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The study of positive muon μ+-He scattering plays an important role in precision experiments involving

positive muons. In this paper, we employed the confined variational method to investigate S-wave μ+-He

scattering with scattering momenta below 0.1a−1
0 , where a0 denotes the Bohr radius. Our approach yielded

accurate S-wave phase shifts and scattering lengths. By utilizing the modified effective range formula, we

determined the S-wave scattering lengths to be −12.3a0 and −10.6a0 for μ+- 4He and μ+- 3He scattering,

respectively. Furthermore, we examined the distortion effects on helium induced by μ+.
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I. INTRODUCTION

The positive muon μ+, which is the antiparticle of the

muon, holds a special significance in testing the theory

of quantum electrodynamics (QED) and searching for new

physics beyond the standard model of elementary particle

physics (BSM) [1–7]. One of the most notable examples is

the Muon g − 2 experiment, which has provided stronger evi-

dence for BSM physics [1]. Recently, Delaunay et al. [8] and

Ohayon et al. [9] have proposed that muonium spectroscopy

could serve as an alternative approach for determining the

muon anomalous magnetic moment. To meet the requirements

of these precision experiments, μ+ needs to be trapped and

cooled to low temperatures as standard μ+ beams possess

relatively high energy and poor phase space quality [10]. For

instance, the muCool device has been developed at the Paul

Scherrer Institute (PSI), which uses cryogenic helium buffer

gas for precooling [11,12]. Hence, studying μ+-He scattering

is essential for enhancing the cooling process in these muon

precision experiments.

The process of slowing down μ+ in low-pressure He gas

has been studied by Fleming et al. [13] and Senba [14].

Fournier et al. [15] performed calculations of the binding en-

ergies of 4He μ+ using the Born-Oppenheimer (BO) potential

of HeH+. Cencek et al. [16], Stanke et al. [17,18], Tung et al.

[19], and Pachucki [20] further improved the BO potentials

for HeH+ and its isotopic combinations. Yang et al. [21] used

explicitly correlated Gaussians (ECGs) to calculate the high-

accuracy binding energies of all the bound states of 4He μ+

without applying the BO approximation. They confirmed that

the BO approximation is reasonable for 4He μ+, as it can be

regarded as a system of a positive muon bound to a slightly
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distorted helium atom. However, ab initio calculations still

need to be performed for μ+-He scattering.

In this paper, we calculate the scattering properties of

μ+- 4He and μ+- 3He using the confined variational method

(CVM) combined with ECGs. The CVM is an ab initio

method used for studying low-energy elastic scattering prob-

lems. It has been widely applied to investigate the scattering

of electron, positron, and positronium with hydrogen, helium,

and hydrogen molecular systems [22–27]. Very recently, a

strategy was developed that can effectively eliminate the non-

physical confinement effect of the original CVM [28,29]. In

addition, unlike the original CVM, this strategy uses a smaller

confining radius, which greatly reduces the computational

cost.

This paper is organized as follows: In Sec. II, we introduce

the CVM. We present the computational results in Sec. III,

where we provide the phase shifts in Sec. III A, the S-wave

scattering lengths in Sec. III B, and the distortions of the

helium atoms during the scattering processes in Sec. III C.

Finally, a summary is given in Sec. IV. Phase shifts are ex-

pressed in radians, and atomic units (a.u.) are used throughout

unless otherwise stated.

II. THEORY

The scattering of μ+-He, in the absence of the BO ap-

proximation, represents a fundamental four-body Coulomb

problem. The Hamiltonian of the system, in the laboratory

frame, is given by

H =

4
∑

i=1

p2
i

2mi

+

4
∑

i, j=1
j>i

qiq j

|ri − r j |
, (1)

where ri, mi, and qi denote the position vector, mass,

and charge of the ith particle, respectively, and pi is the
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momentum conjugate to ri. In particular, particle 1 refers

to the helium nucleus, particles 2 and 3 represent the two

electrons, and the last particle 4 corresponds to the positive

muon.

After removing the center-of-mass motion from H and

setting the helium nucleus as the origin of the coordinate

system, the internal Hamiltonian of the scattering system takes

the form

H =
1

2

3
∑

i, j=1

�i jπi · π j +

3
∑

i=1

q1qi+1

|xi|
+

3
∑

i, j=1
j>i

qi+1q j+1

|xi − x j |
, (2)

where xi = ri+1 − r1 are the internal relative coordinates and

πi = −i∂/∂xi are the momenta conjugate to xi. Also, �i j =
∑4

k=1 UikU jk/mk (i, j = 1, 2, 3), with the transformation ma-

trix U defined by

U =

»

¼

¼

½

−1 1 0 0

−1 0 1 0

−1 0 0 1
m1

mt

m2

mt

m3

mt

m4

mt

¾

¿

¿

À

, (3)

where mt =
∑4

i=1 mi is the total mass of the system.

The CVM approach involves the use of a confining po-

tential Vcp to transform the original many-body scattering

problem into a confined many-body bound-state problem. Ac-

cording to CVM, when two potentials V1 and V2 have the same

eigenenergy E under the same confining potential Vcp, they

will exhibit the same phase shift at energy E [22,26]. Suppose

V1 represents the actual potential between a μ+ particle and

helium, and V2 is an unknown, adjustable potential. The CVM

can help us construct this auxiliary potential V2 and then solve

the scattering equation of V2 to obtain the phase shift of the

original μ+-He scattering problem.

The specific procedures to determine V2 are as follows. Ini-

tially, a many-body calculation is carried out by incorporating

a confining potential Vcp into the internal Hamiltonian of the

original μ+-He scattering problem,

(H + Vcp)�(x, s) = E�(x, s), (4)

where x refers to (x1, x2, x3) and s refers to (s1, s2, s3, s4), rep-

resenting the spins of the four particles. The function � is the

eigenfunction of H + Vcp that corresponds to the eigenenergy

E . The eigenenergy E is the sum of the ground-state energy

of He and the scattering energy Es = k2/(2mr ), with k being

the scattering momentum and mr the reduced mass between

μ+ and He. In order to account for the intricate Coulomb

correlations between particles, the many-body wave function

� is expanded in terms of the explicitly correlated Gaussians

(ECGs) [30–32],

� =

N
∑

n=1

cnÇn, (5)

Çn = |v|2Kn+L exp

(

−
1

2
xTAnx

)

YLM (v)È (s), (6)

where N is the basis size and cn are the expansion coeffi-

cients. Furthermore, v represents the global vector [30], È (s)

represents the spin function, An is a parameter matrix, Kn is

an integer, and |v|2Kn is an important factor that describes

the wave function between μ+ and He. Lastly, L and M are,

respectively, the total orbital angular momentum and its z

component, while YLM denotes the spherical harmonics.

The potential used in this study [22,26] is given by

Vcp(ρ) =

{

0, ρ < R0,

G(ρ − R0)2, ρ � R0,
(7)

where ρ represents the distance between the center of mass

of helium and μ+, and R0 is the confining radius. The value

of R0 is chosen such that the complex short-range interaction

between μ+ and helium can be neglected outside the sphere

of radius R0. In this study, we set R0 equal to 18.

The confining potential in Eq. (4), or equivalently the

parameter G in Eq. (7), is adjusted to produce a specific

total eigenenergy E . Once the confining potential Vcp(ρ) is

determined for this specific E , we can proceed to solve the

one-dimensional bound-state problem:
(

−
1

2mr

d2

dρ2
+ V2(ρ) + Vcp(ρ)

)

	(ρ) = E ′	(ρ). (8)

In this step, we aim to determine an adjustable model potential

V2 that produces the same scattering energy Es under the

same confining potential Vcp. Here, 	(ρ) and E ′ represent,

respectively, the eigenfunction and the associated eigenvalue.

We choose V2(ρ) to be

V2(ρ) = λe−³ρ −
αd

2ρ4
[1 − e−(ρ/´ )6

], (9)

where λ, ³, and ´ are adjustable parameters. The term

−αd/(2ρ4) is the long-range polarization potential, with

αd = 1.383 200 being the ground-state polarizability of he-

lium [33]. In this work, we set ³ = 0.5 and ´ = 5, and adjust

λ to ensure that the bound-state problem Eq. (8) yields the

eigenvalue E ′ = Es = k2/(2mr ) for given k. Once we have

determined the parameter λ from Eq. (8), we can determine

the phase shift of μ+-He scattering by solving the one-

dimensional scattering equation for V2:
(

−
1

2mr

d2

dρ2
+ V2(ρ)

)

Ç(ρ) = EsÇ(ρ). (10)

It is worth noting that the calculated CVM phase shifts are

independent of the form of V2. This is due to the fact that the

phase shift is determined solely by the logarithmic derivative

of the wave function, and the derivatives at each step have

been shown to be equal [22,23,27].

III. RESULTS

A. Phase shifts

In this study, we use masses of 7294.299 541 42 for

the 4He nucleus, 5495.885 280 07 for the 3He nucleus,

and 206.768 283 0 for μ+ [34]. The ground-state ener-

gies of atomic 4He and 3He are calculated to be E4He =

−2.903 304 557 and E3He = −2.903 167 210, respectively, us-

ing 700 ECGs.

Table I presents the convergence test results of the many-

body eigenvalue E , the model potential parameter λ, and

the S-wave phase shift δ for μ+- 4He scattering at k = 0.1,
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TABLE I. Convergence test for the many-body eigenvalue E in

Eq. (4), the model potential parameter λ in Eq. (9), and the S-wave

phase shift δ (in radians) at k = 0.1 for μ+- 4He scattering, as the

size of the basis set N increases. In atomic units.

N E λ δ

3100 −2.903 279 660 0.009 262 029 0.046 82

3400 −2.903 279 672 0.009 257 924 0.047 60

3700 −2.903 279 679 0.009 255 532 0.048 06

4000 −2.903 279 684 0.009 253 824 0.048 38

as the basis set size N increases. It is noted that the exact

corresponding many-body eigenvalue in Eq. (4) is E = E4He +

(0.1)2/(2mr ) = −2.903 279 690. We observe that E , λ, and δ

converge smoothly to the eighth, third, and second significant

digit, respectively. Therefore, in this work, we use N = 4000

for all calculations of the S-wave phase shifts of μ+- 4He and

μ+- 3He scatterings.

As the mass of μ+ is significant compared to that of a

helium nucleus, it is necessary to use finite helium nuclear

mass when studying μ+-He scattering. In contrast, for e+-He

scattering, the infinite nuclear mass approximation can be

used. In a test run, for example, with only 2000 ECGs, the

S-wave phase shift for e+-He scattering at k = 0.1 has already

converged to the third significant digit.

The difference between the CVM calculations for μ+-He

scattering and e+-He scattering can be explained as follows.

For e+-He scattering with L = 0, there is no bound state

between the positron and helium, so the first bound state in

Eq. (4) is optimized in our CVM calculation. However, for

μ+-He scattering with L = 0, there are four bound states

between μ+ and helium, so the fifth bound state in Eq. (4)

is optimized. In other words, the CVM calculation of μ+-He

scattering is more difficult than that of e+-He scattering, and

as a result, more ECGs are required, and fewer significant

digits are expected to converge.

Due to the level of difficulties of calculating μ+-He scat-

tering using CVM, only S-wave scattering was studied in this

work. Table II displays the S-wave phase shifts for μ+- 4He

and μ+- 3He scattering at k = 0.06–0.1. All phase shifts in

this table are accurate to the second significant digit. Due

TABLE II. S-wave phase shifts (in radians) obtained by the

confined variational method for μ+- 4He and μ+- 3He scattering at

k = 0.06 − 0.1, and by the Born-Oppenheimer (BO) potential of

HeH+. In atomic units.

k δ δ(BO)

μ+- 4He 0.06 0.32 0.38

0.07 0.25 0.31

0.08 0.19 0.23

0.09 0.12 0.16

0.1 0.048 0.088

μ+- 3He 0.06 0.26 0.31

0.07 0.20 0.25

0.08 0.13 0.18

0.09 0.066 0.10

0.1 −0.0044 0.032

TABLE III. S-wave scattering lengths as for μ+- 4He, μ+- 3He,

and e+-He scattering using the confined variational method (CVM),

the Born-Oppenheimer (BO) potential of HeH+, and the stochastic

variational method (SVM). In atomic units.

System Method as

μ+- 4He CVM −12.3

BO −14.0

μ+- 3He CVM −10.6

BO −11.9

e+-He SVM −0.474

to the difference in mass between 4He and 3He, their phase

shifts are noticeably distinct. As k decreases, the percentage

differences in the phase shifts between μ+- 4He and μ+- 3He

scattering decrease. For each scattering, the phase shifts de-

crease as k increases, which is the opposite of those in e+-He

scattering. The S-wave phase shift of e+-He scattering at k =

0.1 is 0.03 [35,36], which is similar to that of μ+- 4He scatter-

ing. Moreover, the convergence of the phase shifts of μ+- 3He

scattering is slower than that of μ+- 4He scattering, indicating

that the former is more difficult to calculate using CVM. The

phase shift of μ+- 3He scattering changes sign from posi-

tive at k = 0.09 to negative at k = 0.1, while for μ+- 4He

scattering it does not, suggesting that the S-wave interaction

is more attractive for μ+- 4He scattering than for μ+- 3He

scattering at the same k. For comparison, Table II also lists

the S-wave phase shifts obtained by the Born-Oppenheimer

(BO) potential of HeH+ [20] using a five-point polynomial

interpolation. These BO phase shifts are more positive than

our CVM results, indicating that the BO potential is more

attractive for μ+-He scattering.

B. Scattering length

The S-wave scattering length is a crucial parameter in

experiments involving cold or ultracold atoms and molecules.

However, currently, experimental or theoretical results for the

S-wave scattering length of μ+-He scattering are lacking. In

this study, we obtain the S-wave scattering lengths by fitting

the calculated phase shifts to the well-known effective range

expansion given by

k cot δk = −
1

as

+
rek2

2
, (11)

where δk is the phase shift corresponding to the momentum

k, as is the S-wave scattering length, and re is the effective

range. In order to take into account the long-range polarization

potential −αd/(2ρ4), we use the modified effective range

expansion [37],

tan δk = −ask

(

1 +
4αd k2

3
ln k

)

−
παd k2

3
+ Dk3 + Fk4,

(12)

where D and F are two additional fitting parameters. It is

noted that higher-order terms ignored in these formulas do not

significantly impact low-k scattering processes.

The results of the scattering lengths obtained by the

CVM, as determined by Eq. (12), are presented in Table III.
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FIG. 1. The fitting result between the calculated S-wave phase

shifts (in radians) from the CVM and the effective range expansion

Eq. (11) for μ+- 4He scattering at k = 0.06–0.1. In atomic units.

A comparison with the results calculated by the Born-

Oppenheimer (BO) potential of HeH+ [20] is provided.

Additionally, the scattering length of e+-He scattering, ob-

tained by the stochastic variational method (SVM) under the

infinite nuclear mass approximation [38], is also included.

Note that the CVM and BO scattering lengths are extracted

from the phase shifts in Table II. The fitting results for the

CVM phase shifts of μ+- 4He scattering using Eqs. (11) and

(12) are shown in Figs. 1 and 2, respectively. From the two

figures, it is clear that the correct result cannot be obtained

using Eq. (11), while Eq. (12) fits well with the calculated

data. This indicates that the long-range polarization potential

has a significant influence on the μ+-He scattering length.

The CVM scattering lengths of μ+- 4He and μ+- 3He, de-

termined by Eq. (12), are −12.3 and −10.6, respectively. The

percentage differences between the CVM scattering lengths

and the BO results are 14% and 12% for μ+- 4He and

μ+- 3He, respectively.

The scattering length of e+-He is −0.474, which is less

negative compared to the scattering lengths of μ+-He. This

suggests that the interaction between μ+ and He is more

FIG. 2. The fitting result between the calculated S-wave phase

shifts (in radians) from the CVM and the effective range expansion

Eq. (12) for μ+- 4He scattering at k = 0.06–0.1. In atomic units.

FIG. 3. Probability density functions for the ground states of 4He

and 3He, as well as the μ+- 4He and μ+- 3He scatterings at k = 0.1.

In atomic units.

attractive at low energies. Although μ+ has the same charge

as e+, the larger mass of μ+ greatly reduces the value of the

kinetic energy, resulting in a more attractive interaction with

helium.

C. Distortion effects

When a helium atom and μ+ come into close proximity, the

helium atom undergoes distortion. In a previous study by Yang

et al. [21], it was confirmed that the bound state of 4He μ+ can

be considered as a system where a μ+ is bound to a slightly

distorted helium atom. However, the effects of distortion in

the μ+- 3He and μ+- 4He scatterings, and their comparison,

still need to be studied.

To provide a quantitative analysis of helium atom distor-

tion, we use the probability density function of the electron

fe(R),

fe(R) = R2

∫

d
R〈�|
δ(x1 − R) + δ(x2 − R)

2
|�〉, (13)

where the symbol 〈· · · 〉 indicates integration over the two

electron coordinates x1 and x2 relative to the helium nucleus,

while
∫

d
R · · · represents integration over the solid angle of

vector R.

Figure 3 shows the probability density function fe(R) for

μ+- 4He and μ+- 3He scatterings at k = 0.1. For compari-

son, fe(R) of the ground-state 3He and 4He atoms are also

included. The four fe(R) are quite similar, with a peak near

R = 0.566. However, the peaks of μ+- 3He and μ+- 4He scat-

terings are lower than those of 3He and 4He, indicating that

the distortion of helium in μ+- 3He and μ+- 4He scatterings is

slightly greater. This is because
∫

fe(R)dR = 1 holds for all

four fe(R). The peak of μ+- 3He is 0.0098% lower than that

of 3He, and the peak of μ+- 4He is 0.0104% lower than that

of 4He, indicating that the helium distortions in μ+- 3He and

μ+- 4He are very similar to each other.

Figure 4 displays the probability density function fe(R)

for the ground state of the 3He atom, the μ+- 3He scattering

at k = 0.1, and the first and fourth bound states of 3He μ+.

Notably, all four density functions exhibit a peak near R =

0.566. Comparing fe(R) of μ+- 3He and 3He, we can observe
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FIG. 4. Probability density functions for the ground state of 3He,

the μ+- 3He scattering at k = 0.1, the first bound state of 3He μ+,

and the fourth bound state of 3He μ+. In atomic units.

their similarity, but their peaks are evidently higher than those

of the 3He μ+ bound states. This suggests that the helium

distortion in the 3He μ+ bound states is greater. Additionally,

the peak of the fourth 3He μ+ bound state is higher than that

of the first bound state (which is not visible in the inset),

implying that a larger helium distortion corresponds to a lower

bound state. This is because as the positive muon approaches

the helium atom, the distortion in the helium atom increases.

IV. SUMMARY

The confined variational method, in combination with an

explicitly correlated Gaussian basis, was used to calculate

the S-wave phase shifts and scattering lengths for low-energy

elastic μ+- 4He and μ+- 3He scatterings without relying on

the BO approximation. The S-wave phase shifts obtained

through this method are converged to the second significant

digit. By accounting for the long-range polarization effect, the

S-wave scattering length was determined to be −12.3a0 and

−10.6a0 for μ+- 4He and μ+- 3He scattering, respectively.

Furthermore, the distortion of helium in μ+- 3He scattering

was examined and compared to that of 3He μ+ bound states.

The distortions in μ+- 3He scattering were found to be min-

imal, with the first 3He μ+ bound state exhibiting the largest

distortion due to the proximity between μ+ and 3He.
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