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Abstract

The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert
significant influence on wind flow fields in urban street canyons and the thermal environment of
the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their
importance, these critical attributes are less commonly available and rarely utilized in urban
climate models compared to planar land use and land cover data. In this study, we explicitly
mapped the height of trees and buildings (HiTAB) across the city of Chicago at 1 m spatial
resolution using a data fusion approach. This approach integrates high-precision light detection
and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite
images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset
to calculate the height of surface objects, while the rest of the datasets were used to delineate trees
and buildings. We validated the derived height information against the existing building database
in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental
Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable
initiative in the effort to inform urban land surface parameterizations using real-world data. Given
their high spatial resolution, the height maps can be adopted in physical-based and data-driven
urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover,
our method can be extended to other urban regions, benefiting from the growing availability of
high-resolution urban informatics globally. Collectively, these datasets can substantially contribute
to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and
planning, providing a more comprehensive understanding of urban environments.

1. Introduction

Over two-thirds of the global population will be
urban dwellers by 2050 (United Nations 2018). In
contrast to their rural and natural counterparts,
urban landscapes are characterized by a high degree
of heterogeneity and compactness. This results in a
mosaic of fragmented green (e.g. parks and street
trees) and grey spaces (e.g. pavement and build-
ings), along with a noticeable expansion in ver-
tical dimensions such as skyscrapers. These elements
create canyon-like geometry of the urban fabric,

© 2024 The Author(s). Published by IOP Publishing Ltd

where tall buildings reshape wind flow patterns and
redirect short- and long-wave radiations through
shading, reflection, and trapping mechanisms (Oke
1982). Additionally, the presence of street trees fur-
ther increases the complexity of the in-canyon flow
dynamics, largely influencing the near-surface micro-
climate at the pedestrian level (Giometto et al 2017,
Krayenhoff et al 2020).

The last decades have witnessed numerous mod-
eling efforts and advances to incorporate precise
urban morphology of the built environment to
reduce bias and errors in the simulation (Ryu
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et al 2015, Krayenhoff et al 2020). Among existing
approaches, urban computational fluid dynamics
(CFD) models offer detailed insights into the flow
field within street canyons and reproduce a compre-
hensive suite of meteorological and environmental
variables (Toparlar et al 2017, Mirzaei 2021). More
recently, machine learning (ML) has become an
emerging technique to conduct high-fidelity simu-
lation of complex urban environments (Meyer et al
2022, Middel et al 2022, Wang et al 2023). Many
studies have proved the high efficiency of ML meth-
ods in resolving urban scenes at an unpreceden-
ted granularity and spatial coverage compared to
process-based models (Li and Sharma 2024, Yu et al
2024). Nevertheless, physical- and data-driven meth-
ods have distinct underlying principles and applic-
ations, both rely on accurate urban morphological
data, which includes measurements of urban fabric
in three dimensions (Stewart and Oke 2012). In par-
ticular, height information is often less accessible at
city or regional scales compared to two-dimensional
land use and land cover data. Data scarcity in vertical
dimensions not only impedes accurate urban repres-
entation but also constantly constrains advancements
in high-resolution urban modeling.

It is also worth noting that tree information is
even more rare compared to building height data due
to their smaller footprints and highly fragmented spa-
tial distributions in the built environment. Yet, urban
trees have drawn much attention from urban climate
research communities because of their active role
as a nature-based solution to multiple urban chal-
lenges, such as heat mitigation (Schwaab et al 2021),
flood prevention (Center for Watershed Protection
2017), carbon reduction (Li ef al 2023, 2024), pol-
lution uptake (McDonald et al 2007, Hirabayashi
and Nowak 2016), etc. emphasizing the importance
of precise tree information for the understanding
of hydrometeorological dynamics in built environ-
ments. Besides the need for research purposes, it
is critical for cities to have accurate tree invent-
ory for urban design, planning, and management
(Woodward et al 2023). In particular, tree planting
has been widely recommended in city, regional, and
national climate action plans (CAPs). For example,
the city of Chicago has set an ambitious goal to plant
75000 trees by 2026, as outlined in its 2022 CAP
(City of Chicago 2022). The local agencies, such as
the Morton Arboretum, have been instrumental in
performing tree censuses since 2010, aiming to mon-
itor the condition of urban green canopy and evaluate
the planting goals (The Morton Arboretum 2020). A
detailed map of tree will create synergy along with the
considerable effort demonstrated in the Chicago tree
census and may help the city expand the tree database
to include privately owned canopies.
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To this end, our study presents maps of build-
ings and tree heights over the city of Chicago at 1 m
spatial resolution. This height dataset height of trees
and buildings (HiTAB hereafter) is derived by integ-
rating the archived high-precision light detection and
ranging (LiDAR) cloud point data, building footprint
inventory, and multi-band satellite images. The co-
investigation of tree and building height will benefit
not only the advances of urban climate research, but
also help a wide range of applications that require the
3D description of the urban fabric, such as the estim-
ation of rooftop solar power production (Tooke et al
2012), urban ecology (Casalegno et al 2017), property
valuation (Kara et al 2020), etc. Moreover, we invest-
igate the emerging issues in data fusion processes
and unravel the uncertainties that arise when pro-
cessing geospatial datasets at meter-level in an urban
environment. We believe the height dataset will be
one of the critical components in urban informat-
ics to foster the research and decision-making of the
Chicago region toward a sustainable future.

2. Data and method

Figure 1(a) summarizes the processing workflow used
in this study from data sources to the final products.
In this section, we describe the details of the datasets
and digest their uses in HiTAB.

2.1. LiDAR point cloud
The LiDAR cloud point dataset has been widely used
to derive canopy structures for ecological studies
(Guo et al 2020). The specific LIDAR dataset used
in this study is available from the Illinois Height
Modernization project (ILHMP—Illinois Height
Modernization 2021). This dataset records the spa-
tial coordinates (latitude, longitude, and elevation)
of every LiDAR point with a spacing of 0.35 m. Each
LiDAR point is assigned with one classification of
ground, low vegetation, medium vegetation, high
vegetation, buildings, water, noise, bridge deck, and
others. Figure 1(b) shows the un-processed LiDAR
point cloud at an exemplary street block in Chicago
(41.8717°N, 87.6306°W). This LiDAR data serves as
the source for height information. Specifically, we
investigate the LiDAR points within a 1 m by 1 m
sliding window. The points with ‘ground’ classific-
ation are used to derive the digital terrain model
(DTM, i.e. bare surface); while the points with max-
imum elevation (i.e. first return) represent the digital
surface model (DSM). The height of surface objects,
shown as Hy in figure 1(a), is then calculated from the
difference between the DSM and DTM (figure 1(b)).
Note that in this step, we do not distinguish
vegetation from buildings. The LiDAR dataset used
here was originally designed for hydrological studies
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Figure 1. (a) A processing workflow showing data sources and outcomes of this study; and (b) an illustration of LiDAR point
cloud data with un-processed classification over a street block in Chicago (41.8717°N, 87.6306°W). Red arrows in (a) indicate
the validation data to the intermediate and final variables. DTM—digital terrain model. DSM—digital surface model. A summary

list of the datasets used in this study can be found in table S1.

of natural ecosystems. Therefore, the classification
attributes can be problematic once applied to urb-
anized areas. We find that the classes ‘ground’
and ‘buildings’ (representing the elevation of roofs)
are generally accurate, while most of the building
facets are misclassified as vegetation (figure 1(b)).
It is necessary to use additional and independ-
ent datasets to delineate tree canopies from other
high urban structures. In this case, we reconcile
the height map with a vectorized building foot-
print dataset (section 2.2) and normalized differ-
ence vegetation index (NDVI) to differentiate trees
and buildings. In addition, the LiDAR scan has an
‘intensity’ band, referring to the signal strength of
the LiDAR returns. The distinctive characteristics of
LiDAR intensity between plant leaves and pavements
have been utilized in many land cover classification
studies (Kashani et al 2015, Morsy et al 2017, Huo et al
2018). This characteristic is also used to cross-validate
the delineation of tree canopies. More information
can be found in Text S1.

The LiDAR scan over the city of Chicago was col-
lected during the late spring of 2017, which is not
temporally synchronized with the other datasets used
in this study. Because of their high precision, LIDAR

surveys over large areas can be labor-intensive and
time-consuming. Therefore, they are generally avail-
able once every few years. This frequency is much
lower than the satellite imageries, which are more
commonly available at sub-seasonal, monthly, or
even daily intervals. This shortcoming makes LiDAR
impractical to reflect objects with strong seasonality,
such as tree leaves. However, its high precision can
ensure that the tree canopy is clearly distinguished
from the surrounding buildings for the purpose of
this study.

2.2. Land use and building footprint inventory

We select two sets of land use data over the city
of Chicago to delineate the street and building
boundaries. The 2018 parcel-level land use invent-
ory (LUI) for the city of Chicago can be found
at the Chicago Metropolitan Agency for Planning
(CMAP) in vector format (www.cmap.illinois.gov/
data/land-use/inventory). The LUI classifies land use
into 10 major and 56 minor categories. The street
blocks, roads, urban form, and fabric boundaries are
precisely outlined by polygons, which can be derived
to raster masks at extremely high resolution. We use
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Figure 2. Data layers used in this study over an exemplary street block near Sherman Park in Chicago (41.7952°N, 87.6562°W).
(a) Heights of surface objects; (b) LIDAR un-processed classifications; (c) NDVI values derived from NAIP; and (d) land cover
classification from US environmental protection agency (EPA) meter-scale urban land cover (MULC) dataset.
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this dataset to derive the mask of roads and streets.
An intersection of masks associated with the ‘ground’
classification of LiDAR points can provide the most
reliable bare ground elevation for DTM.

In addition, the building footprint (BF) data from
the Chicago data portal provides even more pre-
cise boundaries of the architectures in addition to
the parcel-level LUI (figure S1). Figure 2(a) shows
the height of the surface objects (Hp) at an exem-
plary street block with a building footprint overlayed.
The building footprint differentiates the land as ver-
tical structures (e.g. buildings) and impervious sur-
faces (e.g. roads or parking lots), allowing us to cal-
culate the building heights (Hg) accurately. We use
this dataset to derive the building mask, and reclas-
sify LIDAR points within the mask to ‘buildings’
(figure 2(b)). This partially corrects the misclassifica-
tion of the building facets as mentioned in section 2.1.
When there is an overlapping between tree canopy
and building, we further use NDVI data to detect and
differentiate them.

2.3. Multispectral satellite imageries
NDVTI is a commonly used vegetation index to reflect
biomass density, calculated as

NIR — Red

NDVI = ————
NIR + Red

where NIR and Red are reflectances in the near-
infrared and red bands from the satellite imagery,
respectively. The value of NDVI ranges from [—1, 1],

with greater positive values representing denser bio-
mass. We use the 4-band (RGB and NIR) satel-
lite imagery at 1 m resolution from the National
Agriculture Imagery Program (NAIP 2023) to calcu-
late NDVI (figure 2(c)). The NAIP dataset has been
available on a bi-annual basis during summertime
since 2007 over the Chicago region. We primarily use
the data from September 2017 to better align with the
time frame of the LiDAR data. This 1 m NDVI data
provides the ground truth of the presence of veget-
ation. It is used to derive the high-resolution veget-
ation mask and resolve the LiDAR misclassification
issue.

We further note that tall buildings can cast shad-
ows on street trees, which leads to a significant under-
estimate of the NDVI in the shaded areas. This
shadow phenomenon has been widely seen across
NDVI products at various spatial resolutions (Burgess
et al 1995, Aboutalebi et al 2018, Yang et al 2022)
but becomes more apparent at high spatial resolution
and in urban settings. Figure S2 shows an example
of this phenomenon by comparing NAIP products in
2017 and 2021. These data were collected with dif-
ferent sun angles. Though NAIP regulates the col-
lection time within 2 h from the local noon with a
minimum sun angle greater than 30 degrees (NAIP
2023), shadows are still one of the common issues
found in NAIP-based products (Ritz et al 2022). In
this case, the accurate mapping of NDVI needs to
use data from more than one-time frame, preferably
from two frames before and after local noon with
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high solar angles. Considering the long revisit time
(2 years) of the NAIP product, it becomes impractical
to create a shadow-free and time-aligned NDVI data-
set simultaneously. To mitigate this issue, we combine
NDVI maps derived from NAIP 2017 and 2021, which
were captured in the afternoon and morning, respect-
ively. Using the combined NDVI map, the tree mask is
defined as where NDVTI is greater than 0.05 and height
is greater than 2.5 m (figure 1(a)). The tree mask rep-
resents the planar (2D) coverage of the tree canopy.

2.4. EPA meter-scale urban land cover (MULC)
land use classification

The meter-scale urban land cover (MULC) is a data-
set developed by the US environmental protection
agency (EPA) for EnviroAtlas (Pilant et al 2020,
figure 2(d)). In each of the 30 cities it covers, the
land surface is classified into 10 categories, includ-
ing impervious surfaces, trees, shrubs, grass, water,
crops, etc. As this dataset is specific to cities, it has a
good representation of the urban landscapes. We use
this data as an independent data source to validate the
tree mask that we derived in this study. Compared to
MULC, our results indicate good agreement with a
true positive rate of 0.86 and true negative rate of 0.96.
The precision, F1-score, and Kappa coefficient of our
classification are 0.75, 0.80, and 0.77, respectively.
The discrepancies, however, are primarily caused
by the mismatched data year and the classification
regime of MULC. MULC used older source datasets
as early as 2006 (Pilant et al 2020) and has only two
classes of vegetation in the Chicago region: trees and
grass/herbaceous. The simple scheme prefers to clas-
sify tall and dense vegetation as ‘trees’ while keeping
others as grassland. This potentially underestimates
the canopy coverage compared to the real-world situ-
ation in 2017. Nevertheless, MULC is the only data-
set with a comparable resolution and spatial coverage
from a reliable source.

3. Results and discussion

3.1. Statistics of building height in Chicago

The height of the surface objects (H,) is calcu-
lated as the difference between DSM and DTM.
Therefore, its accuracy largely depends on the accur-
acy of ground elevations. We find that satellite-
based digital elevation models tend to misestimate
the surface elevation as the mean elevation of sur-
face objects, especially over high-rise downtown areas
(figure. S3); while LiDAR-based DTMs can provide
accurate bare earth elevation. In the comparison,
our DTM aligns well with the data published in the
Cook County GIS Database (CCGD, figure S3(b),
https://hub-cookcountyil.opendata.arcgis.com/) and
US Geological Survey 3D Elevation Program (USGS
3DEP, figure S3(d)). Both CCGD and 3DEP are
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LiDAR-based. The root mean squared errors (RMSE)
of this study and 3DEP are 0.98 m and 1.40 m com-
pared to CCGD, respectively (table S2). Nevertheless,
defining ‘ground elevation’ over urban terrain is occa-
sionally difficult, such as downtown Chicago’s com-
plex network of rivers, underground parking struc-
tures, bridges, and elevated light rails. This uncer-
tainty is primarily responsible for the biases between
DTM products.

The height map (Hp) is subsequently delin-
eated to building height (Hg) and tree height (Hr)
using building footprint (section 2.2) and tree mask
(section 2.3). Figure 3 shows the height maps over
two exemplary street blocks with trees and build-
ings differentiated. Since there is no known spatial
gridded building height dataset to validate the height
map, we compare our building height to the height of
skyscrapers (>500 ft or 150 m) built between 1950
and 2017 in downtown Chicago, which has well-
documented height information. Our building height
shows a mean bias error of —0.03 m and RMSE of
4.88 m over the tallest 67 skyscrapers (figure S4).
The relative error is within 2% of the exact building
height. The minor discrepancy is caused by the vari-
ance of their roof design. The difference can be not-
able for the buildings having a spire-shaped roof or
an antenna on top. Some skyscrapers reported archi-
tectural heights, while others reported the full height
with the length of antennas. For residential buildings
with sloped roofs, our 1 m raster map can reflect the
height variance over each individual structure, thus is
considered more accurate compared to the building
inventory where only a single value is provided.

According to CMAP LUI in 2018, residential use
dominates the land types in Chicago. The distribution
of residential building height has noticeable peaks at
around 4.4 m, 7.8 m, and 11.7 m, corresponding to
the building types of one-story single-family homes,
two or three-story homes, and multi-story apart-
ments/flats (figure 4(a)). This characteristic becomes
less apparent for non-residential buildings, which
exhibit a smoother but skewed distribution with a
median of 7.8 m and a mean of 11.3 m (‘others’ in
figure 4(a)). It is noteworthy that the exact height
measurements of low-rise buildings are not com-
monly available. However, it is one of the critical
attributes of urban form. Considering the large por-
tion of residential areas in cities, explicit mapping
and statistics over these low-rise buildings have pro-
found implications for urban climate modeling stud-
ies, which we will discuss in section 3.3.

3.2. Statistics of tree height in Chicago

The high accuracy of building height demonstrates
the reliability of our methodology. The derivation of
tree height follows a similar procedure but with the
building mask replaced by a tree mask reconciling
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with NDVI and H,. The tree mask indicates that
the city of Chicago (excluding O’'Hare International
Airport) has a canopy coverage of 16.7% in 2017
(figure 5(a)). This number is lower than the estim-
ates from University of Vermont Spatial Analytics
Lab (UVM, 19.3%, O’Neil-Dunne et al 2014, Darling
2023), while being significantly higher than the com-
monly used tree canopy coverage (TCC) map from

national land cover database (NLCD) 2017 at 30 m
resolution (Housman et al 2021, ~7%, figure 5(b)).
From our investigation (Text S2), we find three major
reasons for the discrepancies. (i) Dataset with coarser
resolution (i.e. the, NLCD) tends to underestimate
the coverage due to the small footprint of trees in
urban environments (Pourpeikari Heris et al 2022);
their signals are usually diluted when averaging into
a relatively large pixel. (ii) At a hyper-local scale
(~1 m), uncertainties will emerge from the classific-
ation scheme due to the similarity of spectral signa-
tures between tree leaves and some building mater-
ials. In this case, the canopy coverage is sensitive
to the classification criteria and the availability of
information (Text S2 and figure ST2). The presence
of green roofs and canopies over low roofs will fur-
ther complicate the situation (Text S3 and figure
ST4). (ili) In addition, the phenology of decidu-
ous trees affects the canopy size, density, and NDVI,
thus affecting quantification as well. Nevertheless,
the high-resolution dataset will certainly be more
accurate. These phenomena are worth in-depth
investigations.

The focus of HiTAB is the tree height (Hr) rather
than the canopy coverage. The statistical distribution
of trees in Chicago shows a very different shape com-
pared to the distribution of buildings, exhibiting one
major peak around 11.6 m and a local peak at 2.7 m
(figure 4(b)). The number of tall trees (>11.6 m)
gradually declines with the increase in tree height.
Height distributions notably differ between muni-
cipal trees (i.e. public parks and street trees) and
the rest. The former follows a normal distribution
N ~ (11.9, 4.8), yielding the major peak. In con-
trast, the rest of the trees have an even height distri-
bution under 13 m and naturally decline thereafter
(figure 4(b)).
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Figure 6 shows the spatial distribution of aver-
aged tree height over Chicago for a 100 m sliding
window with comparisons to existing canopy height
products. Our estimated tree height lies between two
other available estimates; it is 1.7 m lower than Lang
etal (2022) and 4.1 m higher than Potapov et al (2021)
on average. When scrutinizing the areas with large
discrepancies, we find that Lang et al (2022) tends to

misrecognize low vegetation as trees and overestim-
ate their heights (figure S5(b)). This can be attributed
to inaccurate surface elevation or to uncertainties in
the classification scheme. The height estimation from
Potapov et al (2021) is limited by its coarser resolu-
tion (figure S5(c)). As mentioned previously, signals
from trees can be easily diluted due to their small foot-
prints. Nevertheless, these products depict different
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data years from ours. They also aimed to provide can-
opy height at a global scale, thus inevitably having
spatial performance variances. Our high-resolution
height map can be used for local calibration of these
global products to ensure their accuracy with exten-
ded data coverage.

Additional findings can be derived when link-
ing tree height to other geospatial properties. For
example, averaged tree coverage has a positive correl-
ation with tree height (figure 5(c)). The upper bound
of this trend is superliner, meaning tall trees expand
canopy coverage more effectively. Despite trees tak-
ing time to reach their mature height, planting tall-
growing tree species will be more beneficial for along-
term investment. Another critical aspect is the relative
height between trees and buildings. Intriguingly, in
67% of Chicago’s land, trees are taller than the build-
ings (figure 5(d)). In 24% of those areas, the trees are
twice the height of the buildings. This measurement is
crucial for estimating the sky view factor, the rough-
ness of urban terrain, and many urban studies on
outdoor thermal comfort, street walkability, build-
ing energy consumption, etc. Yet, due to the abiding
absence of accurate height information at high resolu-
tion, this measurement has been rarely considered or
precisely quantified in the characterization of urban
land, leaving large uncertainties in the current gen-
eration of urban models. In the next section, we will
elaborate on how our dataset contributes to urban cli-
mate modeling.

3.3. Implications for urban environmental

modeling
Given its unprecedented resolution, the dataset can be

directly used in urban CFD simulations or aggregated
to a desired granularity for coupled urban climate
models. For example, urban canopy models, rep-
resented by the single-layer scheme PUCM/ASLUM
(Wang et al 2013, 2021) and multi-layer scheme
BEP-Tree (Martilli er al 2002, Krayenhoff et al
2020), require building and tree heights as model
inputs. Additionally, when coupled with the regional
Weather Research and Forecast/urban modeling
framework (WRF-UCM, Chen et al 2011), these
models need to incorporate the local climate zone
(LCZ) concept for efficient parameterization at the
regional scale (Stewart and Oke 2012). HiTAB can
contribute from two aspects: (a) by providing local-
ized values for the urban morphological parameters
used in WREF, such as canyon aspect ratio; (b) by
refining the existing LCZ classification. In Text S4, we
analyze the height information with the 100 m LCZ
Level 0 dataset in Chicago. Our analysis indicates
that despite its relatively high resolution, the categor-
ical implementation of LCZ vastly limits the land
cover diversity and oversimplifies the urban terrain.
Theoretically, LCZ determines the land use category

P Li and A Sharma

based on the roughness and compactness of urban
landscapes (Stewart and Oke 2012). However, the
current derivation of LCZ relies on satellite data and
does not consider the exact height of buildings or
trees (Bechtel et al 2019), which potentially fails to
represent the roughness accurately.

To better quantify this effect, we calculate the
height ratio between buildings and trees (Hgp/Hr)
over a 100 m sliding window (figure 7(a)), corres-
ponding to the resolution of Level 0 LCZ dataset
(figure 7(b)). We find that trees are taller than build-
ings in most areas of Chicago. The variances of Hg/Hr
lead to a transition of the ‘roughness element’ from
buildings in city core, to the mix of trees and build-
ings in city outskirt, and eventually to trees in the sub-
urban regions. The transition will subsequently affect
the opening width of the streets (W) and canyon
aspect ratio (H/W). For example, the value of W
will be overestimated if only using building foot-
print (figure 7(c)). Tree canopies tend to close the
street canyon when the coverage is high (figure 7(d)).
Figure 7(e) shows the distribution of W when con-
sidering both buildings and trees as ‘roughness ele-
ments’. Similarly, H/W varies with the consideration
of buildings (figure 7(f)), trees (figure 7(g)), or both
(figure 7(h)). More practically, one can determine the
overall roughness as a linear or non-linear combina-
tions of building and trees depending on the values
of Hg/Hr to achieve a smoother transition. We anti-
cipate in-depth quantitative investigations on surface
roughness based on our high-resolution height maps
and the measurement effort of the urban boundary
layer.

Nevertheless, the oversimplification is a com-
promise due to the dearth high-resolution geospa-
tial information and the constraints in computational
resources. There are a couple of recent attempts to use
spatial-distributed urban canopy parameters (UCPs)
to mitigate the limitations of the categorical methods
(Otte et al 2004, Salamanca et al 2011, Sun et al 2021).
The derivation of UCP will benefit from the spatial
gridded height dataset to fully account for the vari-
ances of urban features and the presence of vegeta-
tion. This is especially important for those advanced
schemes that aim to quantify the ecohydrological
(Meili et al 2020) and physiological functionality of
trees (Li and Wang 2020, 2021, Li et al 2023) under
urban forcings. Detailed information will also foster
the data-driven models to resolve more complicated
multi-objective optimization tasks (Li et al 2022).
With this ever-growing interest in detailed paramet-
erization and the emerging focus on urban green-
ery, the ‘tree-resolving’ capability is becoming one of
the most essential components for the next genera-
tion ‘urban-resolving’ climate models (Sharma et al
2021). This evolution underscores the need for high-
resolution urban datasets at a city or regional scale,
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as exemplified by the pioneering efforts showcased in
this study.

Apart from the applications on physical-based
models, the high-resolution nature of this dataset will
also help with data-driven urban studies to achieve

hyper-local predictions (Venter et al 2020, Zumwald
et al 2021). The precision and accuracy of such ML
models largely depend on the richness of information
(Wang et al 2023). Nevertheless, most of the studies
still use the ‘buffer zone’ concept to average urban
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parameters to a certain coarser resolution (Alonso
and Renard 2020). The averaging method, however,
may not fully reflect the impacts of urban features
on the hyper-local environment. For instance, in the
northern hemisphere, tall trees located south of a
house may provide a better cooling effect in summer
than trees in the north, and vice versa in the south-
ern hemisphere. To address this problem, a new itera-
tion of spatial embedding technique using neural net-
works has emerged (Fan et al 2021, Yu et al 2024).
This novel technique considers the relative spatial lay-
out of the urban features to the point of interest, thus
resolving the dynamics at an extremely high resolu-
tion or even point scale. The fine granularity offered
by our dataset will empower the implementation of
such novel methods to capture the dynamics that can-
not be reflected with a coarser resolution.

3.4. Caveats and future studies

Applying non-urban-oriented datasets (i.e. LiDAR,
NAIP) to urban areas at extremely high resolution
leads to notable uncertainties, such as the misclassi-
fication issue of LIDAR (section 2.2) and the shadow
issue of NDVI (section 2.3). In addition, we find it
intricate to distinguish the green roofs on tall build-
ings and the over-roof canopies from tall trees. The
number of green roofs in Chicago has increased from
360 in 2010 to over 500 in 2023, accounting for 0.4%
of the total roof area (Chicago Data Portal 2023).
Even though we used multiple independent datasets
to delineate green and gray spaces, further investig-
ations by incorporating the exact mapping of green
roofs are needed to enhance their accuracy.

The tree canopy in the Chicago region has
been dominated by deciduous species (The Morton
Arboretum 2020), with a strong seasonal variation of
leaf density. Though LiDAR and NAIP NDVI datasets
can accurately quantify the leaf density in a single time
frame, their long revisit period makes it difficult to
reflect the plant phenology. However, modeling res-
ults may be sensitive to biomass density change due
to plant seasonality, especially in data-driven and/or
long-term simulations (Yu et al 2024). We anticip-
ate reconciling existing datasets on NDVI, leaf area
index, or leaf area density across the spatial and tem-
poral scales to derive the temporal evolution of bio-
mass density maps at high resolution in a future study.

Though high precision spatial datasets are not
commonly available across the globe for the current
moment, following the derivation process of HiTAB,
it is possible to generate nationwide building and
tree height maps. For instance, USGS 3DEP offers
LiDAR cloud point data over the United States, cover-
ing more than 400 cities and towns; while the vector-
ized building footprint can be found in an advanced
ML study over North and South Americas, Australia,
and some countries in Africa (Microsoft Maps 2018).
For European cities, building footprints are publicly
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available from OSM Buildings (https://osmbuildings.
org/data/). More cities, metropolises, and coun-
tries have planned to conduct high-precision LiDAR
scans in recent years, such as the National LiDAR
Programme in the United Kingdom and the National
LiDAR High Density project in France. It is also
possible to leverage ML techniques to use the data
from US cities as the training sample for global cit-
ies to improve the data coverage in a fast and efficient
way (Demuzere et al 2021). This will subsequently
enhance the overall capability of Earth system models
to resolve urban dynamics with high resolution over
larger scales (Sharma et al 2021).

4. Concluding remarks

In this study, we quantified the height of buildings
and trees at 1 m resolution over the city of Chicago
using multiple sources of high-precision geospatial
information. To our knowledge, HiTAB is one of the
first few publicly available spatially gridded dataset on
both buildings and tree heights at such high resolu-
tion. We are also working to expand the dataset cov-
erage to the Chicago Metropolitan Area using newer
data sources.

From the analysis in this study, we find that build-
ings in Chicago can be characterized by three dif-
ferent heights, corresponding to the building types.
In most neighborhoods, trees are taller than build-
ings, resulting in canopies over the roof. We also
note the significant differences in TCC between
NLCD and our datasets, highlighting the import-
ance of high-resolution datasets in urban environ-
ments. Moreover, we identified several challenges
when integrating non-urban-oriented datasets for
urban studies due to the intricate urban landscapes.
Identifying these uncertainties presents opportunit-
ies for further investigation and improvement on
related topics. Collectively, our dataset and methodo-
logy offered convenience and insights for urban cli-
mate studies. Practically, it will also help the com-
munities to monitor and identify regions lacking can-
opy covers and guide strategic afforestation in the
Chicago region.

Data availability statement

Datasets used in this study are publicly available
and can be accessed via the following links as
of January 2024. Illinois Height Modernization
project: https://clearinghouse.isgs.illinois.edu/data/
elevation/illinois-height-modernization-ilhmp;
Chicago parcel-level land use inventory: www.
cmap.illinois.gov/data/land-use/inventory; Chicago
building  footprint:  https://data.cityofchicago.
org/Buildings/Building-Footprints-current-/hz9b-
7nh8; National Agriculture Imagery Program:
https://naip-usdaonline.hub.arcgis.com/; and EPA
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https://data.cityofchicago.org/Buildings/Building-Footprints-current-/hz9b-7nh8
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The data that support the findings of this study are
openly available at the following URL/DOI: https://
doi.org/10.5281/zenodo.10463648.
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