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A theoretical investigation is conducted on the s- and p-wave elastic scatterings of positronium by a lithium
ion Li* with the scattering energy below 1.41 eV, corresponding to the threshold of the e*-Li channel. The
confined variational method is applied to serve as the theoretical framework for this study. To accurately account

for correlations between involved particles, explicitly correlated Gaussians are employed as basis functions,
which are optimized through a hybrid approach combining stochastic variational and energy-gradient-based
methods. Additionally, a straightforward yet effective algorithm is developed for the automatic adjustment of
confining potentials. The s-wave zero-energy pickoff annihilation parameter !Z  is accurately determined to
be 0.126 &£ 0.002, which yields an enhancement factor of 1.88 compared with the value 0.067 obtained using the
fixed-core stochastic variational method [Phys. Rev. A 65, 034709 (2002)]. Finally, a broad p-wave resonance
structure is predicted at the incident energy of approximately 0.27 eV, with the annihilation parameter ' Zg; | at

the resonance center estimated to be around 0.034.
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I. INTRODUCTION

Positronium (Ps), consisting of an electron and its antipar-
ticle positron, forms a hydrogenlike neutral system. Because
Ps is exclusively leptonic, it serves as an ideal platform
for investigating bound-state quantum electrodynamics [1,2],
fundamental symmetries such as charge-parity and charge-
parity-time symmetries [3-5], and new physics beyond the
standard model [6]. Compared to typical neutral atoms, Ps
exhibits stronger interactions with various forms of matter due
to its small mass. As a result, it proves to be a promising tool
for studying material characteristics in the field of material
science. For example, Ps has been employed to investigate
defects in diverse materials [7], providing valuable insights
into their structural and dynamic properties. Moreover, exper-
iments have been conducted to explore surface properties of
alkali-metal crystals such as LiF by measuring Ps specular
reflection [8,9]. In these investigations, a fundamental under-
standing of the interaction between Ps and other forms of
matter, particularly the scattering process, is crucial.

The theoretical investigation of Ps scattering poses great
challenges, primarily stemming from the intricate internal
structures of both the positronium and the target. Describing
these composite systems ab initio is computationally de-
manding. The coincidence of the center of mass and charge
of Ps results in Coulomb interactions that are significantly
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weaker than the intricate short-range exchange correlations
between Ps and the target, necessitating meticulous considera-
tion. Adding to the complexity, the exchange matrix involving
multicenter integrals proves to be challenging to evaluate, as
highlighted by previous work [10]. Furthermore, Ps scatter-
ing exhibits distinct behaviors across various energy ranges,
demanding tailored treatment approaches. In the intermediate-
energy range, the scattering is predominantly governed by
the exchange interaction between the electron and target.
This is attributed to the inherently weak binding and diffuse
nature of Ps, leading to striking similarities in total cross
sections between Ps and e~ scattering across diverse atoms
and molecules [11]. The elucidation of these similarities was
provided by Fabrikant and Gribakin using the impulse approx-
imation [12]. However, at lower energies, both short-range
exchange and correlation interactions and long-range inter-
actions come into play. Consequently, theories designed for
low-energy Ps scattering must possess the capability to accu-
rately describe these interactions.

Several theoretical approaches have been employed in the
calculation of Ps scattering, including the many-body theory
[13,14], the close-coupling method [15], the static-exchange
method [16], and the Kohn variational method [17,18]. An-
other approach to tackle Ps scattering problem at low energies
is the confined variational method (CVM). It was origi-
nally pioneered by Mitroy et al. [19] to address low-energy
elastic scattering of electrons (or positrons). Subsequently,
Zhang et al. extended the CVM to investigate low-energy
elastic collisions between two internally structured systems
[20,21], while Wu and co-workers advanced the approach to
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efficiently eliminate unphysical confining effects and ex-
tended its application to cases involving nonzero partial-wave
scattering and higher collision energies [22,23]. The founda-
tion of the CVM lies in the concept that two Hamiltonian
operators, when subjected to the same confining potential and
producing eigenenergies corresponding to the same scattering
energy, yield identical phase shifts upon removing the confin-
ing potential. Consequently, the phase shifts of a many-body
scattering system can be extracted by constructing an equiva-
lent one-dimensional model potential and numerically solving
its scattering equation.

Despite extensive theoretical and experimental investiga-
tions into Ps scattering by helium [13,22,24-27], studies
focusing on Ps-Li* are relatively scarce, particularly in the
low-energy range. Existing research on Ps-Li™ primarily cen-
ters around intermediate- and higher-energy regimes. For
example, Mukherjee and Ghosh [28] utilized the first-order
Born approximation to explore elastic and excitation pro-
cesses in Ps-Li* collisions. The Ps fragmentation process
was investigated by Roy and Sinha within the framework
of the postcollisional Coulomb distorted eikonal approxi-
mation [29]. Furthermore, Sur et al. [30], employing the
coupled static close-coupling approximation, calculated elas-
tic and electron capture cross sections in Ps-Li* collisions.
Theoretical investigations into low-energy Ps-Li* scattering
bear significance in the context of experimental detection
of weakly bound state. The pioneering exploration of near-
threshold scattering for Ps-Li* was conducted by Ivanov
et al. [31] using the fixed-core stochastic variational method
(FCSVM) and the stabilization concept [32,33] to derive the
phase shift. However, the FCSVM has been found to un-
derestimate the pickoff annihilation parameter 'Z.; by an
enhancement factor of approximately 2. This discrepancy
arises from the neglect of correlations between the positron
and electrons originating from the Lit core, which signifi-
cantly affect the annihilation process [34]. Additionally, the
FCSVM study is confined to the s wave, indicating the need
to extend the analysis. To address these limitations and estab-
lish a benchmark for both theory and experiment, a rigorous
all-electron CVM calculation for low-energy elastic Ps-Li*
scattering becomes crucial.

In this paper, we present a detailed study of low-energy
Ps-Li™ scattering without the fixed-core approximation in the
frame of the CVM. To enhance the efficiency of the CVM,
we employ an energy optimization strategy combining both
the stochastic variational and energy-gradient-based methods.
Additionally, an algorithm is developed for the automatic
adjustment of confining potentials. With these approaches,
accurate phase shifts, cross sections, scattering length, and
pickoff annihilation parameters are determined and compared
with the results obtained using the fixed-core approximation.
Notably, a broad p-wave resonance structure near threshold is
observed and the impact of it on the cross sections and pickoff
annihilation is analyzed.

II. THEORY

The Hamiltonian incorporating an artificial confining po-
tential for Ps-Li™ scattering, within the framework of the

infinite-nuclear-mass approximation, can be expressed as

1 ¢ 4 _ 4 o 3
H= _Ezvzz"‘ZQT?l + Z % +ZVCP(Pi),
i=1 i=1 j>i=1 i=1
(1)
where Q = 3 is the lithium nuclear charge; ¢; is the ith lepton
charge; ry, rp, and r3 are the position vectors of the three
electrons relative to the fixed nucleus; 4 is the position vector
of the positron; r;; = |r; —r;|; and p; = (r; +r4)/2 is the
position vector of the center of mass between the positron and
the ith electron. Furthermore, Vcp(p;) is an artificial confining
potential, defined as

0, pi < Po
Ver(oi) = {G(pi — P i > o, @
where G is an adjustable positive confining parameter and
po denotes the confining radius. It is crucial for py to be
sufficiently large to guarantee that the short-range interactions
between Ps and Li* can be safely disregarded beyond this ra-
dius. To derive its matrix elements for variational calculation,
it is more convenient to rewrite Vcp in terms of the relative
coordinates r; through the 4 x 1 matrix r = (ry, 72, r3,74)",

Pi < Po

Ver(0i) = o> p
i = 07

’ 3)
G [8(Wir—&)(El — po)dE,
where W; is a 4 x 1 matrix that transforms r into vector p;,
for instance, W, = (%, 0,0, %)T for p,.
For the s- and p-wave scatterings, the many-body confined

wave function W, can be expanded in terms of the explicitly
correlated Gaussian (ECG) basis functions [35,36]

¢ (r,s) = Pexp[—r" (Ax ® I3)rlx (s),

i @)
¢ (r.8) = Pry expl—r (A @ I3)r]x (5).

where P is the permutation operator, I3 is a 3 x 3 identity ma-
trix, and z,,, refers to the z coordinate of the myth lepton. Also,
x(s) is the spin function with s = (s, 52, 53, 54)7 a column
matrix containing all lepton spins. Further, Ay is the nonlinear
parameter matrix expressed in the Cholesky decomposition
form A, = LkL,Z, where L; is a lower triangular matrix.

In the collision of Ps as a projectile, the confinement acts
on the center of mass of the positron and each electron,
which causes unphysical effects, i.e., the confinement onto
the pseudopositronium formed by the positron and electron
of Li*. These unphysical effects become more pronounced
at higher energy or angular momentum, where the orbital
radius of Ps increases and the confinement becomes more
intense. To effectively eliminate these unphysical effects, the
following judgment indices [22] can be applied to determine
the appropriate course of action:

SH (Pk|®(ria — Ry)(ria — Ry)* ) 5)

' (1O — po)(pi — po)* 1)

Here ® is the Heaviside function, rjy = |r; — r4| is the dis-
tance between the positron and the ith electron, and R, is an
adjustable radius greater than the characteristic size 2ay of Ps,
where qag is the Bohr radius. If an electron in pseudopositro-
nium under confinement originates from Li™, the value of ri4
will be much greater than 2ag. This implies that when R, is
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properly set, Sl-’" will be significantly large. Consequently, the
undesired confining effect can be eliminated by disregarding
(D IVep(0:)|¢r) when S{‘l exceeds a specific threshold. In this
study, R, is set to be equal to py and the threshold for S¥ is
set to 1.0.

The most-time-consuming procedures in the CVM involve
optimizing basis functions and adjusting the confining param-
eter to match the total energy E; of the scattering system. This
energy is calculated as the sum of the incident energy Ej, the
ground-state energy of Ps (Eps), and the ground-state energy
of Li™ (E;;+). The detailed introduction of energy optimiza-
tion and confinement adjustment can be found in Sec. IIIL.
Given the confinement parameter G, one can adjust the
one-dimensional model potential by solving the Schrodinger
equation under the same confinement [19]

1 d? N II+1)
21 dp? 2up?
= Eyl(p), (6)
where 11 = 2 is the reduced mass of the Ps-Li* system and

¥l(p) is the one-dimensional bound-state wave function of
the [ partial wave. The model potential V,,(p) is chosen as

+ Vin(p) + ch(p)) vi(p)

4 6 /1.6
Vin(p) = Aexp(—ap) — 2_,04[1 —exp(—=p°/b)], (1)

where in the first term A is adjustable and a = 0.5. The sec-
ond term of Eq. (7) represents the long-range polarization
potential between Ps and Li", in which oy = 36a8 is the
dipole polarizability of the ground-state Ps and b is the cutoff
parameter. The primary reason for including the long-range
potential in Eq. (7) is to ensure a correct description of the
long-range tail and the effect of it in the interaction region
can be recovered by adjusting A [23]. Therefore, the results
are not sensitive to the choice of b and we set b = 5.0. After
determining the model potential, the confining potential can
be removed, allowing the wave function to propagate under
the influence of the model potential V,, with the logarithmic-
derivative algorithm [37] to the boundary, and then match with
the asymptotic solutions to extract the CVM phase shifts.

III. ENERGY OPTIMIZATION AND ADJUSTMENT
OF CONFINING POTENTIAL

The accuracy of the CVM heavily relies on the choice of
variational strategies. This is particularly true for complex
systems like Ps-Li™, where electron-electron and electron-
positron correlations play a significant role. To address this
challenge, a hybrid approach combining the stochastic vari-
ational method [31,38,39] and the energy-gradient-based
method [35,36,40-43] is employed. This allows for the gen-
eration and optimization of basis functions by leveraging the
strengths of these different methods.

To obtain the analytical expression for the energy gradient,
we can start by considering the differential of the secular
equation (H — ES)c =0,

d[(H — ES)c] = d(H)c — (dE)Sc — E(dS)c
+(H — ES)de, (8)

where H and S are the N x N Hamiltonian and overlap matri-
ces, respectively, and ¢ is the N-dimensional vector of linear
variational coefficients. Multiplying Eq. (8) by ¢ from the left
gives rise to

dE = ¢"(dH — EdS)c. )

For the real basis functions considered here, the energy deriva-
tive with respect to the nonlinear parameters a; in the kth basis
function can be written as

oH N 0H N
_ZZC](CZ kK—Eﬂ —C,% kk—Ei .
8ak aak 8ak aak 8ak

(10)

Only the derivatives with respect to the nonlinear parame-
ters in matrices L; and L, are required. The final formulas
for the matrix elements of the confining potential and their
corresponding derivatives are provided in the Appendix. The
formulas for matrix elements and corresponding derivatives
of other related operators can be found in Refs. [35,36]. We
employ the quasi-Newton method to minimize the energy and
determine the grid steps along the search directions using the
backtracking method [44]. To prevent being trapped in local
minima, the SVM is applied after each round of gradient-
based optimization.

During the energy optimization process, the CVM calcula-
tion necessitates accurately adjusting the confining parameter
to obtain the total energy E, of the scattering system [19,45].
However, manually adjusting it each time after optimizing
the basis becomes arduous and cumbersome. To address this,
an automated adjustment algorithm has been developed to
fine-tune the confining parameter G. We first calculate the
derivative of energy with respect to the variable G,

QJ

N N
ZZC a(VCP)k(Z <\I/(G)’

1 =1

\I/(G)>
k=
= (W(G)|O(p — po)(p — po)*|¥.(G)), (11

where W.(G) stands for the wave function corresponding
to the parameter G. The above relation is equivalent to the
Hellmann-Feynman theorem [46]. As the derivative 2£ 5c E >0,
it is evident that the energy E increases monotonically with
an increase in G. Consequently, we initiate the optimization
process with G = 0. Once the optimized energy E falls below
a certain threshold value, we automatically search for a new
value of G, denoted by G, such that E(G;) = E;. At this
point, we continue optimizing the basis to further decrease the
energy and adjust G; to G, using the reoptimized basis func-
tions, ensuring that E(G,) = E;. This procedure is repeated
for a specified number of iterations until the energy differ-
ence is within a predefined tolerance range. The monotonicity
relationship between G and E guarantees that increasing G;
to G;1 brings the confining parameter closer to the exact
solution.
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FIG. 1. Convergence of the confining parameter G and the total
energy E(G) for the s- and p-wave scatterings at the incident mo-
mentum k = 0.1a, ! along with the optimization cycles based on the
algorithm of Sec. IV.

IV. RESULTS AND DISCUSSION
A. Phase shifts and cross sections

In the present CVM calculation, we use the confining ra-
dius pp = 20ay, the ground-state Ps energy Ep, = —0.25 a.u.,
and the ground-state Li* energy E; ;+ = —7.279913413 a.u.
To validate the effectiveness of the automatic adjustment al-
gorithm for the confining potential, we conduct a convergence
analysis of the confining parameter G and the total energy
E(G) across multiple optimization cycles. During the test, the
basis size remains fixed at 2400 and the energy is minimized
solely using the gradient-based algorithm. Being initialized
to zero, the confining parameter G is automatically adjusted
after each cycle of optimization. Figure 1 illustrates the con-
vergence behavior of G and E(G) for both the s- and p-wave
scatterings at k = 0.1a; ! as the number of optimization cycles
increases. For the p-wave scattering, the lowest energy level
is optimized. However, in the case of s-wave scattering, the
second lowest energy level is optimized instead. This is due
to the presence of an s-wave bound state at the lowest energy
level. The energies for the initial basis sets are —7.529 440 207
and —7.529 158 557 a.u. for the s wave and p wave, respec-
tively. During the optimization process, the values of G and
E(G) steadily approach 6.628 x 10~® and —7.274 134 38 a.u.,
respectively, for the s wave. For the p-wave scattering, the
values converge to 6.808 x 107% and —7.274 13426 a.u.,
respectively. This convergence can be observed in Fig. 1,
where both energies gradually approach the desired energy of
E, = —7.527413413 a.u. Table I provides further evidence of
convergence, as it demonstrates the convergence for the s- and
p-wave scattering at k = 0.1a; ! by increasing the size N of
the ECG basis set. The parameters G of confining potentials,
) of the model potentials, and phase shifts 8} , all converge to
the fourth significant digit for both s- and p-wave scattering.
The results from Fig. 1 and Table I provide strong support for
the effectiveness of the algorithms used in energy-gradient-
based optimization, as well as the automatic adjustment of the
confining potential.

TABLE L. Convergence of the s- and p-wave Ps-Li" scatterings
atk = 0.la;"' as the number of ECG functions N increases. Here G
is the adjustable parameter in the confining potential, E (G) the total
energy, A the parameter in the model potential, and §; the /-wave
phase shift. Note that a” = a x 10°.

N G E(G) A 8; (rad)
s-wave scattering

2400 6.6287° —7.527413438 —0.03786 —1.1925

2800 6.6347° —7.527413425 —0.03794 —1.1918

3200 6.63876 —7.527413418 —0.03802 —1.1913

3600 6.6397° —7.527413414 —0.03802 —1.1913
p-wave scattering

2400 6.80876 —17.527413426 —0.05763 0.2107

2800 6.8137° —7.527413421 —0.05805 0.2112

3200 6.8187° —7.527413419 —0.05853 0.2118

3600 6.82076 —7.527413415 —0.05870 0.2120

Using the CVM, we calculate the s- and p-wave phase
shifts §;(k) for incident energies below the threshold of the
et-Li channel. Performing variational calculations directly
for each incident momentum k is extremely time consum-
ing. Therefore, we first optimize the bases for the specific
momenta listed in Table II. The parameter A in the model po-
tential and the phase shift for each of these momenta are also
shown in Table II. Additionally, we carry out calculations for
the other momenta in their vicinity using these well-optimized
bases as the initial bases. As shown in Fig. 2, the s-wave phase
shifts obtained with the CVM exhibit great consistency with
the results from both the FCSVM [47] and the hyperspheri-
cal close-coupling method (HSCC) [48]. These two methods
employ the frozen-core approximation for Li*, where the
electron-core and positron-core interactions are approximated
with model potentials. The differences among all three meth-
ods are within 5%, which demonstrates the effectiveness of

TABLE II. The s- and p-wave phase shifts for specific momenta
below the threshold of the e™Li channel, as well as the targeted
energy levels and parameters A in model potentials. Values in paren-
theses show estimated uncertainty due to the finite size of the ECG
basis.

k(ay') Level A CVM  FCSVM [47] HSCC [48]
s-wave phase shift

0.05 2 —0.037632 —0.671(1) —0.67 —0.65

0.10 2 —0.038022 —1.191(0) —1.21 —1.18

0.20 2 —0.023030 —1.916(2) —1.87 —1.86

0.30 3 —0.019277 —2.340(0) —2.37 —2.34

0.40 4 —0.002262 —2.673(0) —2.67 —2.70
p-wave phase shift

0.05 1 —0.027383 0.044(2)

0.10 1 —0.058697 0.212(0)

0.20 2 —0.081993 0.788(0)

0.30 3 —0.100257 0.992(2)

0.40 4 —0.112043  0.946(3)
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FIG. 2. Phase shifts for Ps-Li" scattering as a function of inci-
dent momentum k in units of a; '. The following denotations are
used: red (blue) circles, CVM s-wave (p-wave) phase shifts; green
triangles, FCSVM s-wave phase shifts [47]; black solid line, HSCC
s-wave phase shifts [48]; yellow dash—double-dotted line, s-wave
phase shifts obtained by fitting the CVM phase shifts in the range
of k < 0.1515l to the MERT value in Eq. (18); and blue dash-dotted
blue (gray dashed) line, p-wave (d-wave) phase shifts obtained with
the MERT estimation of Eq. (12).

this frozen-core approximation for Ps-Li* elastic scattering.
This is reasonable since the polarizability of Li* is 0.1925a2,
which is negligible compared to the Ps polarizability of 36a§,
and thus Li* is barely distorted during the elastic scattering
at low energies. However, this is not the case for processes
associated with pickoff annihilation, where the correlation
among the positron and core electrons plays a significant
role. Therefore, the enhancement factor due to the fixed-core
approximation would eventually lead to an underestimation of
the annihilation [34].

Compared to the s-wave phase shifts, higher partial wave
phase shifts are significantly smaller near the zero-energy
threshold. For example, at k = 0.05a, ! the magnitude of the
p-wave phase shift is approximately 15 times smaller than
that of the s-wave phase shift, as shown in Table II. This can
be attributed to the presence of the /-wave centrifugal barrier,
which separates the asymptotic region, where the phase shift
is determined by the asymptotic solution, from the interac-
tion region. As a result, the phase shifts are suppressed as k
approaches zero. When considering the presence of a polariza-
tion potential, the phase shifts of the /th (I > 1) partial wave
can be estimated using the modified effective range theory
(MERT) [49-51]:

Wi ogk?
QL — 1)L+ 1)1 +3)

The MERT values of p-wave and d-wave phase shifts are
depicted in Fig. 2. It can be observed that the MERT d-wave
phase shifts remain small throughout the entire energy range
considered and therefore the contribution from the [ > 2
waves is not taken into account. The CVM p-wave results ex-
hibit good agreement with the MERT values for k£ < 0.1a, L
However, for 0.1a, "<k < 0.3ay ! there is a relatively rapid

tand; =

(12)

8 —e— O

s —e— 0
—-—-- 01 (MERT) 1

6t —s— O,

—hA— Oy

Cross section (units of 10%ma,

0.0 0.1 0.2 0.3 0.4
k (units of ag?)

FIG. 3. Cross sections for Ps-Li* scattering as a function of
incident momentum k in units of a;'. The following denotations
are used: red (blue) circles, CVM s-wave (p-wave) cross section;
blue dash-dotted line, p-wave cross section obtained with the MERT

estimation of Eq. (12); and black squares (green triangles), total
elastic (momentum transfer) cross sections.

increase in the phase shifts, leading to a deviation from the
MERT values. This sudden rise in phase shifts gives rise to
a resonance structure in the elastic cross section. In order to
visualize the characteristic shape of this structure, we proceed
to calculate the total elastic cross section

1
o, (k) = Zol(k) ~ %T Z(zl + Dsin?8;(k),  (13)
1

1=0

where o;(k) is the [-wave cross section. Figure 3 shows that
the s-wave cross section oy increases rapidly towards the zero-
energy threshold. This behavior is attributed to the presence
of a weakly bound state in the s wave, which is represented
by a pole of the § matrix located on the positive imaginary
k axis. Furthermore, a wide peak is observed in o; around
k=0.2a, I, suggesting the possible existence of a resonance
state. For incident momenta higher than that of the resonance
peak, the p-wave cross section o) dominates the total cross
section o, and decelerates its decrease. Although the MERT
phase shifts of Eq. (12) result in a broader shoulder feature in
o1, they fail to reproduce the distinctive peak observed in the
CVM data.

The Ps-Li™ system exhibits interesting similarities to the
et-Be and et-Zn systems [52-54]. One notable similarity is
the significant increase in the s-wave cross section near the
zero-energy threshold, which can be attributed to the presence
of an s-wave bound state in each system [55]. In the low-
energy scattering regime, the dominant influence is exerted
by the long-range polarization potential, as the centrifugal
barrier suppresses the impact of the short-range interaction.
Furthermore, the dipole polarizabilities «; of Be and Zn,
specifically 37.8a8 [56] and 38.8a(3) [57], respectively, are
comparable to the oy = 36a3 of Ps. Consequently, the p-
wave cross sections of these systems also exhibit a similar
resonance structure around the zero-energy threshold. It can
be inferred that the low-energy scattering characteristics of
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FIG. 4. Ratio of differential cross sections o,(165°) and o,(15°)
as a function of k (units of agl). The inset provides a closer look
at the relationship between the differential cross section and the
angle 6.

Ps with other singly charged ions likely share these features,

considering the dominant influence of Ps’s polarizability and

the ionization energies of the corresponding neutral atoms.
We also calculate the momentum transfer cross section

4
o) = 75 D+ Dsin’ (8111 (k) = 81(6))
1

L S .9
~ ﬁ{sm [81(k) — 8o(k)] + 2sin~ §1(k)}, (14)

shown in Fig. 3. The line shape of o, is similar to that of
oy since the cross section is dominated by oq near threshold.
As the momentum approaches the zero-energy threshold, o,
increases at a faster rate than o,. The rapid change of o, with
respect to the incident energy, expressed as do,,/dE, below
k=0.2a, 1 (0.27 eV), strongly suggests the presence of an
s-wave bound state of Ps-Li*.

The presence of a positive scattering length (see in
Sec. IV B) results in differential cross sections (DCSs) that
are larger at backward angles compared to forward angles.
This effect is particularly pronounced in systems with weakly
bound states, as they have a larger scattering length. To quan-
tify this, we calculate the DCS o,(6) using the scattering
amplitude £(0), with k < 0.4a;",

04(0) = |fO)I%, (15)

where

1
FO) =5 ;(21 + Dlexp(2i8;) — 11P(cos§).  (16)

Phase shifts for 2 < I < 10 can be estimated using the MERT
as described in Eq. (12). In Fig. 4 we plot the DCS ratio
04(165°)/0,(15°) as a function of k. It can be observed that
the DCS ratio is greater than 1.0 when k < 0.1q, ! reaching a
maximum value of 2.1 at k = 0.06qa, 1(0.024 eV). However,
the ratio drops below 0.1 for k > 0.2a, !, Therefore, exper-

TABLE III. Comparison of s-wave scattering lengths a, obtained
using different methods, including the effective range theory [34],
the model potential approach [47], the hyperspherical close-coupling
method [48], the FCSVM [47], and the present CVM calculation
fitted with ERT and MERT.

Method k range a, (a.u.)
ERT? 10.1
model potential® 12.3
HSCC* 0.0-0.2 13.1
ECSVM (ERT) 0.0-0.2 13.9
FCSVM (MERT)? 0.0-0.2 12.9
CVM (ERT) 0.0-0.1 14.2
CVM (MERT) 0.0-0.1 13.6

2Reference [34].
YReference [47].
‘Reference [48].

imental measurement of DCS ratios can potentially provide
evidence for the existence of a bound state in Ps-Li™.

B. Scattering length

The scattering length plays a crucial role in determining
the strength of the scattering process. In particular, it provides
valuable insights into the interaction strength involved. When
dealing with short-range interactions, one can determine the
scattering length by employing the effective range theory
(ERT) and performing a least-squares fitting of §p(k) at low
incident momentum k [58],

1 Rok? 4
kcotdy(k) = —— + — + O(k™), 17
dg

where ay is the s-wave scattering length and Ry is the corre-
sponding effective range. In addition, the MERT takes into
account the effect of polarization [49,59-61],

1 B*mk  4B*%* . Bk

kcotSo(k) = — — In —

cot do(k) as + 3a2 3a, n 4
+ BK? + CK> + O(KY), (18)

where B2 = pay(Ps) = 72a} [49], and B and C are two
additional fitting parameters. Considering the uncertainties
introduced by the fitting range, we conduct fitting for three
different ranges k < 0.08, k < 0.09, and k < 0.10, which
gives the average scattering length of 14.212 for the ERT and
13.613 for the MERT. Given the uncertainties inherent in the
fitting procedure, we recommend a scattering length of 14.2
for the ERT and 13.6 for the MERT (see Table III). Mitroy
and co-workers calculated a; using ECGs together with the
FCSVM [31,47]. In the present calculation, the fitting range
of k is confined to within 0.1a, ! while for the FCSVM the
fitting range is from 0.0 to 0.20a; !, The CVM ERT uq; is
4.4% and 10.1% larger than the CVM MERT and FCSVM
MERT values, respectively. Moreover, the CVM MERT a; is
34.7% larger than the value of 10.1a( derived from the ERT
formula a; = 1/4/2u|E,| using the binding energy Ejp, and
10.6% larger than the value of 12.3a( derived from the model
potential estimation [47]. Considering these comparisons, the
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scattering length obtained from the CVM MERT can be con-
sidered the most accurate one.

C. Pickoff annihilation

In Ps-Li™ scattering, the primary decay mechanism is pick-
off annihilation, which occurs when the positron annihilates
with one of the target electrons, resulting in the emission of
two photons. The pickoff annihilation cross section can be
expressed as [34,62,63]

o, = 4nr§(%)'zeff, (19)

where r( is the electron classical radius, c¢ is the speed of
light, and v is the velocity of incident Ps. Here 1Zei is a
dimensionless parameter that represents the effective number
of target electrons involved in the annihilation process. It can
be expressed as the sum of annihilation parameters lZeffJ for
different [ partial waves:

"Zeir(k) =Y ' Zegra (k). (20)
=0

In terms of the confined /-wave many-body wave function W/,
1Z.t.1(k) can be written as

'Zer 1 (k) = 1 w!
eff,/ = |C[|2 c

3
S P, 980 — 1) qﬂ> e
i=1

Here P,(i,4) represents the spin projection operator that
ensures only electron-positron pairs in a spin singlet state
undergo annihilation. Also, the absolute value of C;, the co-

efficient that normalizes \IJLZ to the asymptotic form, is defined
as

|2 _ f(po)
471 (21 4+ 1)pgLjikpo) cos & — yi(kpo) sin ;1>
(22)
where py is the confinement radius, j; and y; are the spherical
Bessel and Neumann functions, respectively, and f(p) is the
radial density distribution of Ps defined by

7o) = [agp(elon’s = plel). @3

|Ci

with [ d<2 the integral over the solid angle of p. It should be
noted that the accuracy of such a calculation is limited due
to less accurate local properties of variational wave functions
compared to global properties [64]. To increase the accuracy
of the calculated Cj, there are two alternative approaches
that can be employed. The first approach involves using the
wave function ¥ of the one-dimensional potential scattering
(6) instead of the many-body wave function W! [45]. In this
approach, the model potential (7) is tuned to have the same
scattering energy E; and confining energy (Vcp). By ensuring
the same (Vcp), the normalization conditions at the boundaries
are also the same, allowing for the use of Wé(,oo) to calculate
C;. This approach requires the model potential to be more
flexible in order to easily perform the necessary adjustments,
such as making the parameter a in Eq. (7) adjustable. The
second approach involves using a stabilization idea to fit

f(p) = 4m Q2L+ 1)C} p*Lji(kp) cos & — yi(kp) sin ;]
(24)

TABLEIV. Convergence of the total nonrelativistic energy E, the
binding energy E, with respect to the dissociation into the ground-
state Ps and Li*('S), and the core-annihilation rate I', as the size of
the basis set N increases.

N E (au.) E, (a.u.) I (ns™h)
2400 —7.53241006 0.00249666 0.0031352
3000 —7.53241054 0.00249714 0.0031784
3600 —7.53241057 0.00249717 0.0031839
4200 —7.53241064 0.00249724 0.0031854
1200* —7.5323955 0.0024821 0.0030833
3000° —7.53241048 0.00249708

8568°¢ —7.27991341

2ECG basis functions. From [65].

PECG basis functions. From [69].

°The ground-state energy of Li* using the Hylleraas-CI method with
8568 configuration states. From [70].

in the small interval p € [pyg — d, po] with d = 2.0ay near
the confining radius pyp. Then C; is determined as a fitting
parameter.

In addition, we also estimate the annihilation parameter
1 Z11.0(0) for the s-wave zero energy using the binding energy
of the Ps-Li™ bound state [65-68] and the core-annihilation
rate based on the lowest-order ERT [34],

Ar 1T
2ric  2rkc |12uEpP?’

Zet0(0) > (25)
where I' is the core-annihilation rate and Ej is the binding
energy. Expressing I in units of ns~! leads to

1 Zetr.0(0) ~ 0.031 12 x (26)

r
2By |32
Table IV presents the convergence of the nonrelativistic en-
ergy E of the Ps-Lit bound state, the binding energy E,
with respect to the dissociation, and the core-annihilation
rate I'. The binding energy is determined to be 0.002 497 24
hartree with 4200 well-optimized ECGs. The annihilation rate
converges to 0.003 185 4 ns~!, which is 3.3% larger than
the previous value of 0.003 083 3 ns~' [65] obtained with
1200 ECGs. The value of IZeff,()(O) is determined to be 0.099,
as shown in Table V, which is approximately 2.02 times
the results of the FCSVM and 4.2% larger than the value
obtained with the SVM. Additionally, ! Z ¢(0) can be deter-
mined by extrapolating ' Ze o(k) to k = 0 utilizing the ERT
expansion [71]

Zero(k) =230+ 1201 + 120k @)

The extrapolation with 1Zeff,o(k) of the CVM in the
ranges 0.02 < k < 0.10, 0.03 <k <0.10, and 0.04 < k <
0.10 yields values 0.127, 0.126, and 0.124, respectively, for
1Ze#(0). We recommend using the average value 1Z.(0) =
0.126 as the final result, and the uncertainty is within 0.002.
Comparing with the FCSVM value of 0.067 [34], we can
determine an enhancement factor of 1.88.

The energy dependence of ! Z is crucial for understanding
the thermalization process of positronium in gases [72-74].
Figure 5 illustrates the CVM ! Zyg (k) and ' Zogr 1 (k) for k <
0.4a, . The CVM !Z o(k) is approximately twice the result
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TABLE V. Comparison of the s-wave threshold pickoff anni-
hilation parameters 'Z ((0), calculated using different methods,
including the lowest-order ERT estimation based on the binding
energy and core-annihilation rate obtained by FCSVM [65], SVM
[65], and the present bound-state calculation. Additionally, the ex-
trapolation value using Eq. (27), based on the results of FCSVM
[34] and the present CVM, is also provided. Here E, represents the
binding energy and I" represents the core-annihilation rate.

Method E, (a.u.) I (ns™h) 1Zet.0(0)
ERT (FCSVM)? 0.0024789 0.0015715 0.049
ERT (SVM)? 0.00243821 0.0030833 0.095
ERT® 0.0024972 0.0031854 0.099
extra (FCSVM)© 0.067
extra (CVM) 0.126

2Reference [65].
"Present work.
‘Reference [34].

of the FCSVM, indicating that the FCSVM underestimates
1 Zeie (k) by an enhancement factor of about 2. On the other
hand, !Zes 0 (k) can be estimated in terms of ! Zg0(0) and the
scattering length a; using the formula [34]

' Zeir,0(0)

VZetro(k) = ————.
eff,0 (k) T+ a2k

(28)
The energy dependence of !Z.(k) at low energies is quali-
tatively described by Eq. (28), as shown in Fig. 5. However,
this equation underestimates the values of 1Zeff,o(k). More-
over, IZeff,](k) exhibits a peak at k ~ 0.2q, ! similar to the

p-wave cross section, as expected. However, determining
the peak value of lZeffql(k) is challenging due to the con-

0.15
A FCSVM(s)x2
—e— CVM(s)
—e— CVM(p)
0.10} —=— CVM(s + p)
- ERT(s)
=
g
N
0.05}
0'00 i i i i
0.0 0.1 0.2 0.3 0.4

k (units of ay?)

FIG. 5. Pickoff annihilation parameter 'Z. for the Ps-Lit scat-
tering as a function of incident momentum & in units of a;'. The red
and blue solid circles are for the s- and p-wave scattering, respec-
tively, using the CVM, and the black square is the total annihilation
parameter. The green triangles represent the FCSVM results multi-
plied by 2 [34]. The yellow dashed line shows the ERT estimation of
the s-wave annihilation parameter using Eq. (28).

vergence difficulties near the peak. We determine the peak
value to be 0.034 using 5000 ECGs. Although the p-wave
contribution to annihilation surpasses that of the s wave for
k > 0.2a, ! the total annihilation parameter 1Zeff,l(k) only
shows a subtle bump.

V. SUMMARY

This study focused on the scattering of Ps by the ground-
state Lit using the CVM. The variational calculation was
performed by optimizing the basis through a hybrid approach
combining stochastic variational and energy-gradient-based
methods. Additionally, an algorithm was developed to auto-
matically adjust the confining potentials. Both of the strategies
greatly enhance the efficiency of scattering calculation in the
frame of the CVM. Accurate phase shifts and cross sec-
tions were obtained and the scattering length was determined
to be 13.6ay by fitting the phase shifts to the MERT. Moreover,
a broad p-wave resonance structure at k ~ 0.2q, 10.27 eV)
was predicted, displaying structures similar to those in e*-Be
and e*-Zn scattering. It is anticipated that similar resonance
structures will be observed in the scattering of e™ with some
other atoms and Ps with other ions. Finally, the energy de-
pendence of pickoff annihilation was also investigated. The
s-wave zero-energy pickoff annihilation parameter ! Zeg o was
accurately determined to be 0.126 £ 0.002, which is crucial
for other frozen-core methods to determine the enhancement
factor.

It is noteworthy that the weakly bound state of Ps-Li* has
been extensively investigated in numerous theoretical studies
[65-67], yet there is a noticeable absence of experimental
detection. We have found that the momentum transfer cross
section o, exhibits a significant change rate below 0.27 eV
due to the presence of the s-wave bound state. Therefore, the
measurement of do,,/dE using either angular correlation of
the annihilation radiation [25,75,76] or Doppler broadening
spectroscopy [24,72,73] methods could provide evidence of
the binding between Ps and Li*. Furthermore, the differential
cross section was found to be larger in the backward direction
than in the forward direction near the threshold. This implies
that the ratio of differential cross sections below 0.068 eV
could also serve as evidence for the existence of the weakly
bound state of Ps-Li*.
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APPENDIX: MATRIX ELEMENTS AND GRADIENT
FOR THE CONFINING POTENTIAL

By utilizing the matrix element expressions of the Dirac §
function as shown in Refs. [35,36], we can express the matrix
elements of the confining potential in Eq. (3) between the kth
and £th basis functions for the s and p waves (assuming the
magnetic quantum number m = 0) as

3
(Ver)” = GSiean [ - Lo+ (5 T ﬂ2>

xerfc(ﬁ)i| (Al)
and

2
Ver)=' = GSeean [%(—“—23 - 1) exp(—p2)

3 2 (0%)
+| -+ B8+
2 o1a3

)erfc(ﬁ )] , (A2)

where erfc(f) is the complementary error function and S, is
the overlap matrix element. We also use the abbreviations

= u[WWT4,, ], (A3)
oy = trfWWT K], (A4)
o3 = tr[f)e(vk)TA,:@l], (AS)
£0
B=— (A6)
Jar
where
Ay =Ar+A,, A, =PTAP, =P, (AT
and

K =4, 34, (A8)
In the above equations, P represents a permutation matrix for
identical particles and v is a column vector where the myth
component is equal to one while all other components are
zero. By differentiating Egs. (A1) and (A2) with respect to
the nonlinear parameter matrices L; and L, respectively, we
can obtain

d(Vep)7® _ (Vep)l7® 98k

o 1
- T GSive—2 (A9
3(vechL) e d(vechL) T CokY0 (A9)

d vechL

and
A(Vep)i7! (Ver)i7' 98k day
= GSie| M
d(vechlL) Sie  d(vechL) d vechL
30[2 80[3 (AlO)
v2 o vechL Vs 0 vechLL
where L = L; or L, and
Y0 = —ﬂ exp(—B%) + erfc(ﬂ)
N
= — 1 1 —erfi
i f<3a1 %( + B+ )ﬂeXP( B*) + erC(ﬂ)
1
y) = 073( ﬁﬁGXP(—ﬂZ) + erfc<ﬂ>>,

y3=“2( TP exe(—p )+erf0(ﬂ)> (A11)

The operator vech transforms a matrix into a vector; for in-
stance, if L is a 3 x 3 matrix, then

vechL = (L1, L12, L13, Lo, Lo3, L33)" . (A12)

The derivatives for o, o, and a3 are

8051
% h[(A WWTA )L]
3(vechLy) Ve \ e ke )k

day <1 -1
M h[ (A ww’i )PTL],
8(Vecth) vee ke ke ¢

8012 T
72— _vech[(M,, + MT)L,],
B(Vecth) vece [( k5+ kﬁ) k]

(A13)

d(vechL;)

30[3
5 h[(K,, + K7L
a(vecth) —veeh{(Kie + kl) el

dos  _ —vech[P (K + K[,)P" L],
d(vechL;)

with
My =Ky WWTAL + A, WWTK,,. (Al14)
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