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A B S T R A C T   

Estimating street-level air temperature is a challenging task due to the highly heterogeneous 
urban surfaces, canyon-like street morphology, and the diverse physical processes in the built 
environment. Though pioneering studies have embarked on investigations via data-driven ap
proaches, many questions remain to be answered. In this study, we leveraged an innovative 
framework and redefined the street-level temperature estimation problem using Graph Neural 
Networks (GNN) with spatial embedding techniques. The results showed that GNN models are 
more capable and consistent of estimating street-level temperature among tested locations, 
benefiting from its unique strength in handling extensive data over unstructured graph topology. 
In addition, we conducted in-depth analysis of feature importance to enhance the model inter
pretability. Among the urban features analyzed in this study, the time-variant canopy density and 
meter-level land use data emerge as crucial factors. Our findings highlight GNN’s high potential 
in capturing the complex dynamics between urban elements and their impacts on microclimate, 
thus offering valuable insights for comprehensive urban data collection and urban climate 
modeling in general. Collectively, this study also contributes to urban planning and policy by 
providing avenues to enhance city resilience against climate change, thereby advancing the 
agenda for environmental stewardship and urban sustainability.   

1. Introduction 

The increased population in global cities has led to fast and extensive urban expansion and densification in the recent decades 
(United Nations, 2019). Urban dwellers are believed to be more susceptible to environmental hazards, especially extreme weather 
events with amplified frequency, intensity, and duration by global climate change (Myhre et al., 2019; Perkins-Kirkpatrick and Lewis, 
2020). These events affect urban areas disproportionally, depending on the geographical, morphological, and thermodynamic features 
(Oke, 2008; Oke et al., 2017). Recent years have witnessed numerous studies working to improve the accuracy and spatial resolution of 
urban environmental modeling, aiming to address the challenges in quantifying the drastic inter-urban and intra-urban variabilities 
led by the highly heterogeneous built environment (Scott et al., 2017; Kousis et al., 2021; Cao et al., 2022). 

To this date, it is still challenging to accurately predict street-level microclimate (e.g., air temperature) in the built environment. 
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There are two major barriers for the current process-based urban climate models to achieve ideal performance: (1) the lack of accurate 
data from the real world for precise parameterization; and (2) the lack of physical representations on certain processes. Accordingly, 
the on-going effort in urban climate research community diverts into two mainstreams. One direction focused on a more representative 
and realistic description of urban fabric, exemplified by the local climate zone (LCZ) classification scheme (Stewart and Oke, 2012; 
Demuzere et al., 2021; Kim et al., 2021), WUDAPT (Ching et al., 2018), and other urban canopy parameter databases (Hammerberg 
et al., 2018; Pilant et al., 2020; Chen et al., 2021) with exceptional spatial resolutions ranging from 100 m to 1 m. The other attempts to 
improve model performance by including detailed parameterizations, such as the inclusion of building energy exchange (Kondo et al., 
2005; Jin et al., 2021), tree shading (Krayenhoff et al., 2020; Wang et al., 2021a), ecohydrological processes (Stavropulos-Laffaille 
et al., 2018; Meili et al., 2020), and physiological functions (Li and Wang, 2020) in urban canopy models. These models can resolve up 
to a few hundred meters, but are more commonly seen at 1 km resolution. The integration of these two streams, as represented by 
Meyer et al. (2020) and Ribeiro et al. (2021), has demonstrated enhanced performance over the less sophisticated process-based 
models, offering valuable insights on the in-canyon microclimate dynamics. Nevertheless, the improvements sometimes can be 
disproportional to the increased burden on computational cost, leading to a “resolution-coverage dilemma”. Practically, it is nearly 
impossible for process-based urban climate models to achieve city-wide simulations with meter-level resolution in a near-real-time 
manner. 

To address this challenge and answer the urgent need to mitigate urban environmental stressors, some pioneering studies have 
investigated the data-driven approach by leveraging the state-of-the-art machine learning (ML) technology and the contemporary 
advancements in urban climate informatics (Middel et al., 2022; Li and Sharma, 2024b). Recent research, aided by the high-precision 
remote sensing (Yu and Fang, 2023), distributed sensor network (Catlett et al., 2017; Chen et al., 2019), and mobile measurement 
(Wang et al., 2023a), has yielded promising results in estimating land surface and air temperatures (Venter et al., 2020; Sharma et al., 
2023), air quality (Gitahi and Hahn, 2020; Guo et al., 2022; Wang et al., 2023a), and flooding conditions (Silverman et al., 2022; Tien 
et al., 2023) with exceptional spatial granularity, down to 10 m. These studies provide insights into the actual environmental con
ditions experienced by urban residents, thus holding profound implications for research on walkability, heat-related mortality, hazard 
exposure, and environmental/climate justice. Moreover, they can guide meaningful real-world mitigation and adaptation efforts while 
enhancing our understanding of general hydroclimate dynamics in complex urban environments. One major gap, nevertheless, is that 
observation-based approaches usually lack forecasting capabilities, as they require data as a priori condition for the subsequent es
timations. The availability of remote sensing imagery can be constraint by cloud cover. Weather conditions also create operational 
barriers for mobile measurements. 

More recently, Li and Sharma (2024b) introduced a novel hybrid ML framework that integrates a meso-scale weather forecast 
model, detailed urban geographical datasets, and a set of street-level sensors to estimate in-canyon air temperature. This innovative 
endeavor not only grants predictive capabilities, but also provides point-scale temperature estimations that surpass conventional 
notions of spatial resolution, enabling the users to analyze thermal environment at specific locations using either historical hindcast 
data, near-real-time weather forecasts, or future climate projections. The inclusion of regional scale weather conditions in this hybrid 
approach also empowers the ML model with knowledge of synoptic weather dynamics, therefore producing more trustworthy esti
mations. Nevertheless, pivotal inquiries persist concerning the sensitivity and interpretability of such data-driven models. Specifically, 
there is a pressing need to investigate the significance of the urban features to street-level air temperature. Further studies on model 
sensitivity are also anticipated to test the robustness of the framework and enhance our comprehension of the hybrid approach. 

In this study, our goal is to further advance the method presented in Li and Sharma (2024b) by introducing a more sophisticated ML 
algorithm, Graph Neural Networks (GNN), to the hybrid modeling framework. GNN is a recent variant of deep learning algorithms and 
has a specialty in the modeling of unstructured data defined on graphs or networks (Scarselli et al., 2009). Its applications to climate 
science have covered a wide range of topics, including the predictions of global weather (Keisler, 2022; Lam et al., 2023), regional 
heatwaves (Li et al., 2023b), air quality (Wang et al., 2020; Ejurothu et al., 2023; Ma et al., 2023), frost (Lira et al., 2022), and 
precipitation (Chen et al., 2024), which demonstrates a high potential to tackle the complex urban environment with extensive 
geospatial datasets. Another merit of GNN specific to the street-level downscaling problem is its architectural advantage. Since street- 
level sensors can only provide ground truth at distributed locations, this characteristic makes this street-level downscaling challenge 
differs fundamentally from the downscaling of climate simulations of two spatial continuous layers with different resolutions. The 
latter question has been widely addressed using Generative Adversarial Networks (GANs), Convolutional Neural Networks (CNNs), 
and other super-resolution algorithms, with examples highlighted in research by Wang et al. (2021b, 2021c); Singh et al. (2023), 
respectively. These methods, primarily optimized for processing images characterized by inherent smoothness and continuity, thus do 
not directly apply to the discrete nature of the downscaling task discussed herein. Other commonly used algorithms, like Random 
Forest (RF), Gaussian Process Regression (GPR), XGBoost, and Support Vector Machine (SVM), only process temporal dynamics 
independently at discrete locations (Li and Sharma, 2024b; Wang et al., 2023d). In contrast, GNN can adeptly handles both discrete 
and continuous datasets by organizing data into a graph structure. Its structural advantage can also facilitates the information ex
change between nodes through their connecting edges. Therefore, GNN emerges as a tailored solution to address the distinct challenges 
highlighted in this research. 

In addition to model development, we adopt GNNExplainer (Ying et al., 2019), a post-hoc algorithm, to examine the reliance of the 
predicting mechanisms on certain model inputs, aiming to enhance the interpretability of the trained GNN models and improve the 
general understanding of urban microclimate dynamics from an ML persepctive. Collectively, our investigations will contribute from 
four aspects: (1) to further improve the prediction accuracy of street-level air temperature under urban settings by harnessing the state- 
of-art urban climate modeling methods and existing urban data inventory; (2) to reconstruct this hyper-local downscaling problem into 
GNN architecture and validate the feasibility of GNN in the hybrid modeling framework presented in (Li and Sharma, 2024b) (3) to 
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quantify the importance of urban climate informatics via the post-hoc interpretation, thereby precisely guiding future observation and 
data curation endeavors; and (4) to demonstrate how advanced ML algorithms can potentially overcome the limitations inherited from 
conventional modeling methods. The findings will shed light on the evolution of urban climate informatics and have the potential to 
revolutionize urban land surface modeling, thus paving the way for more accurate and resilient urban planning and management 
strategies. 

The following manuscript is organized into 5 sections, with Section 2 providing detailed descriptions of the urban datasets used in 
this study, followed by Section 3, digesting how these datasets are integrated for the street-level temperature downscaling problem. 
Section 4 elucidates the modeling methods of GNN and GNNExplainer, including model architecture, configuration, and evaluating 
metrics. Modeling results and discussions can be found in Section 5, followed by concluding remarks in Section 6. 

2. Data preparation 

We identify three data components that are essential for addressing the urban downscaling challenge and for the efficacious 
deployment of the ML model (Li and Sharma, 2024b):  

1. Temporal dynamics layer: A low-resolution dataset to encapsulate the temporal dynamics of the system, providing the synoptic 
view of the meteorological conditions over time.  

2. High-resolution ground truth data: This dataset serves as the target for ML model training, comprising precise temperature 
recordings from an extensive observation network that anchors both the ground truth and the learning objective. 

Table 1 
List of all features that are used as model inputs.  

Notation Variable Type Source 

Weather hindcast (WH) 
WH01 2-m air temperature Continuous WRF 
WH02 2-m air humidity Continuous WRF 
WH03 Soil temperature Continuous WRF 
WH04 Surface temperature Continuous WRF 
WH05 Solar irradiance Continuous WRF 
WH06 Wind speed Continuous WRF  

Auxilary (AX) 
AX01 Hour of the day (UTC) Continuous  
AX02 Month of the observation Continuous  
AX03 Year of observation Continuous   

Patch-embedded urban features (GE) 
GE01 Height - Tree Continuous HiTAB - Chicago 
GE02 Height - Building Continuous HiTAB - Chicago 
GE03 Patch - Tree Binary EPA - MULC 
GE04 Patch - Vegatation Binary EPA - MULC 
GE05 Patch - Impervious Binary EPA - MULC 
GE06 Classification - NLCD Category NLCD 
GE07 Classification - CMAP Category CMAP  

Averaged urban features (GA) 
GA01 Mean height - Tree Continuous HiTAB - Chicago 
GA02 Max height - Tree Continuous HiTAB - Chicago 
GA03 Height std. - Tree Continuous HiTAB - Chicago 
GA04 Mean height - Tree in south Continuous HiTAB - Chicago 
GA05 Timeseries - Vegetation coverage Continuous CGLS 
GA06 Timeseries - LAI Continuous CGLS 
GA07 Timeseries - NDVI Continuous CGLS 
GA08 Mean height - Building Continuous HiTAB - Chicago 
GA09 Max height - Building Continuous HiTAB - Chicago 
GA10 Height std. - Building Continuous HiTAB - Chicago 
GA11 Mean height - Building in south Continuous HiTAB - Chicago 
GA12 Fraction - High dev. Intensity Continuous NLCD 
GA13 Fraction - Medium dev. Intensity Continuous NLCD 
GA14 Fraction - Low dev. Intensity Continuous NLCD 
GA15 Fraction - Open development Continuous NLCD 
GA16 Fraction - Impervious surface Continuous EPA - MULC 
GA17 Fraction - Low vegetation Continuous EPA - MULC 
GA18 Fraction - Water Continuous EPA - MULC 
GA19 Fraction - Tree canopy Continuous EPA - MULC 
GA20 Distance to lake Michigan Continuous NLCD  
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3. Geographical feature set: A collection of urban attributes crucial for enabling the ML model to understand the spatiotemporal 
interplay between low- and high-resolution datasets, thereby capturing the nuanced microclimatic variations within urban 
landscapes. 

For the first component, we employ the weather hindcasts, offering a comprehensive perspective of meteorological conditions and 
approximate surface weather across Chicago. The second component comprises precise temperature measurements from a compre
hensive observation network, acting as both the ground truth and the learning objective. For the third component, we identified and 
extracted various urban features that have a significant impact on the microscale climate within urban settings. Further details on each 
component are elaborated upon in subsequent sections. For clarity, a comprehensive table summarizing all variables and features 
utilized in this study is provided in Table 1. 

2.1. Weather hindcasts 

In this study, we use the Weather Research and Forecast (WRF) model version 4.0 (Chen et al., 2011; Skamarock et al., 2021) to 
reconstruct the near-surface meteorological conditions at 1 km spatial resolution and hourly intervals, serving as the low-resolution 
layer of this downscaling problem. WRF is a fully compressible, Euler nonhydrostatic Continuous weather prediction and atmo
spheric simulation system designed for both atmospheric research and operational forecasting applications (Skamarock et al., 2021) 
that has been widely adopted in numerous regional and global atmospheric and meteorological studies. Specific to this study, we set up 
three two-way nested domains with the outermost boundary covering the east-north central region of the Midwest US and the 
innermost domain covering the City of Chicago and its surrounding metropolis. The spatial resolutions of the three domains are 9 km, 
3 km, and 1 km, respectively. The lateral boundary conditions are from North American Regional Reanalysis (NARR) from the National 
Center for Environmental Prediction (NCEP, https://rda.ucar.edu/datasets/ds608.0/) with a 32-km horizontal spatial resolution and a 
3-h temporal resolution. We adopt the single-layer urban canopy model for impervious urban surfaces (Chen et al., 2011) and Noah- 
land surface model (Chen and Dudhia, 2001) for natural land and the previous portion of the urban grids. We also use WRF Single- 
Moment 6-class microphysics scheme, which is suitable for high-resolution simulations (Hong, 2006). Longwave and shortwave ra
diation is parameterized using the Rapid Radiative Transfer Model (Iacono et al., 2008). Sub-grid scale cumulus convective param
eterization is turned on only for the two outermost domains (9 km and 3 km) corresponding to the Kain-Fritsch scheme (Kain, 2004). 
The planetary boundary layer is simulated by Yonsei University scheme (Hong et al., 2006), while the surface layer is parameterized by 
Monin-Obukhov similarity scheme. The configuration and physical schemes were well tested in multiple previous studies over Chicago 
(Sharma et al., 2017; Li et al., 2023a). 

The hindcast covers two summers in 2018 and 2019 (May 1st to Aug 31st, 123 days). We select six variables from WRF, namely air 
temperature and humidity 2 m above the ground, land surface temperature, soil temperature, downwelling shortwave radiation, and 
wind speed 10 m above the ground, as the input of the subsequent ML model (WH variables in Table 1). These variables were validated 
against the observations from ground weather stations from National Center of Environmental Information (NCEI) to ensure WRF 
captured the synoptic weather dynamics. It is worth noting that despite we did not calibrate the parameters or physical schemes in 
WRF model, the model RMSEs are 2.5 ◦C, 12.7%, and 2.3 m/s over the hourly air temperature, hourly relative humidity, and hourly 
wind speed, respectively, which are within the acceptable range among the existing urban climate modeling studies. 

2.2. Temperature observation network 

The Array of Things (AoT) project started in 2018 and was designed to monitor the urban environment of Chicago via a dense 
observational network (Catlett et al., 2017). The measurement sensors contain an array of environmental sensors that are mounted on 
existing urban infrastructures (such as traffic light poles, building walls, bus stations, etc.) at over 100 locations in Chicago city. The 
sensors measure the meteorological variables, air quality, noise level, and traffic at sub-minute intervals. These measurements are 
wirelessly transmitted to a data center in a real-time manner and are compiled into a complete dataset for public access. Most of the 
sensors are located 2 to 4 m above the ground thus representing street-level conditions reasonably well. 

During the designed operation period (Jan 2018 to Sept 2021), the AoT network effectively collected air temperature readings from 
106 sensors during 2018 and 2019. We carefully calibrated the temperature recording from AoT using the nearby research-grade 
weather stations (Li and Sharma, 2024b) to ensure the data quality of these low-cost sensors. But due to their low-cost nature, cali
brated temperature readings from AoT sensors may still associated with uncertainties, bias, and errors. Nevertheless, we treat the AoT 
observations as the best proxy for the “ground truth” of the urban environment given the current data scarcity in the urban envi
ronment. The screened dataset contains continuous timeseries measurement of air temperature over 53 locations, and 15 of them have 
both measurements over summers of 2018 and 2019. This leads to an equivalent of 200,736 measurement hours as the total data points 
used in GNN development. The complete set of AoT data can be downloaded with additional information at http://arrayofthings. 
github.io/. 

2.3. Detailed urban features 

The detailed urban morphological and geographical features are derived from a suite of high-resolution urban-orientated datasets 
over Chicago. These include two sets of land use classifications, impervious surface fractions, vegetated surface fractions, tree canopy 
coverage, building height, and tree height. We derive these geospatial information from independent data sources. 
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The 2018 parcel-level land use inventory (LUI) for the City of Chicago can be found at the Chicago Metropolitan Agency for 
Planning (CMAP) in vector format. The LUI classifies the land use into 10 major and 56 minor categories. We convert the vectorized 
shapefile into a raster layer with 1-m resolution to align the spatial resolution of the other datasets. In addition, we also adopt the land 
cover types from the National Land Cover Database (NLCD) with 30-m resolution. Compared to NLCD, the parcel-level LUI has a more 
detailed classification based on the primary use of the urban land, but NLCD provides the development intensity as additional in
formation on the urban features. 

The tree canopy coverage, impervious and vegetated fractions are derived from The Meter-scale Urban Land Cover (MULC) from 
the US Environmental Protection Agency (EPA). This urban-oriented dataset has a good representation of the urban landscapes with 
exceptional resolution and accuracy (Pilant et al., 2020). It classifies urban land into 10 categories, including impervious surfaces, 
trees, shrubs, grass, water, crops, etc. These classifications are converted to binary maps indicating the spatial distribution of different 
land cover. It is noteworthy that impervious surfaces in MULC consist of roads and buildings. The distinction between them needs to 
rely on the additional height information. We adopt HeIght map of Tree And Buildings in Chicago (HiTAB-Chicago) for an accurate 3- 
dimensional description of the urban morphology. HiTAB-Chicago is a LiDAR-based digital elevation models with a 1-m resolution 
containing tree and building heights as separate layers (Li and Sharma, 2024a). Unlike the categorical or binary classifications, the 
height information is in continuous values, thus enriching the data types in this regression task. 

To align the data format and resolution of these seven geospatial maps (CMAP, NLCD, three from MULC, two from HiTAB), we 
convert them into raster layers with 1-m resolution. Subsequently, the landscape patch is extracted as a 400 m by 400 m grid centered 
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by AoT sensors (Fig. 1). These patches will be aggregated and embedded as the inputs of GNN model (see Section 3.2). 
In addition to the variables used as spatial embedding, we also include the statistical moments (i.e., averages and standard de

viations) as model input. These include the fractions of impervious, vegetation, water, tree canopy, and different development in
tensities within the 400 m by 400 m grid, as well as the mean, maximum, and standard deviation of the tree and building heights. We 
also include the mean height of trees and buildings south of the observation sensors to better reflect the shading effect for cities in the 
Northern Hemisphere. Due to its special geographic location, the urban environment in Chicago is under the influence of the lake 
breeze effect (Wang et al., 2023c). Therefore, the distance to Lake Michigan is added as an attribute for each AoT sensor. 

It is noteworthy that the urban features mentioned above do not change over time. But plant leaf density will change gradually due 
to phenology during their growing period in the summer months. To inform the model with this variation, we extract the timeseries of 
canopy coverage, leaf area index (LAI), and normalized difference vegetation index (NDVI) from 10-day 300-m Copernicus Global 
Land Service (CGLS) products. Nevertheless, their spatial resolutions are relatively low compared to the other datasets. We use these 
indices as independent information on the temporal scale. 

3. Problem statement 

The urban downscaling problem aims to refine coarse-grained meteorological data into high-resolution, street-level temperature 
predictions across urban landscapes. The core objective is to accurately predict an array of street-level temperatures, denoted as Ta, at 
different sensor locations within an urban area, e.g. the AoT network. This process leverages a combination of geospatial character
istics and sensor data measurements.Here, we re-construct the AoT network as a graph and carefully craft geospatial attributes as 
feature vectors (hereinafter referred to as geofeatures) over each sensor. The subsequent section discusses the details of graph rep
resentation of the AoT network and is succeeded by a discussion on feature selection, which describes how a comprehensive dataset is 
compiled into informative inputs for the modeling process. 

3.1. Graph representation 

A graph or network represents data through a set of nodes, a set of edges that defines the pairwise relations of the corresponding 
nodes. We conceptualize the AoT network as a graph G = (V , ℰ, W ), which contains the N measurement sensors as the nodes V , the 
edges ℰ ⊆ V × V as the connections between each pair of nodes, and the edge weights W quantify the correlation between the states 
of two connected sensors. Every measurement sensor that is connected to a node of interest (NoI) by an edge is known as a neighbor of 
the NoI. The graph for the AoT network is symmetric, meaning that if (i, j) ∈ ℰ then (j, i) ∈ ℰ. The strength of connection between two 
connected nodes i and j, or edge weight wij, is determined by a combination of the physical distance between them (dij, Fig. 2a) and land 
use similarity (sij, Fig. 2b), as expressed by 

wij =∣ sijexp
(

− dij
)

∣ (1)  

where sij = is calculated as the correlation between the vectors of the land use fractions over the paired nodes, expressed as sij =

Cor
(
Fi,LUI, Fj,LUI

)
. This formulation ensures that sensors which are both highly similar in terms of land use patterns and proximate in 

physical distance exhibit a stronger linkage within the graph. Edges bearing weights below a threshold α are disregarded to maintain 
graph sparsity, enhances computational efficiency, model scalability, and focuses on the most significant relationships among the 
sensors. We further define the adjacency matrix A, which encapsulates the graph’s connectivity, as follows: 

Aij =

{
wij if (i, j) ∈ ℰandwij ≥ α
0 otherwise (2) 

The graph formulation process is visualized in Fig. 2, and the resulting graph includes a total of 53 nodes and 3904 pairs of edges, 
with α = 0.1. 

Fig. 2. Matrices of normalized (a) node distance, dij; (b) land use similarity, sij; and (c) the resulted edge weight, wij, derived from the AoT 
observation network after quality control. 
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3.2. Feature selection 

From all the data collected in Section 2, we meticulously identify and integrate features integral to the graph formulation and the 
downscaling problem at hand, and form the augmented feature vector X , serving as the input to our model. Specifically, for the ith NoI, 
the feature vector X i is composed of four groups of components, 

X i =
[
xWH

i , xAX
i , xGE

i , xGA
i

]
(3) 

Here, xWH
i is the weather hindcast data (Section 2.1). Spatially, this component integrates the six surface meteorological variables, 

each from a 3 × 3 1 km-grid centered at the NoI, thereby providing a general weather pattern over the NoI as well as its immediate 
vicinity. Temporally, it incorporates a 5-h window (i. e., current, ±2 time steps) across the 3 × 3 grid to inform the model with the 
temporal evolution of meteorological conditions. Fig. 3a visualizes the assembly of WH variables, which are concatenated into a vector 
of xWH

i ∈ ℝ6×3×3×5 (6 variables in 3 × 3 grid with 5 time steps). Subsequently, the auxiliary group xAX
i ∈ ℝ3 contains temporal metadata 

that is essential for the model prediction. Next, the xGE
i component contains spatial embeddings consolidated from the seven geospatial 

maps (Fig. 1), each with an original resolution of 400 × 400 pixels. To facilitate a balance between preserving spatial details and 
ensuring the feature vector’s manageability for the model, we apply a spatial averaging technique known as the average pooling. This 
is achieved by partitioning each map into smaller, non-overlapping subregions and calculating the average value within each sub
region to represent its features. Consequently, this reduction technique transforms the original high-resolution data into a condensed 
format of 12 × 12 pixels for each of the seven maps (as shown in Fig. 3b), resulting in a composite feature vector of dimensions 
xGE

i ∈ ℝ12×12×7. This approach allows us to maintain essential spatial information while ensuring the feature length remains concise, 
facilitating efficient processing by the model. Finally, xGA

i ∈ ℝ20 include the statistical moments of the urban features without spatial or 
temporal embedding. For each NoI, the augmented vector X i incorporates a total of 1302 features, with majority of information 
provided from embedding groups (xWH

i and xGE
i ). This comprehensive assembly ensures a rich amount of information for the ML model 

that facilitates an in-depth exploration of the urban climate dynamics. 

4. Graph neural network 

With the defined feature vector X (k) and the collected street-level air temperature (Ta) on all sensor at time step k, the downscaling 
question can be characterized as the following under GNN architecture: 

T(k)
a = F

(
X

(k) , G ; Θ
)
, (4)  

where the GNN model F, parametrized by Θ, maps the extended state vector X (k) (Eq.(3)) at the current time step k to the street 
temperature T(k)

a , given the graph structure G of the AoT network. The GNN model used in this study is built upon the message passing 
(MP) mechanism, and utilizes an encoder-processor-decoder architecture. The key components of the proposed architecture are 
detailed as follows. 

4.1. Message passing with GraphSAGE 

The message passing (MP) mechanism serves as a foundational element across numerous Graph Neural Network (GNN) archi
tectures, characterized by its execution of several consecutive MP steps. The GraphSAGE operator, introduced by Hamilton et al. 
exemplifies a spatial-based GNN designed to aggregate information from neighboring nodes (Hamilton et al., 2018). This operator is 
notable for its inductive framework that utilizes node attribute information to generate representations for previously unseen data 
efficiently. 

Specifically, consider the graph representation denoted in Sec. 3.1 where each node v ∈ V has a node feature vector hv ∈ ℝD and a 
set of neighbor nodes u ∈ N (v). At the jth MP step, the new feature of node v is computed using its previous feature and information 
from its neighbors as, 

mj
N (v)

= AGGREGATE
({

hj
u | u ∈ N (v)} , W

)
, (5a)  

hj+1
v = UPDATE

(
hj

v, mj
N (v)

, W

)
, (5b)  

where AGGREGATE denotes the aggregation scheme, e.g., mean aggregation, UPDATE are nonlinear mappings, e.g., neural networks, 
mN (v) denotes the information aggregated from the neighbors of node v, and W the set of trainable network parameters. One MP step 
corresponds to the information exchange between 1-hop neighbors, i.e., the nodes that directly connected. It is possible to stack 
multiple aggregators over k MP steps, and the feature vector of a node is influenced not only by its 1-hop neighbors, but also by the 
more distant k-hop neighbors. 
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4.2. Encoder-processor-decoder architecture 

The GNN model uses an encoder-processor-decoder architecture that is shown in Fig. 4 and detailed as following.  

1. Encoder: First, the encoder is applied to each individual node. It maps state vectors at a node xi, which consists of both continuous 
and discrete variables, to a latent vector h0

i ∈ ℝD. The latent vector is a set of high-dimensional nonlinear features that provide a 
continuous representation of the states on each bus, which is amenable for NN computations. For the ith node at time step k, the 
encoder fE is 

h0
i = fE

(
x(k)

i , x(k−1)

i , ⋯, x(k−M+1)

i ; Θ0
)

, (6)  

where fE is implemented as a standard fully-connected NN (FCNN) of NM layers with a set of trainable parameters Θ0. After the 

encoding, the latent vectors of all the nodes are denoted H0 =
{

h0
i

}N

i=1
∈ ℝN×D.  

2. Processor: Subsequently, a stack of N = NC graph MP layers serve as processors that successively aggregate the latent features from 
each node and its neighbors and update the latent vectors at each node. Formally, the jth processor step is written as 

Hj+1 = fj
P
(
Hj; Θj), (7)  

where fj
P is a GraphSAGE layer, with parameter Θj. In this case, NC GraphSAGE layers are deployed to generate a series of the latent 

vectors H1, ⋯, HNC using (5a). The last output HN is sent to the subsequent decoding step.  

3. Decoder: Finally, the decoder maps the latent vector of each node to the desired output, i.e. the street level temperature, 

T̃
(k)

a = fD
(
HN; ΘN+1)

, (8)  

where fD is a FCNN of NM layers with trainable parameters ΘN+1. 

Fig. 4. A structural diagram of the GNN model with encoder-processor-decoder architecture used in this study. This figure is redrew from Fig. S3 in 
Li et al. (2023b)). 
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4.3. Model implementation 

Following the data preparation presented in Section 2 and Section 3.2, we compile a dataset comprising 2944 hourly-recorded 
snapshots. From this dataset, a random selection of 70% is allocated for model training purposes, while the remaining is desig
nated for validation and testing phases. 

The GNN model is implemented using PyTorch Geometric (PyG) (Fey and Lenssen, 2019), an open-source machine learning 
framework with Graph Network architectures built upon PyTorch (Paszke et al., 2019). The size of latent vector (hidden dimension of 
the network) is chosen to be 128. The encoder and decoder modules each has two FCNN layers, and the processor is implemented with 
three GraphSAGE layers. Each layer of FCNN and GraphSAGE is followed with Parametric Rectified linear unit (PReLU) as the acti
vation function (He et al., 2015). During training, the features and outputs of the model are normalized to a range of [0, 1]. To ensure 
the robustness of training, we use the Huber loss function with δ = 1.0, which is minimized during training using the standard Adam 
optimizer (Kingma and Ba, 2017) with an exponential decay of learning rate. 

4.4. Model interpretation 

Model interpretability refers to the ability to understand and articulate the internal mechanisms and decisions of a machine 
learning model (Murdoch et al., 2019). This understanding is crucial, as it enhances trust in the model’s outputs by making the al
gorithm’s processes transparent to end-users, especially in scenarios lacking ground truth. Furthermore, it illuminates the significance 
of various model features, e.g. how each patch of geofeatures is affecting the street-level temperatures. Understanding which fea
tures—such as green spaces or urban infrastructure—influence predictions the most can guide effective urban planning and climate 
mitigation strategies. However, most deep learning methods, traditionally designed for high performance rather than transparency, 
often lack inherent interpretability. We must then rely on post-hoc algorithms, which retrospectively analyze a trained ML model to 
identify and elucidate the factors influencing its decisions. These tools have become instrumental in uncovering the system’s un
derlying knowledge, and in identifying critical features that significantly influence model outcomes, thereby offering valuable insights 
for informed decision-making and targeted urban planning initiatives. 

GNNExplainer, introduced by Ying et al. (2019), is a post-hoc explanation algorithm tailored for GNN models. It aims to identify a 
compact, influential subgraph G s and corresponding node features X s that maximally preserve the prediction of the model. This is 
achieved through the maximization of mutual information (MI) between the predictions made using the original graph and those using 
the identified subgraphs. The mutual information is defined as: 

max
G s

MI(Y, (G s, X s)) = H(Y) − H(Y|G = G s, X = X s) (9a)  

H(Y) = −

∫

p(y)logp(y)d (9b) 

For a trained GNN model, the entropy H(Y), where p(y) is the probability of the model producing output y, is constant when the 
model makes prediction with the complete graph. The maximization of MI is therefore the minimization of the conditional entropy 
H(Y|G = G s, X = X s), which computes for the expectation over the distribution of Y conditioned on the subgraph G s and the 
corresponding node features X s. 

By maximizing the mutual information between the predictions made using the original graph and the subgraph, it ensures that the 
subgraph captures the most important aspects of the original graph for the model’s decision-making process. To identify G s, 
GNNExplainer applies a trainable soft mask M over the adjacency matrix A, effectively adjusting edge weights to spotlight those pivotal 
for the model’s decisions, thereby crafting a subgraph that maintains the predictive essence of the original graph. Besides providing 
explanations based on graph structures, GNNExplainer also extends its capabilities to feature-level insights by leveraging a similar soft- 
mask mechanism on node features, thereby generating normalized influence scores for each feature and offering a comprehensive 
understanding of both structural and feature-based contributions to the model’s predictions. 

In practice, GNNExplainer generates explanations by initially considering the entire graph and all features, then iteratively pruning 
edges and features that have the least effect on the prediction accuracy. This pruning is guided by gradient-based optimization 
techniques, which adjust the weights of edges and features to highlight those that contribute most significantly to the model’s output. 
For an expansive explanation of the algorithm’s workings and its application, we direct readers to the original work of Ying et al. 
(2019). Importantly, by using the true street-level temperature in computing Eq.(9b), the GNNExplainer essentially elucidates the 
actual phenomena the model aims to capture, thereby offering a quantitative insight of how true street-level temperature is influenced 
by the various geofeatures, which are elaborated in Section 5.4. 

4.5. Evaluation metrics 

The model performance is evaluated in three ways: (1) Overall performance, to provide a general accuracy and bias evaluation 
among all sensors as a system; (2) spatiotemporal distribution of model errors, to demonstrate the performance variances among 
different locations; (3) performance at out-of-sample locations, to test if the model can be generalized and quantify the uncertainties in 
prediction. Note that the model performance is only evaluated over the data points reserved for model validation. These validation 
data points are not used in model training. 
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Fig. 5. GNN model performance compared to GPR model presented in Li and Sharma (2024b). Scatter plot across simulation period (a) GNN; and 
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this article.) 
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The model performance is quantified using three metrics, namely root mean squared error (RMSE), mean absolute error (MAE), and 
mean bias error (MBE). It is noteworthy that we select these three metrics to cover the commonly used evaluation metrics in the 
existing model development studies. As some studies only report one metric over the other (Chai and Draxler, 2014; Hodson, 2022), 
providing them all in our study will allow direct comparisons. However, we will primarily use RMSE in most of the discussions on 
model performance, while MAE and MBE will be shown in the figs.  

1. Root mean squared error (RMSE), defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
tN

∑t

k=1

∑N

n=1

(
T̃

(k)

a,n − T(k)
a,n

)2

√
√
√
√ , (10)  

where the error between the predicted street temperature ̃T
(k)

a and true street temperature T(k)
a is averaged over total of t predictive time 

steps and N sensors. 
2. Mean absolute error (MAE): This metric calculates the average magnitude of the errors in a set of predictions, without 

considering their direction. Compared to RMSE, which gives higher weight to large errors, MAE provides a more uniform measure of 
error magnitude. 

MAE =
1
tN

∑t

k=1

∑N

n=1

⃒
⃒
⃒T̃

(k)

a,n − T(k)
a,n

⃒
⃒
⃒, (11) 

3. Mean bias error (MBE): This metric quantifies the average bias in the predictions, providing insight into whether the model 
tends to overestimate or underestimate the true values. It is calculated as: 

MBE =
1
tN

∑t

k=1

∑N

n=1

(
T̃

(k)

a,n − T(k)
a,n

)
, (12) 

A positive MBE indicates a tendency of the model to overestimate, while a negative value suggests an underestimation. 

5. Results and discussion 

5.1. Model performance 

For process-based models, RMSE between 2.0 ◦C and 2.5 ◦C is commonly acceptable over month-long simulations on air tem
perature at hourly intervals. Data-driven models generally have better performance, with RMSE ranging from 1 to 1.5 ◦C in existing 
studies (Wang et al., 2023b). To better benchmark our GNN model to its implementation in Chicago, we replicate the Gaussian Process 
Regression method described in Li and Sharma (2024b) and train on the same labeled dataset used in this study as a reference. 

As shown in Fig. 5a, the average RMSE of GNN model is 0.93 ◦C across the 53 sensors in the city of Chicago, which sits at the lower 
end of the spectrum of RMSE (i.e., 1.0–1.5 ◦C) for data-driven studies. Meanwhile, the model MBE is close to 0, indicating no bias in the 
predictions. The prediction accuracy is also better than the GPR model with much lower RMSE and MAE (Fig. 5b). More importantly, 
GNN shows better consistency when predicting at different locations with a smaller standard deviation on sensor-wise RMSEs (0.06 ◦C 
GNN in Fig. 5c vs 0.25 ◦C GPR in Fig. 5d). Despite the overall improvements from GNN, it is intriguing that the RMSEs from these two 
algorithms exhibit a linear correlation with statistical significance (Fig. 5e). The convergence of their error patterns indicates their 
similar understanding and interpretation of the underlying data characteristics. The agreement in performance variances also implies 
the existence of favorable and unfavorable locations in general, which can guide further refinement of the models and the dataset. For 
instance, further feature engineering or data collection efforts should focus on those unfavorable locations. We will elaborate more on 
this point in Section 5.2. 

Despite the performance of GNN is generally better, there are a few exceptions where GPR outperforms GNN (Fig. 5e). Certain 
sensors showing the highest RMSEs in GNN model are not necessarily the worst performer with GPR, vice versa. This variability is 
likely resulted from the inherent differences between the non-parametric nature of GPR and the parametric approach of GNN. The 
observed performance convergence and variability underscore the potential benefits of employing an ensemble of ML models by 
integrating multiple algorithms trained on the same dataset or slightly altered subset. Although the ensemble may not significantly 
enhance accuracy, it is anticipated to yield more reliable predictions and mitigate the risk of overfitting. 

It is important to note that the deployment of the GNN in this research is not solely on outperforming the other modeling tech
niques, as each algorithm possesses its own unique advantages. Rather, our objective is to explore how GNN achieves superior results 
and to derive a more generalized, effective strategy for model selection, data organization, and the architectural design of ML models, 
particularly for simulating street-level dynamics. Beyond its enhanced accuracy, the GNN model demonstrates potential in unraveling 
the intricate interactions between geospatial locations, evidenced by its consistency across the space. Consequently, we anticipate the 
GNN model to provide more reliable predictions at out-of-sample locations, which is a critical factor in assessing model performance. 
We will further elaborate this in the next subsection. 
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5.2. Performance at out-of-sample locations 

Theoretically, data extrapolation is a major challenge for all ML algorithms, meaning that ML models generally have worse per
formance on out-of-sample datasets. To further investigate the predictive capability of GNN model, we employ a “leave-one-sensor- 
out” (LOSO) testing strategy. This approach involves training a series of models, each excluding data from one specific sensor (Li and 
Sharma, 2024b). Compared to the model trained on labeled data from all sensors (hereinafter referred to as the nominal model) 
discussed in the previous section, each LOSO model is deprived of any information from the left-out sensor, thus can rigorously 
reflecting GNN’s predictive accuracy on unfamiliar locations (i.e., out-of-sample locations). When evaluating their performances, 
RMSEs for nominal model and LOSO models will be calculated on the data points reserved for validation (i.e., out-of-sample data 
point). But since the nominal model has leveraged geofeatures from all sensors in training, it processes certain knowledge over all 
sensors. Conversely, when training LOSO models, the node and its associated edges corresponding to the left-out sensor are removed 
from the graph. In the subsequent prediction phase, the corresponding node and edges will be incorporated as new information to the 
model. LOSO test mimics the practical processes of implementing a trained GNN model over any designated location in the city. It 
leverages GNN’s intrinsic ability to adapt to graphs of varying topology, thereby ensuring the feasibility of predictions on new nodes. 

Fig. 6a shows the map of RMSE for LOSO test. As expected, the average performance of LOSO models is worse than the nominal 
model (1.03 ◦C vs 0.93 ◦C) with a greater variation over all sensors. But the average performance is still better than GPR model trained 
over all sensors, indicating GNN is more robust when making predictions on out-of-sample locations. 

The discrepancies in performance might be originated from the difference in model architecture. GPR models predict the posterior 
distribution by incorporating prior knowledge and conditioning these predictions on provided geofeatures. Once certain geofeature is 
missing in the training dataset, GPR models must interpolate, or at times extrapolate, their impact on the target variable. This task can 
be challenging when the left-out geofeatures are unique across the locations. Li and Sharma (2024b) observed that the performance of 

Fig. 6. (a) Spatial distribution of the model performance with “leave-one-sensor-out” (LOSO) configuration. (b) Visualization of edge weight (wij) 
between paired nodes. (c) Correlation between averaged edge weight and RMSEs of LOSO models over 53 sensor locations. 
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GPR model can be improved significantly by including even a small subset of the measurement from the left-out sensor in training, 
underscoring the geofeatures’ pivotal role in its modeling structure. In contrast, GNN models are not susceptible to this limitation. In 
addition to the geofeatures that are specific to each sensor, GNN model can learn the temporal evolution patterns from the training 
graph using its inductive framework. This capability is enhanced by the message passing mechanisms, which allow information ex
change between the existing and new nodes depending on the assigned edge weights (Fig. 6b). Fig. 6c shows the statistical relationship 
between LOSO model RMSEs (Fig. 6a) and averaged edge weight (Fig. 6b). We find that if the average edge weight of a sensor is higher 
(i.e., permitting more information exchange from the other sensors), its corresponding LOSO model will generally have a better 
performance. Since we use the distance and land use similarity between sensors to calculate edge weights (Section 3.1), a smaller edge 
weight value indicates the sensor is geographically isolated or unique in land use conditions, thus a likely worse predictive perfor
mance. This finding implies that the model performance can be improved by strategically selecting measurement locations that are 
close to each other or similar in land use. Practically, with limited number of sensors can be deployed, it would be helpful to distribute 
the sensors across the representative urban land covers with equal distancing. In fact, these information is encoded within the adja
cency matrix as prior knowledge before training, therefore, the deployment locations can be derived by simply optimizing the ad
jacency matrix toward higher edge weight values across all planned sensors. 

It is also noteworthy that the distinctions of GPR and GNN models make them specialized for different tasks. For example, GPR 
models will be more suitable for gap-filling on the timeseries at specific locations once the historical measurement is available. While 
GNN models will be more reliable for predictions over unseen locations. In this case, GNN is believed to be a promising approach to 
transfer the learned knowledge from one to the other cities. This capability can be extremely valuable as street-level observation 
networks are rather rare and can be time-consuming and labor-intensive to deploy, while datasets of geofeatures can be generated at a 
much more affordable cost. 

5.3. Ablation test 

In the previous section, we primarily benchmarked the GNN model and discussed its performance variances across different 
geospatial locations. The subsequent ablation study examines how the model’s performance is affected by the absence of specific 
groups of input data, which will illustrates the impact of each variable group, and identify key contributors to the model performance 
within the established model architecture. 

We first categorize the input features into four groups as shown in Eq. (3). The nominal model, discussed in previous sections, 
utilizes data from all categories (WH + GE + GA + AX). To assess the impact of each feature group on model performance, we prescribe 
three ablation models, (1) WH + GE + AX, excluding geofeatures calculated as statistical moments; (2) WH + GA + AX, omitting 
embedded geofeatures; and (3) WH + AX, where all geofeatures are removed. Table 2 summarizes the model configurations and 
performance. The findings indicate minimal performance variation when averaged geofeatures (GA) are excluded (comparing models 
1 and 2, or models 3 and 4). Conversely, the inclusion of embedded geofeatures (GE) can significantly improve model performance, as 
evidenced by the comparisons between models 1 and 3, or models 2 and 4 in Table 2. 

Despite the geofeatures in GE and GA group include similar data elements, such as land cover conditions and the heights of surface 
objects in vertical dimension, GE group offers an added dimension by detailing the spatial distribution of the geofeatures around the 
sensors. This granular information allows the model to quantify the significance of geofeatures based on their orientation relative to 
the sensors. 

For example, tall buildings in the upwind direction may largely alter the mixing condition of the street, thus having a stronger 
influence on street-level temperature (Gao et al., 2022). A similar situation applies to the localized shading effect from trees and 
buildings, which plays a major role in energy re-distribution in the built environment (Park et al., 2021; Wang and Yang, 2021). 

The challenge in practice, though, is to assimilate the vast array of data (e.g., 1302 features use here) into a modeling framework, 
which proves to be daunting for certain ML algorithms such as the GPR. Due to its non-parametric nature, GPR model makes pre
dictions based on every entry in the training dataset. Consequently, incorporating more data points or dimensions will lead to a cubic 
rise in computational complexity. This surge compromises efficiency in training and prediction, offsetting the advantages of using ML 
models for climate science. Conversely, the structure of GNN models can handle large datasets in a scalable and efficient manner, as its 
complexity depends on the predefined architecture, such as the number of hidden neurons and layers. This characteristic helps it 
remain manageable model size for applications with high-dimensional inputs. 

Table 2 
Comparison of model performance in RMSE (◦C).  

Model No. Configuration Mean Std Best Worst 

1 Nominal model (WH + GE + GA + AX) 0.92 0.06 0.82 1.06 
2 WH + GE + AX 1.06 0.08 0.90 1.26 
3 WH + GA + AX 1.18 0.10 1.02 1.50 
4 WH + AX 1.19 0.11 1.02 1.51 
5 LOSO (WH + GE + GA + AX) 1.05 0.21 0.69 1.94 
Ref GPR 1.24 0.25 0.73 2.00  
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5.4. Spatial pattern and feature significance 

To assess the impact of geofeatures on street-level temperature more closely, we utilize GNNExplainer (Section 4.4) to compute the 
influence score for each variable within the GA and GE groups. Our analysis revealed significant variations in the importance of GA 
group geofeatures. Specifically, the fraction of impervious surfaces (GA16), vegetation (GA17), and Leaf Area Index (GA06) were 
identified the most influential geofeatures on street-level temperature. Conversely, water fractions (GA18) and high-intensity 
development (GA15) were found to be less impactful (Fig. 7a). When categorizing these geofeatures by their informational content, 
it becomes evident that planar land cover and land use attributes (e.g., fractions and development intensity) generally have higher 
influence scores than vertical measurements (e.g., building and canopy heights). This observation is consistent with GE variables. From 
the perspective of atmospheric dynamics, the surface energy balance is primarily determined by the planar landscape features; Thus, 
they tend to have more pronounced impact on the thermal environment than the vertical features, which may govern more sophis
ticated but secondary processes. The differences in importance may also stem from the relatively large averaging radius (200 m) in 
comparison to the average height of surface objects in Chicago (<30m). In this case, GNN is likely able to perceive more information 
from planar features. It is possible that the importance will decrease with a smaller averaging radius. Uncertainties induced by the 
averaging scale can be notable (Wang et al., 2023b), thus are worthy to be investigated in follow-up studies. 

Another key discovery within the GA group is that canopy density variables hold a higher influence score than both canopy fraction 
(GA19) and canopy height (GA01–04) (Fig. 7a), despite being derived from datasets with coarser spatial resolution (300 m for canopy 
density vs 1 m for height information). Moreover, canopy density is the only geofeature group that has temporal variation over the 
summer months. Its higher influence score than the other static geofeatures indicates the critical impact of vegetation phenology on the 
hyper-local environment, even during a relatively short period. Yet, incorporating dynamic vegetation attributes in urban climate 
studies is uncommon, possibly due to the scarcity of accessible, city-specific vegetation data for modeling purposes. The absence of 
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spatiotemporal vegetation data in high resolution also prevents us to include canopy density variables in GE group using the spatial 
embedding technique. This finding from our model and the present gap in data availability potentially imply a broader trend of 
underestimating the role of vegetation phenology in environmental modeling (Bernard et al., 2022; Zhou, 2022), even though research 
on the impact of urban heat on plant phenology is quite prevalent (Zipper et al., 2016; Li et al., 2019; Meng et al., 2020). 

Analysis of the GE group supports observations from the GA group, revealing that geofeatures in horizontal dimension typically 
score higher than the vertical ones (Fig. 7b), meaning more influence on street-level temperature. In addition, we find that, compared 
to the NLCD classification, the CMAP data shows greater significance. NLCD mainly categorizes urban land cover by the extent of 
impervious surfaces, offering limited insight into land use and building functionality. In contrast, Chicago’s landscape, predominantly 
characterized by residential areas with medium-density housing and commercial centers, is oversimplified in NLCD’s “medium 
development intensity” category. CMAP’s data, with its higher spatial resolution and more nuanced urban classification, provides a 
more accurate depiction of land surface conditions. This enhanced characterization suggests model performance can benefit from a 
detailed description of urban land surfaces via a more representative classification scheme. 

The spatial distribution of influence scores, derived from individual embedded features as shown in Fig. 7b, does not present a clear 
pattern. The GNN model makes predictions using specific location of the site, time of day, and day of the year, making it practically 
impossible to comprehend its mechanism at each timestep. However, aggregating features across all sensor locations reveals a 
discernible hotspot in the northeast direction (Fig. 7c), which intriguingly corresponds with the dominant wind direction (southwest to 
northeast) in Chicago during the summer. The spatial proximity of this hotspot to sensor locations, approximately 100 to 150 m, 
coincides with distances identified in research seeking the optimal averaging radius for model efficiency and performance (Allen- 
Dumas et al., 2021). Given that high-resolution geospatial variables in the GE group are transformed into 12 × 12 matrices for the GNN 
model, pinpointing specific urban features responsible for this observation is challenging. Consequently, it is premature to draw 
definitive conclusions about spatial patterns of feature significance. Nonetheless, this suggests that employing more sophisticated 
embedding techniques (e.g. through an autoencoder) could illuminate the relationship between the layout of geofeatures and their 
thermal effects. Collectively, we advocate the development of comprehensive high-resolution urban climate informatics to help the 
investigation the microclimate dynamics via data-driven approach. 

6. Concluding remarks 

In this study, we investigated the efficacy of Graph Neural Networks (GNN) in addressing the street-level downscaling problem at 
discrete locations, leading to four main contributions: (1) enhanced the precision of hourly air temperature predictions at the street 
level; (2) evaluated the model’s ability on spatial extrapolation; and (3) examined how urban features influence street-level tem
peratures, thereby improving model interpretability and our understanding of microclimate dynamics; and (4) demonstrated the 
applicability of the hybrid modeling framework presented in (Li and Sharma, 2024b). Meanwhile, we compared the GNN model 
against the previous GPR model and digested their distinctions in architecture, data handling, and performance under various use 
cases. We concluded that the improve of prediction accuracy can be attributed to the architectural advantages of GNN and its 
capability of handing extensive high-dimensional datasets. Findings from model ablation and feature significance analysis elucidated 
the critical aspects of urban features, such as the dynamic canopy density data and detailed representative urban land classification, 
which can help to establish a nuanced benchmark for collecting environmental data in urban settings. It is also possible to use such 
modeling and analyzing methods to identify the dominance of physical processes at street-level microclimate based on the relative 
importance of all urban features. This can, in turn, inform the physics-based urban climate models to effectively focus on the pre
dominant processes without introducing extra burdens on computation, thus promoting a synergistic cycle that enhances the Modeling 
– Experimenting (ModEx) strategy (DOE, 2020). 

Along with its notable contributions, we reckon there are a few caveats of this study, which are not unique but rather common 
across contemporary data-driven urban climate research. These limitations highlight areas for future research efforts. One notable 
challenge is the lack of explicit dataset for anthropogenic heat sources in the model. The in-canyon thermal environment can be highly 
susceptible to anthropogenic heat sources from vehicles, buildings, and pedestrians. Though, to a certain degree, the spatial patterns of 
anthropogenic heat can be reflected from the land cover and land use and might be recognized by the ML model, the temporal 
variability is still underrepresented. As we concluded in Section 5.4, variables that change with time generally have higher importance 
than temporally static variables in the modeling process. This implies the criticalness to include the real-time traffic and building 
energy datasets to reflect the diurnal variations associated with rush hours and the difference between a weekday and weekend. 
Acquiring such hyper-local data across extensive areas presents significant challenges and, at times, may seem impractical without a 
direct application. Nevertheless, the validation of our framework and its novel application have implied the criticalness of these 
datasets, thereby justifying the effort to compile them for an in-depth investigation of anthropogenic heat’s impact on hyper-local 
climates. Other exogenous factors, especially those with temporal variations, such as urban irrigation, in-canyon air pollution, rain
fall, etc., will need to considered in future studies, too. 

Besides the contributions and caveats from fundamental science perspective, insights from this study extend significantly into 
urban planning and policy. For example, by identifying key physical processes and urban features that influence microclimates, this 
study can inform targeted interventions to mitigate urban heat island effects, enhance urban resilience against climate change, and 
improve public health. The advocacy for enhanced urban data collection is contingent upon the establishment of comprehensive data 
policies and the support of robust cyberinfrastructures. Thus, we call upon the research community, urban planners, policymakers, and 
technology developers to engage in deeper collaboration. Collectively, we can push forward the agenda for sustainable urban 
development and environmental stewardship. 
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