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ABSTRACT. Ecologists often leverage contributory science, also referred to as citizen science, to answer large-scale spatial and temporal

biodiversity questions. Contributory science platforms, such as eBird and iNaturalist, provide researchers with incredibly fine-scale

data to track biodiversity. However, data generated by these platforms are spatially biased. Research has shown that factors like income,

race, and historical redlining can influence spatial patterns of reported eBird and iNaturalist data. However, the role of contemporary

residential segregation remains unclear. Additionally, we do not understand how these variables potentially relate to certain Census

tracts having more or less biodiversity data than you would expect based on size or population density. To further understand the social

factors that may contribute to spatial biases in eBird and iNaturalist data, we focused on three cities within the USA (Oakland,

California; St. Louis, Missouri; and Baltimore, Maryland). We specifically investigated how income, race, segregation, and redlining

via Home Owners’ Loan Corporation grades (grades A = best, B, C, and D = hazardous and “redlined”) are associated with the

difference between reported and expected observations based on area and human population density. We find that census tracts with

higher income and more White people generally have more observations than expected. We only find segregation to influence differences

in reported and expected observations in Baltimore, with more segregated Census tracts having more observations than expected. Lastly,

we find that grades C and D consistently have fewer data than expected compared with grades A and B for both platforms in each city.

Our results show that although each city has distinct societal and ecological features, societal inequity permeates each city to shape the

uptake of data for two of the largest sources of biodiversity data.
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INTRODUCTION

Examining the impact of global urbanization on flora and fauna

is becoming increasingly urgent, with urban expansion projected

to increase by 0.82–1.53 million km², threatening over 30,000

species globally (Nilon 2011, Simkin et al. 2022, Lambert and

Schell 2023). Determining the appropriate scale, resolution, and

depth of biological data collection is therefore essential for

sufficiently deciphering ecological responses to rapid landscape

transformation (Chandler et al. 2017, Callaghan et al. 2021,

Blumstein et al. 2023), while simultaneously providing pivotal

solutions for effective and equitable conservation strategies

(Chapman et al. 2024). Specifically, fine-scale data that span large

geographies with temporal depth will be crucial for asking large-

scale questions concerning biodiversity in the era of climate

change and rapid biodiversity loss (Theobald et al. 2015, Kelling

et al. 2019, Perkins et al. 2023).  

Contributory science—also referred to as citizen or community

science—platforms yield immense data that have pertinent

potential for exploring biodiversity conservation hotspots

(McKinley et al. 2017). Specifically, data sources, such as eBird

and iNaturalist, that collect observations of flora and fauna

globally are viable tools for understanding biodiversity within

cities (iNaturalist 2023, eBird 2023). eBird is a platform that

produces semistructured data (i.e., count data with associated

metadata on participant effort), whereas iNaturalist generally

produces unstructured data (i.e., presence only and no

information on participant effort) (Welvaert and Caley 2016).

Data collected on platforms such as eBird and iNaturalist allow

scientists to explore large-scale ecological questions by collecting

data at vast spatial and temporal scales (Winton et al. 2018,

Kirchhoff et al. 2021, Putman et al. 2021). Leveraging these data

is useful due to the challenges of answering ecological questions

on a continental or global scale. For example, contributory data

have been used to understand the factors influencing the death of

migratory birds (Yang et al. 2021) and the distribution of non-

native species (Maistrello et al. 2016, Werenkraut et al. 2020,

Calzada Preston and Pruett-Jones 2021). However, participant-

led platforms may yield biases due to individual differences in

space use and preferences.  

The probability of an individual reporting data to eBird and

iNaturalist can vary across space, often as a result of social and

ecological factors (Gadsden et al. 2023, Perkins et al. 2023, Carlen

et al. 2024). For data to be reported, individuals must have access

to areas and physically be present, leading to spatial variation in

reported data via road density, human density, and land cover

type (Zhang 2020). Recent work has shown that eBird and

iNaturalist data can also be influenced by a suite of social factors

(Carlen et al. 2024). For instance, in eBird data, higher income

and more White neighborhoods have more observations (Perkins

2020, Grade et al. 2022). Similarly, recent evidence suggests that

historical redlining deployed by the Federal Housing Association

(FHA) and local lenders is strongly associated with the depth and

distribution of eBird and iNaturalist observations. Historical

redlining was a discriminatory lending practice used across the

USA and institutionalized by the Home Owner’s Loan

Corporation (HOLC) in the 1930s when HOLC appraisers ranked
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and mapped neighborhood quality to assess investment risk

(Hillier 2003, Fishback et al. 2022). Home Owner’s Loan

Corporation maps ranked neighborhoods on a four-letter scale:

Grade A (i.e., most desirable and “greenlined” areas), which were

mostly high-income and White populations, B (still desirable), C

(definitely declining), and D (i.e., hazardous and “redlined”

areas), which were mostly Black and/or other marginalized

populations (Hillier 2003)—creating maps that serve as proxy for

numerous racialized policies, including redlining, that led to and

upheld disinvestment in these neighborhoods (Fishback et al.

2022, Pickett et al. 2023). As a result of these racialized policies,

these redlined neighborhoods have a higher concentration of

poverty as well as diminished environmental quality, such as an

overall higher concentration of environmental hazards (Appel

and Nickerson 2016, Locke et al 2021, Nardone et al. 2021, Estien

et al. 2024b) and diminished biodiversity (Wood et al. 2023, Estien

et al. 2024a). Further downstream, consequences of redlining are

seen in bird biodiversity data across the USA, with redlined

neighborhoods having lower sampling densities than greenlined

neighborhoods (Ellis-Soto et al. 2023). Thus, social factors such

as race, income, and redlining influence the interpretation of

reported biodiversity data, providing an incomplete assessment

of biodiversity and obscuring our ability to successfully tackle

the crises at hand (Carlen et al. 2024).  

Further investigating the potential biases in these data is crucial

for identifying what variables ecologists must control for when

modeling species distribution or ecology with these data.

Contemporary residential segregation, which is a process and

mechanism that drives the arrangement of different ethno-racial

groups due to differences in labor markets and housing policies

(Morello-Frosch 2002, Grove et al. 2018), may also influence

where biodiversity data are reported. Segregation itself  has been

shown to drive disparities in environmental quality and human

health outcomes, such that humans in extremely segregated cities

face worse environmental hazard outcomes than those in less

segregated cities, regardless of ethnicity (Morello-Frosch and

Jesdale 2006, Jesdale et al. 2013, Casey et al. 2017). Thus, for

contributory science data, although there may be spatial biases

in data by race, disparities may be further exacerbated due to

segregation.  

We aim to fill several gaps with respect to eBird and iNaturalist

data—two of the most used contributory science applications and

largest sources of biodiversity data currently found in the Global

Biodiversity Information Facility—with this study. First, prior

works provide evidence suggesting that observations can vary by

income, race, and HOLC grade (Perkins 2020, Grade et al. 2022,

Ellis-Soto et al. 2023, Estien et al. 2024a), with wealthier, whiter,

and higher HOLC-grade neighborhoods having more

observations. However, we do not know if  those same census

tracts have more observations than you would expect based on

area or human population density. Thus, we ask the novel

question of how the total number of reported observations

“differs” from the number of expected observations. Second, only

one study to our knowledge has examined how race is explicitly

associated with biodiversity data, focusing only on eBird data

(Grade et al. 2022). Therefore, we hold no understanding of the

relationship between race and iNaturalist data, or how race is

associated with eBird data beyond the cities investigated in Grade

et al. (2022). Third, no work has sought to investigate the

relationship between segregation and eBird and iNaturalist data,

despite the potential link. Lastly, outside of a few studies (Perkins

2020, Grade et al. 2022, Ellis-Soto et al. 2023, Estien et al. 2024a),

a majority of literature pertaining to iNaturalist or eBird data

focus on a single city. Examining multiple cities at once allows for

a deeper look at the nuances shaping city-level results as well as

yielding potential generalizations.  

To investigate how income, race, segregation, and historical

redlining were associated with differences in reported and

expected observations in eBird and iNaturalist, we focused on

three North American cities for our analyses: Oakland,

California, St. Louis, Missouri, and Baltimore, Maryland (Fig.

1; Append. 1: figs. A1-A3). We chose these three cities because

they vary in social (e.g., politics, culture, and history) and

ecological (e.g., canopy cover, green space) characteristics and are

located in three distinct locations in the USA (West coast, mid-

West, and East coast). We looked at both eBird and iNaturalist

as we expected to see differences in the biases investigated due to

differences in sampling techniques (semi-structured vs.

unstructured). We expected to find Census tracts that were

previously greenlined, had higher income, percentages of White

people, and segregation indices to have more reported

observations than expected. However, due to the semi-structured

nature of eBird, we expected to find weaker effects of the variables

of interest on eBird data compared with iNaturalist.

 Fig. 1. Map of the USA showing selected cities for analysis:

Oakland, California; St. Louis, Missouri; and Baltimore, MD.

ebird (left image and colored purple) and iNaturalist (right

image and colored pink) observations are not evenly distributed

throughout the city.

 

METHODS

Study areas and data sets

We downloaded all observations from iNaturalist and eBird for

Oakland, California, St. Louis, Missouri, and Baltimore,

Maryland, from the first recorded observation in each database

through 27 July 2022. These observations reflect the total number

of reports to each platform, which may reflect multiple

observations for the same species. Additionally, we used data from

the 2020 United States Census Bureau (U.S. Census Bureau 2022)

to examine race and income across our study area and HOLC

maps from the Mapping Inequity Project to examine historical

redlining (Nelson et al. 2020). We completed all analyses in R

version 4.3.1.  
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Using the “tidycensus” package (Walker and Herman 2021), we

extracted self-reported ethno-racial and income data at the Census

tract level. Next, we calculated the percentage of White people

within a Census tract. Additionally, we calculated segregation using

ethno-racial identities to create a segregation score for each Census

tract via a dissimilarity index, which focuses on multiple racial and

ethnic groups (Iceland 2004). The dissimilarity index represents “the

proportion of the racial group that would need to relocate to another

Census tract to achieve an even distribution throughout a

metropolitan area” (Morello-Frosch and Jesdale 2006). Lastly, to

assign a Census tract a HOLC grade, we calculated the centroid of

each Census tract using the “st_centroid” function in the “sf”

package (Pebesma and Bivand 2023) and assigned the tract a HOLC

grade (i.e., A, B, C, or D) based on where the centroid fell. Because

not all Census tracts had a HOLC grade due to city development,

Census tracts without a HOLC grade were removed from the data

set for a separate HOLC grade analysis (see below).

Statistical analysis

We sought to understand if  the number of reported observations

per Census tract differed from the number of expected observations.

We did this by calculating the expected number of observations for

each city based on total area of the city as well as human population

density across each city. To do this, we took the total observations

within a city and divided it by the total area within the city. We then

repeated this step for the total human population within a city. This

approach yielded an expected amount per meter squared and per

person, respectively. Furthermore, we used the size and population

density of each Census tract to get the expected number of

observations per Census tract for area and population density. Next,

we used a Wilcox Signed-Rank test to determine if  there were

significant differences in the reported and expected observations in

each city.  

To understand if  each social variable was associated with the

difference between the reported and expected observations, we

subtracted the expected number of observations from the reported

observations while controlling for area and human population

density to yield a mismatch value. We then ran generalized linear

models on this mismatch value to examine (1) if  the social factor

had a significant effect on the mismatch value and (2) which social

factor was most associated with the mismatch of observations (via

model selection). We extracted the beta estimates (β) and p values

from each model. A positive estimate value would indicate that there

were more observations than expected, and a negative estimate value

would indicate there were fewer observations than expected. We

built five generalized linear models (GLMs) with a Gaussian

distribution: (1) an income model, (2) a percentage of White people

model, (3) a segregation model, (4) a global model with race, income,

and segregation, and (5) a null model where fixed effects were

omitted. In each model, our response variable was the mismatch of

observations, and the fixed effect was the social variable of interest

(i.e., percentage of White people, income, or segregation). We did

not include Census tract area or human population density as an

offset variable as we had controlled for area and human population

density when calculating the mismatch in observations. We used

AIC model selection to identify the best-performing results. When

the ΔAIC between two or more models was <2, we used the

“performance” package (Lüdecke et al. 2021) to generate a

performance score and select the top model.  

As most cities have expanded past their original HOLC maps, we

re-ran models on the Census tracts located within HOLC grades

and re-ran the above models with an additional HOLC model to

see if  HOLC grade outperformed other social variables. To

understand if  there were differences in reported and expected

observations per grade, we constructed a GLM where observation

type (i.e., reported observations, expected observations per area,

and expected observations per person) was the fixed effect, and

our response variable was the number of observations. We then

extracted the estimated marginal means for the reported, expected

per area, and expected per person observations and performed a

Tukey−Kramer’s post hoc between each type of observation to

investigate if  there were significant differences. We report the β 

estimate and p value.

RESULTS

Oakland

For eBird data, we found significant differences between the

number of reported observations (4219.164 ± 21232.60)

compared with what was expected (Wilcoxon’s p < 0.001), after

controlling for both area (17911.171 ± 61910.02) and human

population density (17911.171 ± 7321.59) (Fig. 2). For Oakland’s

eBird data, we found that income was our best-performing model

when we controlled for area (Table 1), although this did not differ

significantly from our null model (p = 0.080). Similarly,

segregation was our best-performing model when we controlled

for population density (Table 1), although this did not differ

significantly from our null model (p = 0.129). When we re-ran

models with Census tracts that fall within previously HOLC-

graded neighborhoods, our HOLC model was the best-

performing when controlling for area (p < 0.05), whereas income

was our best-performing model when controlling population

density (p < 0.001) (Table 1).  

For income, we did not find significant differences between

reported and expected observations when we controlled for area

(β = -0.1800, p = 0.082) or population density (β = 0.0408, p =

0.282) (Fig. 2A; Table 2). For race, based on the percentage of

White people, we did not find significant differences between the

observed and expected, both for area (β = -195.63, p = 0.408) and

population density (β = 125.30, p = 0.145) (Fig. 2B; Table 2). For

segregation, we did not find significant differences between the

observed and expected, both for area (β = 5033.3, p = 0.862) and

population density (β = 15908, p = 0.131) (Fig. 2C; Table 2). Lastly,

for HOLC grades, we did not find significant differences between

observed and expected for grades A (area: β = -11954, p = 0.1410;

population density: β = -8700, p = 0.335) or B (area: β = -4105, p 

= 0.815; population density: β = -11820, p = 0.199) (Fig. 2D; Table

2). We found that grade C had significantly fewer observations

than expected when we controlled for area (β = -4844, p < 0.001)

and population density (β -18169, p < 0.001) (Fig. 2D; Table 2).

Similarly, we found that grade D had significantly fewer

observations than expected when we controlled for area (β 

= -7775, p < 0.001) and population density (β = -17580, p < 0.001)

(Fig. 2D; Table 2).  

For iNaturalist data, we found a significant difference between

the number of reported observations (523.0959 ± 1544.027)

compared with what was expected after controlling for human

population density (527.5822 ± 1823.590) (Wilcoxon’s p < 0.001),

https://www.ecologyandsociety.org/vol29/iss3/art16/
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 Fig. 2. Oakland eBird and iNaturalist in relationship to social and historical factors. Observations for eBird (top row) and

iNaturalist (bottom row) are shown on a log-scale in relation to income (A and E), race (B and F), segregation (C and G), and

HOLC grade (D and H). Reported observations are shown with gray lines and boxes, expected observations controlled for area are

shown in blue, and expected observations controlled for population density are shown in orange. p values shown on scatterplots are

from generalized linear models. p values between HOLC grades are derived from post hoc comparisons following GLM.

 

but not when we controlled for area (527.5822 ± 215.661)

(Wilcoxon’s p = 0.156) (Fig. 2). We found that our null model

performed best when we controlled for area, whereas when we

controlled for population density, race was our best-performing

model (p < 0.01) (Table 1). When we re-ran models with Census

tracts that fall within previously HOLC-graded neighborhoods,

income was our best-performing model when we controlled for

area and population density (p < 0.001) (Table 1).  

For income, we did not find significant differences between

reported and expected observations when we controlled for area

(β = -0.0011, p = 0.768), but when we controlled for population

density, we found that there were significantly more observations

than expected (β = 0.0054, p < 0.05) (Fig. 2E; Table 2). For race,

based on the percentage of White people, we did not find

significant differences between reported and expected

observations when we controlled for area (β = 6.102, p = 0.484),

but when we controlled for population density, we found that there

were significantly more observations than expected (β = 15.555,

p < 0.01) (Fig. 2F; Table 2). For segregation, we did not find

significant differences between the observed and expected, both

for area (β = -396.4, p = 0.711) and population density (β = -76.03,

p = 0.917) (Fig. 2G; Table 2). Lastly, for HOLC grades, we did

not find significant differences between observed and expected

for Grades A (area: β = 608.1, p = 0.493; population density: β =

704.0, p = 0.392), or B (area: β = 556, p = 0.477; population density:

β = 329, p = 0.769) (Fig. 2H; Table 2). For grade C, we did not

find significant differences between reported and expected

observations when we controlled for area (β = 27.4, p = 0.726),

but when we controlled for population density, we found that there

were significantly fewer observations than expected (β = -365.1,

p < 0.001) (Fig. 2H; Table 2). Additionally, for grade D, we did

not find significant differences between reported and expected

observations when we controlled for area (β = 11.6, p = 0.993),

but when we controlled for population density, we found that there

were significantly fewer observations than expected (β = -277.3,

p < 0.05) (Fig. 2H; Table 2).

St. Louis

For eBird data, we found significant differences between the

number of reported observations (3091.317 ± 15903.711)

compared with what was expected (Wilcoxon’s p < 0.001), after

controlling for both area (3091.163 ± 2529.654) and human

population density (3091.163 ± 1291.985) (Fig. 3). We found that

race was our best-performing model when controlling for area (p 

< 0.05) and population density (Table 1), though our population

density model did not significantly differ from our null (p = 0.091).

When we re-ran models with Census tracts that fall within

previously HOLC-graded neighborhoods, race was still our best-

performing model when controlling for area and population

density (Table 1), although neither model differed significantly

from our null model (area: p = 0.089; population density: p =

0.135).  

For income, we did not find significant differences between the

observed and expected when we controlled area (β = 0.1525, p 

=0.072) or population density (β = 0.1157, p = 0.193) (Fig. 3A;

Table 2). For race, based on the percentage of White people, we

found that there were significantly more observations than

expected when we controlled for area (β = 98.51, p < 0.05), but

not population density (β = 82.90, p = 0.094) (Fig. 3B; Table 2).

For segregation, we did not find significant differences between

the observed and expected, both for area (β = -4362, p = 0.489)

and population density (β = -2725.6, p = 0.679) (Fig. 3C; Table

2). Lastly, for HOLC grades, we did not find significant differences

between observed and expected for Grades A (area: β = 5594, p 

= 0.7040, population density: β = 4151, p = 0.823) or B (area: β 

= 1177, p = 0.842, population density: β = 362, p = 0.984) (Fig.

3D; Table 2). We found that grade C had significantly fewer

https://www.ecologyandsociety.org/vol29/iss3/art16/
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 Table 1. Best-performing model for each city’s eBird and iNaturalist data. Each model was run adjusted for area and human population

density. Cells with asterisks (*) indicate that the model was significantly different from the null model. Note that in Oakland’s iNaturalist

data model with all Census tracks adjusted for area, the null model was the most well-supported model.

 

All census tracts Census tracts within HOLC grades

Area Human population density Area Human population density

Oakland eBird income segregation HOLC* income*

iNaturalist null percentage of White people* income* income*

St. Louis eBird percentage of White people* percentage of White people percentage of White people percentage of White people

iNaturalist percentage of White people* percentage of White people percentage of White people* percentage of White people*

Baltimore eBird income* income* HOLC* HOLC*

iNaturalist income* percentage of White people* percentage of White people* percentage of White people*

observations than expected when we controlled for area (β 

= -2219, p < 0.001) and population density (β = -2826, p < 0.001)

(Fig. 3D; Table 2). We similarly found that grade D had

significantly fewer observations than expected when we controlled

for area (β = -3137, p < 0.001) and population density (β = -2791,

p < 0.001) (Fig. 3D; Table 2).  

For iNaturalist data, we found significant differences between the

number of reported observations (333.8077 ± 1235.9405)

compared with what was expected after controlling for both area

(352.4423 ± 1235.9405) and human population density (352.4423

± 147.3071) (Wilcoxon’s p < 0.001) (Fig. 3). We found that race

was our best-performing model when controlling for area (p <

0.05) and population density (Table 1), although our population

density model did not significantly differ from our null (p = 0.088).

When we re-ran models with Census tracts that fall within

previously HOLC-graded neighborhoods, race was still our best-

performing model when we controlled for area (p < 0.01) and

population density (p < 0.05) (Table 1).  

For income, we found that there were significantly more

observations than expected when we controlled for area (β = 124.4,

p < 0.05), but not population density (β = 0.0144, p = 0.128) (Fig.

3E; Table 2). For race, based on the percentage of White people,

we found that there were significantly more observations than

expected when we controlled for area (β = 8.233, p < 0.05), but

not for population density (β = 6.453, p = 0.091) (Fig. 3F; Table

2). For segregation, we did not find significant differences between

the observed and expected, both for area (β = -577.2, p = 0.225)

and population density (β = -390.7, p = 0.443) (Fig. 3G; Table 2).

Lastly, for HOLC grades, we did not find significant differences

between observed and expected for Grades A (area: β = 336, p =

0.394; population density: β = 172, p = 0.775) or B (area: β = 30.6,

p = 0.927; population density: β = -62.3, p = 0.732) (Fig. 3H; Table

2). We found that grade C had significantly fewer observations

than expected when we controlled for area (β = -185.6, p < 0.001)

and population density (β = -254.8, p < 0.001) (Fig. 3H; Table 2.

Additionally, we found that grade D had significantly fewer

observations than expected when we controlled for area (β 

= -171.2, p < 0.05), but not when we controlled for population

density (β = -131.7, p = 0.088) (Fig. 3H; Table 2).

Baltimore

In Baltimore eBird data, we found significant differences between

the number of reported observations (2855.465 ± 12858.78)

compared with what was expected (Wilcoxon’s p < 0.001) after

controlling for both area (11177.289 ± 12156.62) and human

population density (11487.449 ± 5159.03) (Fig. 4). We found that

income was our best-performing model when controlling for area

(p < 0.01) and population density (p < 0.001) (Table 1). When we

re-ran models with Census tracts that fall within previously

HOLC-graded neighborhoods, our HOLC model was the best-

performing model when we controlled for area and population

density (p < 0.001) (Table 1).  

For income, we found that there were significantly more

observations than expected when we controlled for area (β =

0.0944, p < 0.01) and population density (β = 0.1056, p < 0.001)

(Fig. 4A; Table 2). For race, based on the percentage of White

people, we did not find significant differences between reported

and expected observations when we controlled for area (β = 58.33,

p = 0.164), but when we controlled for population density, we

found that there were significantly more observations than

expected (β = 111.27, p < 0.01) (Fig. 4B; Table 2). For segregation,

we did not find significant differences between reported and

expected observations when we controlled for area (β = -7276, p 

= 0.103), but when we controlled for population density, we found

that there were significantly more observations than expected (β 

= 13454, p < 0.01) (Fig. 4C; Tables 1, 2). Lastly, for HOLC grades,

we found that every grade had significantly fewer observations

than expected. Grade A had significantly fewer observations than

expected when we controlled for area (β = -14284, p < 0.001) and

population density (β = -16801, p < 0.001) (Fig. 4D; Tables 1, 2).

Grade B had significantly fewer observations than expected when

we controlled for area (β = -9742, p < 0.001) and population

density (β = -11007, p < 0.001) (Fig. 4D; Tables 1, 2). Grade C

had significantly fewer observations than expected when we

controlled for area (β = -8063, p < 0.001) and population density

(β = -10066, p < 0.001) (Fig. 4D; Tables 1, 2). Similarly, grade D

had significantly fewer observations than expected when we

controlled for area (β = -4007, p < 0.001) and population density

(β = -8028, p < 0.001) (Fig. 4D; Tables 1, 2).  

For iNaturalist data, we found significant differences between the

number of reported observations (188.4495 ± 460.46516)

compared with what was expected (Wilcoxon’s p < 0.001), after

controlling for area (206.5561 ± 224.65422) and human

population density (212.2879 ± 95.33878) (Fig. 4). We found that

income was our best-performing model when controlling for area

(p < 0.001) and that race was our best-performing model when

controlling for population density (p < 0.001) (Table 1). When we

re-ran models with Census tracts that fall within previously

HOLC-graded neighborhoods, race was the best-performing

model when we controlled for area and population density (p <

0.001) (Table 1).  
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 Table 2. Differences in reported vs. expected observations based on income, percentage of White people, segregation, and HOLC grade

(A–D) controlled by using area and human population density. The directionality of significance is denoted with + (more than expected)

and – (less than expected).

 

Income Percentage of

White people

Segregation Grade A Grade B Grade C Grade D

Oakland eBird Area 0.082 0.408 0.862 0.141 0.815 p < 0.001 (-) p < 0.001 (-)

Human population density 0.282 0.145 0.131 0.335 0.199 p < 0.001 (-) p < 0.001 (-)

Area 0.768 0.484 0.711 0.493 0.477 0.726 0.993

Human population density p < 0.05 (+) p < 0.01 (+) 0.917 0.3923 0.769 p < 0.001 (-) p < 0.05 (-)

Oakland

iNaturalist

St. Louis eBird Area 0.082 p < 0.05 (+) 0.489 0.704 0.842 p < 0.001 (-) p < 0.001 (-)

Human population density 0.282 0.094 0.679 0.823 0.984 p < 0.001 (-) p < 0.001 (-)

Area p < 0.05 (+) p < 0.05 (+) 0.225 0.394 0.927 p < 0.001 (-) p < 0.05 (-)

Human population density 0.128 0.091 0.443 0.775 0.732 p < 0.001 (-) 0.088

St Louis

iNaturalist

Baltimore eBird Area p < 0.01 (+) 0.164 0.103 p < 0.001 (-) p < 0.001 (-) p < 0.001 (-) p < 0.001 (-)

Human population density p < 0.001 (+) p < 0.01 (+) p < 0.01 (+) p < 0.001 (-) p < 0.001 (-) p < 0.001 (-) p < 0.001 (-)

Area p < 0.001 (+) p < 0.001 (+) p < 0.05 (+) 0.634 0.171 p < 0.05 (-) 0.346

Human population density p < 0.001 (+) p < 0.001 (+) p < 0.01 (+) 0.273 0.059 p < 0.001 (-) 0.968

Baltimore

iNaturalist

For income, we found that there were significantly more

observations than expected when we controlled for area (β =

0.0038, p < 0.001) and population density (β = 0.0040, p < 0.001)

(Fig. 4E; Tables 1, 2). For race, based on the percentage of White

people, we found that there were significantly more observations

than expected when we controlled for area (β = 4.292, p < 0.001)

and population density (β = 5.270, p < 0.001) (Fig. 4F; Tables 1,

2). For segregation, we found that there were significantly more

observations than expected when we controlled for area (β =

321.14, p < 0.05) and population density (β = 435.30, p < 0.01)

(Fig. 4G; Tables 1, 2). Lastly, for HOLC grades, we did not find

significant differences between observed and expected for Grades

A (area: β = -64.5, p = 0.634, population density: β = -111.0, p =

0.273), B (area: β = -84.3, p = 0.171; population density: β = -107.7,

p = 0.059), and D (area: β = 90.0, p = 0.346; population density:

β = 15.7, p = 0.968) (Fig. 4H; Tables 1). Grade C had significantly

fewer observations than expected when we controlled for (β 

= -79.3, p < 0.05) and population density (β = -116.3, p < 0.001)

(Fig. 4H; Tables 1, 2).

DISCUSSION

Our results provide additional empirical support suggesting that

income, the percentage of White people, and historical redlining

are associated with disparities in eBird and iNaturalist data

(Perkins 2020; Grade et al. 2022; Ellis-Soto et al. 2023).

Importantly, our study used an integrated approach, assessing the

impacts of segregation, which more accurately reflects ethno-

racial division in the USA, with other sociodemographic

variables. Moreover, our multi-city approach integrated multiple

social variables to examine both the differences between reported

and expected data, as well as examine the variable most associated

with observed differences, a first among similar studies. This

integrated, multi-city, and multi-factorial approach allowed us to

disentangle the relationships among social factors and

contributory biodiversity data. First, we found that income was

uniformly associated across all three cities with differences in

reported and expected in iNaturalist data, although this varied

depending on whether we controlled for area or population

density. Conversely, we only found significant differences between

reported and expected eBird data in Baltimore when considering

income. Second, we found variation at the city-level in the

relationship between the percentage of White people and the

difference between reported and expected eBird and iNaturalist

data. Third, we found the effect of segregation to be city

dependent, with only Baltimore showing a significant relationship

between segregation and the difference between reported and

expected eBird and iNaturalist data. Lastly, we found an

association between HOLC grades and the difference between

reported and expected eBird and iNaturalist data, with grades C

and D consistently having fewer reported observations than we

would expect. Our results demonstrate that city-level differences

in histories and contemporary social demography are important

for understanding disparities in data and the conclusions drawn

when using these data to understand patterns of reported

biodiversity.  

Our results support previous conclusions in the literature that

highlight the connections between income and disparities in eBird

and iNaturalist data (Perkins 2020, Grade et al. 2022). Although

eBird is structured for birders (Wood et al. 2011, Rosenblatt et al.

2022), who typically have relatively high household income

(Eubanks et al. 2004), we only detected a significant relationship

between reported and expected observations based on income in

Baltimore. In contrast, whereas iNaturalist is structured from

general users (Aristeidou et al. 2021a, b), we found that across all

three cities, higher-income Census tracts had significantly more

reported observations than expected. Participation in iNaturalist

is often dependent on having the time, access, and resources to

engage with and identify local biodiversity, similar to eBird.

Moreover, higher-income Census tracts in the USA typically have

more access to environmental amenities (e.g., more street trees

and greenspaces that are typically larger in size) (Schwarz et al.

2015, Rigolon 2016, Fan et al. 2019), which can increase the spatial

overlap between people and wildlife (Belcher et al. 2019, Magle

et al. 2021). This overlap can provide more opportunities for

individuals to sample using both the eBird and iNaturalist apps.
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 Fig. 3. St. Louis eBird and iNaturalist in relationship to social and historical factors. Observations for eBird (top row) and

iNaturalist (bottom row) are shown on a log-scale in relation to income (A and E), race (B and F), segregation (C and G), and

HOLC grade (D and H). Reported observations are shown with gray lines and boxes, expected observations controlled for area are

shown in blue, and expected observations controlled for population density are shown in orange. p values shown on scatterplots are

from generalized linear models (GLM). p values between HOLC grades are derived from post hoc comparisons following GLM.

 

Differences between the number of reported and expected

observations were strongly associated with the percentage of

White people in a Census tract, similar to results presented by

Blake et al. (2020) and Mahmoudi et al. (2022). However, this

difference between expected and reported observations based on

the percentage of White people varied between eBird and

iNaturalist data. Gaps in data only significantly differed across

both data sets in St. Louis and Baltimore, whereas in Oakland,

we only found significant differences in iNaturalist data. This may

be a result of differences in the history of segregation and

racialized policies in each city. For example, in St. Louis, racial

covenants, which prevented the rental or sale of houses in

majority-White neighborhoods to Black people and other People

of Color, were legally written into many St. Louis house deeds

until 1948 when they were outlawed (Gordon 2023). Despite being

outlawed, racialized housing practices have kept the city racially

divided (Salter 2022), leading to the Delmar Divide—a road that

runs East–West and divides the city into the predominantly Black

north city and the predominantly White south city. This line is

evidently reflected in the spatial distribution of both eBird and

iNaturalist data, with the southern half  of the city having more

observations than the North. Similarly, in Baltimore, a

combination of racial violence and racialized policies has created

highly segregated neighborhoods (Grove et al. 2018, Pickett et al.

2023), a legacy of which is still evident today and known as “the

Black Butterfly” because of the proportion of Black people living

in the northeast and northwestern parts of the city causing the

racial distribution to mimic butterfly wings (Brown 2021). We

found that areas with fewer White people, i.e., the “Black

Butterfly”, were reflected in eBird and iNaturalist data.

Throughout all three cities, racialized histories and policies have

led to differences across races, particularly between Black and

White people, in comfortability and recreational outdoor spaces

(Byrne 2012, Finney 2014). Moreover, race-based biases in

governmental processes have led to further disparities in access

to vegetation, green spaces, and tree canopy cover in these cities

(Grove et al. 2018, Nesbitt et al. 2019, Estien et al., 2024b)—vital

environmental characteristics that can encourage sampling while

promoting biodiversity.  

Despite Oakland, St. Louis, and Baltimore visually showing

ethno-racial clustering and being widely known for being

segregated, we only found segregation to have a significant effect

on the difference between reported and expected observations for

eBird or iNaturalist data in Baltimore. In Oakland and St. Louis,

sharp segregation may be dampening the relationship seen with

the percentage of White people, as areas with “high” segregation

may contain large concentrations of any ethnic group. Thus, in a

city like St. Louis, which is incredibly segregated, the bulk of data

in the southern portion of the city (i.e., predominately White

people) and the lack of data from the North part of the city (i.e.,

predominantly Black people) are both considered “high”

segregation. This arrangement of people and data likely dilutes

the potential relationships between segregation as a metric and

data disparities despite clear disparities existing in all three cities

where racial segregation is present. However, we did find a

relationship between segregation and data disparities in

Baltimore. Census tracts that are more segregated in Baltimore

have significantly more observations than expected on both

platforms, which is likely due to high income and White

participants. Thus, to fully understand the role of segregation in

contributory data, future research should examine differences

between highly segregated and predominately White Census

tracts compared with Census tracts that are highly segregated and

predominately non-White.  

In alignment with recent work highlighting the role of historical

redlining via HOLC maps on eBird and iNaturalist data (Ellis-

Soto et al. 2023, Estien et al. 2024a), we found that HOLC grades
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 Fig. 4. Baltimore eBird and iNaturalist in relationship to social and historical factors. Observations for eBird (top row) and

iNaturalist (bottom row) are shown on a log-scale in relation to income (A and E), race (B and F), segregation (C and G), and

HOLC grade (D and H). Reported observations are shown with gray lines and boxes, expected observations controlled for area are

shown in blue, and expected observations controlled for population density are shown in orange. p values shown on scatterplots are

from generalized linear models (GLM). p values between HOLC grades are derived from post hoc comparisons following GLM.

 

differed in their data disparities. Yet, when we restricted our

analysis to Census tracts that were previously assigned HOLC

grades, HOLC grade only outperformed other social variables in

Oakland and Baltimore for eBird data. This result suggests that

other contemporary factors, such as the percentage of White

people and income, are more important in understanding data

disparities in these three cities. Nevertheless, we found that in all

three cities, grades C and D consistently had significantly fewer

reported observations than expected. Surprisingly, for eBird data

in Baltimore, we also found that grades A and B had significantly

fewer reported observations than expected. This result may be

attributed to the fact that although grades A and B typically have

higher-income individuals (Appel and Nickerson 2016), in

Baltimore, previous HOLC grades do not necessarily follow

current patterns of income. For instance, neighborhoods formerly

graded A and B include both high- and low-income Census tracts.

As highlighted in our results, eBird data in Baltimore is associated

with income, with higher-income areas having more observations

than expected. Thus, although redlined neighborhoods are

considered “coldspots” for bird biodiversity data (Ellis-Soto et

al. 2023), in some cities such as Baltimore, greenlined

neighborhoods may have similar data disparities as a result of

more contemporary social processes that drive the spatial

distribution of residents and the associated income, such as

segregation (Pickett et al. 2023).  

Our analysis suggests which social variables may be important for

understanding variation in eBird and iNaturalist data and which

variables influence data disparities for these platforms. For

instance, in St. Louis, the percentage of White people continually

performed as the best-performing model across both data sets

when we controlled for area and human population density,

suggesting that variation in data for these platforms can be

attributed to the relative amount of White people within a Census

tract. However, we only detected a significant effect of the

percentage of White people on the difference between reported

and expected observations for St. Louis’ eBird data when

controlling for area, suggesting that race is linked to landscape

variables that could influence users’ opportunity to report bird

biodiversity data (e.g., access to greenspace; Dai 2011, Kephart

2022). Furthermore, we detected a significant negative effect of

poor HOLC grades on data disparities, with grades C and D

having significantly fewer reported observations than expected

when controlling for both area and human population density.

Overall, this would suggest that for St. Louis eBird data, creating

outreach initiatives for eBird data that reach non-White ethno-

racial groups or neighborhoods that received poor HOLC grades

may prove more effective than working across income groups or

segregation metrics in St. Louis. In contrast, for Oakland’s eBird

data, depending on whether we controlled for area or population

density, different factors were the best-performing model. Yet,

only HOLC grades C and D were significantly associated with

Oakland’s eBird data regardless of which landscape variable we

controlled for. These results suggest that for Oakland’s eBird data,

tailoring outreach initiatives for Census tracts that were

previously graded C or D may help reduce data disparities over

other variables, such as income or race.  

While acknowledging that many factors collide to influence the

spatial distribution of eBird and iNaturalist data (Carlen et al.

2024), our results highlight that contemporary and historical

factors can have a strong influence on the mismatch between

reported and expected observations. This can lead to specific areas

within cities, such as low-income and areas with communities of

color, to have more and/or larger gaps in biodiversity data

(Chapman et al. 2024). However, these gaps in data can be

overcome by local initiatives. For instance, Oakland has relatively

fewer disparities between the amount of reported and expected
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observations than St. Louis and Baltimore. This may be due to

local efforts in science education as well as intentional efforts to

increase contributory science data collection across the city by

local organizations, such as Rotary Nature Center, Oakland

Shoreline Leadership Academy, and the California Academy of

Sciences. Additionally, institutional efforts, such as the City

Nature Challenge created by the California Academy of Sciences

and the National History Museum of Los Angeles County that

engages community members in bioblitzes, can produce spatially

rich biodiversity data while motivating community members to

use contributory platforms outside of bioblitz events. Thus, to

ameliorate these biases, the solution is not simply to sample in

these areas, but rather intentionally engage with communities via

recruitment, education, or workshops that increase their

understanding of these platforms (Perkins et al. 2023).

Furthermore, community empowerment and reduction in

societal inequities (e.g., disparities in income) are critical in

providing individuals with the time, resources, and agency to

engage with these data platforms and participate in local

biodiversity sampling efforts.

CONCLUSION

Contributory data provide researchers with broad spatial and

temporal coverage to ask incredibly powerful and relevant

ecological questions. However, the participant-led nature of

applications like eBird and iNaturalist can create spatial biases in

biodiversity data. In this article, we demonstrated that the

differences between reported and expected observations in eBird

and iNaturalist are associated with income, race, segregation, and

HOLC grades, with factors such as race and redlining consistently

shaping data disparities across cities and platforms. We also show

that the influence of social factors on data disparities can be city

specific, as seen with segregation, as well as platform specific, as

seen with income. Thus, despite differences in sampling protocols

in these platforms, both are subjected to biases as a result of

societal inequities. Our results show that although each city has

distinct societal and ecological features, societal inequity

permeates each city to shape the uptake of two of the largest

sources of biodiversity data. Understanding the role of societal

features (e.g., socioeconomics, segregation) in biodiversity data,

and how this varies by city and platform, is crucial for reducing

the uneven biases present in these data. This work, along with

other research highlighting data gaps in contributory science data,

emphasizes that the solution to these biases is locally built

programs that aim at empowering neighborhoods to collect their

own biodiversity data.
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Figure A1: Oakland, California. Maps of (A) Oakland, California showing (B) Home Owners’ 
Loan Corporation (HOLC) grades, (C) household income, and (D) racial distribution where each 

dot represents 10 people. In box B, polygons are colored based on HOLC grades. Grade A 

represents the “most desirable” neighborhoods which were wealthy and white, grade B were 
“still desirable” neighborhoods, grade C were “definitely declining” neighborhoods and grade D 

“hazardous” neighborhoods is shown in red which were generally poor, Black and other 
marginalized communities. 
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Figure A2: St. Louis, Missouri. Maps of (A) St. Louis, Missouri showing (B) Home Owners’ 
Loan Corporation (HOLC) grades, (C) household income, and (D) racial distribution where each 

dot represents 10 people. In box B, polygons are colored based on HOLC grades. Grade A 

represents the “most desirable” neighborhoods which were wealthy and white, grade B were 
“still desirable” neighborhoods, grade C were “definitely declining” neighborhoods and grade D 

“hazardous” neighborhoods is shown in red which were generally poor, Black and other 
marginalized communities.  
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Figure A3: Baltimore, Maryland. Maps of (A) Baltimore, Maryland showing (B) Home Owners’ 
Loan Corporation (HOLC) grades, (C) household income, and (D) racial distribution where each 

dot represents 10 people. In box B, polygons are colored based on HOLC grade. Grade A 

represents the “most desirable” neighborhoods which were wealthy and white, grade B were 
“still desirable” neighborhoods, grade C were “definitely declining” neighborhoods and grade D 

“hazardous” neighborhoods is shown in red which were generally poor, Black and other 
marginalized communities. 
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