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A theoretical investigation is conducted on the s- and p-wave elastic scatterings of positronium by a lithium

ion Li+ with the scattering energy below 1.41 eV, corresponding to the threshold of the e+-Li channel. The

confined variational method is applied to serve as the theoretical framework for this study. To accurately account

for correlations between involved particles, explicitly correlated Gaussians are employed as basis functions,

which are optimized through a hybrid approach combining stochastic variational and energy-gradient-based

methods. Additionally, a straightforward yet effective algorithm is developed for the automatic adjustment of

confining potentials. The s-wave zero-energy pickoff annihilation parameter 1Zeff,0 is accurately determined to

be 0.126 ± 0.002, which yields an enhancement factor of 1.88 compared with the value 0.067 obtained using the

fixed-core stochastic variational method [Phys. Rev. A 65, 034709 (2002)]. Finally, a broad p-wave resonance

structure is predicted at the incident energy of approximately 0.27 eV, with the annihilation parameter 1Zeff,1 at

the resonance center estimated to be around 0.034.

DOI: 10.1103/PhysRevA.109.042801

I. INTRODUCTION

Positronium (Ps), consisting of an electron and its antipar-

ticle positron, forms a hydrogenlike neutral system. Because

Ps is exclusively leptonic, it serves as an ideal platform

for investigating bound-state quantum electrodynamics [1,2],

fundamental symmetries such as charge-parity and charge-

parity-time symmetries [3–5], and new physics beyond the

standard model [6]. Compared to typical neutral atoms, Ps

exhibits stronger interactions with various forms of matter due

to its small mass. As a result, it proves to be a promising tool

for studying material characteristics in the field of material

science. For example, Ps has been employed to investigate

defects in diverse materials [7], providing valuable insights

into their structural and dynamic properties. Moreover, exper-

iments have been conducted to explore surface properties of

alkali-metal crystals such as LiF by measuring Ps specular

reflection [8,9]. In these investigations, a fundamental under-

standing of the interaction between Ps and other forms of

matter, particularly the scattering process, is crucial.

The theoretical investigation of Ps scattering poses great

challenges, primarily stemming from the intricate internal

structures of both the positronium and the target. Describing

these composite systems ab initio is computationally de-

manding. The coincidence of the center of mass and charge

of Ps results in Coulomb interactions that are significantly
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weaker than the intricate short-range exchange correlations

between Ps and the target, necessitating meticulous considera-

tion. Adding to the complexity, the exchange matrix involving

multicenter integrals proves to be challenging to evaluate, as

highlighted by previous work [10]. Furthermore, Ps scatter-

ing exhibits distinct behaviors across various energy ranges,

demanding tailored treatment approaches. In the intermediate-

energy range, the scattering is predominantly governed by

the exchange interaction between the electron and target.

This is attributed to the inherently weak binding and diffuse

nature of Ps, leading to striking similarities in total cross

sections between Ps and e− scattering across diverse atoms

and molecules [11]. The elucidation of these similarities was

provided by Fabrikant and Gribakin using the impulse approx-

imation [12]. However, at lower energies, both short-range

exchange and correlation interactions and long-range inter-

actions come into play. Consequently, theories designed for

low-energy Ps scattering must possess the capability to accu-

rately describe these interactions.

Several theoretical approaches have been employed in the

calculation of Ps scattering, including the many-body theory

[13,14], the close-coupling method [15], the static-exchange

method [16], and the Kohn variational method [17,18]. An-

other approach to tackle Ps scattering problem at low energies

is the confined variational method (CVM). It was origi-

nally pioneered by Mitroy et al. [19] to address low-energy

elastic scattering of electrons (or positrons). Subsequently,

Zhang et al. extended the CVM to investigate low-energy

elastic collisions between two internally structured systems

[20,21], while Wu and co-workers advanced the approach to
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efficiently eliminate unphysical confining effects and ex-

tended its application to cases involving nonzero partial-wave

scattering and higher collision energies [22,23]. The founda-

tion of the CVM lies in the concept that two Hamiltonian

operators, when subjected to the same confining potential and

producing eigenenergies corresponding to the same scattering

energy, yield identical phase shifts upon removing the confin-

ing potential. Consequently, the phase shifts of a many-body

scattering system can be extracted by constructing an equiva-

lent one-dimensional model potential and numerically solving

its scattering equation.

Despite extensive theoretical and experimental investiga-

tions into Ps scattering by helium [13,22,24–27], studies

focusing on Ps-Li+ are relatively scarce, particularly in the

low-energy range. Existing research on Ps-Li+ primarily cen-

ters around intermediate- and higher-energy regimes. For

example, Mukherjee and Ghosh [28] utilized the first-order

Born approximation to explore elastic and excitation pro-

cesses in Ps-Li+ collisions. The Ps fragmentation process

was investigated by Roy and Sinha within the framework

of the postcollisional Coulomb distorted eikonal approxi-

mation [29]. Furthermore, Sur et al. [30], employing the

coupled static close-coupling approximation, calculated elas-

tic and electron capture cross sections in Ps-Li+ collisions.

Theoretical investigations into low-energy Ps-Li+ scattering

bear significance in the context of experimental detection

of weakly bound state. The pioneering exploration of near-

threshold scattering for Ps-Li+ was conducted by Ivanov

et al. [31] using the fixed-core stochastic variational method

(FCSVM) and the stabilization concept [32,33] to derive the

phase shift. However, the FCSVM has been found to un-

derestimate the pickoff annihilation parameter 1Zeff by an

enhancement factor of approximately 2. This discrepancy

arises from the neglect of correlations between the positron

and electrons originating from the Li+ core, which signifi-

cantly affect the annihilation process [34]. Additionally, the

FCSVM study is confined to the s wave, indicating the need

to extend the analysis. To address these limitations and estab-

lish a benchmark for both theory and experiment, a rigorous

all-electron CVM calculation for low-energy elastic Ps-Li+

scattering becomes crucial.

In this paper, we present a detailed study of low-energy

Ps-Li+ scattering without the fixed-core approximation in the

frame of the CVM. To enhance the efficiency of the CVM,

we employ an energy optimization strategy combining both

the stochastic variational and energy-gradient-based methods.

Additionally, an algorithm is developed for the automatic

adjustment of confining potentials. With these approaches,

accurate phase shifts, cross sections, scattering length, and

pickoff annihilation parameters are determined and compared

with the results obtained using the fixed-core approximation.

Notably, a broad p-wave resonance structure near threshold is

observed and the impact of it on the cross sections and pickoff

annihilation is analyzed.

II. THEORY

The Hamiltonian incorporating an artificial confining po-

tential for Ps-Li+ scattering, within the framework of the

infinite-nuclear-mass approximation, can be expressed as

H = −
1

2

4
∑

i=1

∇2
i +

4
∑

i=1

Qqi

ri

+
4

∑

j>i=1

qiq j

ri j

+
3

∑

i=1

VCP(ρi ),

(1)

where Q = 3 is the lithium nuclear charge; qi is the ith lepton

charge; r1, r2, and r3 are the position vectors of the three

electrons relative to the fixed nucleus; r4 is the position vector

of the positron; ri j = |ri − r j |; and ρi = (ri + r4)/2 is the

position vector of the center of mass between the positron and

the ith electron. Furthermore, VCP(ρi ) is an artificial confining

potential, defined as

VCP(ρi ) =
{

0, ρi < ρ0

G(ρi − ρ0)2, ρi � ρ0,
(2)

where G is an adjustable positive confining parameter and

ρ0 denotes the confining radius. It is crucial for ρ0 to be

sufficiently large to guarantee that the short-range interactions

between Ps and Li+ can be safely disregarded beyond this ra-

dius. To derive its matrix elements for variational calculation,

it is more convenient to rewrite VCP in terms of the relative

coordinates ri through the 4 × 1 matrix r ≡ (r1, r2, r3, r4)T ,

VCP(ρi ) =

{

0, ρi < ρ0

G
∫

δ
(

W
T
i r − ξ

)

(|ξ| − ρ0)2dξ, ρi � ρ0,
(3)

where W i is a 4 × 1 matrix that transforms r into vector ρi,

for instance, W 1 = ( 1
2
, 0, 0, 1

2
)T for ρ1.

For the s- and p-wave scatterings, the many-body confined

wave function �c can be expanded in terms of the explicitly

correlated Gaussian (ECG) basis functions [35,36]

φl=0
k (r, s) = P̂ exp[−r

T (Ak ⊗ I3)r]χ (s),
(4)

φl=1
k (r, s) = P̂zmk

exp[−r
T (Ak ⊗ I3)r]χ (s),

where P̂ is the permutation operator, I3 is a 3 × 3 identity ma-

trix, and zmk
refers to the z coordinate of the mkth lepton. Also,

χ (s) is the spin function with s ≡ (s1, s2, s3, s4)T a column

matrix containing all lepton spins. Further, Ak is the nonlinear

parameter matrix expressed in the Cholesky decomposition

form Ak = LkL
T
k , where Lk is a lower triangular matrix.

In the collision of Ps as a projectile, the confinement acts

on the center of mass of the positron and each electron,

which causes unphysical effects, i.e., the confinement onto

the pseudopositronium formed by the positron and electron

of Li+. These unphysical effects become more pronounced

at higher energy or angular momentum, where the orbital

radius of Ps increases and the confinement becomes more

intense. To effectively eliminate these unphysical effects, the

following judgment indices [22] can be applied to determine

the appropriate course of action:

S
kl
i =

〈φk|�(ri4 − Ra)(ri4 − Ra)2|φl〉
〈φk|�(ρi − ρ0)(ρi − ρ0)2|φl〉

. (5)

Here � is the Heaviside function, ri4 = |ri − r4| is the dis-

tance between the positron and the ith electron, and Ra is an

adjustable radius greater than the characteristic size 2a0 of Ps,

where a0 is the Bohr radius. If an electron in pseudopositro-

nium under confinement originates from Li+, the value of ri4

will be much greater than 2a0. This implies that when Ra is
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properly set, Skl
i will be significantly large. Consequently, the

undesired confining effect can be eliminated by disregarding

〈φk|VCP(ρi )|φl〉 when Skl
i exceeds a specific threshold. In this

study, Ra is set to be equal to ρ0 and the threshold for Skl
i is

set to 1.0.

The most-time-consuming procedures in the CVM involve

optimizing basis functions and adjusting the confining param-

eter to match the total energy Et of the scattering system. This

energy is calculated as the sum of the incident energy Es, the

ground-state energy of Ps (EPs), and the ground-state energy

of Li+ (ELi+). The detailed introduction of energy optimiza-

tion and confinement adjustment can be found in Sec. III.

Given the confinement parameter G, one can adjust the

one-dimensional model potential by solving the Schrödinger

equation under the same confinement [19]

(

−
1

2μ

d2

dρ2
+

l (l + 1)

2μρ2
+ Vm(ρ) + VCP(ρ)

)

ψ l
c (ρ)

= Esψ
l
c (ρ), (6)

where μ = 2 is the reduced mass of the Ps-Li+ system and

ψ l
c (ρ) is the one-dimensional bound-state wave function of

the l partial wave. The model potential Vm(ρ) is chosen as

Vm(ρ) = λ exp(−aρ) −
αd

2ρ4
[1 − exp(−ρ6/b6)], (7)

where in the first term λ is adjustable and a = 0.5. The sec-

ond term of Eq. (7) represents the long-range polarization

potential between Ps and Li+, in which αd = 36a3
0 is the

dipole polarizability of the ground-state Ps and b is the cutoff

parameter. The primary reason for including the long-range

potential in Eq. (7) is to ensure a correct description of the

long-range tail and the effect of it in the interaction region

can be recovered by adjusting λ [23]. Therefore, the results

are not sensitive to the choice of b and we set b = 5.0. After

determining the model potential, the confining potential can

be removed, allowing the wave function to propagate under

the influence of the model potential Vm with the logarithmic-

derivative algorithm [37] to the boundary, and then match with

the asymptotic solutions to extract the CVM phase shifts.

III. ENERGY OPTIMIZATION AND ADJUSTMENT

OF CONFINING POTENTIAL

The accuracy of the CVM heavily relies on the choice of

variational strategies. This is particularly true for complex

systems like Ps-Li+, where electron-electron and electron-

positron correlations play a significant role. To address this

challenge, a hybrid approach combining the stochastic vari-

ational method [31,38,39] and the energy-gradient-based

method [35,36,40–43] is employed. This allows for the gen-

eration and optimization of basis functions by leveraging the

strengths of these different methods.

To obtain the analytical expression for the energy gradient,

we can start by considering the differential of the secular

equation (H − ES)c = 0,

d[(H − ES)c] = d (H )c − (dE )Sc − E (dS)c

+ (H − ES)dc, (8)

where H and S are the N × N Hamiltonian and overlap matri-

ces, respectively, and c is the N-dimensional vector of linear

variational coefficients. Multiplying Eq. (8) by c
† from the left

gives rise to

dE = c
†(dH − EdS)c. (9)

For the real basis functions considered here, the energy deriva-

tive with respect to the nonlinear parameters ak in the kth basis

function can be written as

∂E

∂ak

=2

N
∑

�=1

ckc�

(

∂Hk�

∂ak

− E
∂Sk�

∂ak

)

− c2
k

(

∂Hkk

∂ak

− E
∂Skk

∂ak

)

.

(10)

Only the derivatives with respect to the nonlinear parame-

ters in matrices Lk and L� are required. The final formulas

for the matrix elements of the confining potential and their

corresponding derivatives are provided in the Appendix. The

formulas for matrix elements and corresponding derivatives

of other related operators can be found in Refs. [35,36]. We

employ the quasi-Newton method to minimize the energy and

determine the grid steps along the search directions using the

backtracking method [44]. To prevent being trapped in local

minima, the SVM is applied after each round of gradient-

based optimization.

During the energy optimization process, the CVM calcula-

tion necessitates accurately adjusting the confining parameter

to obtain the total energy Et of the scattering system [19,45].

However, manually adjusting it each time after optimizing

the basis becomes arduous and cumbersome. To address this,

an automated adjustment algorithm has been developed to

fine-tune the confining parameter G. We first calculate the

derivative of energy with respect to the variable G,

∂E

∂G
=

N
∑

k=1

N
∑

�=1

ckc�

∂ (VCP)k�

∂G
=

〈

�c(G)

∣

∣

∣

∣

∂VCP

∂G

∣

∣

∣

∣

�c(G)

〉

= 〈�c(G)|�(ρ − ρ0)(ρ − ρ0)2|�c(G)〉, (11)

where �c(G) stands for the wave function corresponding

to the parameter G. The above relation is equivalent to the

Hellmann-Feynman theorem [46]. As the derivative ∂E
∂G

� 0,

it is evident that the energy E increases monotonically with

an increase in G. Consequently, we initiate the optimization

process with G = 0. Once the optimized energy E falls below

a certain threshold value, we automatically search for a new

value of G, denoted by G1, such that E (G1) = Et . At this

point, we continue optimizing the basis to further decrease the

energy and adjust G1 to G2 using the reoptimized basis func-

tions, ensuring that E (G2) = Et . This procedure is repeated

for a specified number of iterations until the energy differ-

ence is within a predefined tolerance range. The monotonicity

relationship between G and E guarantees that increasing Gi

to Gi+1 brings the confining parameter closer to the exact

solution.
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FIG. 1. Convergence of the confining parameter G and the total

energy E (G) for the s- and p-wave scatterings at the incident mo-

mentum k = 0.1a−1
0 along with the optimization cycles based on the

algorithm of Sec. IV.

IV. RESULTS AND DISCUSSION

A. Phase shifts and cross sections

In the present CVM calculation, we use the confining ra-

dius ρ0 = 20a0, the ground-state Ps energy EPs = −0.25 a.u.,

and the ground-state Li+ energy ELi+ = −7.279 913 413 a.u.

To validate the effectiveness of the automatic adjustment al-

gorithm for the confining potential, we conduct a convergence

analysis of the confining parameter G and the total energy

E (G) across multiple optimization cycles. During the test, the

basis size remains fixed at 2400 and the energy is minimized

solely using the gradient-based algorithm. Being initialized

to zero, the confining parameter G is automatically adjusted

after each cycle of optimization. Figure 1 illustrates the con-

vergence behavior of G and E (G) for both the s- and p-wave

scatterings at k = 0.1a−1
0 as the number of optimization cycles

increases. For the p-wave scattering, the lowest energy level

is optimized. However, in the case of s-wave scattering, the

second lowest energy level is optimized instead. This is due

to the presence of an s-wave bound state at the lowest energy

level. The energies for the initial basis sets are −7.529 440 207

and −7.529 158 557 a.u. for the s wave and p wave, respec-

tively. During the optimization process, the values of G and

E (G) steadily approach 6.628 × 10−6 and −7.274 134 38 a.u.,

respectively, for the s wave. For the p-wave scattering, the

values converge to 6.808 × 10−6 and −7.274 134 26 a.u.,

respectively. This convergence can be observed in Fig. 1,

where both energies gradually approach the desired energy of

Et = −7.527 413 413 a.u. Table I provides further evidence of

convergence, as it demonstrates the convergence for the s- and

p-wave scattering at k = 0.1a−1
0 by increasing the size N of

the ECG basis set. The parameters G of confining potentials,

λ of the model potentials, and phase shifts δl
0.1 all converge to

the fourth significant digit for both s- and p-wave scattering.

The results from Fig. 1 and Table I provide strong support for

the effectiveness of the algorithms used in energy-gradient-

based optimization, as well as the automatic adjustment of the

confining potential.

TABLE I. Convergence of the s- and p-wave Ps-Li+ scatterings

at k = 0.1a−1
0 as the number of ECG functions N increases. Here G

is the adjustable parameter in the confining potential, E (G) the total

energy, λ the parameter in the model potential, and δl the l-wave

phase shift. Note that ab = a × 10b.

N G E (G) λ δl (rad)

s-wave scattering

2400 6.628−6 −7.527413438 −0.03786 −1.1925

2800 6.634−6 −7.527413425 −0.03794 −1.1918

3200 6.638−6 −7.527413418 −0.03802 −1.1913

3600 6.639−6 −7.527413414 −0.03802 −1.1913

p-wave scattering

2400 6.808−6 −7.527413426 −0.05763 0.2107

2800 6.813−6 −7.527413421 −0.05805 0.2112

3200 6.818−6 −7.527413419 −0.05853 0.2118

3600 6.820−6 −7.527413415 −0.05870 0.2120

Using the CVM, we calculate the s- and p-wave phase

shifts δl (k) for incident energies below the threshold of the

e+-Li channel. Performing variational calculations directly

for each incident momentum k is extremely time consum-

ing. Therefore, we first optimize the bases for the specific

momenta listed in Table II. The parameter λ in the model po-

tential and the phase shift for each of these momenta are also

shown in Table II. Additionally, we carry out calculations for

the other momenta in their vicinity using these well-optimized

bases as the initial bases. As shown in Fig. 2, the s-wave phase

shifts obtained with the CVM exhibit great consistency with

the results from both the FCSVM [47] and the hyperspheri-

cal close-coupling method (HSCC) [48]. These two methods

employ the frozen-core approximation for Li+, where the

electron-core and positron-core interactions are approximated

with model potentials. The differences among all three meth-

ods are within 5%, which demonstrates the effectiveness of

TABLE II. The s- and p-wave phase shifts for specific momenta

below the threshold of the e+Li channel, as well as the targeted

energy levels and parameters λ in model potentials. Values in paren-

theses show estimated uncertainty due to the finite size of the ECG

basis.

k(a−1
0 ) Level λ CVM FCSVM [47] HSCC [48]

s-wave phase shift

0.05 2 −0.037632 −0.671(1) −0.67 −0.65

0.10 2 −0.038022 −1.191(0) −1.21 −1.18

0.20 2 −0.023030 −1.916(2) −1.87 −1.86

0.30 3 −0.019277 −2.340(0) −2.37 −2.34

0.40 4 −0.002262 −2.673(0) −2.67 −2.70

p-wave phase shift

0.05 1 −0.027383 0.044(2)

0.10 1 −0.058697 0.212(0)

0.20 2 −0.081993 0.788(0)

0.30 3 −0.100257 0.992(2)

0.40 4 −0.112043 0.946(3)
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FIG. 2. Phase shifts for Ps-Li+ scattering as a function of inci-

dent momentum k in units of a−1
0 . The following denotations are

used: red (blue) circles, CVM s-wave (p-wave) phase shifts; green

triangles, FCSVM s-wave phase shifts [47]; black solid line, HSCC

s-wave phase shifts [48]; yellow dash–double-dotted line, s-wave

phase shifts obtained by fitting the CVM phase shifts in the range

of k � 0.1a−1
0 to the MERT value in Eq. (18); and blue dash-dotted

blue (gray dashed) line, p-wave (d-wave) phase shifts obtained with

the MERT estimation of Eq. (12).

this frozen-core approximation for Ps-Li+ elastic scattering.

This is reasonable since the polarizability of Li+ is 0.1925a3
0,

which is negligible compared to the Ps polarizability of 36a3
0,

and thus Li+ is barely distorted during the elastic scattering

at low energies. However, this is not the case for processes

associated with pickoff annihilation, where the correlation

among the positron and core electrons plays a significant

role. Therefore, the enhancement factor due to the fixed-core

approximation would eventually lead to an underestimation of

the annihilation [34].

Compared to the s-wave phase shifts, higher partial wave

phase shifts are significantly smaller near the zero-energy

threshold. For example, at k = 0.05a−1
0 , the magnitude of the

p-wave phase shift is approximately 15 times smaller than

that of the s-wave phase shift, as shown in Table II. This can

be attributed to the presence of the l-wave centrifugal barrier,

which separates the asymptotic region, where the phase shift

is determined by the asymptotic solution, from the interac-

tion region. As a result, the phase shifts are suppressed as k

approaches zero. When considering the presence of a polariza-

tion potential, the phase shifts of the lth (l � 1) partial wave

can be estimated using the modified effective range theory

(MERT) [49–51]:

tan δl =
μπαd k2

(2l − 1)(2l + 1)(2l + 3)
. (12)

The MERT values of p-wave and d-wave phase shifts are

depicted in Fig. 2. It can be observed that the MERT d-wave

phase shifts remain small throughout the entire energy range

considered and therefore the contribution from the l � 2

waves is not taken into account. The CVM p-wave results ex-

hibit good agreement with the MERT values for k < 0.1a−1
0 .

However, for 0.1a−1
0 � k � 0.3a−1

0 , there is a relatively rapid

FIG. 3. Cross sections for Ps-Li+ scattering as a function of

incident momentum k in units of a−1
0 . The following denotations

are used: red (blue) circles, CVM s-wave (p-wave) cross section;

blue dash-dotted line, p-wave cross section obtained with the MERT

estimation of Eq. (12); and black squares (green triangles), total

elastic (momentum transfer) cross sections.

increase in the phase shifts, leading to a deviation from the

MERT values. This sudden rise in phase shifts gives rise to

a resonance structure in the elastic cross section. In order to

visualize the characteristic shape of this structure, we proceed

to calculate the total elastic cross section

σe(k) =
∑

l

σl (k) ≈
4π

k2

1
∑

l=0

(2l + 1) sin2 δl (k), (13)

where σl (k) is the l-wave cross section. Figure 3 shows that

the s-wave cross section σ0 increases rapidly towards the zero-

energy threshold. This behavior is attributed to the presence

of a weakly bound state in the s wave, which is represented

by a pole of the S matrix located on the positive imaginary

k axis. Furthermore, a wide peak is observed in σ1 around

k = 0.2a−1
0 , suggesting the possible existence of a resonance

state. For incident momenta higher than that of the resonance

peak, the p-wave cross section σ1 dominates the total cross

section σe and decelerates its decrease. Although the MERT

phase shifts of Eq. (12) result in a broader shoulder feature in

σ1, they fail to reproduce the distinctive peak observed in the

CVM data.

The Ps-Li+ system exhibits interesting similarities to the

e+-Be and e+-Zn systems [52–54]. One notable similarity is

the significant increase in the s-wave cross section near the

zero-energy threshold, which can be attributed to the presence

of an s-wave bound state in each system [55]. In the low-

energy scattering regime, the dominant influence is exerted

by the long-range polarization potential, as the centrifugal

barrier suppresses the impact of the short-range interaction.

Furthermore, the dipole polarizabilities αd of Be and Zn,

specifically 37.8a3
0 [56] and 38.8a3

0 [57], respectively, are

comparable to the αd = 36a3
0 of Ps. Consequently, the p-

wave cross sections of these systems also exhibit a similar

resonance structure around the zero-energy threshold. It can

be inferred that the low-energy scattering characteristics of
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FIG. 4. Ratio of differential cross sections σd (165◦) and σd (15◦)

as a function of k (units of a−1
0 ). The inset provides a closer look

at the relationship between the differential cross section and the

angle θ .

Ps with other singly charged ions likely share these features,

considering the dominant influence of Ps’s polarizability and

the ionization energies of the corresponding neutral atoms.

We also calculate the momentum transfer cross section

σm(k) =
4π

k2

∑

l

(l + 1) sin2[δl+1(k) − δl (k)]

≈
4π

k2
{sin2[δ1(k) − δ0(k)] + 2 sin2 δ1(k)}, (14)

shown in Fig. 3. The line shape of σm is similar to that of

σ0 since the cross section is dominated by σ0 near threshold.

As the momentum approaches the zero-energy threshold, σm

increases at a faster rate than σe. The rapid change of σm with

respect to the incident energy, expressed as dσm/dE , below

k = 0.2a−1
0 (0.27 eV), strongly suggests the presence of an

s-wave bound state of Ps-Li+.

The presence of a positive scattering length (see in

Sec. IV B) results in differential cross sections (DCSs) that

are larger at backward angles compared to forward angles.

This effect is particularly pronounced in systems with weakly

bound states, as they have a larger scattering length. To quan-

tify this, we calculate the DCS σd (θ ) using the scattering

amplitude f (θ ), with k � 0.4a−1
0 ,

σd (θ ) = | f (θ )|2, (15)

where

f (θ ) =
1

2ik

∑

l

(2l + 1)[exp(2iδl ) − 1]Pl (cos θ ). (16)

Phase shifts for 2 � l � 10 can be estimated using the MERT

as described in Eq. (12). In Fig. 4 we plot the DCS ratio

σd (165◦)/σd (15◦) as a function of k. It can be observed that

the DCS ratio is greater than 1.0 when k < 0.1a−1
0 , reaching a

maximum value of 2.1 at k = 0.06a−1
0 (0.024 eV). However,

the ratio drops below 0.1 for k > 0.2a−1
0 . Therefore, exper-

TABLE III. Comparison of s-wave scattering lengths as obtained

using different methods, including the effective range theory [34],

the model potential approach [47], the hyperspherical close-coupling

method [48], the FCSVM [47], and the present CVM calculation

fitted with ERT and MERT.

Method k range as (a.u.)

ERTa 10.1

model potentialb 12.3

HSCCc 0.0–0.2 13.1

FCSVM (ERT)b 0.0–0.2 13.9

FCSVM (MERT)b 0.0–0.2 12.9

CVM (ERT) 0.0–0.1 14.2

CVM (MERT) 0.0–0.1 13.6

aReference [34].
bReference [47].
cReference [48].

imental measurement of DCS ratios can potentially provide

evidence for the existence of a bound state in Ps-Li+.

B. Scattering length

The scattering length plays a crucial role in determining

the strength of the scattering process. In particular, it provides

valuable insights into the interaction strength involved. When

dealing with short-range interactions, one can determine the

scattering length by employing the effective range theory

(ERT) and performing a least-squares fitting of δ0(k) at low

incident momentum k [58],

k cot δ0(k) = −
1

as

+
R0k2

2
+ O(k4), (17)

where as is the s-wave scattering length and R0 is the corre-

sponding effective range. In addition, the MERT takes into

account the effect of polarization [49,59–61],

k cot δ0(k) = −
1

as

+
β2πk

3a2
s

+
4β2k2

3as

ln
βk

4

+ Bk2 + Ck3 + O(k4), (18)

where β2 = μαd (Ps) = 72a3
0 [49], and B and C are two

additional fitting parameters. Considering the uncertainties

introduced by the fitting range, we conduct fitting for three

different ranges k � 0.08, k � 0.09, and k � 0.10, which

gives the average scattering length of 14.212 for the ERT and

13.613 for the MERT. Given the uncertainties inherent in the

fitting procedure, we recommend a scattering length of 14.2

for the ERT and 13.6 for the MERT (see Table III). Mitroy

and co-workers calculated as using ECGs together with the

FCSVM [31,47]. In the present calculation, the fitting range

of k is confined to within 0.1a−1
0 , while for the FCSVM the

fitting range is from 0.0 to 0.20a−1
0 . The CVM ERT as is

4.4% and 10.1% larger than the CVM MERT and FCSVM

MERT values, respectively. Moreover, the CVM MERT as is

34.7% larger than the value of 10.1a0 derived from the ERT

formula as = 1/
√

2μ|Eb| using the binding energy Eb, and

10.6% larger than the value of 12.3a0 derived from the model

potential estimation [47]. Considering these comparisons, the
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scattering length obtained from the CVM MERT can be con-

sidered the most accurate one.

C. Pickoff annihilation

In Ps-Li+ scattering, the primary decay mechanism is pick-

off annihilation, which occurs when the positron annihilates

with one of the target electrons, resulting in the emission of

two photons. The pickoff annihilation cross section can be

expressed as [34,62,63]

σa = 4πr2
0

( c

v

)

1Zeff, (19)

where r0 is the electron classical radius, c is the speed of

light, and v is the velocity of incident Ps. Here 1Zeff is a

dimensionless parameter that represents the effective number

of target electrons involved in the annihilation process. It can

be expressed as the sum of annihilation parameters 1Zeff,l for

different l partial waves:

1Zeff(k) =
∞

∑

l=0

1Zeff,l (k). (20)

In terms of the confined l-wave many-body wave function � l
c,

1Zeff,l (k) can be written as

1Zeff,l (k) =
1

|Cl |2

〈

� l
c

∣

∣

∣

∣

3
∑

i=1

Ps(i, 4)δ(ri − r4)

∣

∣

∣

∣

� l
c

〉

. (21)

Here Ps(i, 4) represents the spin projection operator that

ensures only electron-positron pairs in a spin singlet state

undergo annihilation. Also, the absolute value of Cl , the co-

efficient that normalizes � l
c to the asymptotic form, is defined

as

|Cl |2 =
f (ρ0)

4π (2l + 1)ρ2
0 [ jl (kρ0) cos δl − yl (kρ0) sin δl ]2

,

(22)

where ρ0 is the confinement radius, jl and yl are the spherical

Bessel and Neumann functions, respectively, and f (ρ) is the

radial density distribution of Ps defined by

f (ρ) =
∫

d�ρ2
〈

� l
c

∣

∣δ(W T
r − ρ)

∣

∣� l
c

〉

, (23)

with
∫

d� the integral over the solid angle of ρ. It should be

noted that the accuracy of such a calculation is limited due

to less accurate local properties of variational wave functions

compared to global properties [64]. To increase the accuracy

of the calculated Cl , there are two alternative approaches

that can be employed. The first approach involves using the

wave function ψ l
c of the one-dimensional potential scattering

(6) instead of the many-body wave function � l
c [45]. In this

approach, the model potential (7) is tuned to have the same

scattering energy Es and confining energy 〈VCP〉. By ensuring

the same 〈VCP〉, the normalization conditions at the boundaries

are also the same, allowing for the use of ψ l
c (ρ0) to calculate

Cl . This approach requires the model potential to be more

flexible in order to easily perform the necessary adjustments,

such as making the parameter a in Eq. (7) adjustable. The

second approach involves using a stabilization idea to fit

f (ρ) = 4π (2l + 1)C2
l ρ2[ jl (kρ) cos δl − yl (kρ) sin δl ]

2

(24)

TABLE IV. Convergence of the total nonrelativistic energy E , the

binding energy Eb with respect to the dissociation into the ground-

state Ps and Li+(1S), and the core-annihilation rate �, as the size of

the basis set N increases.

N E (a.u.) Eb (a.u.) � (ns−1)

2400 −7.53241006 0.00249666 0.0031352

3000 −7.53241054 0.00249714 0.0031784

3600 −7.53241057 0.00249717 0.0031839

4200 −7.53241064 0.00249724 0.0031854

1200a −7.5323955 0.0024821 0.0030833

3000b −7.53241048 0.00249708

8568c −7.27991341

aECG basis functions. From [65].
bECG basis functions. From [69].
cThe ground-state energy of Li+ using the Hylleraas-CI method with

8568 configuration states. From [70].

in the small interval ρ ∈ [ρ0 − d, ρ0] with d = 2.0a0 near

the confining radius ρ0. Then Cl is determined as a fitting

parameter.

In addition, we also estimate the annihilation parameter
1Zeff,0(0) for the s-wave zero energy using the binding energy

of the Ps-Li+ bound state [65–68] and the core-annihilation

rate based on the lowest-order ERT [34],

1Zeff,0(0) ≈
a3

s �

2r2
0c

≈
1

2r2
0c

�

|2μEb|3/2
, (25)

where � is the core-annihilation rate and Eb is the binding

energy. Expressing � in units of ns−1 leads to

1Zeff,0(0) ≈ 0.031 12 ×
�

|2μEb|3/2
. (26)

Table IV presents the convergence of the nonrelativistic en-

ergy E of the Ps-Li+ bound state, the binding energy Eb

with respect to the dissociation, and the core-annihilation

rate �. The binding energy is determined to be 0.002 497 24

hartree with 4200 well-optimized ECGs. The annihilation rate

converges to 0.003 185 4 ns−1, which is 3.3% larger than

the previous value of 0.003 083 3 ns−1 [65] obtained with

1200 ECGs. The value of 1Zeff,0(0) is determined to be 0.099,

as shown in Table V, which is approximately 2.02 times

the results of the FCSVM and 4.2% larger than the value

obtained with the SVM. Additionally, 1Zeff,0(0) can be deter-

mined by extrapolating 1Zeff,0(k) to k = 0 utilizing the ERT

expansion [71]

1Zeff,0(k) = 1Z
(0)
eff,0 + 1Z

(1)
eff,0k2 + 1Z

(2)
eff,0k4. (27)

The extrapolation with 1Zeff,0(k) of the CVM in the

ranges 0.02 � k � 0.10, 0.03 � k � 0.10, and 0.04 � k �

0.10 yields values 0.127, 0.126, and 0.124, respectively, for
1Zeff(0). We recommend using the average value 1Zeff(0) =
0.126 as the final result, and the uncertainty is within 0.002.

Comparing with the FCSVM value of 0.067 [34], we can

determine an enhancement factor of 1.88.

The energy dependence of 1Zeff is crucial for understanding

the thermalization process of positronium in gases [72–74].

Figure 5 illustrates the CVM 1Zeff,0(k) and 1Zeff,1(k) for k �

0.4a−1
0 . The CVM 1Zeff,0(k) is approximately twice the result
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TABLE V. Comparison of the s-wave threshold pickoff anni-

hilation parameters 1Zeff,0(0), calculated using different methods,

including the lowest-order ERT estimation based on the binding

energy and core-annihilation rate obtained by FCSVM [65], SVM

[65], and the present bound-state calculation. Additionally, the ex-

trapolation value using Eq. (27), based on the results of FCSVM

[34] and the present CVM, is also provided. Here Eb represents the

binding energy and � represents the core-annihilation rate.

Method Eb (a.u.) � (ns−1) 1Zeff,0(0)

ERT (FCSVM)a 0.0024789 0.0015715 0.049

ERT (SVM)a 0.0024821 0.0030833 0.095

ERTb 0.0024972 0.0031854 0.099

extra (FCSVM)c 0.067

extra (CVM) 0.126

aReference [65].
bPresent work.
cReference [34].

of the FCSVM, indicating that the FCSVM underestimates
1Zeff(k) by an enhancement factor of about 2. On the other

hand, 1Zeff,0(k) can be estimated in terms of 1Zeff,0(0) and the

scattering length as using the formula [34]

1Zeff,0(k) =
1Zeff,0(0)

1 + a2
s k2

. (28)

The energy dependence of 1Zeff(k) at low energies is quali-

tatively described by Eq. (28), as shown in Fig. 5. However,

this equation underestimates the values of 1Zeff,0(k). More-

over, 1Zeff,1(k) exhibits a peak at k ≈ 0.2a−1
0 , similar to the

p-wave cross section, as expected. However, determining

the peak value of 1Zeff,1(k) is challenging due to the con-

FIG. 5. Pickoff annihilation parameter 1Zeff for the Ps-Li+ scat-

tering as a function of incident momentum k in units of a−1
0 . The red

and blue solid circles are for the s- and p-wave scattering, respec-

tively, using the CVM, and the black square is the total annihilation

parameter. The green triangles represent the FCSVM results multi-

plied by 2 [34]. The yellow dashed line shows the ERT estimation of

the s-wave annihilation parameter using Eq. (28).

vergence difficulties near the peak. We determine the peak

value to be 0.034 using 5000 ECGs. Although the p-wave

contribution to annihilation surpasses that of the s wave for

k � 0.2a−1
0 , the total annihilation parameter 1Zeff,1(k) only

shows a subtle bump.

V. SUMMARY

This study focused on the scattering of Ps by the ground-

state Li+ using the CVM. The variational calculation was

performed by optimizing the basis through a hybrid approach

combining stochastic variational and energy-gradient-based

methods. Additionally, an algorithm was developed to auto-

matically adjust the confining potentials. Both of the strategies

greatly enhance the efficiency of scattering calculation in the

frame of the CVM. Accurate phase shifts and cross sec-

tions were obtained and the scattering length was determined

to be 13.6a0 by fitting the phase shifts to the MERT. Moreover,

a broad p-wave resonance structure at k ≈ 0.2a−1
0 (0.27 eV)

was predicted, displaying structures similar to those in e+-Be

and e+-Zn scattering. It is anticipated that similar resonance

structures will be observed in the scattering of e+ with some

other atoms and Ps with other ions. Finally, the energy de-

pendence of pickoff annihilation was also investigated. The

s-wave zero-energy pickoff annihilation parameter 1Zeff,0 was

accurately determined to be 0.126 ± 0.002, which is crucial

for other frozen-core methods to determine the enhancement

factor.

It is noteworthy that the weakly bound state of Ps-Li+ has

been extensively investigated in numerous theoretical studies

[65–67], yet there is a noticeable absence of experimental

detection. We have found that the momentum transfer cross

section σm exhibits a significant change rate below 0.27 eV

due to the presence of the s-wave bound state. Therefore, the

measurement of dσm/dE using either angular correlation of

the annihilation radiation [25,75,76] or Doppler broadening

spectroscopy [24,72,73] methods could provide evidence of

the binding between Ps and Li+. Furthermore, the differential

cross section was found to be larger in the backward direction

than in the forward direction near the threshold. This implies

that the ratio of differential cross sections below 0.068 eV

could also serve as evidence for the existence of the weakly

bound state of Ps-Li+.
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APPENDIX: MATRIX ELEMENTS AND GRADIENT

FOR THE CONFINING POTENTIAL

By utilizing the matrix element expressions of the Dirac δ

function as shown in Refs. [35,36], we can express the matrix

elements of the confining potential in Eq. (3) between the kth

and �th basis functions for the s and p waves (assuming the

magnetic quantum number m = 0) as

(VCP)l=0
k� = GSk�α1

[

−
β

√
π

exp(−β2) +
(

3

2
+ β2

)

×erfc(β )

]

(A1)

and

(VCP)l=1
k� = GSk�α1

[

β
√

π

(

2

3

α2

α1α3

− 1

)

exp(−β2)

+
(

3

2
+ β2 +

α2

α1α3

)

erfc(β )

]

, (A2)

where erfc(β ) is the complementary error function and Sk� is

the overlap matrix element. We also use the abbreviations

α1 = tr
[

WW
T

Ã
−1

k�

]

, (A3)

α2 = tr[WW
T

Kk�], (A4)

α3 = tr
[

ṽ�(vk )T
Ã

−1

k�

]

, (A5)

β =
ρ0√
α1

, (A6)

where

Ãk� = Ak + Ã�, Ã� = P
T

A�P, ṽ� = P
T v�, (A7)

and

Kk� = Ã
−1

k� ṽ�(vk )T
Ã

−1

k� . (A8)

In the above equations, P represents a permutation matrix for

identical particles and vk is a column vector where the mkth

component is equal to one while all other components are

zero. By differentiating Eqs. (A1) and (A2) with respect to

the nonlinear parameter matrices Lk and L�, respectively, we

can obtain

∂ (VCP)l=0
k�

∂ (vechL)
=

(VCP)l=0
k�

Sk�

∂Sk�

∂ (vechL)
+ GSk�γ0

∂α1

∂ vechL
(A9)

and

∂ (VCP)l=1
k�

∂ (vechL)
=

(VCP)l=1
k�

Sk�

∂Sk�

∂ (vechL)
+ GSk�

(

γ1

∂α1

∂ vechL

+ γ2

∂α2

∂ vechL
− γ3

∂α3

∂ vechL

)

, (A10)

where L = Lk or L� and

γ0 =
1

√
π

β exp(−β2) +
3

2
erfc(β ),

γ1 =
1

√
π

(

2

3

α2

α1α3

(1 + β2) + 1

)

β exp(−β2) +
3

2
erfc(β ),

γ2 =
1

α3

(

2

3
√

π
β exp(−β2) + erfc(β )

)

,

γ3 =
α2

α2
3

(

2

3
√

π
β exp(−β2) + erfc(β )

)

. (A11)

The operator vech transforms a matrix into a vector; for in-

stance, if L is a 3 × 3 matrix, then

vechL = (L11, L12, L13, L22, L23, L33)T . (A12)

The derivatives for α1, α2, and α3 are

∂α1

∂ (vechLk )
= −2 vech

[(

Ã
−1

k� WW
T

Ã
−1

k�

)

Lk

]

,

∂α1

∂ (vechL�)
= −2 vech

[

P

(

Ã
−1

k� WW
T

Ã
−1

k�

)

P
T

L�

]

,

∂α2

∂ (vechLk )
= −vech

[(

Mk� + M
T
k�

)

Lk

]

,

(A13)
∂α2

∂ (vechL�)
= −vech

[

P
(

Mk� + M
T
k�

)

P
T

L�

]

,

∂α3

∂ (vechLk )
= −vech

[(

Kk� + K
T
k�

)

Lk

]

,

∂α3

∂ (vechL�)
= −vech

[

P
(

Kk� + K
T
k�

)

P
T

L�

]

,

with

Mk� = Kk�WW
T

Ã
−1

k� + Ã
−1

k� WW
T

Kk�. (A14)
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