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Measurements of nucleon and nuclei Electric Dipole Moments (EDMs) play an important role in

probing CP violation and exploring physics beyond the Standard Model. We extract the neutron

EDM by measuring the energy shift of the nucleon two-point correlation function in the presence

of a background field. The UV divergence of the topological charge density operator is mitigated

using gradient flow, and the diffusion effect induced by the gradient flow process is included into

the fit ansatz. Our calculations were carried out on two 2+1 DWF fermion, Iwasaki, gauge field

ensembles generated by the RBC/UKQCD collaborations with inverse lattice spacing 1.73 GeV

and pion masses of about 340 and 420 MeV.
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1. Introduction

The nucleon electric dipole moment (nEDM) is an important indicator of CP(T)-symmetry

violation. The nEDM prediction from the Standard Model’s CKM matrix for the neutron is ≈ 10
−31

[4 cm], which is much smaller than the upper-limit determined through experiments on neutrons

(ILL) [1] and 199Hg [2]. The SM prediction is also too small to explain the matter-antimatter

asymmetry compared to what is required by the Sakharov conditions. Hence, the measurement of

the nEDM is important in the search for physics beyond Standard Model.

Strong interactions may be a source of CP violation known as the QCD "\-term", (\ = \&,

where & is the topological charge. Its contributions to the nEDM can be studied systematically

from first principles only using lattice QCD. Many efforts have been made to calculate the nEDM

using Lattice QCD [3–13]. In earlier calculations, an incorrect definition of the electric dipole form

factor �3 resulted in significant mixing with the Pauli form factor [9]. After subtracting the mixing

term, those nEDM results became much smaller, comparable with phenomenology, and universally

dominated by statistical noise even with unphysical heavy quark masses.

Currently, most of nEDM calculations on a lattice use the traditional form factor method in

which nEDMs are extracted as electric dipole form factors (EDFF) �3(&
2) from�%-odd corrections

to matrix elements of the quark vector current due to topological charge. This form factor has to be

extrapolated to the forward limit (&2 → 0) to obtain the nEDM. The other method is to calculate

the EDM from the nucleon energy shift Δ� ∝ 3# (2 ®( · ®�) in a uniform background electric field

[9, 14, 15]. This method has significant advantages: no forward limit is required, there is no parity

mixing between �2 and �3, and one only needs to calculate the �%-odd part of the two- instead of

three-point function.

We present our \-nEDM results using the background field method. Details of this method

were first described in Ref. [16]. The background field method is described in Sec. 2, the results

are presented in Sec. 3, and discussed in Sec 4.

2. Electric dipole moment from background field method

In this section, we discuss and compare methods to compute the nEDM on a lattice. The form

factor method has been described in multiple publications (see, e.g., Ref.[9] and references therein).

The EDFF is defined as

⟨?′, f′ |�` |?, f⟩
��CP

= D̄?′ ,f′

[
�1(&

2)W` +
(
�2(&

2) + 8�3(&
2)W5

) 8f`a@a

2"#

]
D?,f (1)

where &2
= −(?′ − ?)2, and �1,2,3 are the Dirac, Pauli, and electric dipole form factors. The

forward limit of the latter yields the nEDM, �3(0) = 2<=3=. Although the nucleon states in QCD

vacuum with �%-violation are no longer parity eigenstates, it is crucial to ensure that their spinors

satisfy the positive-parity Dirac equation with real-valued mass, ( /? − <# )D?,f = 0, otherwise �3

receives a spurious contribution from �2 [9],

�̃3(&
2) = �3 cos(2U) − �2 sin(2U), (2)

where U is the parity mixing of the lattice nucleon spinor due to �%-violation that can be extracted

from the two-point function.
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Another approach to calculate the nucleon EDM is the background field method introduced in

[14–17]. It has also been extended to analyze CP-even properties, such as the electric polarizability

and magnetic moments of the nucleon [18, 19]. Since the proton accelerates in an electric field,

and requires a more sophisticated analysis, we study only the neutron EDM in this work. After

including the background field, the Dirac equation for the parity-positive neutron spinor D# in the

rest frame (?# = (<# , ®0)) becomes in Euclidean space [9]

[
8/? + <# −

(1
2
�`af

`a
) ^ + 8ZW5

2<#

]
D# =

©­
«
<# −

(^+8Z ) ®E· ®f
2<#

−�#

−�# <# +
(^−8Z ) ®E· ®f

2<#

ª®
¬
D# = 0 , (3)

where �# is the neutron energy, ^, Z = �2,3(0) are magnetic and electric dipole moments, and ®E is

the Euclidean electric field. To the order linear in ^, Z , the nucleon energy �# is

�2

# = <2

# − 8Z ( ®Σ · ®E) +$ (^2, Z2) , or �# = <# −
8Z

2<#

( ®Σ · ®E) +$ (^2, Z2) (4)

where Z/(2<# ) = 3# is the electric dipole moment and ®Σ = diag[®f, ®f] is the spin operator. Note

that the linear part of the energy shift X� = −
8Z

2<#
( ®Σ · ®E) is imaginary because of the analytic

continuation in electric field on a Euclidean lattice, implying that the correlation function acquires

a complex phase. Expanding the path integral in \ ≪ 1, one obtains the �%-violating correction to

the nucleon correlation function in the background field E on one hand, and the C-linear correction

on the other:

�2?C,E, \ ≈ ⟨# (C)#̄ (0)⟩E − 8\⟨& # (C)#̄ (0)⟩E ∝ 4−�C
[
1 − CX� +$ (\2)

]
. (5)

The nEDM Z = �3(0) can be extracted from nucleon correlators in an electric field ®E = EI Î as

Z

\
= 8

2<#

EI

X�

\
= −

2<#

EI

3

3C

Tr
[
)+
(I
⟨& # (C)#̄ (0)⟩EI

]
Tr
[
)+⟨# (C)#̄ (0)⟩EI

] , (6)

where )+
=

1

2
(1+ W4) is the positive-parity projector, and )+

(I
= )+ · (1+ΣI) is the spin-Î projector.

So far, we have ignored excited states and negative parity state. In practice, a multi-state model

can be fitted to the time dependence of the EDM estimator (6). On the other hand, the formula (6)

resembles the “summation” method of computing ground-state matrix elements. This relation is

made apparent by the Feynman-Hellman theorem (recently discussed in Ref. [20] in the context

of lattice QCD), so the EDM can alternatively be calculated from the matrix element of the local

density of topological charge,

Z

\
= −

2<#

EI

⟨#↑ |@ |#↑⟩EI
≈ −

2<#

EI

Tr
[
)+
(I
⟨# (C 5 ) @(g) #̄ (0)⟩EI

]
Tr
[
)+⟨# (C 5 ) #̄ (0)⟩EI

] . (7)

Thus, the problem is reduced from computing a 4-point function between the nucleon fields #, #̄ ,

the global topological charge & =

∫
34G@(G), and the vector current �` = k̄W`k to a correlator of

#, #̄ and the local topological charge density @(G) in uniform field:

�3(C 5 , g) = Tr
[
)+
(I
⟨# (C 5 ) @(g) #̄ (0)⟩EI

]
=
[
)+
(I

]
VU

∑
®H,®I

⟨#U (C 5 , ®H) @(g, ®I) #̄V (0)⟩ . (8)
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This point is crucial to reducing fluctuations in correlators with any operator that leads to “discon-

nected” Wick contractions: topological charge, Weinberg 3-gluon interaction, isoscalar 2-quark

and 4-quark interactions, and so on. In this paper we concentrate on the topological charge but the

methodology can be readily extended to these other��CP interactions.

Chiral symmetry is important for calculations involving topological charge. We use gauge

configurations generated with # 5 = 2 + 1 flavors of domain wall fermions (DWF) [21]. (Tab. 1).

Table 1: Gauge ensembles used in this work [21].

size <;/<B <c "4+ #2 5 6

I24_m010 24
3 × 64 0.01/0.04 432 1100

I24_m005 24
3 × 64 0.005/0.04 340 1400

Periodicity on a lattice in space and time requires quantization of abelian field flux&@�:!:!4 =

2c=, where &D =
2

3
and &3 = −1

3
are quark charges. A uniform electric field on the lattice is

introduced by multiplying the gauge links by the * (1) phase [18],

�G,4 = =:4Φ:4G: , �G,: |G:=!:−1 = −=:4Φ:4!:G4, (9)

where =`a is the number of quanta and Φ`a =
6c

!`!a
is the unit of flux through plaquette (`a). Such

potentials result in a uniform electric field ®� = (=14Φ14, =24Φ24, =34Φ34).

3. Numerical results

To calculate nucleon correlators, we use all-mode-averaging (AMA) [22] by combining high-

precision and truncated-CG samples computed with low-mode deflation of the preconditioned Dirac

operator. We also employ low-mode averaging whereby we approximate the full-volume average

of nucleon correlators from low modes and combine it with AMA samples to correct bias, which

have resulted in a 50% reduction of statistical errors:

⟨O⟩ ≈ ⟨OLMA⟩+4
+ ⟨Oapprox − OLMA⟩#0??A>G

+ ⟨Oexact − Oapprox⟩#4G02C
. (10)

In addition, we average over spin orientations 2(I = ±1 and electric fields EI = ±1,±2.

To use the Feynman-Hellman method, we need to determine the local topological charge

density @(G). We calculate @(G) using 5-loop improved discretization [23] and gradient flow [24].

Gradient flow helps suppress $ (0) size dislocations that contribute to fluctuation of the global

topological charge. At large enough gradient flow time, the global topological charge & becomes

constant. However, the local density (summed over the spatial volume) entering the correlator in

Eq. (7), becomes delocalized (“diffused”) in the Euclidean time, which complicates analysis of its

ground-state matrix elements. This effect is visible in the plateaus for 3=/\ (7) shown in Fig. 1 for

source-sink separations C = (6 . . . 10)0: as the gradient flow time Cgf is increased, the g-dependent

features in the ratios (7) become more diffused. In particular, it becomes hard to isolate the ground-

state plateau from the contact term contributions where the density @(G) overlaps with the nucleon

operators.

4







The calculations of Nucleon Electric Dipole Moment using background field on Lattice QCDFangcheng He

physical volume of a lattice increases. Without the need to extrapolate in the momentum transfer

&2 → 0, the systematic uncertainty can be further dramatically reduced.

The main obstacle in using this method is the difficulty of determining topological charge

density. In this work, we have used the field-theoretical definition from the gluon fields combined

with gradient flow. However, gradient flow leads to “diffusion” in Euclidean time and mixing of the

nEDM signal with contact terms and contributions from ==̄-pair states. We have implemented the

numerical procedure to extract the diffusion kernel from lattice data and incorporate it in the fits

of correlators of the nucleon and the topological charge density. With only two pion mass points

available, we could perform only a tentative estimate of the physical-point value. Another point at

lighter pion mass <c ≈ 250 MeV is currently being investigated.

We plan to explore the fermionic definition [11, 25], which may be especially advantageous

when combined with the low-mode approximation for neutron correlation function. Further, this

method can be easily applied to other��CP operators, and might be especially beneficial for the nEDM

induced by Weinberg’s three-gluon operator and 4-quark��CP operators.

Acknowledgments

The research reported in this work made use of computing and long-term storage facilities

provided by the USQCD Collaboration, which are funded by the Office of Science of the U.S.

Department of Energy, and the Hokusai supercomputer of the RIKEN ACCC facility. We are

grateful for the gauge configurations provided by the RBC/UKQCD collaboration. SS and FH

are supported by the National Science Foundation under CAREER Award PHY-1847893. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the National Science Foundation. HO is

supported in part by JSPS KAKENHI Grants No. 21K03554 and No. 22H00138. TB and MA

were partially supported by the US DOE under the award DE-SC001033. TI is supported by U.S.

Department of Energy (DOE) under award DE-SC0012704, SciDAC-5 LAB 22-2580, and also

Laboratory Directed Research and Development (LDRD No. 23-051) of BNL and RIKEN BNL

Research Center.

References

[1] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006), hep-ex/0602020.

[2] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Phys. Rev. Lett. 116, 161601 (2016),

1601.04339, [Erratum: Phys.Rev.Lett. 119, 119901 (2017)].

[3] E. Shintani et al., Phys.Rev. D72, 014504 (2005), hep-lat/0505022.

[4] F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys.Rev. D73, 054509 (2006), hep-lat/0512004.

[5] R. Horsley et al., (2008), 0808.1428.

[6] F. K. Guo et al., Phys. Rev. Lett. 115, 062001 (2015), 1502.02295.

[7] C. Alexandrou et al., Phys. Rev. D 93, 074503 (2016), 1510.05823.

7



The calculations of Nucleon Electric Dipole Moment using background field on Lattice QCDFangcheng He

[8] E. Shintani, T. Blum, T. Izubuchi, and A. Soni, Phys. Rev. D93, 094503 (2016), 1512.00566.

[9] M. Abramczyk et al., Phys. Rev. D 96, 014501 (2017), 1701.07792.

[10] J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, Phys. Rev. C 103, 015202 (2021),

1902.03254.

[11] C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou, and A. Todaro, Phys. Rev. D 103, 054501

(2021), 2011.01084.

[12] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti, and B. Yoon, Phys. Rev. D 103,

114507 (2021), 2101.07230.

[13] J. Liang et al., (2023), 2301.04331.

[14] E. Shintani et al., Phys. Rev. D 75, 034507 (2007), hep-lat/0611032.

[15] E. Shintani, S. Aoki, and Y. Kuramashi, Phys. Rev. D 78, 014503 (2008), 0803.0797.

[16] T. Izubuchi, H. Ohki, and S. Syritsyn, PoS LATTICE2019, 290 (2020), 2004.10449.

[17] T. Izubuchi et al., PoS LATTICE2007, 106 (2007), 0802.1470.

[18] W. Detmold, B. C. Tiburzi, and A. Walker-Loud, Phys. Rev. D 79, 094505 (2009), 0904.1586.

[19] W. Detmold, B. C. Tiburzi, and A. Walker-Loud, Phys. Rev. D 81, 054502 (2010), 1001.1131.

[20] C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A. Walker-Loud, Phys. Rev. D 96,

014504 (2017), 1612.06963.

[21] T. Blum et al., Phys. Rev. D 93, 074505 (2016), 1411.7017.

[22] E. Shintani et al., Phys. Rev. D91, 114511 (2015), 1402.0244.

[23] P. de Forcrand, M. Garcia Perez, and I.-O. Stamatescu, Nucl. Phys. B499, 409 (1997),

hep-lat/9701012.

[24] M. Lüscher, JHEP 08, 071 (2010), 1006.4518, [Erratum: JHEP 03, 092 (2014)].

[25] M. Lüscher and P. Weisz, Eur. Phys. J. C 81, 519 (2021), 2103.15440.

8


	Introduction
	Electric dipole moment from background field method
	Numerical results 
	Summary

