t = 0)=25,i=2,3,4,5.

Next, we choose the intensity of the modulating field just
below the tunnelling ionisation threshold from the resonant
excited states of the ions (so that ionisation does not have a
significant effect on the amplification of the harmonics sig-
nal), namely: I,,, = 4 x 10'* W cm™2. In this case, the charac-
teristic time of tunnel ionisation from the excited states of
ions is I'on = 3.3 ps. Taking into account all the relaxation
mechanisms, the characteristic lifetime of the coherences at
the resonant transitions |2) - [1) and |3) = |1}, or, what is the
same, the build-up time of the resonant polarisation of the
medium y;' appears to be approximately equal to 395 fs. For
the considered modulating field intensity, the modulation
index is Po ~ 1.84, if the wavelength of the modulating field is
A=2nc/Q2 ~ 0.78 um.

For the above parameters of the plasma and the modulat-
ing field, the optimal value of the parameter @ ~ 0.761 found
in Section 3 corresponds to the thickness of the medium L ~
1.8 mm. The radius of the plasma channel R is assumed to be
50 pum.

We accepted that the radiation intensity of a single har-
monic at the entrance to the medium is 7 = cEZ/(8n) = 1.1 X
108 W cm™; this corresponds to the field energy density of an
individual harmonic E3/(8m) = 3.7 mJ cm™>. In this case, at the
considered thicknesses of the medium (up to 3 mm), the
amplified spontaneous emission turns out to be much weaker
than the total radiation of the three harmonics, and the gain
saturation effect at the initial time moments (y.r < 1) can be
neglected.

Figure 4 shows the results of numerical calculations of the
total energy density of the three harmonics Wy, (x,7) = W4
+ W, + W, depending on the thickness of the medium x at
time = 200 fs, satisfying the condition y.t < 1 (Fig. 4a) and
depending on the time 7 at the optimal medium thickness x =
1.8 mm (Fig. 4b) for different combinations of the initial
phases of the harmonics and the modulating field. The solid
curves correspond to the interference amplification of har-
monics: ¥ = ¥, = 0. The initial phase of the modulating field
is determined up to phase difference between the zero and
minus first harmonics, so that setting Ap_; o = Ap; o = 0 we
obtain the optimal value & = —®,,/4 ~ -0.197. In the case
under consideration, the total energy of harmonics turns out
to be significantly higher than in the case of their independent
amplification in a dense plasma (the corresponding solutions
in Fig. 4 are shown by dotted curves) in full agreement with
the analytical solution obtained in Section 3. At the same
time, the dashed curves in Fig. 4 correspond to the conditions
of the interference suppression of amplification: ¥, =0, ¥, =
2r (for Ap_; o = Ap, o = 0 the corresponding initial phase of
the modulating field is 7 = —1/2 — @, /4 ~ —0.697). In this
case, the energy of harmonics is significantly lower than in the
case of their independent amplification in a dense plasma.

Note that for simulating a dense plasma we increased the
electron concentration by a factor of 10, assuming that non-
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Figure 4. Dependences of the total energy density of three harmonics
on (a) the thickness of the medium at a time moment of 200 fs and (b)
on local time for the thickness of the medium 1.8 mm. The solid curves
correspond to ¢/=—-0.197; dashed lines to #=—0.69w. The dotted curves
characterise a plasma in which the concentration of free electrons is in-
creased by a factor of 10 and #= 0. In all cases, it is assumed that Ap_; o=
Ap; o= 0 (the incident harmonics are in phase with each other). Vertical
dashed lines in panels (a) and (b) indicate the medium thickness and the
time, for which panels (b) and (a) are drawn.

resonant ions (e.g., hydrogen ions [22]) are present in the
plasma. As it is easy to see from Fig. 4a, the dependence of
the harmonics energy on the thickness of the medium
(dashed curve) approaches an exponential function with
insignificant oscillations due to the mutual influence of har-
monics [in this case, it is weak because the parameter a() is
small]. We assumed Ap_; o= Ap; o= =0 (in a dense plasma,
the values of these parameters do not play a significant role).
Note that the characteristic scale of spatial energy oscilla-
tions (‘steps’) in Fig. 4a corresponds to a change in the
parameter @ by 2w. Moreover, the higher the electron con-
centration, the proportionally shorter the period of spatial
oscillations of the harmonics energy. Thus, in the case of a
dense plasma (dotted line in Fig. 4a), the concentration of
electrons is 3 x 10'® cm=3, and the spatial period of the energy
oscillations is approximately 0.5 mm. For other solutions,
this scale is of the order of 5 mm, and the corresponding
oscillations are shown in Fig. 4a only partially (since the
maximum considered thickness of the medium is 3 mm).
Note that the scale of spatial energy oscillations can be used
to determine the concentration of free electrons in the
plasma.

Figure 5 shows the spectra of harmonics in the medium
having the optimal thickness x = 1.§ mm at the time near t =
200 fs. They clearly show the possibility of interference con-
trol of the relative amplitudes of harmonics in the process of
amplification by changing the initial phase of the modulating
field and/or the initial phases of harmonics at the input to
the medium. Thus, under conditions of maximum interfer-
ence amplification of harmonics at Ap_; y = Ap; o = 0 and
=—d,, /4 ~ -0.19n (Fig. 5a) the zero harmonic acquires the
largest amplitude, while the amplitudes of %1st harmonics
are equal to each other: W, > W, = W_,. At the same time, in
the case of interference suppression of harmonic amplifica-
tion at Ap_; o = Ap; o =0and = —-n/2 — D, /4 ~ —-0.691
(Fig. 5b) the situation turns out to be opposite: the amplitude
of the zero harmonic is significantly smaller than the ampli-
tudes of £1st harmonics, Wy < W, = W_;. It is also possible
to minimise the amplitude of the first or minus first harmonic.
Thus, if Ap_; 9 =0, Ap; =7 and J = -, /4 ~ -0.19%
(Fig. 5¢), the amplitude of the first harmonic is smaller than
the amplitude of zero harmonic, which is in turn smaller than
the amplitude of the minus first harmonic: W_; > W, > W,.
And if Ap_; o =T, Ap; o =0, and & = - D, /4 ~ —0.19x, the
opposite result is achieved, i.e., W_; < W, < W, and the
ratios of amplitudes of the most intense harmonic, which
experienced average amplification, and the weakest harmonic
will remain unchanged. Figure 5d shows the spectrum of har-
monics in the case of their amplification in a dense plasma
(when the electron concentration is 10 times higher than in
Figs 5a—5c). As expected, in this case all harmonics are ampli-
fied uniformly. Note that the dependence of the asymmetry of
the amplified harmonics spectrum on the distribution of their
initial phases can be used not only to control the amplitudes
of harmonics (in particular, to compensate for initial spec-
trum asymmetry), but also to determine the relative input
phases of harmonics from their output amplitudes.

To observe the interference effects discussed in the paper
experimentally, it is, first of all, necessary to ensure the unifor-
mity and invariance of the concentration of free electrons, the
amplitude and initial phase of the modulating field, and the
initial phases of harmonics, since these parameters primarily
affect the interference of multifrequency coherently scattered
fields with the radiation of harmonics. However, the change in
the role of interference effects (shift of interference maxima and
minima, changes in the spectral and energy characteristics of
harmonics), due to the dependence of these parameters on time
and longitudinal coordinate, can be described in terms of Eqns
(5) with variable parameters. In this case, of course, the solu-
tion of these equations will have a more complex form than
(12). As for the transverse inhomogeneities of the concentra-
tion of free electrons, the amplitude and the initial phase of the
modulating field and the initial phases of harmonics, they will
lead to a change in the interference characteristics in the cross
section of the harmonics beam. These effects can be theoreti-
cally simulated using a spatially non-one-dimensional model
and investigated experimentally by measurements with trans-
verse resolution. Nevertheless, under optimal experimental
conditions it is desirable to reduce the role of these effects by
using a sufficiently short pulse of harmonics radiation and a
sufficiently long pulse of the modulating field (to minimise the
influence of time dependences of the characteristics of the
medium and the modulating field). The harmonics should be
focused into a spot of small diameter (to improve transverse
uniformity of electron concentration and amplitude of the
modulating field) and the sample should be sufficiently short
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Figure 5. Emission spectra of three harmonics at a medium thickness of 1.8 mm in the vicinity of a time instant of 200 fs (see Fig. 4) at (a) 7 =
—0.191, Ap_1 o= Ap; o = 0 and (b) 7 =-0.697, Ap_; o = Ap; o = 0 (in both cases, the incident harmonics are in phase with each other), as well as at
(c) #=-0.19m, Ap_; o = 0 and Ap; ( = © (1st harmonic is in antiphase with the zero and —1st harmonics; Fig. 5d corresponds to a dense plasma in
which the concentration of free electrons is increased 10 times, and 7= Ap_; ; = Ap; o = 0 (harmonics are in phase with each other).

compared to the Rayleigh length of the optical and VUV fields,
and located at their focus (to ensure longitudinal uniformity of
the field characteristics).

5. Conclusions

Thus, we have investigated the interference effects arising in
the process of amplification of a set of three neighbouring
high-order harmonics of optical radiation in the active
medium of a plasma-based X-ray laser, simultancously irradi-
ated with a replica of the optical field of fundamental fre-
quency. It is shown that in a medium with not too strong
plasma dispersion at the frequency of the optical field, each of
the harmonics during amplification generates a coherently
scattered field at frequencies of other harmonics. The interfer-
ence of coherently scattered fields with the radiation of har-
monics significantly affects the efficiency of energy transfer
from the active medium to resonant radiation, as well as the
energy distribution between harmonics of different orders. In
particular, under certain conditions, the effect of interference
amplification of harmonics is realised, and due to construc-
tive interference of the radiation of harmonics with coher-
ently scattered fields, the total energy of the amplified radia-
tion appears to be greater than in the case of independent
amplification of each harmonic in a dense plasma. It is also
possible to realise the opposite effect, i.e., interference sup-
pression of gain. In this case, coherently scattered fields inter-
fere destructively with radiation of harmonics, and the total
energy of resonant radiation decreases, as compared to the
case of independent amplification of harmonics in a dense
plasma. The considered interference effects substantially
depend on the relative phases of harmonics at the input to the
medium and on the initial phase of the optical field of funda-
mental frequency (equivalent to a delay of the harmonics with
respect to the optical field by a fraction of its period). In par-

ticular, the phases of input harmonics determine the degree of
asymmetry of the spectrum of amplified output harmonics,
which can be used both to control the spectrum of harmonics
during amplification and to determine the initial phases of
amplified harmonics. In addition, the role of interference
effects periodically changes with the thickness of the medium,
which is due to a change in the phase difference between the
modulating optical field and the radiation of harmonics due
to plasma dispersion at the optical frequency. In particular,
the growth of the total energy of harmonics is accompanied
by its periodic oscillations in space, the scale of which allows
assessing the concentration of free electrons in the active
medium. This work is the first study of the interference effects
arising from the optical (on the scale of an optical field cycle)
modulation of the parameters of the active medium of a
plasma X-ray laser in a strong laser field. The results can be
used both to control the characteristics of high-harmonic
radiation in the process of amplification, and for diagnostics
of the parameters of amplified radiation and active medium.
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