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ABSTRACT. Ecologists often leverage contributory science, also referred to as citizen science, to answer large-scale spatial and temporal
biodiversity questions. Contributory science platforms, such as eBird and iNaturalist, provide researchers with incredibly fine-scale
data to track biodiversity. However, data generated by these platforms are spatially biased. Research has shown that factors like income,
race, and historical redlining can influence spatial patterns of reported eBird and iNaturalist data. However, the role of contemporary
residential segregation remains unclear. Additionally, we do not understand how these variables potentially relate to certain Census
tracts having more or less biodiversity data than you would expect based on size or population density. To further understand the social
factors that may contribute to spatial biases in eBird and iNaturalist data, we focused on three cities within the USA (Oakland,
California; St. Louis, Missouri; and Baltimore, Maryland). We specifically investigated how income, race, segregation, and redlining
via Home Owners’ Loan Corporation grades (grades A = best, B, C, and D = hazardous and “redlined”) are associated with the
difference between reported and expected observations based on area and human population density. We find that census tracts with
higher income and more White people generally have more observations than expected. We only find segregation to influence differences
in reported and expected observations in Baltimore, with more segregated Census tracts having more observations than expected. Lastly,
we find that grades C and D consistently have fewer data than expected compared with grades A and B for both platforms in each city.
Our results show that although each city has distinct societal and ecological features, societal inequity permeates each city to shape the
uptake of data for two of the largest sources of biodiversity data.
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INTRODUCTION

Examining the impact of global urbanization on flora and fauna
is becoming increasingly urgent, with urban expansion projected
to increase by 0.82-1.53 million km?, threatening over 30,000
species globally (Nilon 2011, Simkin et al. 2022, Lambert and
Schell 2023). Determining the appropriate scale, resolution, and
depth of biological data collection is therefore essential for
sufficiently deciphering ecological responses to rapid landscape
transformation (Chandler et al. 2017, Callaghan et al. 2021,
Blumstein et al. 2023), while simultaneously providing pivotal
solutions for effective and equitable conservation strategies
(Chapman et al. 2024). Specifically, fine-scale data that span large
geographies with temporal depth will be crucial for asking large-
scale questions concerning biodiversity in the era of climate
change and rapid biodiversity loss (Theobald et al. 2015, Kelling
et al. 2019, Perkins et al. 2023).

Contributory science—also referred to as citizen or community
science—platforms yield immense data that have pertinent
potential for exploring biodiversity conservation hotspots
(McKinley et al. 2017). Specifically, data sources, such as eBird
and iNaturalist, that collect observations of flora and fauna
globally are viable tools for understanding biodiversity within
cities (iNaturalist 2023, eBird 2023). eBird is a platform that
produces semistructured data (i.e., count data with associated
metadata on participant effort), whereas iNaturalist generally
produces unstructured data (i.e., presence only and no
information on participant effort) (Welvaert and Caley 2016).
Data collected on platforms such as eBird and iNaturalist allow

scientists to explore large-scale ecological questions by collecting
data at vast spatial and temporal scales (Winton et al. 2018,
Kirchhoff et al. 2021, Putman et al. 2021). Leveraging these data
is useful due to the challenges of answering ecological questions
on a continental or global scale. For example, contributory data
have been used to understand the factors influencing the death of
migratory birds (Yang et al. 2021) and the distribution of non-
native species (Maistrello et al. 2016, Werenkraut et al. 2020,
Calzada Preston and Pruett-Jones 2021). However, participant-
led platforms may yield biases due to individual differences in
space use and preferences.

The probability of an individual reporting data to eBird and
iNaturalist can vary across space, often as a result of social and
ecological factors (Gadsden et al. 2023, Perkins et al. 2023, Carlen
et al. 2024). For data to be reported, individuals must have access
to areas and physically be present, leading to spatial variation in
reported data via road density, human density, and land cover
type (Zhang 2020). Recent work has shown that eBird and
iNaturalist data can also be influenced by a suite of social factors
(Carlen et al. 2024). For instance, in eBird data, higher income
and more White neighborhoods have more observations (Perkins
2020, Grade et al. 2022). Similarly, recent evidence suggests that
historical redlining deployed by the Federal Housing Association
(FHA) and local lenders is strongly associated with the depth and
distribution of eBird and iNaturalist observations. Historical
redlining was a discriminatory lending practice used across the
USA and institutionalized by the Home Owner’s Loan
Corporation (HOLC) in the 1930s when HOLC appraisers ranked
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and mapped neighborhood quality to assess investment risk
(Hillier 2003, Fishback et al. 2022). Home Owner’s Loan
Corporation maps ranked neighborhoods on a four-letter scale:
Grade A (i.e., most desirable and “greenlined” areas), which were
mostly high-income and White populations, B (still desirable), C
(definitely declining), and D (i.e., hazardous and “redlined”
areas), which were mostly Black and/or other marginalized
populations (Hillier 2003)—creating maps that serve as proxy for
numerous racialized policies, including redlining, that led to and
upheld disinvestment in these neighborhoods (Fishback et al.
2022, Pickett et al. 2023). As a result of these racialized policies,
these redlined neighborhoods have a higher concentration of
poverty as well as diminished environmental quality, such as an
overall higher concentration of environmental hazards (Appel
and Nickerson 2016, Locke et al 2021, Nardone et al. 2021, Estien
etal. 2024b) and diminished biodiversity (Wood et al. 2023, Estien
et al. 2024a). Further downstream, consequences of redlining are
seen in bird biodiversity data across the USA, with redlined
neighborhoods having lower sampling densities than greenlined
neighborhoods (Ellis-Soto et al. 2023). Thus, social factors such
as race, income, and redlining influence the interpretation of
reported biodiversity data, providing an incomplete assessment
of biodiversity and obscuring our ability to successfully tackle
the crises at hand (Carlen et al. 2024).

Further investigating the potential biases in these data is crucial
for identifying what variables ecologists must control for when
modeling species distribution or ecology with these data.
Contemporary residential segregation, which is a process and
mechanism that drives the arrangement of different ethno-racial
groups due to differences in labor markets and housing policies
(Morello-Frosch 2002, Grove et al. 2018), may also influence
where biodiversity data are reported. Segregation itself has been
shown to drive disparities in environmental quality and human
health outcomes, such that humans in extremely segregated cities
face worse environmental hazard outcomes than those in less
segregated cities, regardless of ethnicity (Morello-Frosch and
Jesdale 2006, Jesdale et al. 2013, Casey et al. 2017). Thus, for
contributory science data, although there may be spatial biases
in data by race, disparities may be further exacerbated due to
segregation.

We aim to fill several gaps with respect to eBird and iNaturalist
data—two of the most used contributory science applications and
largest sources of biodiversity data currently found in the Global
Biodiversity Information Facility—with this study. First, prior
works provide evidence suggesting that observations can vary by
income, race, and HOLC grade (Perkins 2020, Grade et al. 2022,
Ellis-Soto et al. 2023, Estien et al. 2024a), with wealthier, whiter,
and higher HOLC-grade neighborhoods having more
observations. However, we do not know if those same census
tracts have more observations than you would expect based on
area or human population density. Thus, we ask the novel
question of how the total number of reported observations
“differs” from the number of expected observations. Second, only
one study to our knowledge has examined how race is explicitly
associated with biodiversity data, focusing only on eBird data
(Grade et al. 2022). Therefore, we hold no understanding of the
relationship between race and iNaturalist data, or how race is
associated with eBird data beyond the cities investigated in Grade
et al. (2022). Third, no work has sought to investigate the
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relationship between segregation and eBird and iNaturalist data,
despite the potential link. Lastly, outside of a few studies (Perkins
2020, Grade et al. 2022, Ellis-Soto et al. 2023, Estien et al. 2024a),
a majority of literature pertaining to iNaturalist or eBird data
focus on a single city. Examining multiple cities at once allows for
a deeper look at the nuances shaping city-level results as well as
yielding potential generalizations.

To investigate how income, race, segregation, and historical
redlining were associated with differences in reported and
expected observations in eBird and iNaturalist, we focused on
three North American cities for our analyses: Oakland,
California, St. Louis, Missouri, and Baltimore, Maryland (Fig.
1; Append. 1: figs. A1-A3). We chose these three cities because
they vary in social (e.g., politics, culture, and history) and
ecological (e.g., canopy cover, green space) characteristics and are
located in three distinct locations in the USA (West coast, mid-
West, and East coast). We looked at both eBird and iNaturalist
as we expected to see differences in the biases investigated due to
differences in sampling techniques (semi-structured vs.
unstructured). We expected to find Census tracts that were
previously greenlined, had higher income, percentages of White
people, and segregation indices to have more reported
observations than expected. However, due to the semi-structured
nature of eBird, we expected to find weaker effects of the variables
of interest on eBird data compared with iNaturalist.

Fig. 1. Map of the USA showing selected cities for analysis:
Oakland, California; St. Louis, Missouri; and Baltimore, MD.
ebird (left image and colored purple) and iNaturalist (right
image and colored pink) observations are not evenly distributed
throughout the city.

Baltimore, MD
Oakland, CA

St. Louis, MO

METHODS

Study areas and data sets

We downloaded all observations from iNaturalist and eBird for
Oakland, California, St. Louis, Missouri, and Baltimore,
Maryland, from the first recorded observation in each database
through 27 July 2022. These observations reflect the total number
of reports to each platform, which may reflect multiple
observations for the same species. Additionally, we used data from
the 2020 United States Census Bureau (U.S. Census Bureau 2022)
to examine race and income across our study area and HOLC
maps from the Mapping Inequity Project to examine historical
redlining (Nelson et al. 2020). We completed all analyses in R
version 4.3.1.
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Using the “tidycensus” package (Walker and Herman 2021), we
extracted self-reported ethno-racial and income data at the Census
tract level. Next, we calculated the percentage of White people
within a Census tract. Additionally, we calculated segregation using
ethno-racial identities to create a segregation score for each Census
tract via a dissimilarity index, which focuses on multiple racial and
ethnic groups (Iceland 2004). The dissimilarity index represents “the
proportion of theracial group that would need to relocate to another
Census tract to achieve an even distribution throughout a
metropolitan area” (Morello-Frosch and Jesdale 2006). Lastly, to
assign a Census tract a HOLC grade, we calculated the centroid of
each Census tract using the “st_centroid” function in the “sf”
package (Pebesma and Bivand 2023) and assigned the tracta HOLC
grade (i.e., A, B, C, or D) based on where the centroid fell. Because
not all Census tracts had a HOLC grade due to city development,
Census tracts without a HOLC grade were removed from the data
set for a separate HOLC grade analysis (see below).

Statistical analysis

We sought to understand if the number of reported observations
per Census tract differed from the number of expected observations.
We did this by calculating the expected number of observations for
each city based on total area of the city as well as human population
density across each city. To do this, we took the total observations
within a city and divided it by the total area within the city. We then
repeated this step for the total human population within a city. This
approach yielded an expected amount per meter squared and per
person, respectively. Furthermore, we used the size and population
density of each Census tract to get the expected number of
observations per Census tract for area and population density. Next,
we used a Wilcox Signed-Rank test to determine if there were
significant differences in the reported and expected observations in
each city.

To understand if each social variable was associated with the
difference between the reported and expected observations, we
subtracted the expected number of observations from the reported
observations while controlling for area and human population
density to yield a mismatch value. We then ran generalized linear
models on this mismatch value to examine (1) if the social factor
had a significant effect on the mismatch value and (2) which social
factor was most associated with the mismatch of observations (via
model selection). We extracted the beta estimates (B) and p values
from each model. A positive estimate value would indicate that there
were more observations than expected, and a negative estimate value
would indicate there were fewer observations than expected. We
built five generalized linear models (GLMs) with a Gaussian
distribution: (1) an income model, (2) a percentage of White people
model, (3) asegregation model, (4) a global model with race, income,
and segregation, and (5) a null model where fixed effects were
omitted. In each model, our response variable was the mismatch of
observations, and the fixed effect was the social variable of interest
(i.e., percentage of White people, income, or segregation). We did
not include Census tract area or human population density as an
offset variable as we had controlled for area and human population
density when calculating the mismatch in observations. We used
AIC model selection to identify the best-performing results. When
the AAIC between two or more models was <2, we used the
“performance” package (Liidecke et al. 2021) to generate a
performance score and select the top model.
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As most cities have expanded past their original HOLC maps, we
re-ran models on the Census tracts located within HOLC grades
and re-ran the above models with an additional HOLC model to
see if HOLC grade outperformed other social variables. To
understand if there were differences in reported and expected
observations per grade, we constructed a GLM where observation
type (i.e., reported observations, expected observations per area,
and expected observations per person) was the fixed effect, and
our response variable was the number of observations. We then
extracted the estimated marginal means for the reported, expected
per area, and expected per person observations and performed a
Tukey—Kramer’s post hoc between each type of observation to
investigate if there were significant differences. We report the
estimate and p value.

RESULTS

Oakland

For eBird data, we found significant differences between the
number of reported observations (4219.164 * 21232.60)
compared with what was expected (Wilcoxon’s p < 0.001), after
controlling for both area (17911.171 * 61910.02) and human
population density (17911.171 + 7321.59) (Fig. 2). For Oakland’s
eBird data, we found that income was our best-performing model
when we controlled for area (Table 1), although this did not differ
significantly from our null model (p = 0.080). Similarly,
segregation was our best-performing model when we controlled
for population density (Table 1), although this did not differ
significantly from our null model (p = 0.129). When we re-ran
models with Census tracts that fall within previously HOLC-
graded neighborhoods, our HOLC model was the best-
performing when controlling for area (p < 0.05), whereas income
was our best-performing model when controlling population
density (p < 0.001) (Table 1).

For income, we did not find significant differences between
reported and expected observations when we controlled for area
(B = -0.1800, p = 0.082) or population density (p = 0.0408, p =
0.282) (Fig. 2A; Table 2). For race, based on the percentage of
White people, we did not find significant differences between the
observed and expected, both for area (p = -195.63, p = 0.408) and
population density (f = 125.30, p = 0.145) (Fig. 2B; Table 2). For
segregation, we did not find significant differences between the
observed and expected, both for area (f = 5033.3, p = 0.862) and
populationdensity (= 15908, p=0.131) (Fig. 2C; Table 2). Lastly,
for HOLC grades, we did not find significant differences between
observed and expected for grades A (area: f =-11954, p = 0.1410;
population density: p = -8700, p = 0.335) or B (area: p = -4105, p
=0.815; population density: § =-11820, p =0.199) (Fig. 2D; Table
2). We found that grade C had significantly fewer observations
than expected when we controlled for area (§ = -4844, p < 0.001)
and population density (§ -18169, p < 0.001) (Fig. 2D; Table 2).
Similarly, we found that grade D had significantly fewer
observations than expected when we controlled for area (B
=-7775, p <0.001) and population density (p =-17580, p < 0.001)
(Fig. 2D; Table 2).

For iNaturalist data, we found a significant difference between
the number of reported observations (523.0959 * 1544.027)
compared with what was expected after controlling for human
population density (527.5822 + 1823.590) (Wilcoxon’s p < 0.001),
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Fig. 2. Oakland eBird and iNaturalist in relationship to social and historical factors. Observations for eBird (top row) and
iNaturalist (bottom row) are shown on a log-scale in relation to income (A and E), race (B and F), segregation (C and G), and
HOLC grade (D and H). Reported observations are shown with gray lines and boxes, expected observations controlled for area are
shown in blue, and expected observations controlled for population density are shown in orange. p values shown on scatterplots are
from generalized linear models. p values between HOLC grades are derived from post hoc comparisons following GLM.
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but not when we controlled for area (527.5822 £ 215.661)
(Wilcoxon’s p = 0.156) (Fig. 2). We found that our null model
performed best when we controlled for area, whereas when we
controlled for population density, race was our best-performing
model (p < 0.01) (Table 1). When we re-ran models with Census
tracts that fall within previously HOLC-graded neighborhoods,
income was our best-performing model when we controlled for
area and population density (p < 0.001) (Table 1).

For income, we did not find significant differences between
reported and expected observations when we controlled for area
(B =-0.0011, p = 0.768), but when we controlled for population
density, we found that there were significantly more observations
than expected (B = 0.0054, p < 0.05) (Fig. 2E; Table 2). For race,
based on the percentage of White people, we did not find
significant  differences between reported and expected
observations when we controlled for area (f = 6.102, p = 0.484),
but when we controlled for population density, we found that there
were significantly more observations than expected (f = 15.555,
p < 0.01) (Fig. 2F; Table 2). For segregation, we did not find
significant differences between the observed and expected, both
forarea (3 =-396.4, p=0.711) and population density (f =-76.03,
p = 0.917) (Fig. 2G; Table 2). Lastly, for HOLC grades, we did
not find significant differences between observed and expected
for Grades A (area: § = 608.1, p = 0.493; population density: p =
704.0,p=0.392), or B (area: p = 556, p =0.477; population density:
B =329, p = 0.769) (Fig. 2H; Table 2). For grade C, we did not
find significant differences between reported and expected
observations when we controlled for area (B = 27.4, p = 0.726),
but when we controlled for population density, we found that there
were significantly fewer observations than expected (B = -365.1,
p < 0.001) (Fig. 2H; Table 2). Additionally, for grade D, we did
not find significant differences between reported and expected
observations when we controlled for area (B = 11.6, p = 0.993),

0 025 050 075 1 A B ¢ b
Local Segregation Score (Lu)* HOLC Grade

but when we controlled for population density, we found that there
were significantly fewer observations than expected (B = -277.3,
p <0.05) (Fig. 2H; Table 2).

St. Louis

For eBird data, we found significant differences between the
number of reported observations (3091.317 + 15903.711)
compared with what was expected (Wilcoxon’s p < 0.001), after
controlling for both area (3091.163 + 2529.654) and human
population density (3091.163 + 1291.985) (Fig. 3). We found that
race was our best-performing model when controlling for area (p
< 0.05) and population density (Table 1), though our population
density model did not significantly differ from our null (p =0.091).
When we re-ran models with Census tracts that fall within
previously HOLC-graded neighborhoods, race was still our best-
performing model when controlling for area and population
density (Table 1), although neither model differed significantly
from our null model (area: p = 0.089; population density: p =
0.135).

For income, we did not find significant differences between the
observed and expected when we controlled area (B = 0.1525, p
=0.072) or population density (p = 0.1157, p = 0.193) (Fig. 3A;
Table 2). For race, based on the percentage of White people, we
found that there were significantly more observations than
expected when we controlled for area (f = 98.51, p < 0.05), but
not population density (f = 82.90, p = 0.094) (Fig. 3B; Table 2).
For segregation, we did not find significant differences between
the observed and expected, both for area (p = -4362, p = 0.489)
and population density (f = -2725.6, p = 0.679) (Fig. 3C; Table
2). Lastly, for HOLC grades, we did not find significant differences
between observed and expected for Grades A (area: p = 5594, p
= 0.7040, population density: p = 4151, p = 0.823) or B (area: §
= 1177, p = 0.842, population density: p = 362, p = 0.984) (Fig.
3D; Table 2). We found that grade C had significantly fewer
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Table 1. Best-performing model for each city’s eBird and iNaturalist data. Each model was run adjusted for area and human population
density. Cells with asterisks (*) indicate that the model was significantly different from the null model. Note that in Oakland’s iNaturalist
data model with all Census tracks adjusted for area, the null model was the most well-supported model.

All census tracts

Census tracts within HOLC grades

Area Human population density Area Human population density
Oakland eBird income segregation HOLC* income*
iNaturalist null percentage of White people* income* income*

St. Louis eBird percentage of White people*  percentage of White people percentage of White people percentage of White people

iNaturalist percentage of White people*  percentage of White people
Baltimore eBird income* income*
iNaturalist income* percentage of White people*

percentage of White people*
HOLC*
percentage of White people*

percentage of White people*
HOLC*
percentage of White people*

observations than expected when we controlled for area (B
=-2219, p < 0.001) and population density (p = -2826, p < 0.001)
(Fig. 3D; Table 2). We similarly found that grade D had
significantly fewer observations than expected when we controlled
for area (B =-3137, p < 0.001) and population density (f =-2791,
p <0.001) (Fig. 3D; Table 2).

For iNaturalist data, we found significant differences between the
number of reported observations (333.8077 + 1235.9405)
compared with what was expected after controlling for both area
(352.4423 + 1235.9405) and human population density (352.4423
+ 147.3071) (Wilcoxon’s p < 0.001) (Fig. 3). We found that race
was our best-performing model when controlling for area (p <
0.05) and population density (Table 1), although our population
density model did not significantly differ from our null (p = 0.088).
When we re-ran models with Census tracts that fall within
previously HOLC-graded neighborhoods, race was still our best-
performing model when we controlled for area (p < 0.01) and
population density (p < 0.05) (Table 1).

For income, we found that there were significantly more
observations than expected when we controlled for area (= 124.4,
p <0.05), but not population density (f = 0.0144, p = 0.128) (Fig.
3E; Table 2). For race, based on the percentage of White people,
we found that there were significantly more observations than
expected when we controlled for area (p = 8.233, p < 0.05), but
not for population density (f = 6.453, p = 0.091) (Fig. 3F; Table
2). For segregation, we did not find significant differences between
the observed and expected, both for area (§ = -577.2, p = 0.225)
and population density (B =-390.7, p = 0.443) (Fig. 3G; Table 2).
Lastly, for HOLC grades, we did not find significant differences
between observed and expected for Grades A (area: p = 336, p =
0.394; population density: p = 172, p = 0.775) or B (area: f = 30.6,
p=0.927; population density: f =-62.3, p = 0.732) (Fig. 3H; Table
2). We found that grade C had significantly fewer observations
than expected when we controlled for area (f = -185.6, p <0.001)
and population density (§ = -254.8, p < 0.001) (Fig. 3H; Table 2.
Additionally, we found that grade D had significantly fewer
observations than expected when we controlled for area (B
=-171.2, p < 0.05), but not when we controlled for population
density (B =-131.7, p = 0.088) (Fig. 3H; Table 2).

Baltimore

In Baltimore eBird data, we found significant differences between
the number of reported observations (2855.465 * 12858.78)
compared with what was expected (Wilcoxon’s p < 0.001) after
controlling for both area (11177.289 * 12156.62) and human

population density (11487.449 £ 5159.03) (Fig. 4). We found that
income was our best-performing model when controlling for area
(p <0.01) and population density (p < 0.001) (Table 1). When we
re-ran models with Census tracts that fall within previously
HOLC-graded neighborhoods, our HOLC model was the best-
performing model when we controlled for area and population
density (p < 0.001) (Table 1).

For income, we found that there were significantly more
observations than expected when we controlled for area (B =
0.0944, p < 0.01) and population density (f = 0.1056, p < 0.001)
(Fig. 4A; Table 2). For race, based on the percentage of White
people, we did not find significant differences between reported
and expected observations when we controlled for area (f = 58.33,

p = 0.164), but when we controlled for population density, we

found that there were significantly more observations than
expected (B =111.27, p <0.01) (Fig. 4B; Table 2). For segregation,
we did not find significant differences between reported and
expected observations when we controlled for area (f = -7276, p
=0.103), but when we controlled for population density, we found
that there were significantly more observations than expected (B
=13454, p<0.01) (Fig. 4C; Tables 1, 2). Lastly, for HOLC grades,
we found that every grade had significantly fewer observations
than expected. Grade A had significantly fewer observations than
expected when we controlled for area (p =-14284, p <0.001) and
population density (B =-16801, p < 0.001) (Fig. 4D; Tables 1, 2).
Grade B had significantly fewer observations than expected when
we controlled for area (p = -9742, p < 0.001) and population
density (p = -11007, p < 0.001) (Fig. 4D; Tables 1, 2). Grade C
had significantly fewer observations than expected when we
controlled for area (f = -8063, p < 0.001) and population density
(B =-10066, p < 0.001) (Fig. 4D; Tables 1, 2). Similarly, grade D
had significantly fewer observations than expected when we
controlled for area (f = -4007, p < 0.001) and population density
(B =-8028, p < 0.001) (Fig. 4D; Tables 1, 2).

For iNaturalist data, we found significant differences between the
number of reported observations (188.4495 * 460.46516)
compared with what was expected (Wilcoxon’s p < 0.001), after
controlling for area (206.5561 * 224.65422) and human
population density (212.2879 + 95.33878) (Fig. 4). We found that
income was our best-performing model when controlling for area
(p < 0.001) and that race was our best-performing model when
controlling for population density (p < 0.001) (Table 1). When we
re-ran models with Census tracts that fall within previously
HOLC-graded neighborhoods, race was the best-performing
model when we controlled for area and population density (p <
0.001) (Table 1).
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Table 2. Differences in reported vs. expected observations based on income, percentage of White people, segregation, and HOLC grade
(A-D) controlled by using area and human population density. The directionality of significance is denoted with + (more than expected)

and — (less than expected).

Income Percentage of Segregation Grade A Grade B Grade C Grade D
White people

Oakland eBird ~ Area 0.082 0.408 0.862 0.141 0.815 »<0.001 (-) p <0.001 (-)

Human population density 0.282 0.145 0.131 0.335 0.199 »<0.001 (-) »<0.001 (-)
Oakland Area 0.768 0.484 0.711 0.493 0.477 0.726 0.993
iNaturalist Human population density 2<0.05(+) 2<0.01(+) 0.917 0.3923 0.769 »<0.001(-) »<0.05(-)
St. Louis eBird ~ Area 0.082 »<0.05(+) 0.489 0.704 0.842 »<0.001 (-) p <0.001 (-)

Human population density 0.282 0.094 0.679 0.823 0.984 »<0.001 (-) »<0.001 (-)
St Louis Area p<0.05(+) p<0.05(+) 0.225 0.394 0.927 »<0.001 (-) »<0.05(-)
iNaturalist Human population density 0.128 0.091 0.443 0.775 0.732 »<0.001 (-) 0.088
Baltimore eBird Area »<0.01(+) 0.164 0.103 »<0.001 (-) » <0.001 (-) »<0.001 (-) » <0.001 (-)

Human population density 2 <0.001 (+) 2<0.01(+) 2<0.01(+) p<0.001(-) 2 <0.001(-) 2<0.001(-) 2 <0.001 (-)
Baltimore Area »<0.001 (+) »<0.001 (+) »<0.05(+) 0.634 0.171 p<0.05(-) 0.346
iNaturalist Human population density 2 <0.001 (+) 2 <0.001 (+) p2<0.01(+) 0.273 0.059 2<0.001(-) 0.968

For income, we found that there were significantly more
observations than expected when we controlled for area (p =
0.0038, p < 0.001) and population density (f = 0.0040, p < 0.001)
(Fig. 4E; Tables 1, 2). For race, based on the percentage of White
people, we found that there were significantly more observations
than expected when we controlled for area (f = 4.292, p < 0.001)
and population density (B = 5.270, p < 0.001) (Fig. 4F; Tables 1,
2). For segregation, we found that there were significantly more
observations than expected when we controlled for area (p =
321.14, p < 0.05) and population density (B = 435.30, p < 0.01)
(Fig. 4G; Tables 1, 2). Lastly, for HOLC grades, we did not find
significant differences between observed and expected for Grades
A (area: f = -64.5, p = 0.634, population density: f =-111.0, p =
0.273), B (area: p=-84.3, p=0.171; population density: § =-107.7,
p =0.059), and D (area: p = 90.0, p = 0.346; population density:
B=15.7,p=0.968) (Fig. 4H; Tables 1). Grade C had significantly
fewer observations than expected when we controlled for (B
=-79.3, p < 0.05) and population density (§ = -116.3, p < 0.001)
(Fig. 4H; Tables 1, 2).

DISCUSSION

Our results provide additional empirical support suggesting that
income, the percentage of White people, and historical redlining
are associated with disparities in eBird and iNaturalist data
(Perkins 2020; Grade et al. 2022; Ellis-Soto et al. 2023).
Importantly, our study used an integrated approach, assessing the
impacts of segregation, which more accurately reflects ethno-
racial division in the USA, with other sociodemographic
variables. Moreover, our multi-city approach integrated multiple
social variables to examine both the differences between reported
and expected data, as well as examine the variable most associated
with observed differences, a first among similar studies. This
integrated, multi-city, and multi-factorial approach allowed us to
disentangle the relationships among social factors and
contributory biodiversity data. First, we found that income was
uniformly associated across all three cities with differences in
reported and expected in iNaturalist data, although this varied
depending on whether we controlled for area or population

density. Conversely, we only found significant differences between
reported and expected eBird data in Baltimore when considering
income. Second, we found variation at the city-level in the
relationship between the percentage of White people and the
difference between reported and expected eBird and iNaturalist
data. Third, we found the effect of segregation to be city
dependent, with only Baltimore showing a significant relationship
between segregation and the difference between reported and
expected eBird and iNaturalist data. Lastly, we found an
association between HOLC grades and the difference between
reported and expected eBird and iNaturalist data, with grades C
and D consistently having fewer reported observations than we
would expect. Our results demonstrate that city-level differences
in histories and contemporary social demography are important
for understanding disparities in data and the conclusions drawn
when using these data to understand patterns of reported
biodiversity.

Our results support previous conclusions in the literature that
highlight the connections between income and disparities in eBird
and iNaturalist data (Perkins 2020, Grade et al. 2022). Although
eBird is structured for birders (Wood et al. 2011, Rosenblatt et al.
2022), who typically have relatively high household income
(Eubanks et al. 2004), we only detected a significant relationship
between reported and expected observations based on income in
Baltimore. In contrast, whereas iNaturalist is structured from
general users (Aristeidou et al. 20214, b), we found that across all
three cities, higher-income Census tracts had significantly more
reported observations than expected. Participation in iNaturalist
is often dependent on having the time, access, and resources to
engage with and identify local biodiversity, similar to eBird.
Moreover, higher-income Census tracts in the USA typically have
more access to environmental amenities (e.g., more street trees
and greenspaces that are typically larger in size) (Schwarz et al.
2015, Rigolon 2016, Fanetal. 2019), which can increase the spatial
overlap between people and wildlife (Belcher et al. 2019, Magle
et al. 2021). This overlap can provide more opportunities for
individuals to sample using both the eBird and iNaturalist apps.
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Fig. 3. St. Louis eBird and iNaturalist in relationship to social and historical factors. Observations for eBird (top row) and
iNaturalist (bottom row) are shown on a log-scale in relation to income (A and E), race (B and F), segregation (C and G), and
HOLC grade (D and H). Reported observations are shown with gray lines and boxes, expected observations controlled for area are
shown in blue, and expected observations controlled for population density are shown in orange. p values shown on scatterplots are
from generalized linear models (GLM). p values between HOLC grades are derived from post hoc comparisons following GLM.
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Differences between the number of reported and expected
observations were strongly associated with the percentage of
White people in a Census tract, similar to results presented by
Blake et al. (2020) and Mahmoudi et al. (2022). However, this
difference between expected and reported observations based on
the percentage of White people varied between eBird and
iNaturalist data. Gaps in data only significantly differed across
both data sets in St. Louis and Baltimore, whereas in Oakland,
we only found significant differences in iNaturalist data. This may
be a result of differences in the history of segregation and
racialized policies in each city. For example, in St. Louis, racial
covenants, which prevented the rental or sale of houses in
majority-White neighborhoods to Black people and other People
of Color, were legally written into many St. Louis house deeds
until 1948 when they were outlawed (Gordon 2023). Despite being
outlawed, racialized housing practices have kept the city racially
divided (Salter 2022), leading to the Delmar Divide—a road that
runs East—West and divides the city into the predominantly Black
north city and the predominantly White south city. This line is
evidently reflected in the spatial distribution of both eBird and
iNaturalist data, with the southern half of the city having more
observations than the North. Similarly, in Baltimore, a
combination of racial violence and racialized policies has created
highly segregated neighborhoods (Grove et al. 2018, Pickett et al.
2023), a legacy of which is still evident today and known as “the
Black Butterfly” because of the proportion of Black people living
in the northeast and northwestern parts of the city causing the
racial distribution to mimic butterfly wings (Brown 2021). We
found that areas with fewer White people, i.e., the “Black
Butterfly”, were reflected in eBird and iNaturalist data.
Throughout all three cities, racialized histories and policies have
led to differences across races, particularly between Black and
White people, in comfortability and recreational outdoor spaces
(Byrne 2012, Finney 2014). Moreover, race-based biases in

08 A [ [ D
HOLC Grade

0 02 04 06
Local Segregation Score (Lu)*

governmental processes have led to further disparities in access
to vegetation, green spaces, and tree canopy cover in these cities
(Grove et al. 2018, Nesbitt et al. 2019, Estien et al., 2024b)—vital
environmental characteristics that can encourage sampling while
promoting biodiversity.

Despite Oakland, St. Louis, and Baltimore visually showing
ethno-racial clustering and being widely known for being
segregated, we only found segregation to have a significant effect
on the difference between reported and expected observations for
eBird or iNaturalist data in Baltimore. In Oakland and St. Louis,
sharp segregation may be dampening the relationship seen with
the percentage of White people, as areas with “high” segregation
may contain large concentrations of any ethnic group. Thus, in a
city like St. Louis, which is incredibly segregated, the bulk of data
in the southern portion of the city (i.e., predominately White
people) and the lack of data from the North part of the city (i.e.,
predominantly Black people) are both considered “high”
segregation. This arrangement of people and data likely dilutes
the potential relationships between segregation as a metric and
data disparities despite clear disparities existing in all three cities
where racial segregation is present. However, we did find a
relationship between segregation and data disparities in
Baltimore. Census tracts that are more segregated in Baltimore
have significantly more observations than expected on both
platforms, which is likely due to high income and White
participants. Thus, to fully understand the role of segregation in
contributory data, future research should examine differences
between highly segregated and predominately White Census
tracts compared with Census tracts that are highly segregated and
predominately non-White.

In alignment with recent work highlighting the role of historical
redlining via HOLC maps on eBird and iNaturalist data (Ellis-
Soto et al. 2023, Estien et al. 2024a), we found that HOLC grades
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Fig. 4. Baltimore eBird and iNaturalist in relationship to social and historical factors. Observations for eBird (top row) and
iNaturalist (bottom row) are shown on a log-scale in relation to income (A and E), race (B and F), segregation (C and G), and
HOLC grade (D and H). Reported observations are shown with gray lines and boxes, expected observations controlled for area are
shown in blue, and expected observations controlled for population density are shown in orange. p values shown on scatterplots are
from generalized linear models (GLM). p values between HOLC grades are derived from post hoc comparisons following GLM.
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differed in their data disparities. Yet, when we restricted our
analysis to Census tracts that were previously assigned HOLC
grades, HOLC grade only outperformed other social variables in
Oakland and Baltimore for eBird data. This result suggests that
other contemporary factors, such as the percentage of White
people and income, are more important in understanding data
disparities in these three cities. Nevertheless, we found that in all
three cities, grades C and D consistently had significantly fewer
reported observations than expected. Surprisingly, for eBird data
in Baltimore, we also found that grades A and B had significantly
fewer reported observations than expected. This result may be
attributed to the fact that although grades A and B typically have
higher-income individuals (Appel and Nickerson 2016), in
Baltimore, previous HOLC grades do not necessarily follow
current patterns of income. For instance, neighborhoods formerly
graded A and B include both high- and low-income Census tracts.
Ashighlighted in our results, eBird data in Baltimore is associated
with income, with higher-income areas having more observations
than expected. Thus, although redlined neighborhoods are
considered “coldspots” for bird biodiversity data (Ellis-Soto et
al. 2023), in some cities such as Baltimore, greenlined
neighborhoods may have similar data disparities as a result of
more contemporary social processes that drive the spatial
distribution of residents and the associated income, such as
segregation (Pickett et al. 2023).

Our analysis suggests which social variables may be important for
understanding variation in eBird and iNaturalist data and which
variables influence data disparities for these platforms. For
instance, in St. Louis, the percentage of White people continually
performed as the best-performing model across both data sets
when we controlled for area and human population density,
suggesting that variation in data for these platforms can be
attributed to the relative amount of White people within a Census
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tract. However, we only detected a significant effect of the
percentage of White people on the difference between reported
and expected observations for St. Louis’ eBird data when
controlling for area, suggesting that race is linked to landscape
variables that could influence users’ opportunity to report bird
biodiversity data (e.g., access to greenspace; Dai 2011, Kephart
2022). Furthermore, we detected a significant negative effect of
poor HOLC grades on data disparities, with grades C and D
having significantly fewer reported observations than expected
when controlling for both area and human population density.
Overall, this would suggest that for St. Louis eBird data, creating
outreach initiatives for eBird data that reach non-White ethno-
racial groups or neighborhoods that received poor HOLC grades
may prove more effective than working across income groups or
segregation metrics in St. Louis. In contrast, for Oakland’s eBird
data, depending on whether we controlled for area or population
density, different factors were the best-performing model. Yet,
only HOLC grades C and D were significantly associated with
Oakland’s eBird data regardless of which landscape variable we
controlled for. These results suggest that for Oakland’s eBird data,
tailoring outreach initiatives for Census tracts that were
previously graded C or D may help reduce data disparities over
other variables, such as income or race.

While acknowledging that many factors collide to influence the
spatial distribution of eBird and iNaturalist data (Carlen et al.
2024), our results highlight that contemporary and historical
factors can have a strong influence on the mismatch between
reported and expected observations. This can lead to specificareas
within cities, such as low-income and areas with communities of
color, to have more and/or larger gaps in biodiversity data
(Chapman et al. 2024). However, these gaps in data can be
overcome by local initiatives. For instance, Oakland has relatively
fewer disparities between the amount of reported and expected
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observations than St. Louis and Baltimore. This may be due to
local efforts in science education as well as intentional efforts to
increase contributory science data collection across the city by
local organizations, such as Rotary Nature Center, Oakland
Shoreline Leadership Academy, and the California Academy of
Sciences. Additionally, institutional efforts, such as the City
Nature Challenge created by the California Academy of Sciences
and the National History Museum of Los Angeles County that
engages community members in bioblitzes, can produce spatially
rich biodiversity data while motivating community members to
use contributory platforms outside of bioblitz events. Thus, to
ameliorate these biases, the solution is not simply to sample in
these areas, but rather intentionally engage with communities via
recruitment, education, or workshops that increase their
understanding of these platforms (Perkins et al. 2023).
Furthermore, community empowerment and reduction in
societal inequities (e.g., disparities in income) are critical in
providing individuals with the time, resources, and agency to
engage with these data platforms and participate in local
biodiversity sampling efforts.

CONCLUSION

Contributory data provide researchers with broad spatial and
temporal coverage to ask incredibly powerful and relevant
ecological questions. However, the participant-led nature of
applications like eBird and iNaturalist can create spatial biases in
biodiversity data. In this article, we demonstrated that the
differences between reported and expected observations in eBird
and iNaturalist are associated with income, race, segregation, and
HOLC grades, with factors such as race and redlining consistently
shaping data disparities across cities and platforms. We also show
that the influence of social factors on data disparities can be city
specific, as seen with segregation, as well as platform specific, as
seen with income. Thus, despite differences in sampling protocols
in these platforms, both are subjected to biases as a result of
societal inequities. Our results show that although each city has
distinct societal and ecological features, societal inequity
permeates each city to shape the uptake of two of the largest
sources of biodiversity data. Understanding the role of societal
features (e.g., socioeconomics, segregation) in biodiversity data,
and how this varies by city and platform, is crucial for reducing
the uneven biases present in these data. This work, along with
other research highlighting data gapsin contributory science data,
emphasizes that the solution to these biases is locally built
programs that aim at empowering neighborhoods to collect their
own biodiversity data.
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Figure Al: Oakland, California. Maps of (A) Oakland, California showing (B) Home Owners’
Loan Corporation (HOLC) grades, (C) household income, and (D) racial distribution where each
dot represents 10 people. In box B, polygons are colored based on HOLC grades. Grade A
represents the “most desirable” neighborhoods which were wealthy and white, grade B were
“still desirable” neighborhoods, grade C were “definitely declining” neighborhoods and grade D
“hazardous” neighborhoods is shown in red which were generally poor, Black and other
marginalized communities.
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Figure A2: St. Louis, Missouri. Maps of (A) St. Louis, Missouri showing (B) Home Owners’
Loan Corporation (HOLC) grades, (C) household income, and (D) racial distribution where each
dot represents 10 people. In box B, polygons are colored based on HOLC grades. Grade A
represents the “most desirable” neighborhoods which were wealthy and white, grade B were
“still desirable” neighborhoods, grade C were “definitely declining” neighborhoods and grade D

“hazardous” neighborhoods is shown in red which were generally poor, Black and other
marginalized communities.
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Figure A3: Baltimore, Maryland. Maps of (A) Baltimore, Maryland showing (B) Home Owners’
Loan Corporation (HOLC) grades, (C) household income, and (D) racial distribution where each
dot represents 10 people. In box B, polygons are colored based on HOLC grade. Grade A
represents the “most desirable” neighborhoods which were wealthy and white, grade B were
“still desirable” neighborhoods, grade C were “definitely declining” neighborhoods and grade D
“hazardous” neighborhoods is shown in red which were generally poor, Black and other
marginalized communities.
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