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Abstract—Among the many industrial wireless solution can-
didates, 5G New Radio (NR) has drawn significant attention
in recent years due to its capabilities to support ultra-high-
speed communication, ultra-low latency, and massive connectiv-
ity. Despite its great potential, 5G NR also brings significant
complexity in scheduling industrial data flows to meet their hard
real-time requirements. In this paper, we first leverage a real-
world 5G RAN testbed to benchmark the downlink throughput
and explore the impact of modulation and coding scheme (MCS)
selection on the network performance. We then formulate a
real-time flow scheduling problem in industrial 5G NR, which
features per-flow real-time schedulability guarantees through
time-frequency-space resource allocation. We propose a novel
two-phase scheduling framework, named 5G-TPS, to construct
the schedule that meets the deadlines of all the flows. To adapt
to dynamic channel conditions, 5G-TPS enables online schedule
adjustment for affected flows to meet their timing requirements.
To evaluate the performance of 5G-TPS, we present a case study
of a motion control panel use case and perform extensive exper-
iments. The results show that 5G-TPS can achieve schedulability
ratios comparable to the Satisfiability Modulo Theory (SMT)-
based exact solution and outperform many other state-of-the-art
scheduling approaches, including the built-in 5G NR schedulers.

I. INTRODUCTION

Industrial Internet-of-Things (IIoT) is expected to signifi-
cantly improve the efficiency and performance of industrial
networks across a wide range of industrial applications. Many
of these industrial applications (e.g., use cases specified by
3GPP [1] including mobile operation panels and remote
surgery) are mission- and safety-critical, with stringent timing
and reliability requirements on the communication fabric to
exchange information among various devices [2].

IIoT tends to use wireless networks for communication
since they enable more flexible network configurations and
reduce cabling costs compared to their wired counterparts
(e.g., industrial Ethernet [3] and Time-Sensitive Network-
ing [4]). However, existing industrial wireless solutions (e.g.,
ISA100.11, WirelessHART, and 6TiSCH [5]–[8]) are mainly
used in the context of low-power and low-speed wireless
sensor and actuator networks. To support high-speed real-time
wireless communication, IEEE 802.11-based protocols (e.g.,
Wi-Fi 6 [9]) have received growing attention in industrial
applications due to their low deployment cost. However,
802.11-based protocols operate in unlicensed spectrum and
may suffer severe and unexpected interference from other co-
existing networks.

The industrial connectivity landscape is changing with the
emergence of 5G New Radio (NR) cellular networks [10].
The deployment of 5G NR in industrial applications, also
termed private 5G networks in 3GPP, has attracted significant
interest due to its capabilities of providing ultra-high-speed
communication (multi-Gbps peak rates), wide coverage, ultra-
low latency, and massive connectivity. Furthermore, the private
5G deployment options also provide complete control to
configure every aspect of the network (e.g., schedule, resource
allocation) without involving mobile network operators [2].

To achieve ultra high-speed real-time communication, sev-
eral enabling technologies are supported in industrial 5G NR.
For example, orthogonal frequency division multiple access
(OFDMA) is utilized in 5G NR for both uplink (UL) and
downlink (DL) to achieve deterministic transmissions [11].
Compared to 4G LTE networks, 5G NR adopts fewer OFDM
symbols per transmission time interval (TTI) and shortens the
OFDM symbols via a wider subcarrier spacing to reduce la-
tency. MU-MIMO (multi-user multiple-input-multiple-output)
is another core technology for 5G NR to significantly increase
network throughput [12] by allowing a base station gNB to
harvest the spatial diversity and transmit signals to multiple
user equipment (UEs) on the same frequency band simul-
taneously. In addition, 5G NR provides robust modulation
and coding schemes (MCS) which determines the user’s data
rate on individual frequency bands according to the per-band
channel quality indicator (CQI), namely subband CQI report.

Although 5G NR provides much flexibility and has tremen-
dous potential, it brings high complexity due to the large
design space of the flow scheduler at the gNB to meet the
real-time requirements of industrial data flows. Specifically,
the scheduler needs to i) allocate resource blocks (RBs) in
the frequency domain to multiple users appropriately; ii)
determine the number of data streams that can be transmitted
by each user simultaneously in the spatial domain based on
their transmission interference; and iii) choose the MCS index
for each user ensuring that the selected MCS index is identical
across all RBs allocated to this user [13]. Therefore, the real-
time flow scheduling problem in 5G NR couples together RB
allocation, data stream number determination, and MCS index
selection in order to satisfy the timing requirements of indus-
trial data flows, making the problem extremely challenging.

Time-frequency scheduling for real-time flows in traditional
industrial wireless networks has been well studied [14]–[18].
In 5G networks, many recent works studied resource schedul-
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Fig. 1. Motivational experiments on a 5G RAN testbed. (a) Overview of the OAI-based 5G RAN testbed consisting of one gNB and one UE. (b) Architecture
of the 5G RAN testbed with three connection modes. (c) Throughput results with varied MCS indices under various connectivity settings.

ing problems with objectives to optimize network throughput
(e.g., [19]–[22]) or AoI (Age of Information, e.g., [23]–
[25]). In light of improving the real-time performance of
5G networks, [26], [27] provide hard performance guarantees
through formal response time analysis for 5G network slicing.
However, these works adopt over-simplified resource models;
and the proposed analyses only apply to fixed-priority schedul-
ing, which leads to low schedulability performance as revealed
in our experimental results. Some recent works [28]–[30] study
5G configured grant (CG) scheduling aiming at providing
real-time guarantees for time-critical traffic. However, CG
scheduling is only applied to 5G UL transmissions and suffers
from extremely low flexibility. To the best of our knowledge,
this paper is the first work that studies time-frequency-space
DL scheduling in industrial 5G NR, which features per-flow
real-time schedulability guarantee. Specifically, we make the
following contributions.
• We leverage a real-world 5G RAN testbed to benchmark the
DL throughput and explore the impact of MCS index selection
on the network performance.
• We formulate the real-time flow scheduling problem in
industrial 5G NR considering the featured 5G techniques, e.g.,
MU-MIMO and MCS selection based on subband CQI report.
• We introduce a two-phase scheduling framework, 5G-TPS,
to construct a feasible schedule with deadline guarantees for
all the flows. Upon any dynamic channel condition changes,
5G-TPS enables online schedule adjustment for affected flows
to meet their timing requirements.
• We evaluate the performance of 5G-TPS through a case
study and extensive experiments by comparing it with an SMT-
based exact solution and many other state-of-the-art methods.
The results demonstrate superior performance of 5G-TPS in
terms of schedulability ratio, in both stable and dynamic
channel conditions.

II. MOTIVATIONAL EXPERIMENTS

In traditional industrial wireless networks, considerable
research has been conducted on channel allocation in the
frequency domain and flow scheduling in the time domain
(e.g., [31]–[33]). However, the MCS index selection in 5G
NR scheduling remains an area that lacks comprehensive

understanding [34], [35], particularly regarding its impact on
the network performance.

In 5G NR, MCS determines the number of bits per symbol
that can be modulated and coded on the transmission channel
between UE and the gNB. Higher MCS indices generally
correspond to higher channel efficiency and higher data rates,
but they may also be associated with higher packet error
rates, as more aggressive modulation schemes are more sus-
ceptible to noise and interference. In order to understand the
impact of the selected MCS index on the performance of
5G NR, we constructed a real-world 5G RAN testbed using
OpenAirInterface (OAI) [36], a widely adopted open-source
project which provides 3GPP-compliant implementations of
gNB and UE, and benchmarked the downlink (DL) throughput
of the OAI-based 5G RAN for different MCS index values and
connectivity settings.

A. Testbed Setup

Our 5G RAN testbed, as shown in Fig. 1(a), comprises one
gNB and one UE, each of which runs the OAI stack on a
host machine (Intel i7-9700 processor @3.00GHz, 8 Cores, 64
GB RAM). Each host machine is connected to a USRP B210
device via USB 3.0, serving as the radio head unit (RHU).

1) Connectivity Settings: To thoroughly study the impact
of the MCS index on network throughput, we conduct ex-
periments in three different connection modes as shown in
Fig. 1(b). In the RFSim mode, the OAI gNB transmits the
I/Q samples to the UE over a radio channel simulator, namely
RF simulator, via Ethernet without using the RF boards (i.e.,
USRP B210). In the over-the-air (OTA) mode, omnidirectional
antennas are connected to the RF boards to transmit signals.
In the SMA cable mode, the two USRP B210 devices are
directly connected using Sub-Miniature version A (SMA)
cables instead of antennas.

We further enrich the throughput measurements by varying
the noise power levels in the RFSim mode and the signal
level in the SMA cable mode since noise power level could
further impact the network channel quality. Specifically, in the
RFSim mode, in addition to the default perfect channel, we
enable channel modeling and set the noise power to −1dBm,
−5dBm, and −10dBm at the UE side. In the SMA cable mode,
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we configure different reduced amplitude levels (30dB, 40dB
and 50dB) of the incoming signal at the UE side by connecting
two 10dB attenuators and one 30dB attenuator in series.

2) Measurement Settings: We configure the RAN network
to operate on 5G band n78 (3.5 GHz) with 40 MHz of
spectrum. Since our measurements focus on 5G RAN network,
the test is performed in the OAI phy-test setup which
enables the communication between the gNB and UE without
the need of a core network. We use iperf as the workload
generator to send UDP traffic. The UDP bandwidth at the
gNB is configured to 1 Mbit/sec, which is restricted by the
processing power of the two host machines. We vary the MCS
index from 0 to 28, with MCS indices 29, 30, and 31 reserved
by 3GPP.

B. Measurement Results

Fig. 1(c) summarizes the throughput results as a function of
the MCS index under various connectivity settings. Intuitively,
one would expect the throughput to increase monotonically
with higher MCS indices, as higher modulation schemes and
coding rates typically result in higher data rates and channel
efficiency. However, upon observation, it is apparent that only
the results of RFSim with default channel and SMA cable
connection with the 50dB attenuator meet this expectation. All
other results show fluctuations as the MCS indices increase.

For example, in the RFSim mode, when an extremely high
level of noise (-1dBm) is added to the simulated channel,
the network throughput is very low (<80 Kbits/sec, values
enlarged by 10 times for improved visibility in Fig. 1(c)).
The data also show significant fluctuation when the MCS
indices are small (from 0 to 9). When we further increase
the MCS index, the throughput directly drops to 0 (values
omitted in Fig. 1(c)) due to extremely high packet loss rate. A
similar trend can be observed in all the other curves, but the
occurrences of fluctuation vary, and the throughput fluctuation
is delayed under better channel conditions.

C. Discussions

Based on the throughput results obtained in our 5G RAN
testbed, we have the following observation.

Observation 1. Only in the case of a high-quality channel the
throughput monotonically increases with the increase of MCS
index. Under worsening channel conditions, the throughput
can decrease with higher MCS indices, and significant fluctu-
ations may occur.

The fluctuation in throughput with increased MCS index is
mainly caused by the following reason. The communication
channel between the UE and the gNB is composed of a set
of subbands, and the channel quality may vary across these
subbands. However, according to the PHY specification of
5G NR [13], the UE must select and use the same MCS
index on all the allocated subbands. When the MCS index
is increased, the UE may fail to decode the received signals
on subbands with poor channel quality, resulting in decreased

throughput. However, on subbands with good channel quality,
the UE can achieve higher data rates, leading to improved
throughput. These opposite trends in throughput changes on
different subbands result in overall throughput fluctuations
across the entire bandwidth as the MCS index increases.

Regarding Observation 1, there are two points worth noting.
First, the OTA mode measurement on our testbed is conducted
in a line-of-sight (LOS) indoor lab environment with no
moving objects nor significant interference/noise sources (see
Fig. 1(a)), and the throughput results show fluctuation when
MCS index is larger than 9. When considering industrial 5G
RAN networks which are typically deployed in much harsher
environments, the channel quality can be much worse and the
fluctuation in network performance can be more significant for
different MCS indices.

Secondly, in our testbed, the gNB is connected with only
one UE which has access to the entire network bandwidth
resource. The gNB only needs to determine the MCS index
used by the UE to achieve better performance, e.g., higher
throughput. However, if multiple UEs are connected to the
RAN network, it becomes more challenging to determine the
proper MCS index for each UE, given that the bandwidth is
shared by all the UEs and the subband allocation for each
UE also needs to be determined. Therefore, based on the
experimental results and the above discussion, we make the
following statement to motivate our work.

Statement. The selection of MCS index for each UE is
crucial in determining the performance of 5G RAN net-
works, and presents a challenge that requires judicious
investigation in the design of scheduling mechanisms.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We now present the 5G NR-based network model and
formulate the 5G real-time flow scheduling problem.

A. Network and Traffic Model

We consider a single-cell DL 5G RAN system where one
gNB serves a set of N UEs, both of which are equipped with
a MIMO antenna panel, with MT antennas at the gNB and
MR antennas at each UE ui ∈ U (i ∈ [1, N ]) (MT > MR).

1) OFDMA Resource Grid: In OFDMA-based 5G NR, as
shown in Fig. 2, network resource is organized as a resource
grid that spans in both time and frequency domains. In the time
domain, time is equally slotted into transmission time intervals
(TTIs) each of which consists of 14 OFDM symbols [37]. In
the frequency domain, bandwidth of the operating channel is
divided into a number of uniform subbands, and each subband
is denoted as a resource block (RB). That is, within each TTI,
there is a set of RBs B+ = {b|b ∈ [1, 2, . . . , B]} that can be
allocated to the UEs for transmissions, where B represents the
total number of RBs in the frequency domain.
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Fig. 2. Resource grid in 5G NR. Each block represents a basic time-frequency-
space scheduling unit for UEs.

2) Traffic Model: Communication in industrial applications
is typically characterised by two attributes, periodicity and
determinism, which together specify periodic traffic flows with
stringent timing requirements [1]. To simplify the notation,
we assume that each UE ui ∈ U (i ∈ [1, N ]) receives one
transmission flow, denoted as fi ∈ F (i ∈ [1, N ]), from
the gNB periodically1. Each fi is associated with a tuple
〈Pi, Di, Ci〉. Pi and Di denote the period and deadline of
fi (in unit of TTIs), respectively, and we assume Di ≤ Pi.
Ci denotes the payload size (in bits) which is the amount of
information carried in each instance of fi. The k-th instance
of flow fi is referred to as packet pi,k. Its release time and
absolute deadline are denoted as ri,k and di,k, respectively.

3) MCS Model: The objective of the real-time flow
scheduling problem in 5G NR is to allocate RBs to individual
flows in the flow set F while satisfying their timing require-
ments. A number of 5G specific issues must be considered in
formulating the scheduling problem. Besides RB allocation,
the scheduler also needs to select a proper MCS for each UE
in each TTI [13]. As discussed in Section II, a larger MCS
index generally leads to a higher UE data rate. However, the
maximum data rate that can be achieved on one RB depends
on the channel condition between UE and gNB. If the channel
condition on this RB is poor but a high MCS is used, data may
not be successfully received by the UE.

Channel conditions can vary in both time (across different
TTIs, i.e., time-selective fading) and frequency (across differ-
ent RBs, i.e., frequency-selective fading). Variation of channel
condition in the time domain is mainly determined by motion
effects, e.g., UEs installed on moving objects and obstacles
moving between UEs and the gNB [38]. The channel condition
is reported from individual UEs to the gNB through the CQI
either periodically or aperiodically which is configured by the
Radio Resource Control (RRC) message(s). In the frequency
domain, channel attenuation, which suffers from severe fading
effects (e.g., reflective obstacles such as machines), is non-
negligible. Therefore, the channel condition between each UE
and the gNB varies on different RBs in the frequency domain.

We denote M = {0, 2, . . . , 28} as the set of 29 available
MCS indices defined in [13]. Let qbi be the maximum MCS
index that can be used by UE ui on RB b ∈ B+ so that

1The model can be generalized by treating multiple flows of one UE as
multiple UEs.

Fig. 3. A MCS selection example for u1 and u2 on 4 RBs. The colored
blocks represent RBs with data transmissions under MCS m ≤ qbi . The
shaded blocks represent RBs with no data transmission under MCS m > qbi .

data carried on b can be successfully received, and we have
0 ≤ qbi ≤ 28. qbi is determined according to the subband CQI
submitted by UE ui on RB b. Let c(m) be the modulation
and coding rate on an RB under MCS m, and ab,mi be the
achievable data rate on RB b for UE ui under MCS m. If m ≤
qbi , the data can be successfully transmitted and the achievable
data rate is c(m). Otherwise, i.e., m > qbi , the transmission
fails with data rate being 0 [13]2. That is,

ab,mi =

{
c(m) if m ≤ qbi ,

0 otherwise.
(1)

According to the 5G NR PHY specification [13], although
each UE can be allocated with multiple RBs in one TTI, it
must select and use the same MCS index on all the allocated
RBs. For example, suppose there are 4 RBs in the frequency
domain (i.e., B = 4) and the channel conditions (i.e., qbi ) on
the 4 RBs for two UEs u1 and u2 are shown in Fig. 3. If we
select MCS m = 1 for u1, then data carried on RB1, RB2

and RB4 can be successfully transmitted, and the total data
rate is 3×8 = 24. If we select a higher MCS m = 3, a higher
data rate can be achieved on RB2 and RB4, i.e., 2 × 18 =
36. However, a higher MCS index is not always leading to a
higher data rate, according to the measurement results in our
motivational experiments. For instance, setting a higher MCS
m = 2 for u2 leads to a lower data rate 14 compared to data
rate 24 that can be achieved by setting m = 1.

4) MU-MIMO: In 5G NR, MU-MIMO [41] is supported
to improve the spectral efficiency by spatially multiplexing
multiple UEs. That is, the gNB communicates with multiple
UEs on the same RB within one TTI. For example, in Fig. 2,
UEs u1 and u2 are simultaneously transmitted on RB10 within
TTIs [3, 7]. On each RB b ∈ B+, the scheduler selects a
set of UEs for MIMO transmission, where sbi (t) ∈ {0, 1}
is a binary variable indicating if RB b ∈ B+ is scheduled
by the gNB for UE ui in TTI t. Further, each UE ui can
simultaneously transmit multiple data streams (also called
“layers” in specification [42]) on each RB in one TTI. For
example, in Fig. 2, 6 data streams are transmitted by u3 on
RB1 and RB2 in each TTI within TTIs [1, 10].

To reduce the control signaling overhead and signal process-
ing complexity, 5G NR requires that each UE must have the

2c(m) and qbi can be determined through channel estimation using existing
methods (e.g., [39], [40]) and looking up MCS index table from [13], which
are assumed as given to the formulated scheduling problem in this paper.
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same number of data streams across all RBs allocated to it in
each TTI. Let yi(t) be the number of data streams transmitted
by user ui in TTI t. If the number of antennas for each UE
is MR, we have yi(t) ≤ MR. Similarly, the total number of
data streams on each RB b for MIMO transmissions cannot
exceed the number of antennas at the gNB, MT , i.e.,∑

ui∈U
sbi (t) · yi(t) ≤ MT , ∀b ∈ B+. (2)

In a practical MU-MIMO system, propagation channels
among different UEs are spatially correlated and the theoret-
ical multi-antenna gains cannot always be obtained. Channel
correlations can generate interference among UEs due to the
channel fading of multipath propagation between the gNB and
UEs with diverse spatial transmission directions. To ensure the
transmission performance of MU-MIMO, the scheduler needs
to perform user selection to avoid data streams from the UEs
with high interference to be transmitted on the same RB which
may deteriorate the achievable data rate [43]. In this paper,
we use w(ui, uj) ∈ {0, 1} to denote whether two UEs ui and
uj can transmit on the same RB simultaneously according to
their interference level, where w(ui, uj) = 0 indicates that
ui and uj cannot transmit simultaneously3. We assume that
w(ui, uj) for each pair of UEs, which can be derived by
existing work (e.g. [21]), is known at the gNB. We denote
θi as the achievable data rate flag for user ui in a MU-MIMO
system, where θi captures the impact on the data rate of ui

from other UEs that simultaneously transmit on the same RB.

θi =

⎧⎪⎨
⎪⎩
0

if there exists uj transmitting on the
same RB with ui and w(ui, uj) = 0,

1 otherwise.
(3)

Transmitted data amount. The total amount of data transmit-
ted to ui in t across all its allocated RBs, denoted as Ri(t), can
be calculated by Ri(t) =

∑
b∈B+

(
sbi (t) · ab,mi(t)

i · yi(t) · θi
)

,
where mi(t) denotes the selected MCS index for ui in t. Then,
the total amount of data transmitted to UE ui in packet pi,k
equals to Ri,k =

∑
t∈[ri,k,di,k)

Ri(t).

B. 5G Real-Time Flow Scheduling Problem

Based on the above system model, the task of the network
scheduler at the gNB is to generate a schedule that determines
the resource allocation for all the UEs.

Definition 1 (Schedule). A schedule specifies the following
resource allocation decisions for each UE ui in each TTI t.

• The RBs allocated to ui, i.e., {sbi (t)|b ∈ B+};
• The selected MCS index for ui, i.e., mi(t);
• The number of data streams transmitted to ui, i.e., yi(t).

3In practical MU-MIMO systems, two UEs may always transmit on the
same RB simultaneously, and the data rate degradation of each UE depends
on the level of interference. In this paper, we simplify the MAC layer flow
model by allowing (prohibiting) two UEs from transmitting on the same RB
simultaneously if the gNB determines their interference level as low (high).

Given the definition of a schedule, we aim to solve the
following real-time flow scheduling problem in 5G NR.

Problem P: Given the UE set U , flow set F , the modulation
and coding rate c(m) on any RB, the maximum MCS index qbi
usable by UE ui on any RB b, and the interference information
w(ui, uj) between UEs, determine a feasible schedule (if
exists) that satisfies the deadlines of all the packets released
by the flows in F .

In the following sections, we outline our 5G NR scheduling
framework. We first assume a stable channel condition within
each hyperperiod H (i.e., the least common multiple of all the
flow periods), where qbi for each UE is updated once every
H TTIs. We then extend the system model and scheduling
method to account for dynamic channel conditions, where qbi
for each UE is updated when the channel condition changes.

IV. OVERALL SCHEDULING FRAMEWORK

Problem P is NP-hard and this can be proved by reducing
the set packing problem [44] to a special case of the SISO
(single-input-single-output) version of Problem P. The details
of the proof is omitted here due to the space limit.

The solution space of Problem P is also extremely large.
Specifically, the gNB needs to allocate B RBs among N UEs
and assign each UE an optimal MCS (among 29 possible
indices) in each TTI. On each RB b, the number of possible
combinations of simultaneously transmitted flows equals to(
N
1

)
+

(
N
2

)
+ · · ·+ (

N
MT

)
and the number of possible combi-

nations of data streams is (MR)
N . This gives a total number

of
(
NB · (29 ·MR)

N ·
[(

N
1

)
+

(
N
2

)
+ · · ·+ (

N
MT

)])H

possi-
bilities in the solution space. Given the complexity and the
large solution space of Problem P, we design a two-phase

scheduling framework, named 5G-TPS, to judiciously reduce
the search space following a set of insights. The key principle
of 5G-TPS is to maximize the channel efficiency for all the
UEs such that all the flows can meet their timing requirements.

At the highest level, we adopt a channel condition aware
approach to generate a schedule for all the flows fi ∈ F .
Specifically, when the network channel condition is stable
within each hyperperiod, we apply the same RB allocation
to each flow in all its scheduled TTIs. This approach has
one distinct advantage. That is, it reduces the overhead for
communicating Downlink Control Information (DCI). Note
that, individual RB allocations across different TTIs require
multiple DCI messages each of which specifies one RB
allocation with individual TTI information and the selected
MCS index. This incurs large control resource overhead which,
in turn, reduces the amount of network resources allocated to
PDSCH (Physical Downlink Shared Channel) for transmitting
actual data. On the other hand, if an RB allocation is ‘satis-
factory’ to all the flows in F in one TTI, it is not necessary to
make any adjustment on the RB allocations in other TTIs when
the maximum usable MCS index qbi for each UE is not changed
(Theorem 1 below demonstrates this observation). Therefore,
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using the same RB allocation for each flow in all its scheduled
TTIs is sufficient.

Based on the general approach outlined above, in Phase 1 of
5G-TPS, we aim to find a feasible RB allocation across all the
TTIs in the hyperperiod to satisfy all the flows’ deadlines. If
Phase 1 fails, i.e., an RB allocation satisfying the deadlines of
all the flows cannot be found, Phase 2 is activated to adjust the
RB allocations based on the output of Phase 1. Specifically,
the redundant RBs allocated to certain flows in the unused
TTIs together with some unallocated RBs will be judiciously
assigned to the unschedulable flows to meet their deadlines.

If the channel condition changes within each hyperperiod
in the form of qbi update from each affected UE, we perform
schedule adjustment among different flows, in terms of MCS
index re-selection and RB allocation adjustments. Details of
the schedule adjustment will be discussed in Section VII.

V. RB ALLOCATION IN PHASE 1 OF 5G-TPS

In this section, we describe Phase 1 of 5G-TPS by focusing
on two questions: i) what is a feasible RB allocation that is
satisfactory to all the flows? and ii) how to find such a feasible
RB allocation? Before answering these two questions, we first
determine the setting on the number of data streams for each
UE ui (i.e., yi(t)) in the spatial domain.

In MU-MIMO 5G NR, each UE is equipped with MR

antennas and can receive at most MR concurrent data streams
on each RB. Thus, a larger data rate can be achieved by
each flow fi ∈ F on each RB if multiple data streams
are configured by its corresponding UE ui. Then, more data
of packet pi,k can be transmitted within each TTI and the
transmission of pi,k can complete earlier. In addition, more
data streams configured for each flow leads to less number
of UEs simultaneously receiving in each TTI, since the total
number of data streams from all the flows cannot exceed
the number of antennas equipped on the gNB (i.e., MT ).
This results in less transmission interference among different
UEs caused by channel correlation and thus a higher channel
efficiency can be achieved. Based on the above observations,
we fix yi(t) = MR for each fi in 5G-TPS4.

A. Flow Set Schedulability

By setting yi(t) = MR for each flow fi, the lemma below
defines the feasible RB allocation for each flow (i.e., answering
the first question in Phase 1 design).

Lemma 1. If MR data streams are transmitted by ui in each
TTI and the amount of transmitted data per data stream is
larger than or equal to

⌈
Ci

Di·MR

⌉
, flow fi is schedulable, i.e.,

satisfies the deadline.

4For many 5G commercial products, the number of antennas equipped on
the gNB is an integral multiple of the number of antennas on UE, e.g., 64×64
MIMO supported by Nokia AirScale and 4× 4 MIMO supported by Quectel
RM510Q. Therefore, we argue that MT mod MR = 0, and setting yj(t) =
MR does not result in any resource waste due to the insufficient number of
available data streams, which is less than MR.

The proof of Lemma 1 is straightforward and thus omitted.
According to Lemma 1, an RB allocation for flow fi, denoted
as Bi ⊆ B+, is defined as feasible if the total amount of data
transmitted on RBs b ∈ Bi in one TTI is larger than or equal
to

⌈
Ci

Di·MR

⌉
. Based on Lemma 1, we give the theorem below

to define the schedulability of flow set F .

Theorem 1. If an RB allocation for all the flows fi ∈ F (i ∈
[1, N ]) in one TTI, denoted as Θ = {B1,B2, . . . ,BN}, satis-
fies the following three constraints, flow set F is schedulable.

Constraint 1. Each RB allocation Bi ∈ Θ is feasible for fi
according to Lemma 1.

Constraint 2. For any two UEs ui and uj with w(ui, uj) = 0,
no common RB exists in the RB allocations Bi and Bj .

Constraint 3. Each RB b ∈ B+ can be allocated to at most
MT

MR
flows in each TTI.

Proof Sketch. According to Lemma 1, Constraint 1 guarantees
that each flow fi is schedulable with allocated RBs in Bi. Con-
straint 2 guarantees that no transmission interference occurs
between any two UEs. Constraint 3 satisfies the limit on the
number of antennas equipped on the gNB (i.e., Eq. (2)).

To find a feasible RB allocation Θ for F (i.e., answering
the second question in Phase 1 design), we first determine a
feasible RB allocation candidate set for each flow fi, denoted
as {B∗

i } (i.e., each Bi ∈ {B∗
i } satisfies Constraint 1). We then

formulate an RB allocation selection problem to select one
RB allocation Bi for each flow fi from its candidate set {B∗

i }
such that Constraints 2&3 in Theorem 1 are satisfied. Below
we elaborate these two steps.

B. RB Allocation Candidate Set Generation

Over the entire network bandwidth, there exists a large num-
ber of RB allocations for each flow (e.g.,

∑B
x=1

(
B
x

)
= 2B−1

if all RB allocations are feasible) satisfying Constraint 1,
creating an extensive search space for the RB allocation
selection problem. To improve the search efficiency, we aim
to generate a small RB allocation candidate set {B∗

i } for each
fi, and only include in it the most promising RB allocations
(instead of solving in one shot the RB allocation selection
problem based on all feasible RB allocations of each flow).

Generating {B∗
i } out of all feasible RB allocations is a

challenging task. To tackle this, we explore the relationship
between two critical factors: i) the number of RBs allocated
to each flow and ii) the achievable data rate of each flow. The
number of RBs allocated to a flow impacts the available RB
allocations for other flows in F since the limited number of
RBs over the entire bandwidth are shared by all the flows. On
the other hand, the achievable data rate of each flow determines
its own schedulability. According to Lemma 1, the feasible RB
allocations must have achievable data rate larger than or equal
to

⌈
Ci

Di·MR

⌉
. Furthermore, higher data rates for each UE ui at

a given number of RBs are more desirable since each packet
of fi can transmit the required Ci amount of data using less
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Fig. 4. (a) An example of the highest data rate function βi(x). The dashed
line represents the required data rate. (b) The channel conditions of user ui

on a network with 8 RBs.

TTIs where the RBs within the unused TTIs can be utilized
by other flows to complete their data transmissions in Phase
2. Thus, we introduce the highest data rate function for each
flow to aid us identify the flow’s feasible RB allocations.

Definition 2 (Highest data rate function βi(x)). βi(x) is the
highest data rate that can be achieved by fi per data stream
if x number of RBs in B+ are allocated to fi.

Obtaining βi(x) is to find x RBs with the ‘best’ channel
conditions such that flow fi can achieve the highest data rate.
βi(x) can be calculated by traversing the maximum usable
MCS index qbi on all the RBs b ∈ B+ in a descending order,
and storing the highest data rate achieved using each MCS
index qbi . This process ends until we find at least x RBs with
the maximum usable MCS index equal to the current qbi value.
For example, Fig. 4 shows βi(x) for flow fi on a network with
8 RBs. When calculating βi(4), it starts from qbi = 3, and only
three RBs are with the maximum usable MCS index equal to 3,
thus the achievable data rate is 3× 18 = 54. We proceed with
qbi = 2, and 6 RBs (larger than 4) are with the maximum usable
MCS index larger than or equal to 2 where the achievable data
rate is 4× 14 = 56. Thus, we have βi(4) = 56.

As depicted in Fig. 4, all the RB allocations resulting
βi(x) ≥

⌈
Ci

Di·MR

⌉
(x ≤ B) can form an RB allocation

candidate set {B∗
i } for flow fi. However, the size of this set

is still large due to two reasons: i) large networks may have a
significant number of RBs (i.e., a large B), and ii) each βi(x)
value can correspond to multiple RB allocations. For example,
in Fig. 4, βi(2) = 36 and there exist three RB allocations with
αi({3, 5}) = αi({3, 8}) = αi({5, 8}) = 36, where αi(B)
denotes the highest achievable data rate with RB allocation B.

Therefore, we outline our findings through several important
lemmas below, which provide guidelines on reducing the set
of considered feasible RB allocations, i.e., generating the RB
allocation candidate set {B∗

i } for each flow fi.

Lemma 2. The highest data rate function βi(x) is segmented
by piecewise linear functions of x, denoted as βi(x) =
{βi,j(x) = c(ζj) · x|x ∈ {xj , xj + 1, . . . , x′

j}}, where c(ζj)
denotes the achievable data rate under MCS index ζj . For any
two linear segments βi,j(x) and βi,h(x), if xj < xh, we have
c(ζj) > c(ζh).

Proof Sketch. When the number of RBs having a larger usable
MCS ζj is greater than the current value x, ζj can be selected

as the MCS index and βi(x) increases with the same increment
c(ζj). When x is greater than the number of RBs having ζj ,
a smaller MCS index ζh has to be selected and the slope of
βi(x) reduces to c(ζh)

5.

Lemma 2 indicates that when x increases, if βi(x) transfers
to another linear function, the maximum usable MCS index to
achieve βi(x) decreases. This leads to a set of RBs on each
of which flow fi transmits under a MCS index lower than
qbi . For example, in Fig. 4, βi(4) = αi({1, 3, 4, 5}) and the
MCS index used is m = 2, i.e., c(2) × 4 = 14 × 4 = 56.
However, the maximum usable MCS index on RB3 and RB5

is 3. That is, the channel efficiency achieved on these two RBs
decreases. Therefore, Lemma 2 motivates us to only select the
values of x within the first linear function of βi(x) that satisfies
Constraint 1, i.e., βi(x) ≥

⌈
Ci

Di·MR

⌉
. For instance, in Fig. 4,

the set of considered number of allocated RBs in the candidate
set is reduced from x ∈ {2, 3, . . . , 8} to x ∈ {2, 3}.

Lemma 3. Consider the number of allocated RBs x following
a same linear function, i.e., βi(x) = c(ζj) · x, x ∈ {xj , xj +
1, . . . , xj′}. For any RB allocation B′(xj + 1 ≤ |B′| = x′ ≤
xj′) such that αi(B′) = βi(x

′), there must exists at least one
RB allocation Bo(|Bo| = xj) such that αi(Bo) = βi(xj) and
Bo is a subset of B′, i.e., Bo ⊂ B′.

Proof. Since x′ and xj follow a same linear function, accord-
ing to Lemma 2, βi(x

′) = c(q
bj
i ) ·x′ and βi(xj) = c(q

bj
i ) ·xj .

Thus, for any RB allocation B′ such that αi(B′) = c(q
bj
i ) ·x′,

there exist x′ > xj RBs with the maximum usable MCS higher
than or equal to q

bj
i . Then, we can have an RB allocation

Bo ⊂ B′ by selecting arbitrary xj RBs in B′ such that
αi(Bo) = c(q

bj
i ) · xj = βi(xj).

Lemma 3 indicates that any RB allocation resulting in βi(x
′)

is a superset of an RB allocation resulting in βi(xj), if x′ and
xj (x′ > xj) follow a same linear function. Then, if all the
RB allocations resulting in βi(xj) cannot satisfy Constraint 2
in the RB allocation selection process, the RB allocations
resulting in βi(x

′) cannot either. This motivates us to only
consider the minimum value of x within a linear function of
βi(x) that satisfies Constraint 1. For instance, in Fig. 4, the
set of considered number of allocated RBs is further reduced
from x ∈ {2, 3} to x = 2.

Based on Lemma 2&3, we can determine the RB allocation
candidate set {B∗

i } for each flow fi as follow.

RB allocation candidate set determination. We determine
the number of RBs allocated to flow fi, denoted as x∗

i , as
the minimum x satisfying βi(x) ≥

⌈
Ci

Di·MR

⌉
, and any RB

allocation B resulting αi(B) = βi(x
∗
i ) is included in the RB

allocation candidate set {B∗
i }. For example, in Fig. 4, x∗

i = 2
and {B∗

i } = {B|αi(B) = βi(2)} = {{3, 5}, {5, 8}, {3, 8}}.

5Due to the page limit, the formal proof is included in the supplemental
material which is available from the Program Chair upon request.
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C. RB Allocation Selection

After an RB allocation candidate set {B∗
i } is generated for

each fi, we need to select one RB allocation Bi ∈ {B∗
i } for

each fi such that Constraints 2&3 are satisfied. If a feasible
RB allocation cannot be found for any flow in F , Phase 2 is
triggered to adjust the RB allocation based on the output of
Phase 1. Therefore, we formulate an RB allocation selection
problem P1 as an optimization problem to maximize the
number of schedulable flows in Phase 1.
Problem P1. Given the RB allocation candidate set {B∗

i } for
each flow fi ∈ F , determine a schedulable flow set F1 where
i) each flow fi ∈ F1 is assigned with an RB allocation Bi ∈
{B∗

i }, ii) Constraints 2&3 are satisfied, and iii) the size of F1

is maximized.
Problem P1 is NP-hard since it is equivalent to the set

packing problem and any heuristic designed for solving a set
packing problem can be applied to solve P1 (e.g., [45]).

VI. RB ALLOCATION IN PHASE 2 OF 5G-TPS

In Phase 1, each flow fi is allocated with the same set
of RBs in all the TTIs within the hyperperiod. Although
this allocation reduces overhead and simplifies the scheduling
problem since only RB allocations in the frequency domain
need to be considered, it may allocate unnecessary RBs for
certain flows in the time domain (i.e., in certain TTIs) with
unused data streams in the spatial domain. This waste of
resources may lead to unschedulable flows. To solve this issue,
this section presents a solution to Problem P in Phase 2 to
satisfy the timing requirements of the unschedulable flows by
using those RBs with available data streams in certain TTIs.

A. Remaining RB Set

The remaining RBs in the output of Phase 1 include
unallocated RBs and unused RBs. The former are the set of
RBs that are not allocated to any flows in Phase 1. The latter
is the set of RBs that are allocated to UEs but not used by the
corresponding flows in certain TTIs.
Remaining RBs in the time domain. As described in
Section V-B, if the achieved data rate of flow fi in some
TTIs is larger than the requirement based on Lemma 1 (i.e.,
βi(x

∗) >
⌈

Ci

Di·MR

⌉
), fi only needs

⌈
Ci

βi(x∗
i )·MR

⌉
TTIs to

complete the transmission of each released packet, where the
RBs in the rest Pi −

⌈
Ci

βi(x∗
i )·MR

⌉
TTIs are not used.

Remaining RBs in the spatial domain. If the total number
of data streams transmitted by the flows on an RB in one TTI
is less than the number of antennas on the gNB (i.e., MT ),
this RB can be used as a remaining RB with a set of available
data streams. As an example, the white blocks in Fig. 5(a) and
Fig. 5(b) represent the remaining RBs in the time and spatial
domain, respectively.

B. Phase 2 Overview

In Phase 2, we use the remaining RBs to generate a feasible
schedule for each unschedulable flow fj ∈ F2 = F − F1,

Fig. 5. Illustration of Phase 2 scheduling for flow fj using the remaining RBs
in the time and spatial domain in (a) and (b), respectively. The colored blocks
represent the RB allocation for scheduled flows in Phase 1. The white blocks
represent the remaining RBs. The patterned blocks represent the feasible RB
allocation for fj .

where F1 is the set of flows feasibly scheduled in Phase 1.
Specifically, for fj we determine the RB allocation and MCS
index in the frequency domain, the scheduled TTIs in the time
domain, and the number of data streams in the spatial domain.

In the time domain, we schedule each packet of fj in a
consecutive set of TTIs to reduce control overhead, given that
each DCI message only carries 4 bits for the time domain
resource assignment (the start TTI index and the number of
TTIs) according to 3GPP [46]. In the spatial domain, we
follow the setting of yj = MR to reduce the transmission
interference among UEs and improve the channel efficiency.

Thus, in Phase 2, we assign each packet pj,k of flow fj ∈
F2 with a feasible schedule specifying RB allocation Bj and
TTI duration, denoted as Sj,k = [tj,k, tj,k + Tj), where tj,k
and Tj are the start TTI and length of the consecutive TTIs,
respectively. That is, all the packets released by fj share the
same {Bj , Tj} configuration with individual start TTIs tj,k.
Theorem 2 below specifies the schedulability of flow set F2.
The proof is omitted due to the similarity to that of Theorem 1.

Theorem 2. If the schedule of each flow fj ∈ F2, denoted as
{Bj , Sj} where Sj = {Sj,k|k=1,2,...}, satisfies the following
constraints, flow set F2 is schedulable.

Constraint 4. For any packet pj,k, tj,k ≥ rj,k, tj,k + Tj ≤
rj,k +Dj , and α(Bj) · Tj ≥

⌈
Ci

MR

⌉
.

Constraint 5. If Bj shares a common RB in a TTI with any
Bi (fi ∈ F), w(ui, uj) = 1.

Constraint 6. For any RB b ∈ Bj and TTI in Sj,k, the number
of flows share the same RB is not larger than MT /MR.

To summarize, since both the RB allocation in the frequency
domain and the TTI configuration in the time domain are
considered for flows in Phase 2, we generate the schedule
for each flow fj ∈ F2 in an iterative fashion to avoid
combinatorial explosion among RB allocations for all the flows
in different TTIs. In each iteration, given the set of remaining
RBs within TTIs [1, H], we i) determine {Bj , Sj} for flow
fj with the highest utilization (i.e., Cj/Pj) in F2 since fj
typically requires more RBs in each TTI than the other flows,
and ii) update the set of remaining RBs.

C. Feasible Schedule Generation

In this section, we describe how to generate the feasible
schedule {Bj , Sj} for flow fj using the remaining RBs. We
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Fig. 6. Illustration of the feasible schedule generation for flow fj . (a) The
white blocks represent the remaining RBs of packet pj,k and pj,k+1. (b)
The patterned blocks represent the common RBs of the two packets. (c) The
orange blocks represent the determined feasible schedule for fj .

first give the problem formulation.
Problem P2. Given the set of remaining RBs, the specification
of flow fj , determine a feasible schedule {Bj , Sj} satisfying
all the constraints in Theorem 2.

A feasible schedule {Bj , Sj} specifies a ‘rectangle’ with
|Bj | RBs in the frequency domain6 and Tj TTIs in the time
domain. According to Theorem 2, we need to guarantee two
requirements: (i) the rectangle must exist within the period of
each packet pj,k, and (ii) the amount of data transmitted in
the rectangle must be larger than or equal to Cj .

To satisfy requirement (i), we traverse the set of remaining
RBs usable by all the packets of fj and identify the common
RBs (i.e., RBs in the same relative TTIs in the period of
each packet, see Fig. 6(a) and Fig. 6(b)). For requirement
(ii), generating a feasible schedule satisfying Constraint 4 is
equivalent to finding a rectangle of area Cj , where the length
equals to Tj and the height equals to c(m)·|Bj | (see Fig. 6(c)).
Since the data rate of individual RBs is different, the width of
the rectangle is not only determined by the number of RBs,
|Bj |, but also the set of allocated RBs and the corresponding
MCS index. This problem with non-identical RBs is a variation
of the largest empty rectangle problem where many efficient
algorithms can be applied, e.g., [47], [48].

If a feasible schedule can be generated for each flow
fj ∈ F2, Problem P is solved, i.e., all the flows in F are
schedulable. Note that, 5G-TPS aims to generate a schedule
for flow set F in an efficient and effective manner. For this
reason, some solutions of Problem P may be pruned from the
search space (e.g., some other RB allocations leading to higher
βi(x) with a larger x in Phase 1). Therefore, our solution only
provides a sufficient schedulability condition for flow set F .

VII. DYNAMIC SCHEDULE ADJUSTMENT

In industrial 5G NR, the channel condition between a UE
and the gNB can vary over time caused by moving obstacles,
multipath propagation and interference from other devices, etc.
In this section, we generalize the system model to consider
channel dynamics and present a dynamic schedule adjustment
method based on the two-phase design of 5G-TPS.

As shown in Fig. 7, when the network channel condition is
stable, the feasible schedule of each UE is carried out through
the DCI messages on PDCCH (Physical Downlink Control

6Here we refer to a logical rectangle since the RB allocation in the
frequency domain may not be consecutive.

Fig. 7. The network execution model for handling dynamic channel.

Channel). Upon any channel condition change being measured
by UE ue, it sends an updated CQI report to the gNB on
PUCCH (Physical Uplink Control Channel) to specify the new
qbe values on certain RBs b ∈ B+. To respond to the channel
condition change, the gNB adjusts the schedule(s) for ue and
other UEs if needed, and transmits the updated schedule via
the subsequent DCI messages.

The gNB may receive multiple updated CQI reports from
different UEs within a short time interval. In this case, the
gNB just recomputes the schedules for all the affected UEs.
Therefore, we follow an event-triggered mechanism to perform
schedule adjustment at the gNB, when the channel condition
changes for a particular UE ue, with the aim to satisfy the
timing requirements of all the flows. The schedule adjustment
problem can be defined as follows.
Problem P3. Given the updated set {qbe|(b ∈ B+)} for UE
ue, the schedule of each flow fi ∈ F , determine the schedule
adjustment to meet the deadlines of all the flows fi ∈ F .

The channel condition change of ue can be classified into
three cases.
Case 1: ∀b ∈ Be, a

b,m
e = c(m). In this case, the maximum

usable MCS qbe on each allocated RB b is still larger than or
equal to the selected MCS m. That is, the achieved data rate
on Be of flow fe in each scheduled TTI still satisfies the data
rate requirement according to Lemma 1. Thus, the gNB does
not need to adjust the schedule for flow fe.

Case 2: ∃b ∈ Be, a
b,m
e < c(m), but ∃m′, α(Be) ≥

⌈
Ce

Te·MR

⌉
.

In this case, the maximum usable MCS qbe on certain allocated
RB(s) b is smaller than MCS m, and the achieved data rate on
each of these RB(s) drops to 0 according to the MCS model.
However, another MCS index m′ can be used to achieve a
data rate higher than or equal to the requirement, i.e., α(Be) ≥⌈

Ce

Te·MR

⌉
. Thus, the gNB only updates the MCS index for ue.

Case 3: α(Be) <
⌈

Ce

Te·MR

⌉
. In this case, the amount of data

that can be transmitted by each packet of fe is less than
its payload size according to its current schedule, thus the
schedule needs to be adjusted.

To handle Case 3, we leverage the remaining RBs to
schedule fe using Phase 2. i.e., solving Problem P2. If using
the remaining RBs cannot satisfy the timing requirement of fe
for the channel condition change, we re-generate the schedule
for all the flows fi ∈ F using Phase 1 and Phase 27. If Phase
1 and Phase 2 fail, we deem that flow fe is unschedulable
after channel condition change.

7Adjusting only a subset of flows does not save much control overhead
since each flow without adjustment still needs DCI messages specifying its
subsequent schedules.
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Fig. 8. Case study. (a) The flow specifications in the considered use case and the summarized latency results. (b) UE locations.

VIII. PERFORMANCE EVALUATION

In this section, we perform a simulation-based case study
and conduct extensive simulation experiments to evaluate the
proposed 5G-TPS framework. Although we established a real-
world 5G RAN testbed, as described in Sec. II, conducting 5G-
TPS performance evaluations on the testbed is not feasible for
two reasons. From the hardware aspect, the current 5G testbed
only consists of one gNB and one UE, and the high cost of
USRP devices makes it difficult to create a large-scale testbed
for experimental evaluation of a large set of UEs. From the
software aspect, the OAI 5G project currently only supports
wideband CQI report, where the UE reports one single qi
for the entire bandwidth. However, the scheduling mechanism
proposed in this work is based on 5G subband CQI report (i.e.,
qbi per RB), which is not on the OAI’s roadmap in the near
future and the implementation of subband CQI is non-trivial
and out of the scope of this work.

A. Case Study

Setup. We perform a case study using the specifications of
the mobile operation panel use case provided by 3GPP (Table
A.2.4.1A-1 in [1]). The use case consists of four applications:
1) Emergency Stop (ES) for connectivity availability, 2) Safety
(S) data stream, 3) Visualization of Control (VC), and 4)
Haptic Feedback (HF) data stream. The flow specifications and
UE locations are provided in Fig. 8. We consider a 20 MHz
bandwidth network consisting of 100 RBs. The average qbi of
each UE is configured according to the path loss effect based
on its distance to the gNB. We set MT = 8 and MR = 4.

We let the network run for 40s, i.e., 1000 hyperperiods. In
the first 500 hyperperiods, we apply a stable channel condition
where qbi for each UE is randomly updated once every H TTIs.
In the rest 500 hyperperiods, we assume dynamic channel
conditions, where qbi for each flow is frequently changed every
two packets. Fig. 8(a) summarizes the latency experienced by
all the packets released from individual applications.
Results. In the stable channel condition, although the packets
from a same application may have different latency, they can
always be transmitted within their deadlines. In the dynamic
channel condition, the latency distribution of each flow is more
scattered since more schedule adjustments are performed for
each flow. On the other hand, flow S encounters a fraction of
deadline misses (188 packets out of 80000 packets, denoted

as ∞), which happens when a feasible schedule cannot be
generated for flow S. However, most of the packets from all
the applications still meet their deadlines.

B. Experiment Setup

To evaluate the performance of 5G-TPS under various
network settings, we generate a large number of random
synthetic flow sets. To speed up the simulation which involves
many network nodes, we do not perform computational PHY
processing of the air interface but focus on the MAC layer
scheduler evaluation.

1) Variables: The used variables include the number of
RBs B, the number of flows N , and the normalized flow set
utilization U∗ ∈ (0, 1] where U∗ =

∑
fi∈F

Ci

Pi(B·c(|M|)·MT ) .
Here U∗ captures the flow set workload on one RB per data
stream with the maximum modulation and coding rate c(|M|).
U∗ = 1 means that the flow set can be schedulable only if the
maximum MCS |M| can be used by each UE on all RBs
b ∈ B+ (i.e., under ideal channel condition) and the number
of antennas of each UE equals to MT .

2) Metrics: We use Schedulability Ratio (SR) as the metric
for performance evaluation under the stable channel condition
setting. SR is defined as the ratio of feasible flow sets to all
the generated flow sets. In the dynamic channel condition, we
use the number of Deadline Missed flows (DM) to evaluate
the performance of 5G-TPS in schedule adjustment.

3) Compared Methods: We compare the performance of
5G-TPS with the following scheduling methods.
SMT: The Satisfiability Modulo Theory-based exact solution
(the SMT specifications are omitted due to page limit).
MUST: A 5G NR scheduler aiming at maximizing the number
of packets delivered within the deadlines [49]. MUST relies
on a greedy approach to assigning the most urgent packets
with RBs of the highest data rate.
CA: A channel condition-aware response time analysis for 5G
networks under fixed-priority scheduling [26]. CA is based on
an over-simplified resource model where the entire bandwidth
is treated as one single RB. A generalized version considering
multiple RBs, denoted as CA-Ext, is also implemented8.

8Extending the response time analysis of CA in networks consisting of
multiple RBs is non-trivial. Here, we directly run the fixed priority scheduler
which provides a safe upper bound on the SR/DM achieved by CA-Ext.
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Fig. 9. Evaluation results. (a) SR comparisons in small scale networks. (b) SR comparisons in large networks. (c) DM comparisons in large networks.

RR, MT, and PF: The built-in flow schedulers (i.e., round-
robin, maximum CQI, and proportional fair) in OAI 5G [50].

DRR and PQ: Two extended flow schedulers (i.e., deficit RR
and priority queue) based on the built-in schedulers [51].

C. Experiment Results

1) Stable Channel Condition: In the first set of experi-
ments, we compare the SRs of all the methods by varying
the normalized utilization U∗ under stable channel conditions.
Due to the runtime limitation suffered by the SMT-based
solution, we make the performance comparison under two
network settings: (1) an extremely small scale network with 3
UEs, 8 RBs, MR = 2 and MT = 4, and (2) a more practical
large scale network with N = 25, B = 50, MR = 4 and
MT = 16. Further, we set a 3000s timeout limit for the SMT
approach in large scale networks to prevent it from spending
a long time for finding a result.

Small scale networks. Fig. 9(a) shows the SR as a function
of U∗ in small scale networks. Each point represents the
average value of 5000 trials. The results show that the SRs
of all the methods decrease with the increasing of U∗ and
SMT dominates others as an exact solution. The SR gap
between SMT and 5G-TPS is small (4.63% on average) which
validates the effectiveness of 5G-TPS. On the other hand, 5G-
TPS significantly outperforms most of the other methods (e.g.,
15.44% higher than DRR on average) and shows almost the
same SR with MUST (0.79% lower on average). However,
MUST degrades significantly when the network scales to the
normal size (i.e., N = 25, B = 50 as shown in the next
section). The SR of CA is very low (only 8.84% on average)
while the extended version CA-Ext shows a much higher SR
(38.32% on average). This demonstrates the limitation of the
over-simplified resource model used in [26].

Large scale networks. Fig 9(b) shows the SR as a function of
U∗ in large scale networks. We can see that the SRs of SMT,
PF, MT, PQ and CA drop significantly compared to those in
the small scale networks (17.97% lower on average), and the
SRs of CA-Ext, RR and DRR drop slightly (3.66% lower on
average). The degradation of SMT is mainly because it fails
in most cases under the timeout limit. For example, when
U∗ = 0.6 and SR = 0%, only 7.3% flow sets are determined
by SMT as unschedulable while all other failures are caused
by timeout. The SR drops of the other methods demonstrate

Fig. 10. Runtime comparisons with varying N and B.

that they cannot properly perform resource allocation for many
UEs, even with more available network resources.

On the other hand, the SRs of 5G-TPS and MUST increase,
where the SR increase of 5G-TPS (18.36% higher on average)
is much larger than that of MUST (9.84% higher on average).
This demonstrates that 5G-TPS can better utilize the network
resources to accommodate a large amount of real-time flows.

2) Dynamic Channel Condition: In the second set of ex-
periments, we evaluate all the methods in large scale networks
with dynamic channel conditions. We randomly generate one
flow set with U∗ = 0.4 and run continuously for 200
hyperperiods. qbi of each UE ui is randomly updated once
within each hyperperiod. In this experiment we do not evaluate
SMT and CA because the high overhead of SMT hinders it
from being applied for on-line schedule adjustment and the
performance of CA is dominated by CA-Ext according to the
results in the previous experiments.

Fig. 9(c) shows the DM distributions of all the methods
and the result of each method represents the DM statistics
in one hyperperiod. We can observe that all the methods
suffer from deadline misses for certain flows. However, 5G-
TPS outperforms all the others in terms of much lower DM
where only one flow misses its deadline in one hyperperiod
(i.e., the outlier 1). MUST satisfies the deadlines of most flows
with an average DM of 0.47 where at most 3 flows miss their
deadlines in one hyperperiod. However, MUST results missing
deadline flows in 66 hyperperiods. The other methods suffer
from higher DMs, especially for MT, PF and PQ, where flows
miss their deadlines in all the hyperperiods.

3) Runtime: Since 5G-TPS may rerun both Phase 1 and
Phase 2 online in response to channel condition changes, we
evaluate the runtime of 5G-TPS to validate its online adoption.
Our primary focus is on comparing the runtime trends across
different methods, rather than the absolute runtime values
since our experiments are conducted in Python on a single-
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core processor which is not comparable to the performance
of commercial gNBs (e.g., Atom P5900 with up to 24 cores
in Nokia AirScale Radios). In addition, SMT suffers from
extremely high runtime (e.g., > 2 hours when N > 5 or
B > 10), and thus cannot be used for runtime reconfiguration.
Such high overhead also hindered us from including SMT in
the comparison. Fig. 10 presents the average runtime of each
method, with N and B as variables.

From the results, we can observe a linear increase in the
runtime of most methods with the increases of N and B.
However, the runtime of MUST experiences an explosive
growth with the increase of N , possibly due to its per-
TTI and packet-based scheduling design. In contrast, 5G-
TPS consumes less time compared to MUST (38.12% lower
on average) and the built-in scheduler PF (57.29% lower on
average), demonstrating its efficiency.

IX. RELATED WORK

A. Ultra-Reliable Low-Latency Communications

Supporting ultra-reliable low-latency communications
(URLLC) traffic is one of the key revolutionary novelties of
5G NR. URLLC targets ensuring extremely low latency in
the order of 1ms and providing high reliability of 99.999%
for flows with timing requirements. Some existing works on
URLLC focus on the lower layer functionality (e.g., designing
new robust MCSs [52]–[54], HARQ enhancement [55], [56]
and power management [57]–[59], etc.). On the other hand,
many recent works study the scheduling problems for URLLC
in 5G NR which can be classified into two categories.

In the first category, the problems of joint scheduling for
coexisting URLLC and enhanced mobile broadband (eMBB)
traffic (e.g., web, video) are widely studied [60]–[62]. How-
ever, all these works mainly focus on maximizing the perfor-
mance of eMBB traffic in the presence of sparse URLLC traf-
fic. They all assume that the timing requirements of URLLC
traffic can be satisfied by immediately scheduling them upon
arrival and preempting the ongoing eMBB traffic. They do not
consider massive URLLC scenarios where a large number of
URLLC flows contend for the network resource.

In the second category, several scheduling algorithms and
resource allocation methods based on Proportional Fair (PF)
are proposed for URLLC traffic [23], [63]–[65]. However, all
of these works do not address whether flows can be delivered
before their deadlines. Alternatively, some approaches have
been proposed to satisfy the timing requirements of URLLC
traffic [49], [66], [67]. In [67] and [66], the authors simplify
the scheduling problem by considering either Frequency Divi-
sion Multiple Access (FDMA), which is inefficient in the time
domain, or Time Division Multiple Access (TDMA), which is
inefficient in the frequency domain. Instead, [49] considers
OFDMA-based 5G networks, similar to our work. However,
they simply ignore the data rate impact of MCS selection on
different RBs and do not consider MIMO networks.

B. MU-MIMO

There have been many active studies on designing traffic
schedulers for MIMO cellular networks (e.g., [21], [68]–[72]).
In [70], [71], the authors propose a set of scheduling algo-
rithms for MU-MIMO users to optimize the system through-
put. [69] studies the user selection and resource allocation
problem with the goal of maximizing the user sum rate in
the context of 802.11ax. In [68], the authors address the
problem of frequency domain packet scheduling in MIMO
LTE but do not consider MCS selection. Thus, none of the
above works can jointly optimize the configuration of RBs
and MCS for MU-MIMO users. In [21], the authors present
a 5G scheduler mCore to maximize the network throughput
with joint optimization of RB allocation and MCS selection
to MU-MIMO users. A deep Q-network-based joint adaptive
scheduling algorithm of MCS and space division multiplexing
in 5G massive MIMO-OFDM is proposed in [72] to maxi-
mize the network throughput. However, none of these works
provides guarantees on satisfying the deadline requirements of
real-time flows in 5G NR.

C. MCS Selection

A significant amount of research efforts have been made
on adaptive MCS in wireless communication systems. For
instance, an aggressive MCS selection method is proposed
in [73] to maximize the system throughput in an OFDM sys-
tem. [74] gives a comprehensive analysis of MCS selection in
MIMO-OFDM systems which takes into account hybrid ARQ
(HARQ) operation. [75] proposes an optimal MCS selection
criterion for maximizing user throughput in cellular networks.
All these traditional research on MCS selection mainly study
the mapping between the channel quality and MCS level,
which is assumed given in this work. To further improve the
system performance in terms of throughput, many works focus
on cross-layer scheduling algorithm design together with MCS
selection, e.g., [24], [76], [77]. However, all these works do
not consider hard real-time requirements of 5G flows.

X. CONCLUSION

In this paper, we leverage a real-world 5G RAN testbed to
benchmark the DL throughput with varying MCS indices and
formulate the real-time flow scheduling problem in industrial
5G NR, which features per-flow real-time schedulability guar-
antees through time-frequency-space resource allocation. We
propose a two-phase scheduling framework, namely 5G-TPS,
to construct a feasible schedule with deadline guarantees for all
the flows in 5G NR and enable online schedule adjustment for
flows upon dynamic channel condition changes. Our extensive
experimental results demonstrate the superior performance of
5G-TPS when compared to other state-of-the-art scheduling
approaches in 5G NR, in terms of schedulability ratio, under
both stable and dynamic channel conditions.

As for the future work, we will explore learning-based
dynamic RB allocation strategies and adjustable OFDMA
numerology with varied TTI sizes.
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