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A doubly excited autodissociating resonant state in positronium hydride has been discovered, which is situated

in a Rydberg series converging to the H−(2s2) + e+ threshold. Previous research has noted a scarcity of such

highly excited resonant states, particularly those with a doubly excited nature. The exploration of these states

was made possible by employing a projection operator method supported by the stochastic variational method.

Accurate calculations of the resonant positions and widths were performed using the complex coordinate rotation

method with explicitly correlated Gaussians as basis functions. Our analysis has revealed the intrinsic structural

characteristics of these highly excited states. The probability density distribution demonstrates that most resonant

states of positronium hydride tend to favor either a H− + e+ or Ps− + H+ configuration. However, two doubly

excited resonant states exhibit a unique characteristic involving both the H− + e+ and Ps− + H+ configurations.

By integrating the probability density distribution with a quantum defect formula, highly excited resonances

can be accurately assigned to either the H−(2s2) + e+ or Ps−(1s2) + H+ Rydberg series, thereby reducing

discrepancies compared to earlier classifications.

DOI: 10.1103/PhysRevA.108.052813

I. INTRODUCTION

Positronium hydride (PsH), a binary system consisting of

a hydrogen atom (H) and a positronium atom (Ps), can be

envisaged as a negatively charged hydrogen ion (H−) ac-

companied with a positron (e+). The reaction of H− with

H and H2 has been affirmed in interstellar clouds, with H−

recognized as a key influencer in the absorption of celes-

tial radiation [1–3]. Concurrently, the positronium ion (Ps−)

manifests as a finite-life bound state, with PsH perceived

as a Ps− binding a proton (H+). The annihilation of Ps−

culminates in the emission of γ rays at 511 keV, casting a sig-

nificant imprint on stellar spectra [4,5]. The inception of PsH

through positron-methane collisions was initially observed by

Schrader et al. [6]. The PsH system involves two bound states:

the ground state PsH (1s2 1Se) [7–9] and an unnatural parity

state PsH (2p2 3Pe) [10]. Additionally, numerous resonant

states exist below the dissociation threshold within the PsH

system. Recently, the spontaneous radiative dissociation of

PsH beneath the Ps(2s or 2p) + H(2s or 2p) thresholds has

been studied [11] by calculating the radiative transitions be-

tween resonant states and the second bound state, illuminating

the absorption of astral light. Here, we aim to identify highly

resonant states by particularly focusing on doubly excited

states in Ps-H scattering. These resonances may be associated
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with optical transitions that involve excited states of both H

and Ps.

Numerous investigations have been conducted regarding

the resonances in the Ps-H scattering system [8,11–25].

Drachman employed an optical potential formalism to de-

termine the energies associated with S-, P-, and D-wave

resonances, which arise from the binding of a positron to

H− [13]. Yan and Ho [8,16–18] refined the analysis by uti-

lizing the complex coordinate rotation (CCR) method along

with Hylleraas basis sets, which facilitated the accurate deter-

mination of the resonant positions and widths of S-, P-, D-,

F -, and G-wave resonances in PsH. Blackwood et al. [19]

employed the coupled pseudostate approximation to identify

high resonances. DiRienzi and Drachman [23] investigated

the high-lying resonances within the Ps-H scattering system

by employing the effective potential approach. Their study

yielded predictions regarding the resonant energies of the

Rydberg series converging to the Ps−(1s2) + H+ threshold.

Yan and Ho [24] later unveiled the resonant positions and

widths of S-wave states in the Ps− + H+ Rydberg series, using

the complex coordinate rotation method in Hylleraas basis

sets. Additionally, they conducted computations for higher

resonances, spanning from 1S to 8S, which are the Rydberg

series converging to the H−(1s2) + e− threshold [25].

To the best of our understanding, we have only been able to

identify the Rydberg series of triply excited autodissociating

resonant states in PsH, which converge towards the H−(2s2) +

e+ threshold. However, the identification of the simplest dou-

bly excited autodissociating states still remains unknown [14].
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FIG. 1. Energy levels of the Ps-H system, in atomic units.

Furthermore, the energy level of the H−(2s2) + e− threshold

is closely situated to the Ps−(1s2) + H+ threshold, as depicted

in Fig. 1. This suggests the possible existence of a dou-

bly excited state in the H−(2s2) + e+ Rydberg series, which

shares a resonant position adjacent to a resonant state in the

Ps− (1s2) + H+ Rydberg series. In this paper, we investigate

highly resonant states, particularly the doubly excited states,

in Ps-H using a combination of a projection operator method

and the stochastic variational method (SVM) [26–29]. The

resonant positions and widths are refined using the complex

coordinate rotation method in conjunction with explicitly cor-

related Gaussian (ECG) basis sets. These resonant states can

be classified as Rydberg series, which converge towards the

thresholds of H−(2s2) + e+ or Ps− (1s2) + H+.

The paper is organized as follows: Sec. II provides an

overview of the projection operator method based on SVM

that is employed for analyzing resonances in the PsH sys-

tem. In Sec. III A, we present calculations for the resonant

states (S-, P-, and D-wave resonances) situated below the

H−(1s2) + e+ threshold, and compare our findings with pre-

vious results. In Sec. III B, we investigate the highly excited

S-wave resonant states within the Rydberg series converg-

ing to either the H−(2s2) + e+ or Ps(1s2)− + H+ threshold.

Finally, we provide a summary in Sec. IV. Unless otherwise

specified, atomic units are used throughout.

II. THEORETICAL METHOD

The SVM-based projection operator method has been

proven to be highly effective in investigating resonant states

across a wide range of systems [30–32]. This method uti-

lizes the orthogonalizing pseudoprojector (OPP) operator as

a penalty function, which is added to the Hamiltonian. This

inclusion is intended to exclude certain orbitals from the

active space, thereby inducing autoionization of the system.

The OPP method approximates the computation of Q̂ĤQ̂,

where Q̂ = 1 − P̂ represents the projection operator, and P̂ =

|φ(r)〉〈φ(r)| with φ(r) being the orbital to be projected out.

The energies obtained through the OPP method converge to

those obtained by diagonalizing the Q̂ĤQ̂ Hamiltonian.

In this paper, the OPP method is employed to examine

the resonant states in the PsH system. To approximate the

Q̂ĤQ̂ Hamiltonian, the PsH Hamiltonian supplemented with

the OPP operator is utilized. The modified Schrödinger equa-

tion for the PsH system can be written as follows:

(Ĥ + λP̂)� = EOPP�. (1)

Assuming an infinite proton mass and considering the proton

as the reference point in our coordinate system, we can ex-

press the nonrelativistic Hamiltonian as

Ĥ = T̂ + V̂ , (2)

where the kinetic-energy operator is

T̂ = −
1

2

3
∑

i=1

∇2
ri
, (3)

and the potential-energy operator is

V̂ = −
1

r1

−
1

r2

+
1

r3

+
1

r12

−
1

r13

−
1

r23

, (4)

with indices 1 and 2 being for the two electrons and index

3 being for the positron. In this paper, the parameter λ in

Eq. (1) is 105 a.u., which is considerably greater than the

values used in previous calculations [27,33–36], ensuring that

the expected value of the OPP operator λ〈P̂〉 remains on the

order of 10−8 a.u.

In this paper, an ECG basis is used to expand the wave

function of the PsH system. This approach allows for an

accurate representation of the correlations between charged

particles [28,29,37,38]. The specific ECG basis functions used

here have the form

�n(r, s) = |ν|2K+L exp
(

− 1
2
rT A(n)r

)

YLM (ν)χ (s), (5)

where L is the total orbital angular momentum of the system,

rT = (r1, r2, r3), and ν = uT r with uT = (u1, u2, u3) a global

vector associated with L. Additionally, χ (s) represents the

total electronic spin, which is set to be the spin-singlet state

for all calculations in this paper. The independent parameters

A
(n)
i j , encapsulated in the n × n symmetric matrix A(n), are

optimized through energy minimization using the stochastic

variational method. To account for the increasing number of

nodes in excited states, the preexponential factor |ν|2K+L is

introduced, where K is an integer.

The modified Schrödinger equation Eq. (1) can be solved

to obtain the OPP energy EOPP. This energy converges towards

the actual resonance position ER but with a small devia-

tion [34,39]:

ER = EOPP + �Q, (6)

where the shift �Q is a small positive value that arises from

the original Q̂ĤQ̂ operator. To eliminate this shift and obtain

precise values for the resonance position ER and width 	, we

apply the CCR method [40,41] in conjunction with the ECG

basis.

The CCR method utilizes a transformation r → reiθ to

achieve both square integrability and expandability of the

resonant wave function in terms of a basis set. This transfor-

mation leads to the definition of the transformed Hamiltonian,
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TABLE I. Expectation values of various structural properties for the lowest resonant states of S, P, and D symmetries in Rydberg series

converging to the H−(1s2) + e+ threshold. The corresponding expectation values for the H−(1s2) system are also listed as a comparison. Values

are given in atomic units.

EOPP 〈r1〉 〈r3〉 〈r13〉 〈r2
1 〉 〈r2

3 〉 〈r2
13〉 〈δ(r1)〉 104〈δ(r13)〉

SI(1) −0.6114403 2.44651 9.05956 9.17613 9.2315 91.720 96.031 0.1718 7.51

PI(1) −0.5975741 2.56849 10.2113 10.2723 10.447 116.18 119.92 0.1677 6.30

DI(1) −0.5777915 2.79253 12.7893 12.7012 13.253 181.63 182.75 0.1642 4.17

H−(1s2) −0.5277510 2.71018 11.914 0.1644

denoted as Ĥθ , which incorporates Coulombic interactions:

Ĥθ = exp(−2iθ )T̂ + exp(−iθ )V̂ . (7)

To determine the resonance position ER and width 	, the

complex eigenvalue problem for Ĥθ is solved and the corre-

sponding eigenvalue can be expressed in the form

E c = ER −
i	

2
. (8)

By adjusting the rotation angle θ and minimizing the energy

change with varying θ , the resonant state can be identified.

To enhance accuracy, dilation parameters α = 0.99, 1, and

1.01 are introduced [32,42,43]. The dilation is defined as the

following transformation of all coordinates of the dynamical

system: r → rα. Different dilation parameters are employed

to establish a connection with the same resonant state.

III. RESULTS AND DISCUSSION

A. Resonant states in Rydberg series converging

to the H−(1s
2 ) + e

+ threshold

In this section, our objective is to identify the resonant

states that are part of the Rydberg series converging to the

threshold of H−(1s2) + e+, while exhibiting S, P, and D sym-

metries. To achieve this, we utilized the OPP method, which

involves excluding the Ps(1s) orbital. The OPP operator is

defined as the sum of two wave functions representing the

Ps(1s) orbital. Subsequently, we diagonalize the modified PsH

Hamiltonian in order to obtain the OPP basis, which is used

to represent the resonant state. The OPP operator P̂ is defined

as

P̂ = |φPs(r13)〉〈φPs(r13)| + |φPs(r23)〉〈φPs(r23)|. (9)

The Ps(1s) wave function φPs(ri j ) is expanded using a linear

combination of ten ECGs, with a resulting ground-state en-

ergy eigenvalue of −0.249 999 a.u.

In Table I, we present the expectation values of the lowest

resonant states of total angular momentum L = 0, 1, 2 found

within the Rydberg series converging to the H−(1s2) + e+

threshold. In the table, the notation LI(N ) represents the N th

resonant state of angular momentum L, and the superscript I

indicates that this state is determined by excluding the Ps(1s)

orbital. The OPP method employed in our calculations enables

flexible configuration of angular momentum L through the

utilization of the global vector |ν|2K+L. For the determination

of the resonant states, we used a basis set composed of 2000

ECGs.

We calculated the expectation values of the distances be-

tween the proton and the electron 〈r1〉, between the proton and

the positron 〈r3〉, and between the positron and the electron

〈r13〉 for the resonant states. These values were then com-

pared with the corresponding expectation values for H−(1s2),

which were obtained by employing a basis set of 300 ECGs

while maintaining the same level of precision. Our analysis

demonstrated that the 〈r1〉 values for the SI(1), PI(1), and

DI(1) states closely matched that of H−(1s2), particularly for

the D-wave resonant state. This suggests that these states can

be interpreted as a positron attaching to H−(1s2), with the

positron exerting less influence on the inner core of H−(1s2)

in the higher states.

The OPP basis set incorporates valuable information about

the dissociation channels by elevating the OPP energy to a

higher level. Consequently, it proves to be an exceptional tool

for performing intricate coordinate rotation calculations. By

employing the CCR method with the OPP basis, we have suc-

cessfully identified the resonant states present in the Rydberg

series, which converge to H−(1s2) + e+ for the S, P, and D

symmetry, respectively. These resonant states are presented in

Table II and compared with previous findings [19,25]. Our re-

sults closely align with these earlier studies, underscoring the

reliability of the OPP method based on SVM for computing

resonances in the PsH system.

TABLE II. Resonance position ER (first entry) and width 	/2

(second entry) for the S-, P-, and D-wave resonance lying in the

Rydberg series converging to the H−(1s2) + e+ threshold.

State Present Hylleraas 22Ps1H

−0.602808 −0.60278a −0.5978b

SI (1) 0.001764 0.001753 0.0013

−0.56810 −0.5682a −0.5676b

SI (2) 0.00081 0.00092 0.00061

−0.55262 −0.55248a −0.5520b

SI (3) 0.00072 0.0005 0.00059

−0.592501 −0.59245c −0.5883b

PI (1) 0.000793 0.00082 0.0053

−0.56516 −0.56398c −0.5623b

PI (2) 0.00117 0.00104 0.0031

−0.5558 −0.5498b

PI (3) 0.0049 0.0015

−0.57685 −0.57678c −0.5731b

DI (1) 0.00172 0.00178 0.0012

−0.55628 −0.55611c −0.5574b

DI (2) 0.00243 0.00134 0.00165

aRef. [25].
bRef. [19].
cRef. [22].
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FIG. 2. Probability density distributions of the distances between the proton and electron r1 (a) and between the positron and electron r13

(b) for the lowest S-wave resonant states in the H−(1s2) + e+ Rydberg series.

In the OPP method, locating the lowest resonant states

is a straightforward process. However, distinguishing higher

resonant states from the diagonalized pseudostates can be

challenging. The difficulty can be overcome through the ap-

plication of the complex coordinate rotation method, which

allows for efficient differentiation of these resonant states.

Moreover, utilizing the OPP basis can provide valuable

structural information about higher-order resonant states. By

examining the probability density distributions of r1 and r13

for the SI(1), SI(2), and SI(3) states, we can enhance our

understanding of the system’s configuration. These distri-

butions, also known as the correlation functions, illustrate

the density between two charged particles as a function of

distance [29].

The probability density distribution of ri j is defined by the

following equation:

C(ri j ) =

∫

d
ri j
r2

i j〈�|δ(bT x − ri j )|�〉, (10)

where the symbol 〈. . .〉 represents integration over the relative

coordinates and
∫

d
ri j
denotes integration over the orienta-

tion of ri j .

Figure 2 depicts the probability density distributions of

r1 and r13 for the three lowest resonant states and H−(1s2).

All states show a prominent peak at approximately 1.2 a.u.

in the probability density distribution of r1 [see Fig. 2(a)].

However, the probability density distributions of r13 reveal

the similarity only between the SI(3) state and Ps−(2s2) [refer

to Fig. 2(b)]. As a result, the probability density distribution

effectively demonstrates that the SI(N ) configuration resem-

bles a positron attaching to H−(1s2). On the other hand, the

SI(3) state presents a unique configuration similar to a positron

attaching to H−(1s2) and a proton attaching to Ps−(2s2).

These probability density distributions offer valuable insights

into the configuration of resonant states and can prove highly

valuable in the search for Rydberg series.

B. Resonant states in Rydberg series converging

to the H−(2s
2 ) + e

+ or Ps−(1s
2 ) + H+ threshold

In this subsection, we present another OPP calculation in-

volving the utilization of the penalty function φH(r) to exclude

the H(1s) orbital. This action aims to raise the OPP energies,

thereby encompassing higher resonant states that may be part

of the Rydberg series converging to the H−(2s2) + e+ or

Ps−(1s2) + H+ threshold. This OPP operator can be defined

as follows:

P̂ = |φH(r1)〉〈φH(r1)| + |φH(r2)〉〈φH(r2)|. (11)

In this case, |φH(r)〉 represents the wave function of the H(1s)

orbital, which is expressed as a linear combination of ten

ECGs, resulting in the ground-state energy of −0.499 999 a.u.

It is noted that the calculations presented here are more

intricate and time consuming when compared to the previ-

ous case of excluding the Ps(1s) orbital. The convergence

of expectation values for the resonant states with L = 0 is

demonstrated in Table III, using a basis set of 6000 ECGs.

In this table, the label SII(N ) represents the N th resonant

state with L = 0, while the superscript II indicates that this

state is determined by excluding the H(1s) orbital. In this

specific calculation, the OPP energy EOPP converges to at least

10−6 a.u., while λ〈P̂〉 also reaches convergence at 10−7 a.u.

These convergence criteria provide strong evidence for the

precision and reliability of the obtained results. It is worth

noting that the OPP calculation for L = 1 and 2 involves con-

siderably more complexity, which will require further studies.

The 〈r1〉 value for the SII(1) state is approximately 6.9 a.u.,

closely matching the 〈r1〉 value of H−(2s2) at 7.6 a.u. Con-

versely, the 〈r13〉 value for the SII(1) state is approximately

4.6 a.u., which is close to that of Ps−(1s2) at 5.4 a.u. This

differs from the SI(1) state, where 〈r13〉 is nearly twice that

of Ps−(1s2). These results suggest that the SII(1) state could

possess a unique configuration, possibly resembling both

H−(2s2) + e+ and Ps−(1s2) + H+.
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TABLE III. Convergence of expectation values for the lowest S-wave resonant state SII(1) in the Rydberg series converging to the

H−(2s2) + e+. Values are given in atomic units.

N EOPP 〈r1〉 〈r3〉 〈r13〉 〈r2
1 〉 〈r2

3 〉 〈r2
13〉 〈δ(r1)〉 〈δ(r13)〉

4000 −0.3916619 6.9328 7.8687 4.5855 56.247 69.117 30.044 0.01124 0.02220

4500 −0.3916631 6.9332 7.8702 4.5859 56.257 69.158 30.054 0.01130 0.02220

5000 −0.3916637 6.9334 7.8706 4.5862 56.262 69.170 30.059 0.01129 0.02224

5500 −0.3916641 6.9335 7.8709 4.5863 56.266 69.178 30.062 0.01129 0.02224

6000 −0.3916643 6.9336 7.8711 4.5864 56.268 69.183 30.065 0.01130 0.02224

To extract further structural information, we use the proba-

bility density distribution. Figure 3(a) displays the probability

density distributions of r1 for the SII(N ) and H−(2s2) states.

Notably, both the SII(1) and H−(2s2) states exhibit strong

similarities, each featuring two peaks at positions 1 and 6

a.u., reflecting a typical double-excited state configuration.

However, for the SII(2) to SII(3) states, the 6-a.u. peak un-

dergoes substantial distortion, suggesting their deviation from

this double-excited state configuration.

Figure 3(b) shows the probability density distributions of

r13 for the SII(N ) and Ps−(1s2) states. All SII(N ) states ex-

hibit similarity to Ps−(1s2), displaying a single peak at the

position 2.5 a.u. By considering the r1 distribution plots, we

can deduce that the SII(2) to SII(4) states possess the dis-

tinct Ps−(1s2) + H+ configuration, placing them within the

Ps−(1s2) + H+ Rydberg series. However, the classification of

the SII(1) state is less straightforward, as it exhibits features

indicative of both H−(2s2) + e+ and Ps−(1s2) + H+ struc-

tures, warranting further analysis.

The CCR method, when combined with the OPP basis,

offers a refined approach for determining S-wave resonant

states. The computed SII(N ) resonances are listed in Table IV

and can be classified into distinct Rydberg series based on

the quantum defect formula [24,25]. In a previous study [25],

this formula was used to classify eight states within the

H−(1s2) + e+ Rydberg series. In the present context, the same

classification scheme is employed to assign the SII(N ) states

to the appropriate Rydberg series. Notably, prior research [14]

reported resonances within the H−(2s2) + e+ Rydberg series

for states n = 2 to 5 but omitted the n = 1 state. By using

the quantum defect formula, it can be proven that this miss-

ing n = 1 resonant state corresponds to the SII(1) state. The

quantum defect formula mentioned above is

�E =
1

2(n − μ)2
, (12)

where the binding energy �E can be computed as

�E = ER − Ethreshold, where Ethreshold = −0.148 776 3 a.u. for

H−(2s2) [44]. By using previous results for n = 2–5 states

from Ref. [14] to fit the binding energies of the higher resonant

states to the quantum defect formula, we can determine the

quantum defect μ from the fitting process, yielding a value of

μ = −0.432 15. The fitted resonant energy for the n = 1 state

in the H−(2s2) + e+ Rydberg series is ER = −0.3926 a.u.,

which slightly differs from the actual calculated resonant

energy of the SII(1) state, which is ER = −0.391 103 a.u..

The actual calculated and fitted results are listed in Table V.

As a result, the SII(1) state should be classified as part of

the H−(2s2) + e+ Rydberg series, which can be identified

as the n = 1 doubly excited state that was omitted in that

series [14].

The quantum defect formula enables us to classify the

SII(2) to SII(4) states into the Ps−(1s2) + H+ Rydberg series.

However, a modification to the quantum defect formula is

FIG. 3. Probability density distributions of the distances between the proton and electron r1 (a) and between the positron and electron r13

(b) for the lowest S-wave resonant states in the H−(2s2) + e+ Rydberg series.
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TABLE IV. Resonance position ER and width 	/2 for the S-

wave resonances lying in the Rydberg series converging to either the

H−(2s2) + e+ or the Ps−(1s2) + H+ threshold. Values are given in

atomic units.

State Rydberg series ER 	/2

SII(1) H−(2s2) + e+ −0.391103 0.000606

SII(2) Ps−(1s2) + H+ −0.37448 0.00042

SII(3) Ps−(1s2) + H+ −0.32078 0.0015

SII(4) Ps−(1s2) + H+ −0.30514 0.00063

necessary, presented as follows:

�E =
P

2(n − μ)2
, (13)

where both the quantum defect μ and the constant P are

determined through a fitting process. The binding energies

�E = ER − Ethreshold, where Ethreshold = −0.262 005 07 a.u.,

applicable for Ps−(1s2) [45]. We conduct a fitting of the bind-

ing energies to this modified quantum defect formula, based

on previous results of n = 4 to 6 states derived from Ref. [24].

This fitting yields values of P = 2.400 and μ = −2.365. It is

important to highlight that the current fitting procedure differs

significantly from that explained in the previous work [24].

A comparison of these two fitting procedures is presented in

Fig. 4. The results of the present fitting demonstrate a signifi-

cantly reduced fitting error. The difference can be primarily

attributed to the fact that the n = 1 and 2 states (referred

to as 1S and 2S) in Ref. [24] cannot be classified within

the Ps−(1s2) + H+ Rydberg series. In Ref. [24], the 1S state

corresponds to the present SI (3) state, both of which exhibit

nearly identical resonant positions: Er = −0.552 62 a.u. for

the SII(3) state and Er = −0.5531 a.u. for the 1S state. Simi-

larly, the 2S state in Ref. [24] corresponds to the current SII(1)

state. These states also have similar resonant positions: Er =

−0.391 103 a.u. for the SII(1) state and ER = −0.391 09 a.u.

for the 2S state. The distinct configuration of the SI(3) and

SII(1) states accounts for this reclassification. The probabil-

ity density distributions of these two states reveal a unique

configuration that can be described as an e+ attached to H−

TABLE V. Resonances in PsH lying in the Rydberg series

converging to the H−(2s2) + e+ and Ps−(1s2) + H+ thresholds.

The fitted results are obtained using the quantum defect formulas

Eqs. (12) and (13) for the third and fifth column, respectively.

H−(2s2) + e+ Ps−(1s2) + H+

n ER Fitted ER Fitted

1 −0.391103a −0.3926 −0.37448a −0.3680

2 −0.2317b −0.2333 −0.32078a −0.3250

3 −0.1941b −0.1912 −0.30514a −0.3037

4 −0.1767b −0.1742 −0.2916c −0.2916

5 −0.1679b −0.1657 −0.2842c −0.2841

6 −0.2791c −0.2791

∞ −0.1488 −0.2620

aPresent.
bRef. [14].
cRef. [24].

FIG. 4. Comparison of the current quantum defect formula

Eq. (13) with the previous fitting. The binding energy �E is mea-

sured relative to the threshold of Ps−(1s2) and n is the principal

quantum number.

as well as an H+ attached to Ps−. The recommended Rydberg

series converging to the H−(2s2) + e+ and Ps−(1s2) + H+ are

classified in Table V, which includes both the calculated and

fitted results.

IV. CONCLUSION

We have conducted an extensive investigation of autodisso-

ciating resonant states in PsH, which exhibit a doubly excited

nature. To achieve this, we utilized a combination of the pro-

jection operator method and the SVM. The OPP method, in

conjunction with the CCR method, was employed to identify

resonant states situated below the H−(1s2) + e+ threshold,

as well as those below the H−(2s2) + e+ and Ps−(1s2) + H+

thresholds in particular. Moreover, the OPP basis played a piv-

otal role in unveiling the structural attributes of these resonant

states.

Through a comprehensive analysis that incorporated

probability density distribution and the quantum defect

formula, we successfully clarified and refined two Rydberg

series that converge to the H−(2s2) + e+ and Ps−(1s2) + H+

thresholds. Notably, we confirmed the existence of a unique

configuration within the SI(3) and SII(1) states, where an

e+ is attached to H− and an H+ is attached to Ps−. This

configuration highlights the distinctive nature of these two

states, particularly in the context of scattering phenomena

involving excited H and Ps.

The insights gained from this paper are expected to make

valuable contributions to the experimental investigation of

resonances in Ps-H scattering and optical transitions.
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