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Abstract
Dynamical mean-field theory (DMFT) and its cluster extensions provide an efficient Green’s function for-

malism to simulate spectral properties of periodic systems at quantum many-body level. However, traditional

cluster DMFT breaks translational invariance in solid-state materials, and the best strategy to capture non-

local correlation effects within cluster DMFT remains elusive. In this work, we investigate the use of over-

lapping atom-centered impurity fragments in recently-developed ab initio all-orbital DMFT, where all local

orbitals within the impurity are treated with high-level quantum chemistry impurity solvers. We demonstrate

how the translational symmetry of the lattice self-energy can be restored by designing symmetry-adapted

embedding problems, which results in improved description of spectral functions in two-dimensional boron

nitride monolayer and graphene at the levels of many-body perturbation theory (GW) and coupled-cluster

theory. Furthermore, we study the convergence of self-energy and density of states as the embedding size is

systematically expanded in one-shot and self-consistent DMFT calculations.
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I. INTRODUCTION

Quantum embedding methods [1–8] provide an efficient route for many-body simulation of ma-

terial properties, because of their simultaneous treatment of local electron interactions and large

system size (i.e., thermodynamic limit). Among variants of quantum embedding theories, Green’s

function based embedding approaches, such as dynamical mean-field theory (DMFT) [2, 5, 9–

15] and self-energy embedding theory (SEET) [6, 16, 17], are particularly suitable for simulat-

ing spectral functions and band structures of solids as measured in photoemission spectroscopy

experiments. In DMFT, the full system is mapped onto a local impurity problem, which is self-

consistently embedded in a non-interacting bath through the hybridization function. By computing

the one-particle Green’s function of the impurity using a high-level theory, DMFT captures strong

local correlation effects via the many-body self-energy correction.

Despite the success of DMFT in the calculation of correlated electron materials, it remains

challenging to achieve systematic convergence towards the full system limit. The main reason is

associated with the uncontrolled errors in the construction of impurity orbitals and the effective

Hamiltonian within the commonly-used downfolding formalism [18], where a low-energy model

with a few strongly correlated orbitals is derived through techniques such as constrained random

phase approximation (cRPA) [19]. This uncertainty is further complicated by the double counting

errors when DFT is combined with DMFT [20]. Recently, one of us proposed a full cell DMFT

framework to avoid these issues and enable ab initio HF+DMFT and GW+DMFT simulations of

solids [5, 12]. In full cell DMFT, all local orbitals of atoms within a selected unit cell or supercell

are treated as the impurity, and bare Coulomb interactions are adopted in the impurity Hamilto-

nian. Many-body quantum chemistry solvers, such as the coupled-cluster Green’s function (CCGF)

approach [21–27], are then employed to solve the large impurity problem.

Nevertheless, the full cell formalism retains certain challenges in traditional cluster extensions

of DMFT [28–30]. A major issue is that cluster DMFT breaks the translational invariance when

a finite number of sites are chosen as the impurity. Within the full cell framework, this issue

arises because non-local interactions between atoms within the same cell are treated at a higher

level of theory than interactions between atoms belonging to different cells. Such choice leads

to non-equivalent self-energy elements for pairs of atoms that should be equivalent under peri-

odic boundary conditions. As a result, the band degeneracy in the Brillouin zone can be severely

disrupted, limiting the understanding of band structures and interpretation of spectral functions.
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Previously, several reperiodization and center-focused extrapolation schemes have been explored

to restore the translational symmetry of the self-energy in the DMFT simulations of 1D and 2D

Hubbard models [31–33]. However, these numerical experiments stay at the level of lattice models,

and a strategy to preserve translational invariance within full cell DMFT remains elusive.

In this work, we investigate the use of overlapping atom-centered fragments as the impurity

to restore translational symmetry in all-orbital DMFT simulations (we avoid the name “full cell

DMFT” since the impurity is no longer confined in a cell). By systematically expanding the size

of the impurity around a center atom, we formulate embedding problems that largely preserve the

real-space symmetry in the original lattice, using 2D boron nitride monolayer (BN) and graphene

as test cases. With G0W0 and CCGF impurity solvers [24, 34, 35], we show that accurate local

and momentum-resolved density of states (DOS) can be obtained by applying a center-focused

self-energy correction scheme in HF+DMFT and GW+DMFT calculations, compared against full

G0W0 and EOM-CCSD benchmarks [36]. We also compare the performance of one-shot and self-

consistent DMFT simulations and discuss the challenges in converging towards the full system

limit.

II. METHOD

The all-orbital periodic HF+DMFT and GW+DMFT algorithms were described in detail in

Refs. [5, 12]. Here, we only summarize the main formalism necessary for the discussion of

symmetry-adapted DMFT. Our goal is to compute the lattice interacting Green’s function of the

full system

𝐆(𝐤, 𝜔) = [𝐠−1(𝐤, 𝜔) − 𝚺(𝐤, 𝜔)]−1, (1)

where 𝐠(𝐤, 𝜔) and 𝚺(𝐤, 𝜔) are non-interacting Green’s function and the self-energy defined in the

𝐤-space. We focus on the description of HF+DMFT algorithm here, so 𝐠(𝐤, 𝜔) is simply the HF

Green’s function

𝐠(𝐤, 𝜔) = [(𝜔 + 𝜇)𝐈 − 𝐅(𝐤)]−1, (2)

where 𝐅(𝐤) is the Fock matrix and 𝜇 is the chemical potential. The local interacting Green’s func-

tion in real space can be obtained through a Fourier transform

𝐆(𝐑 = 𝟎, 𝜔) = 1
𝑁𝐤

∑

𝐤
𝐆(𝐤, 𝜔), (3)
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and the spectral function is defined as

𝐀(𝐑 = 𝟎, 𝜔) = −1
𝜋
Im𝐆(𝐑 = 𝟎, 𝜔 + 𝑖𝜂), (4)

with 𝜂 as the broadening factor.

The key approximation of DMFT is to approximate the momentum-dependent self-energy

𝚺(𝐤, 𝜔) with the impurity self-energy 𝚺imp(𝜔)

𝚺(𝐤, 𝜔) ≈ 𝚺imp(𝜔), (5)

which is equivalent to ignoring the non-local inter-site many-body corrections to the mean-field

self-energy in real space. Here, the impurity self-energy 𝚺imp(𝜔) is obtained by solving an impurity

embedded in a non-interacting bath. The bath orbitals are derived from the discretization of a

hybridization function 𝚫(𝜔), defined as

𝚫(𝜔) = (𝜔 + 𝜇)𝐈 − 𝐅imp − 𝚺imp(𝜔) −𝐆−1(𝐑 = 𝟎, 𝜔), (6)

which describes the delocalization effects from the impurity-environment interaction. The DMFT

equations are solved self-consistently until the impurity Green’s function 𝐆imp(𝜔) and the lattice

Green’s function 𝐆(𝐑 = 𝟎, 𝜔) agree:

𝐆imp(𝜔) = 𝐆(𝐑 = 𝟎, 𝜔), (7)

The DMFT lattice Green’s function is

𝐆(𝐑 = 𝟎, 𝜔) = 1
𝑁𝐤

∑

𝐤
[(𝜔 + 𝜇)𝐈 − 𝐅(𝐤) − 𝚺imp(𝜔)]−1, (8)

where the impurity self-energy is

𝚺imp(𝜔) = 𝚺HL
imp(𝜔) − 𝚺HF

imp (9)

with 𝚺HL
imp(𝜔) being the self-energy computed at a high-level theory (G0W0 or CCGF in this work).

We employ the intrinsic atomic orbital plus projected atomic orbital (IAO+PAO) basis [4, 37] to

represent impurity local orbitals. Once an impurity fragment is selected, the impurity Hamiltonian

can be written as:

𝐻̂imp =
∑

𝑖𝑗∈imp
𝐹𝑖𝑗𝑎

†
𝑖 𝑎𝑗 +

1
2

∑

𝑖𝑗𝑘𝑙∈imp
(𝑖𝑗|𝑘𝑙)𝑎†𝑖 𝑎

†
𝑘𝑎𝑙𝑎𝑗 , (10)
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where 𝑖, 𝑗, 𝑘, 𝑙 stand for impurity local orbitals and (𝑖𝑗|𝑘𝑙) denotes a two-electron repulsion integral

(ERI). The HF contribution to the impurity self-energy can be exactly removed from the one-

particle impurity Hamiltonian:

𝐹𝑖𝑗 = (𝐹imp)𝑖𝑗 −
∑

𝑘𝑙∈imp
(𝛾imp)𝑘𝑙[(𝑖𝑗|𝑙𝑘) −

1
2
(𝑖𝑘|𝑙𝑗)], (11)

where 𝛾imp is the impurity density matrix, so HF+DMFT is free of double counting.

To obtain the bath parameters, we optimize bath couplings {𝑉 (𝑛)
𝑖𝑝 } and energies {𝜖𝑛} to minimize

a cost function over a range of real-frequency points [5]:

𝐷 =
∑

𝜔𝑙

∑

𝑖𝑗

(

Δ𝑖𝑗(𝜔𝑙 + 𝑖𝜂) −
𝑁𝜖
∑

𝑛=1

𝑁𝑝
∑

𝑝=1

𝑉 (𝑛)
𝑖𝑝 𝑉 (𝑛)

𝑗𝑝

𝜔𝑙 + 𝑖𝜂 − 𝜖𝑛

)2
, (12)

where 𝑁𝜖 is the number of bath energies and 𝑁𝑝 is the number of bath orbitals per bath energy,

and we use a broadening factor 𝜂 = 0.05 a.u. unless specified. The bath degrees of freedom are

truncated by only coupling bath orbitals to the valence IAOs. The full impurity-bath problem is

defined from the embedding Hamiltonian

𝐻̂emb = 𝐻̂imp +
𝑁𝜖
∑

𝑛=1

𝑁𝑝
∑

𝑝=1

(

∑

𝑖
𝑉 (𝑛)
𝑖𝑝 (𝑎†𝑖 𝑎𝑛𝑝 + 𝑎†𝑛𝑝𝑎𝑖) + 𝜖𝑛𝑎

†
𝑛𝑝𝑎𝑛𝑝

)

. (13)

III. COMPUTATIONAL DETAILS

The focus of this work is to investigate how the choice of DMFT impurity fragments affects

translational invariance in the lattice self-energy and Green’s function. Different from previous

full cell DMFT, we choose to start from an impurity of single atom and gradually expand the

impurity by adding adjacent atoms. As shown in Fig. 1 for 2D BN, this leads to the following

fragment choices: (1) center atom only (impurity = 1 atom); (2) center atom plus nearest neighbors

(impurity = 4 atoms); (3) center atom plus nearest and second nearest neighbors (impurity = 10

atoms). We refer to these impurity choices as symmetry-adapted DMFT, in contrast to the full cell

DMFT that employs a unit cell of two atoms as the impurity. Because there are two different types

of atoms in 2D BN, we formulate and solve two embedding problems (B-centered and N-centered)

in each DMFT iteration. The lattice self-energy is then updated through a center-focused scheme
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in real space [33]

𝚺atom-B
latt (𝜔) = 𝚺B@B-imp

imp (𝜔) (14)

𝚺atom-N
latt (𝜔) = 𝚺N@N-imp

imp (𝜔) (15)

𝚺B-N
latt (𝜔) =

1
2
× [𝚺B-N@N-imp

imp (𝜔) + 𝚺B-N@B-imp
imp (𝜔)] (16)

Here, the lattice self-energy within B or N atom (e.g., 𝚺atom-B
latt (𝜔)) is approximated by the impurity

self-energy obtained from corresponding B or N centered impurity calculations (e.g., 𝚺B@B-imp
imp (𝜔)),

while the B-N bond self-energy 𝚺B-N
latt (𝜔) is averaged over two impurity calculations. We note that,

the non-local B-N bond self-energy can only be obtained from DMFT simulations with more than

a pair of B-N atoms, e.g., “center+1st” or “center+1st+2nd” impurity fragment. In principle,

one could also extract longer-range self-energy from large-cluster DMFT calculations, such as the

non-local B1-B2 self-energy in 2D BN (B1/B2 denote different B atoms). However, we do not

pursue this direction here, as we find such longer-range self-energy contributes negligibly to the

final prediction of DOS at the G0W0 level.

Impurity = Center Impurity = Center + 1st Impurity = Center + 1st + 2nd

FIG. 1. Illustration of impurity sizes used in DMFT simulations of 2D BN in this work, i.e., center atom

only, center atom plus nearest neighbors (“center + 1st”), as well as center atom plus nearest and second

nearest neighbors (“center + 1st + 2nd”).

By designing impurity problems that better preserve the real-space symmetry of the original

lattice and enforcing the self-energy of all atoms and bonds to be treated on equal footing, we an-

ticipate that the translational symmetry of DMFT self-energy can be largely restored. We note in

passing that the strategy to mitigate inequivalent treatments of center and edge sites in quantum em-

bedding has been previously explored by Van Voorhis and co-workers in the bootstrap embedding

theory [38, 39].

We studied 2D boron nitride and graphene using experimental lattice constants: 2.50Å for 2D

BN [40] and 2.42Å for graphene [41]. We used a vacuum spacing of 20Å along the 𝑧 axis to
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avoid image interactions between neighboring sheets. All calculations were performed based on

the PySCF quantum chemistry package [42, 43] and the fcDMFT library [44]. Norm-conserving

GTH-PADE pseudopotentials [45, 46] and the GTH-DZVP basis set were employed. The minimal

basis sets GTH-SZV were used as the pre-defined AOs to construct the IAOs. Γ-centered 6×6×1

(2D BN) and 7 × 7 × 1 (graphene) 𝐤-point meshes were adopted for the mean-field and DMFT

calculations. In DMFT calculations, the numbers of impurity and bath orbitals are (13i, 48b)

(“center”, 13 impurity and 48 bath orbitals), (26i, 96b) (“unit cell”), (52i, 144b) (“center+1st”),

(130i, 144b) (“center+1st+2nd”), respectively.

IV. RESULTS

(a) (b) (c)

FIG. 2. One-shot all-orbital HF+DMFT density of states for 2D BN with G0W0@HF impurity solver. All

results are compared against full G0W0@HF calculation. Four choices of impurity are tested: a BN unit cell,

center atom only, center atom plus nearest neighbors, center atom plus nearest and second nearest neighbors.

All spectra are shifted so that the valence band maximum is aligned at zero. (a) Local DOS. (b) Momentum-

resolved DOS at Γ point. (c) Momentum-resolved DOS at K point.

We first show DOS results of one-shot all-orbital HF+DMFT calculations of 2D BN in Fig. 2,

with G0W0@HF as the impurity solver. We use the G0W0 solver here since the full G0W0 DOS can

be easily obtained to serve as the benchmark. As shown in Fig. 2a, when the impurity fragment

consists of only a B or N atom (i.e., a multiorbital extension of single-site DMFT that ignores all

inter-atom self-energy corrections), one-shot HF+DMFT severely underestimates the band gap by

1.44 eV (“center”), despite an improvement over HF (2.97 eV overestimation). As the impurity
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size is increased, the band gap error of one-shot HF+DMFT is systematically reduced to 0.89 eV

(“unit cell”), 0.54 eV (“center+1st”), and 0.19 eV (“center+1st+2nd”), due to the better treatment

of non-local correlation and screening effects. We find that, the one-shot full cell DMFT spectrum

shape does not agree well with that of full G0W0@HF, especially in the valence part, which is

a consequence of breaking translational invariance. This is further revealed by the momentum-

resolved DOS in Fig. 2b-2c. For example, at Γ point, the two degenerate valence bands at around

−2 eV are artificially split into two bands separated by 1 eV.

On the other hand, the spectrum shape is much improved in symmetry-adapted one-shot

HF+DMFT, suggesting that the translational symmetry in lattice self-energy is largely restored.

At Γ point, all three symmetry-adapted DMFT calculations predict correct band degeneracy across

a wide energy window. At K point, only the band degeneracy prediction at around −10 eV is

slightly off in “center+1st” and “center+1st+2nd” calculations. Moreover, we note that even at

the “center+1st+2nd” level with 10 atoms as the impurity, one-shot HF+DMFT does not achieve

quantitative agreement with full G0W0@HF. This discrepancy suggests that the self-energy as-

sembly scheme may not be optimal or larger impurity size is needed within current HF+DMFT

framework.

(a) (b) (c)

FIG. 3. Self-consistent all-orbital HF+DMFT density of states for 2D BN with G0W0@HF impurity solver.

(a) Local DOS. (b) Momentum-resolved DOS at Γ point. (c) Momentum-resolved DOS at K point.

We further investigate the effect of self-consistency in HF+DMFT simulations of 2D BN, as

presented in Fig. 3. We observe that self-consistent DMFT improves the prediction of band gap for

small and medium impurity sizes, reducing the error from 1.44 eV (“center”), 0.89 eV (“unit cell”),

and 0.54 eV (“center+1st”) to 0.52 eV, 0.42 eV, and 0.08 eV. Furthermore, the DOS predictions in

small-impurity calculations (“center” and “unit cell”) are also superior when the self-consistency

is enforced, while the improvement in the “center+1st” HF+DMFT calculation is less significant.
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(a) (b)

FIG. 4. Band structure for 2D BN from self-consistent HF+DMFT with G0W0@HF solver. Heat map

represents the HF+DMFT result, while the white dashed line represents the full G0W0@HF reference. (a)

Full cell impurity. (2) “Center+1st” impurity.

By directly comparing the band structures predicted by self-consistent full cell and “center+1st”

HF+DMFT calculations in Fig. 4, we further demonstrate that the description of band degener-

acy and shape is improved by restoring the translational symmetry (note that valence bands are

misaligned in the full cell DMFT band structure).

FIG. 5. Local DOS of 2D BN from one-shot GW+DMFT calculation with “center+1st” impurity fragment,

compared with full G0W0 and EOM-CCSD spectra.

After establishing the accuracy of symmetry-adapted HF+DMFT for 2D BN, we further per-

form one-shot GW+DMFT calculation with the “center+1st” impurity. Here, the coupled-cluster

Green’s function at the singles and doubles level is employed as the impurity solver (which is equiv-

alent to EOM-CCSD). The local DOS prediction is shown in Fig. 5. We see that symmetry-adapted

GW+DMFT predicts perfect valence spectrum compared with the periodic EOM-CCSD spectrum

of the full system. The one-shot GW+DMFT predicted direct band gaps are 9.54 eV (Γ point) and

6.90 eV (K point), an underestimation of 0.24 eV and 0.58 eV compared to full EOM-CCSD. In
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contrast, G0W0@HF overestimates the direct band gaps by 0.82 eV and 0.85 eV.

(a) (b) (c)

FIG. 6. One-shot all-orbital HF+DMFT density of states for graphene with G0W0@HF impurity solver. (a)

Local DOS. (b) Momentum-resolved DOS at Γ point. (c) Momentum-resolved DOS at 𝐤 = (2∕7, 2∕7, 0).

Next, we apply symmetry-adapted HF+DMFT with G0W0 impurity solver to study graphene,

a 2D semi-metal system (note: there is a small band gap here due to the use of 7 × 7 × 1 𝐤-

mesh). We choose graphene because electron correlation in a semi-metal is typically believed to

be more delocalized than that in an insulator (e.g., 2D BN), making it a more challenging system for

embedding methods. We find that the breaking of translational invariance in full cell HF+DMFT

(i.e., with “unit cell” impurity) is more severe in the case of graphene compared to 2D BN, resulting

in unsatisfactory predictions of local DOS in both one-shot (Fig. 6a) and self-consistent HF+DMFT

(Fig. 7a). The violation of band degeneracy in full cell HF+DMFT is more evident at Γ point

(Fig. 6b and Fig. 7b), for instance, the degenerate bands at −4 eV and 12 eV are split into multiple

non-degenerate peaks.

In the meantime, we find systemically improved DOS predictions in symmetry-adapted one-shot

HF+DMFT when the impurity size is increased. The band gap error is 0.93 eV (“center”), 0.22

eV (“center+1st), and 0.05 eV (“center+1st+2nd) compared with full G0W0@HF result. Partic-

ularly, near-quantitative prediction is achieved when the “center+1st+2nd” impurity is employed

in one-shot HF+DMFT calculation. This better performance of symmetry-adapted HF+DMFT in

graphene compared to 2D BN is somewhat unexpected. This may result from the fact that non-

local C-C bond self-energy does not require averaging over two impurity calculations in the case

of graphene, while such averaging scheme may introduce extra errors in the case of 2D BN. More-

over, comparing Fig. 6 and Fig. 7, we conclude that the impact of self-consistency is limited in
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HF+DMFT simulations of graphene.

(a) (b) (c)

FIG. 7. Self-consistent all-orbital HF+DMFT density of states for graphene with G0W0@HF impu-

rity solver. (a) Local DOS. (b) Momentum-resolved DOS at Γ point. (c) Momentum-resolved DOS at

𝐤 = (2∕7, 2∕7, 0).

V. CONCLUSIONS

In this work, we investigate a strategy to restore translational symmetry in ab initio all-orbital

HF+DMFT and GW+DMFT calculations of periodic systems, such as 2D boron nitride and

graphene. By employing overlapping impurity fragments that preserve the real-space symmetry

of original lattice, we demonstrate the possibility to enforce translational invariance in DMFT

lattice self-energy, leading to improved DOS and band degeneracy compared to previous full cell

DMFT. The DOS and band gap predictions can also be systematically improved by expanding the

symmetry-adapted impurity fragment sizes. Our results suggest that self-consistency plays a less

crucial role than the size and shape of impurity fragments, which is partly due to the weakly cor-

related nature of the systems tested in this study. We conclude that achieving fast and systematic

convergence towards the full system limit, while preserving the translational invariance, remains a

challenging task for ab initio all-orbital DMFT. It is interesting to further investigate the strategy for

extracting and assembling non-local lattice self-energy from small impurity calculations. Screened

Coulomb interactions may be adopted within the current ab initio DMFT framework to acceler-

ate the convergence, e.g., through recently-developed moment-constrained RPA approach [47].

Finally, more numerical investigations are needed to understand how this strategy for restoring

translational symmetry would work for systems with stronger electron correlations.
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