
Tunable Suboptimal Heuristic Search

Stephen Wissow1, Fanhao Yu2, Wheeler Ruml1

1 University of New Hampshire, Durham, NH, USA
2 Nashua High School South, Nashua, NH, USA

sjw@cs.unh.edu, yufanhao12@gmail.com, ruml@cs.unh.edu

Abstract

Finding optimal solutions to state-space search problems of-
ten takes too long, even when using A* with a heuristic func-
tion. Instead, practitioners often use a tunable approach, such
as weighted A*, that allows them to adjust a trade-off between
search time and solution cost until the search is sufficiently
fast for the intended application. In this paper, we study algo-
rithms for this problem setting, which we call ‘tunable subop-
timal search’. We introduce a simple baseline, called Speed*,
that uses distance-to-go information to speed up search. Ex-
perimental results on standard search benchmarks suggest
that 1) bounded-suboptimal searches suffer overhead due to
enforcing a suboptimality bound, 2) beam searches can per-
form well, but fare poorly in domains with dead-ends, and 3)
Speed* provides robust overall performance.

Introduction

A wide variety of intractable planning problems can be for-
mulated as state-space search problems, so it is no surprise
that many search problems take too long to solve optimally,
even when using an optimally efficient algorithm such as A*
(Hart, Nilsson, and Raphael 1968; Dechter and Pearl 1988).
A* is a best-first search that orders its search frontier on in-
creasing f(n) = g(n) + h(n), where g(n) represents the
cost of the path to node n from the root search node, corre-
sponding to the problem’s initial state, and h(n) represents
a heuristic estimate of the remaining cost-to-go from n to a
node corresponding to a state satisfying the problem’s goal
predicate goal(s). While optimal solutions are of course al-
ways preferred, when they are infeasible to compute many
practitioners use methods that relax A*’s solution optimal-
ity guarantee in favor of reduced computation time, methods
that we refer to broadly as suboptimal. At the opposite ex-
treme from A* is the agile (also referred to as satisficing
or pure suboptimal) search algorithm, whose objective is to
find any solution at all as fast as possible. However, what is
often desired is a tunable suboptimal algorithm, which al-
lows the practitioner to adjust the trade-off between solution
cost and search time, ideally spanning from optimal to as-
fast-as-possible.

Weighted A* (wA*) is a popular best-first search that
orders its search frontier on increasing f ′(n) = g(n) +

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

w · h(n) : w ≥ 1 (Pohl 1970). (In the implementation tested
below, we break ties in favor of low h.) wA* is a bounded
suboptimal algorithm, because it guarantees that the solu-
tion it returns will have a cost that is within a factor w of
the cost C∗ of an optimal solution. Several other bounded
suboptimal algorithms have been proposed, including A∗

ǫ

(Pearl and Kim 1982), Explicit Estimation Search (Thayer
and Ruml 2011, EES), Dynamic Potential Search (Gilon,
Felner, and Stern 2016, DPS), and Round-Robin-d (Fickert,
Gu, and Ruml 2022, RR-d). Researchers have also proposed
bounded cost search algorithms, such as Potential Search
(Stern, Puzis, and Felner 2011), that guarantee returning a
solution whose cost is less than a provided budget or failing
if no such solution exists.

However, using bounded algorithms for tunable subopti-
mal search, where we don’t really care about guaranteed cost
but just want the best empirical performance, raises two is-
sues. The first is that many bounded search algorithms, such
as wA* and DPS, focus on g(n) cost-so-far and h(n) cost-
to-go to guide their search, and they converge in the limit
of large bounds to Greedy Search (also known as Greedy
Best-First Search, GBFS) (Michie and Ross 1969), which
is a best-first search that orders its search frontier on in-
creasing h(n), breaking ties on low g(n). It is well-known
that, for problems that feature actions with different costs
(also known as ‘non-unit costs’), guiding search on d(n)
distance-to-go (in terms of number of state-space transitions,
or equivalently number of action applications or number of
arcs in the state-space graph) can be much faster (Thayer,
Ruml, and Kreis 2009). While some bounded-suboptimal al-
gorithms, such as EES and RR-d, use d(n) in concert with
h(n) to guide their search and do converge in the limit of
large bounds to Speedy Search, a best-first search on increas-
ing d(n) that breaks ties on low h (Ruml and Do 2007), they
often have high overheads from maintaining multiple order-
ings of the open list and coordinating between them in or-
der to enforce the suboptimality bound. We are not aware of
a previously-proposed simple, low-overhead tunable algo-
rithm that can span the spectrum between A* and Speedy.

Second, while the bounded suboptimal and bounded-cost
search settings have received attention, recent work has not
explicitly addressed the problem setting of tunable subop-
timal search—even though, in practice, this is the problem
setting to which algorithms like wA* are often applied. It



is unclear whether methods might exist that find solutions
of similar (or lower) cost in similar (or less) time if they
do not need to enforce bounds. In other words, previous
work has not evaluated ‘the price of bounded suboptimality’
in heuristic search. Do these guarantees come with perfor-
mance overheads than can be avoided when the guarantees
are not needed in practice? How might they fare empirically
against approaches like beam search (Bisiani 1987) that do
not guarantee bounds?

In this paper, we explicitly study algorithms for the tun-
able suboptimal search setting. We present a simple and
complete tunable suboptimal algorithm, Speed*, that offers
performance trade-offs spanning from A* to Speedy. We
find through experimental evaluation that Speed* often out-
performs not just wA* but also RR-d, the state-of-the-art
bounded suboptimal algorithm. We also see that Speed* is
robust to domains with dead-ends, unlike beam-based search
approaches such as Bead (Lemons et al. 2022) and Rectan-
gle search (Lemons et al. 2024). This work is the first to eval-
uate RR-d and Rectangle in the tunable suboptimal setting.
The results suggest that Bead search offers the best trade-off
between cost vs. time for domains without dead-ends and
that Speed* is the preferred approach where robustness to
dead-ends is required. We hope this work draws researchers’
attention to the tunable suboptimal search setting, since it of-
ten seems to be what practitioners really want.

Previous Work

Greedy and Speedy are agile heuristic search algorithms
designed to find any (unboundedly suboptimal) solution as
quickly as possible. Greedy search can be seen as the lim-
iting case of wA* as w is increased. Speedy search often
finds solutions more quickly than Greedy in non-unit-cost
settings.

Many bounded suboptimal methods have been proposed,
starting with wA*, and including EES and DPS. The cur-
rent state-of-the-art is RR-d (Fickert, Gu, and Ruml 2022).
In addition to a ‘cleanup’ list that orders the entire search
frontier on increasing f(n), RR-d maintains two additional

queues, ‘open’ ordered on increasing f̂(n), and ‘focal’ or-
dered on increasing d(n), that contain a subset of nodes from
the cleanup list: {n : f(n) ≤ w · fmin} ⊆ cleanup, where
fmin is the f -value of the node at the front of the cleanup

list. f̂ is a potentially inadmissible ‘best estimate’ of f∗.

In the implementation tested below, f̂ is computed from f
using online error correction and a global error model, fol-
lowing Thayer, Dionne, and Ruml (2011). To select the next
node to expand, RR-d alternates among its three queues in a
round-robin fashion. With an admissible heuristic, and since
g increases over the course of the search, fmin will never
exceed the optimal solution cost, thus guaranteeing a goal
selected from any of the three queues will always have a cost
within the suboptimality bound. The intuition behind the dif-
ferent orderings of the three queues is that (1) a node expan-
sion from the cleanup (f -ordered) list raises fmin, admitting
additional nodes to the other queues, (2) a node expansion

from the open (f̂ -ordered) list makes progress toward low-
cost solutions (and enqueues them), and (3) a node expan-

sion from the focal (d-ordered) list pursues nearby solutions
that can be found quickly. In their empirical evaluation, RR-
d performed better than other queue alternation schemes that
Fickert, Gu, and Ruml (2022) tested, so we do not compare
against them.

Beam search is a tunable search that does not offer a
bound. It can be understood as a variant of breadth-first
search that also proceeds by depth layer. Instead of expand-
ing every node at each depth like bread-first search, beam
search selects for expansion only a constant number of nodes
k at each depth layer; k is referred to as the beam’s ‘width’.
Any nodes not selected for expansion at a given depth are
pruned, making beam search incomplete. Nodes at a given
depth layer are evaluated based on some given static eval-
uator function, and the k best are selected for expansion.
Their successors at the next depth layer of the search tree
are evaluated and their k best selected for expansion, and so
on. Bead search (Lemons et al. 2022, Bead) is a beam search
that selects nodes preferring low d(n). It was found to return
lower-cost solutions faster than beam search using f or h.

Hill-climbing is a very simple heuristic search algorithm
that commits to a single successor from each node that is ex-
panded. According to a given state evaluation function, Hill-
climbing selects and commits to the most promising succes-
sor s of the initial state si, then to the most promising suc-
cessor s′ of s, then the most promising successor s′′ of s′,
and so on, until generating a goal state. Hill-climbing can
thus be seen as the limiting case of any beam search with a
beam width of k = 1, and it is also not complete. The im-
plementation tested below uses a closed list to avoid cycles,
and drops duplicate states.

Rectangle is a state-of-the-art anytime algorithm based on
beam search (Lemons et al. 2024). Rectangle can be thought
of as a beam search whose width increases as the search
tree depth increases, according to an ‘aspect ratio’ specified
at runtime. Unlike beam search, Rectangle does not perma-
nently prune nodes that are not selected for expansion, but
maintains them in a collection of queues, one for each depth
reached so far. As the search progresses deeper and the beam
grows wider, Rectangle returns to each previous (shallower)
depth layer to select additional nodes for expansion, ensur-
ing that the same number of nodes has been expanded at
every depth so far. For example, with an aspect ratio of 1,
Rectangle at depth d will expand d nodes, as well as 1 ad-
ditional node at each previous (shallower) depth. Rectangle
is complete and converges to optimal in the limit of run-
ning time. To convert Rectangle from an anytime algorithm
to a tunable suboptimal algorithm, we terminate the anytime
search either (a) when Rectangle finds its jth anytime so-
lution, where j ∈ Z

+ is specified at runtime, or (b) when
rectangle only finds i : 0 < i < j solutions but subsequently
also empties all the depth-based queues (pruned based on the
incumbent solution), in which case the algorithm has proved
the optimality of the ith solution.

The Speed* Search Algorithm
Speed* is a best-first search that considers cost-so-far, cost-
to-go, and weighted distance-to-go information in ordering
its search frontier. It is extremely simple to implement. It



is designed to interpolate between A* and Speedy searches
depending on the value of its speed parameter s ∈ [1, inf).
Speed* does not guarantee monotonic change in the cost
vs. time relationship throughout this interpolation, but wA*
shares this behavior (Wilt and Ruml 2012). Given the well-
known improvement both in cost and running time of search-
ing on d instead of on h in agile search, it is surprising that
Speed* has never been tried before for tunable suboptimal
search.

In explaining Speed*’s state evaluation function, f†,
we begin with a simpler version of the algorithm,
called Speed*5000, which orders its search frontier on
f†5000(n) = g(n) + h(n) + s · d(n) : s ∈ R

≥0, with ties
broken in favor of low h. First note that in unit cost domains
Speed*5000 with s = 0.1 implies search behavior similar
to that of wA* with w = 1.1, so the first modification in
Speed* is to require s ∈ [1, inf) and to subtract 1 from it,
so that Speed* and wA* behave similarly for w = s > 1
on unit cost domains, with differences in behavior resulting
solely from their goal detection policies (discussed below).
Second, note that the effect of s in Speed*5000 depends on
the relative magnitudes of h and d in each specific domain,
unlike the effect of w in wA* which benefits from g and
h being in the same units. To mitigate this at least some-
what, Speed*’s state evaluation function f† scales s − 1 by
h(ni)
d(ni)

, where ni is the initial state. This gives us Speed*’s

state evaluation function:

f†(n) = g(n) + h(n) + s′ · d(n) : s′ = (s− 1) ·
h(ni)

d(ni)

where s ∈ [1, inf). Note that s′ is fully determined once
h(ni) and d(ni) are computed and is held constant for the re-
mainder of the search. Finally, with no suboptimality bound
to guarantee, Speed* immediately returns the first solution
generated when s > 1, rather than following wA*’s ap-
proach of enqueuing all generated solutions onto the open
list and waiting for one to be selected for expansion. When
s = 1, we special case goal detection in Speed* to occur at
expansion instead of generation, in order to behave identi-
cally to A*.

There is only a single open list, so we expect overhead
to be no greater than wA*’s. In the implementation tested
below, Speed* was implemented with a single basic binary
heap for the open list and a hash table for the closed list.

The Behavior of Speed*

Speed* is complete in both finite and, under reasonable as-
sumptions, also infinite state spaces. In particular, we as-
sume that (A1) h is admissible; (A2) both h and d are
goal-aware, i.e., h(n) = d(n) = 0 iff n is a goal state; (A3) d
is bounded; (A4) edge costs are bounded away from zero by
some fixed finite ǫ > 0; and (A5) the state space is ‘locally
finite’, meaning every node has a finite number of neighbors,
thus implying that a single expansion takes a finite amount
of time.

Lemma 1 If a solution path exists, then ∃n ∈ OPEN : n
lies on a solution path.

Proof. We proceed by induction.
initialization: if there exists a solution path p(ni, ng) from

initial state ni to some goal state ng , then ni is on path p and
is inserted into OPEN when Speed* begins execution.

maintenance: ∃n ∈ p → ∃n′ ∈ succ(n) : n′ ∈ p. If
and when n is extracted from OPEN and expanded, n′ will
be generated and, because Speed* does not prune, n′ will be
inserted into OPEN.

Lemma 2 If a solution p of finite cost C exists, s′ is finite.

Proof. The initial state ni must be on p, so h(ni) ≤ C by
(A1). Since s′ need only be calculated when ni is not a goal

state, d(ni) > 0 by (A2), making
h(ni)
d(ni)

finite. Therefore

s′ = (s− 1) · h(ni)
d(ni)

is finite.

Theorem 1 Speed* is complete: if a finite cost solution p
exists, Speed* will find it and terminate.

Proof. If p exists, then by Lemma 1 at any time ∃np ∈
OPEN : np ∈ p. Let C denote the finite cost of p. We have
that

f†(np) = g(np) + h(np) + s′ · d(np)

≤ C + s′ · d(np)

is finite and bounded by Lemma 2 and (A3).
Let k denote the length of p. By (A4) and because C

in finite, k is finite. At any time, finite j ≤ k expansions
along p are required to reach p’s goal. Let X represent the
finite set of all states on OPEN that are not part of any
path that leads to a goal within k steps, and let Xfront ⊆
{

n : n ∈ X ∧ f†(n) ≤ f†(np)
}

be the largest subset of X

that is ordered before np on OPEN. If Xfront = ∅, then np is
selected for expansion and j decrements. If Xfront 6= ∅, then

some nX ∈ Xfront : f†(nX) ≤ f†(np) is selected for ex-
pansion. By (A5) nX will have a finite number of successor
states, and the effect on Xfront is as follows:

1. if nX has no successors, then the cardinality of Xfront

decrements;

2. otherwise, by (A4) we have that g(n′
X) ≥ ǫ +

g(nX) ∀n′
X ∈ succ(nX) for some fixed finite ǫ > 0.

In particular, for any path x that does not reach a goal within
k steps from ni, the number of expansions from any nx

along x that are possible before g(n′
x) > f†(np) for some

n′
x ∈ x ∩ Tnx

, where Tnx
denotes the subtree under nx, is

bounded from above by

inp
:=

⌊f†(np)

ǫ

⌋

+ 1.

Let tnx
⊆ Tnx

be the portion, with depth bounded by inp
, of

Tnx
that may possibly be selected for expansion before np

is selected for expansion. Because each tnx
is of bounded

depth, |tnx
| is always finite by (A5). We can then represent

all the states that may possibly be selected for expansion
prior to np as the following union:

Xbefore :=
⋃

nX∈Xfront

tnX
.













Helmert, M. 2010. Landmark Heuristics for the Pancake
Problem. In Felner, A.; and Sturtevant, N. R., eds., Pro-
ceedings of the Third Annual Symposium on Combinato-
rial Search, SOCS 2010, Stone Mountain, Atlanta, Georgia,
USA, July 8-10, 2010, 109–110. AAAI Press.

Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research, 54: 123–
158.

Korf, R. E. 1985. Iterative-Deepening-A*: An Optimal Ad-
missible Tree Search. In Proceedings of IJCAI-85, 1034–
1036.

Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013. Stratified
tree search: a novel suboptimal heuristic search algorithm.
In Gini, M. L.; Shehory, O.; Ito, T.; and Jonker, C. M., eds.,
International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’13, 555–562.

Lemons, S.; Linares López, C.; Holte, R. C.; and Ruml, W.
2022. Beam Search: Faster and Monotonic. In Proceedings
of the Thirty-second International Conference on Automated
Planning and Scheduling (ICAPS-22).

Lemons, S.; Ruml, W.; Holte, R. C.; and Linares López, C.
2023. Rectangle Search: An Anytime Beam Search (Ex-
tended Version). arXiv:2312.12554.

Lemons, S.; Ruml, W.; Holte, R. C.; and Linares López, C.
2024. Rectangle Search: An Anytime Beam Search. In Pro-
ceedings of AAAI-24. AAAI Press.

Michie, D.; and Ross, R. 1969. Experiments with the Adap-
tive Graph Traverser. In Machine Intelligence 5, 301–318.

Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-4(4): 391–399.

Pohl, I. 1970. Heuristic Search Viewed as Path Finding in a
Graph. Artificial Intelligence, 1: 193–204.

Ruml, W.; and Do, M. B. 2007. Best-first Utility-guided
Search. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI-07), 2378–2384.

Slaney, J. K.; and Thiébaux, S. 2001. Blocks World revis-
ited. Artif. Intell., 125(1-2): 119–153.

Stern, R.; Puzis, R.; and Felner, A. 2011. Potential Search:
A Bounded-Cost Search Algorithm. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).

Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning In-
admissible Heuristics During Search. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).

Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In Proceedings of the Twenty-second International Joint
Conference on Artificial Intelligence (IJCAI-11).

Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using Distance
Estimates in Heuristic Search: A Re-evaluation. In Proceed-
ings of the Symposium on Combinatorial Search (SoCS-09).

Wilt, C.; and Ruml, W. 2012. When Does Weighted A* Fail?
In Proceedings of SoCS.

Wilt, C.; Thayer, J.; and Ruml, W. 2010. A Comparison of
Greedy Search Algorithms. In Proceedings of the Sympo-
sium on Combinatorial Search (SoCS-10).


