Planning and Acting While the Clock Ticks

Andrew Coles', Erez Karpas®, Andrey Lavrinenko’,
Wheeler Ruml*, Solomon Eyal Shimony?, Shahaf Shperberg®

'King’s College London, >Technion, *Ben-Gurion University, “University of New Hampshire
andrew.coles @kcl.ac.uk, karpase @technion.ac.il, andreyl @post.bgu.ac.il,
ruml @cs.unh.edu, shimony @cs.bgu.ac.il, shperbsh@bgu.ac.il

Abstract

Standard temporal planning assumes that planning takes
place offline and then execution starts at time 0. Recently,
situated temporal planning was introduced, where planning
starts at time O and execution occurs after planning termi-
nates. Situated temporal planning reflects a more realistic sce-
nario where time passes during planning. However, in situ-
ated temporal planning a complete plan must be generated
before any action is executed. In some problems with time
pressure, timing is too tight to complete planning before the
first action must be executed. For example, an autonomous
car that has a truck backing towards it should probably move
out of the way now and plan how to get to its destination later.
In this paper, we propose a new problem setting: concurrent
planning and execution, in which actions can be dispatched
(executed) before planning terminates. Unlike previous work
on planning and execution, we must handle wall clock dead-
lines that affect action applicability and goal achievement (as
in situated planning) while also supporting dispatching ac-
tions before a complete plan has been found. We extend pre-
vious work on metareasoning for situated temporal planning
to develop an algorithm for this new setting. Our empirical
evaluation shows that when there is strong time pressure, our
approach outperforms situated temporal planning.

1 Introduction

Agents operating in the real world, such as robots, must be
able to handle the fact that time passes. In temporal planning
(Fox and Long 2003), the problem formulation accounts for
time passing during plan execution. However, the problem
formulation does not account for the time that passes dur-
ing planning and thus is suitable for offline planning or for
situations where planning time is insignificant compared to
execution time.

Situated temporal planning (Cashmore et al. 2018) was
proposed as a problem formulation in which the passing of
time during planning is accounted for. In situated tempo-
ral planning, the planner must output a complete plan in a
timely manner, that is, before it is too late to execute that
plan. This is useful when there are temporal constraints such
as deadlines and when planning time might affect the feasi-
bility of meeting such deadlines. For example, situated tem-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

poral planning was shown to be useful for online replanning
for robots (Cashmore et al. 2019).

However, situated temporal planning is still constrained to
output a complete plan before execution begins. This might
be problematic in situations with tight deadlines, which do
not allow enough time to find a full plan before the first ac-
tion is executed. For example, consider a robot assigned to
prepare dinner — a situation marked by a concrete deadline.
Despite not having a finalized plan for procuring and assem-
bling all the ingredients, the robot might in some situations
be forced to initiate meal preparation, such as boiling water
on the stove (de Pomaine 1930), to ensure timely completion
and meet the dinner deadline.

Previous work on combining planning and execution,
such as IxTg T-g XEC (Lemai and Ingrand 2004) and ROS-
Plan (Cashmore et al. 2015) (among others), focused on
how to integrate an offline planner with a reactive execu-
tive to create an online planning and execution system. This
does not address problems with tight deadlines, where plans
can become infeasible during the planning process due to a
deadline expiring during search. Other work addressed the
question of when to commit to dispatching an action during
search (Gu et al. 2022), but this work also does not reason
about deadlines and is thus inapplicable to such settings.

In this paper, we formalize the problem of concurrent
planning and execution and describe an algorithm for solv-
ing it. Our algorithm builds on the state-of-the-art in situated
temporal planning (Shperberg et al. 2021), extending it with
the option to dispatch an action for execution during search,
before a complete plan is found. Although the resulting sys-
tem contains elements of a traditional executive, we still re-
fer to it as a planner, albeit one that can dispatch actions.

The situated temporal planner we build upon employs a
rational metareasoning approach (Russell and Wefald 1991)
that tries to choose the best computational action based on
the information currently available to the planner. Given the
inherent complexity of the full metareasoning problem, the
planner adopts a pragmatic approach by implementing de-
cision rules derived from a simplified version of the meta-
reasoning problem (Shperberg et al. 2019). Prior work has
extended the abstract metareasoning problem to model con-
current planning and execution (CoPE) (Elboher et al. 2023).

Thus, it seems natural to employ the metareasoning ap-
proach for concurrent planning and execution in the plan-

ner, thereby deriving an algorithm that seamlessly integrates
both aspects. Unfortunately, as we discuss later in this pa-
per, the CoPE metareasoning model relies on over-optimistic
estimates of the probability that some branch of the search
tree will ultimately succeed in reaching a solution. Since dis-
patching an action is irreversible, this can lead to failure.

Therefore, we present a new simplified metareasoning
model, referred to as COPEM (Concurrent Planning and Ex-
ecution with Measurements). This model incorporates the
understanding that the search process acquires valuable in-
formation, enhancing our estimation of the probability of
success across various search branches. The new metarea-
soning model accounts for the value of this information.
While CoPEM yields an intractable POMDP, it clarifies
the notion of value of information for additional search ef-
fort. This allows us to approximate that value, aiding in the
decision-making process of whether to execute actions im-
mediately or await additional information.

Based on these insights and approximations, we present a
decision rule for determining whether to search or dispatch
an action. This decision rule is integrated into the situated
temporal planner of Shperberg et al. (2021), yielding a dis-
patching planner for concurrent planning and execution. An
empirical evaluation shows that this system outperforms sit-
uated temporal planning whenever time pressure is tight.

2 Problem Statement

We define concurrent planning and execution in a manner
similar to situated temporal planning (Cashmore et al. 2018):
as propositional temporal planning with Timed Initial Liter-
als (TILs), formalizable in PDDL 2.2 (Cresswell and Cod-
dington 2003; Edelkamp and Hoffmann 2004). The sole dis-
tinction between concurrent planning and execution and sit-
uated temporal planning is the ability to execute an action
before we have a complete plan, which is formalized by
slightly different constraints on when the output is produced.

Formally, a concurrent planning and execution problem
IT is specified by a tuple IT = (F, A, I,T,G), where F is
a set of Boolean propositions that describe the state of the
world, A is a set of durative actions, with a € A composed
of a duration, dur(a) € R%T, start condition cond(a), in-
variant condition cond., (a), and end condition cond4(a),
all of which are subsets of F'. The effects are given by
start effect eff, (a) and end effect eff ;(a), both of which
specify which propositions in F' become true (add effects),
and which become false (delete effects). I C F'is the ini-
tial state, specifying exactly which propositions are true at
time 0. 7T is a set of timed initial literals (TIL). Each TIL
I = (time(l),lit(1)) € T consists of a time time(l) and
a literal lit(l), which specifies which proposition in F' be-
comes true (or false) at time time(l), and G C F specifies
the goal, that is, propositions we want to be true at the end
of plan execution.

As in situated temporal planning, TILs are seen as tempo-
ral constraints in absolute time since planning started. How-
ever, unlike situated temporal planning, where we require
generation of a full plan before execution begins, in con-
current planning and execution we allow our algorithm to
dispatch an action, even before a complete plan is available.

Formally, our algorithm outputs a sequence o of pairs
{a,t,), where a € A is an action and ¢, € R is the time
when action a is to start. The first requirement is that this
sequence of actions forms a valid solution for the planning
problem 11, that is, that all conditions hold at their respective
time points, and that the plan achieves the goal, exactly as in
standard temporal planning. In more detail, we define a valid
schedule by viewing it as a set of instantaneous happenings
(Fox and Long 2003) that occur when an action starts, when
an action ends, and when a timed initial literal is triggered.
For each pair (a, t,) in o, we have action a starting at time ¢,,
(requiring cond-(a) to hold a small amount of time e before
time t,, and applying the effects eff_(a) right at t,), and
ending at time ¢, + dur(a) (requiring cond-(a) to hold e
before t, + dur(a), and applying the effects eff (a) at time
te + dur(a)). For a TIL | we have the effect specified by
lit(1) triggered at time(l). Finally, we require the invariant
condition cond, (a) to hold over the open interval between
tq, and t, + dur(a), and the goal G to hold after all happen-
ings have occurred.

However, uniquely to our problem, we must also ensure
our algorithm does not dispatch actions in the past. Thus, we
annotate the output from our algorithm with the time each
pair was output. That is, we treat the output as a sequence
(tl, <a1,ta1>), ey (tn, (amta”)), where tl < tg <.. .ﬁn,
indicating that the pair (a;, ¢,,) was output at time ¢,. The
requirement is that ¢; < ¢,,—meaning our algorithm com-
mits solely to dispatching actions now or in the future. We
remark that there is never any theoretical benefit in commit-
ting to an action in the future, and thus typically we would
expect to see ¢; = t,,. However, practical considerations
might interfere with this, as we discuss below. For com-
parison, in situated temporal planning, the requirement is
Vi : t,, < mint,,. This formulation generalizes cases where
the planner outputs a complete plan at once, in which case
ty = --- = t,. If our algorithm is able to emit a sequence
of actions that forms a valid plan, without violating the laws
of space-time by dispatching actions in the past, we call it
successful.

Consider the aforementioned example of a robot prepar-
ing dinner. In this scenario, a TIL [is utilized to enforce
that the meal must be ready before dinner time, time(l). If
the planning time is substantial, ¢,, will approach time(l).
Without concurrent dispatching, all actions must be exe-
cuted within the timeframe ¢,, — time(l), which could be in-
feasible, given the time-consuming nature of cooking. How-
ever, in our concurrent setting, the sole requirement is for
the final action to be executed after ¢,,, significantly enhanc-
ing the feasibility of the task. For example, it is beneficial to
dispatch long actions (such as boiling a large pot of water)
early, as these will no longer be constrained to fit within the
time window between when planning ends and the deadline.

3 Prior Work
The situated temporal planner we build upon (Shperberg
et al. 2021) uses the OPTIC planner (Benton, Coles, and
Coles 2012). OPTIC applies heuristic forward search in the
space of sequences of happenings (snap actions). Some tem-
poral planners use different types of search techniques, such

as constraint propagation (Vidal and Geffner 2006) or com-
pilation to SAT (Rankooh and Ghassem-Sani 2015). These
planners were designed for offline planning. However, when
we want to consider dispatching an action, it is much eas-
ier to do so in the context of a current state of the world,
and thus relying on forward search seems to be the most
natural approach. Of course, it is possible to adapt other for-
ward search planners (Gerevini, Saetti, and Serina 2003; Vi-
dal 2004; Eyerich, Mattmiiller, and Roger 2009) with the
ability to dispatch actions. However, the planner we build
upon has most of the machinery needed for metareasoning,
which we describe next, thus making our job easier.

3.1 Abstract Metareasoning

Rational metareasoning (Russell and Wefald 1991) provides
a way to choose among different computational actions. The
decision problem that metareasoning addresses is called the
meta-level decision problem, and it can be formalized as an
MDP, or as a POMDP when we have partial information.
Computational actions in our setting include expanding a
search node or dispatching an action, making the meta-level
decision problem rather complicated.

Shperberg et al. (2019) address part of this metareasoning
problem (excepting action dispatching), by abstracting from
the intricacies of the plan state representation and search
process. They model the problem using n processes, denoted
P1,-- -, Pn, Where each process is dedicated to searching for
a plan (each process can be thought of as representing a
search node on the open list). Each process is described by
a probabilistic performance profile, modeled by a random
variable (RV) indicating the probability of process p; termi-
nating successfully given processing time ¢; M, denotes the
Cumulative Distribution Function (CDF) of this RV.

Processing must terminate before a deadline, which may
be unknown during planning, and is thus also assumed to be
a random variable. The CDF of the deadline by which time
process p; must terminate in order for its solution to be us-
able is denoted by D;. Note that the deadline is with respect
to ‘wall clock’ time (total time allocated to all processes),
while M; counts ‘CPU time’ (time allocated to p;).

Under the assumption that information about the true
deadline and processing time of process p; is only available
when that process terminates, the problem is to find an op-
timal policy for scheduling processing time for all the pro-
cesses, so that the probability that some process p; will de-
liver a plan before its deadline is maximal. A slightly simpli-
fied version of this problem, when time is discrete (assumed
to be integer-valued) is known as Simplified Allocating plan-
ning Effort when Actions Expire, or S(AE)? for short. Solv-
ing S(AE)? optimally was shown to be NP-hard, but if the
deadlines are known (called KDS(AE)? , with KD standing
for Known Deadlines), the problem can be solved optimally
in pseudo-polynomial time by dynamic programming (Sh-
perberg et al. 2019, 2021).

As even solving the simplified problem using the pseudo-
polynomial algorithm is too expensive, previous work re-
lies on a simplified decision scheme called Delay Dam-
age Aware (DDA), which is based on ideas used in the
optimal KDS(AE)2. The DDA scheme relies on the log-

probability of failure (LPF) of allocating ¢ consecutive units
of computation time to process ¢, starting at time ¢, denoted
LPF;(t,tp). To compute the LPF, we first compute the prob-
ability that process ¢ finds a timely plan when allocated ¢
consecutive time units beginning at time ¢, which is:

si(t,ty) = > mi(t') - (1 — Di(t' + 1)) (1)
t’=0

where m;(t) = M;(t) — M;(t — 1), i.e. the PMF of M.
The choice to use the log of the probability of failure allows
us to treat it like an additive utility function, thus we define
LPF;(t,ty) = log(1 — s;(t,tp)).

The DDA scheme allocates chunks of t,, computational
time units (where ¢, is a hyperparameter). The utility of a
process ¢ is defined by the log-probability of failure of al-
locating computation time to process ¢ in the next chunk
(starting at time ¢, with a discount factor of +) minus the
log-probability of failure of allocating time to process ¢ now,
thus accounting for the urgency of the process. The amount
of computation time to use in the utility calculation is chosen
by the most effective computation time for process ¢ starting
at time tp, defined as e;(t,) = argminy w that is,
the time allocation is chosen by its marginal gain. Putting
this all together, the DDA scheme allocates the next unit of
computation time to the process % with maximal

Q) = ei(te) e;(0)

3.2 MR in Concurrent Planning & Execution

An abstract metareasoning model for Concurrent Planning
and Execution, called CoPE, was presented by Elboher et al.
(2023). The CoPE metareasoning model extends S(AE)? by
assuming that each process p; has already computed a plan
prefix H; consisting of some actions (for example, if p; rep-
resents a node on the open list, H; are the actions leading
from the initial state to that node). One is allowed to start
executing actions from some H; before planning terminates
(and concurrently with planning), but doing so invalidates
all processes that have initial actions inconsistent with the
prefix of H; already executed. The requirement now is to
have at least one still valid process p; complete its computa-
tion and execute its H; before some induced deadline 1D
(the induced deadline can be computed from D; and the ac-
tion durations, but we omit the details here for the sake of
brevity). Note that a CoPE problem instance where all H;
are empty is also an S(AE)? instance.

For the special case of CoPE where the induced deadlines
are known (denoted KIDCoPE), it is possible to reduce the
problem to multiple instances of K DS(AFE)?, which in turn
can be solved in pseudo-polynomial time by dynamic pro-
gramming (Elboher et al. 2023). This is done by choosing an
execution time for all the actions in some H;. The function
that defines the execution time for each action in H; is called
an initiation function, and we denote it by f. The semantics
is that each action a € H; is executed beginning at f(a),
unless a becomes redundant because a complete timely plan
that does not use a is found before f(a). Recall that when ac-
tion a is executed, it invalidates any process j that has an H;;

2

inconsistent with a. Thus, given f, one can define an effec-
tive deadline dfﬁ for each process ¢ as the minimum of I D;
and the execution time f(a) for the first action inconsistent
with H;. Using the effective deadlines, we get, rephrasing
Theorem 6 from (Elboher et al. 2023):

Theorem 1 Given a CoPE problem instance I and an ini-
tiation function f, using the effective deadlines as computa-
tion deadlines (and subsequently ignoring the H;) defines a
KDS(AE)? instance KDS(I, f). The optimal policy for I
restricted to action execution according to f is equal to the
optimal computation policy for KDS(I, f).

Solving the resulting K D.S(AFE)? instances for all possi-
ble initiation functions f and picking the one with the high-
est success probability is an algorithm for optimal solution
of the KIDCoPE instance. Obviously, the complexity of
the above algorithm is exponential in max; | H;|, but special
cases exist where the number of possible f is polynomial
(Elboher et al. 2023). We use a similar technique below.

3.3 Metareasoning in a Planner

So far, we have discussed abstract metareasoning models.
Integrating these into a planner is not trivial. We now explain
briefly how the situated temporal planner we build upon (Sh-
perberg et al. 2021) uses the DDA decision rule in practice.

First, there are several adaptations to the node expansion
process itself, accounting for TILs that occur during plan-
ning and pruning nodes for which it is already too late to
start executing (Cashmore et al. 2018). Second, to use the
DDA decision rule, the planner must estimate M; and D,
which are used to compute the LPF.

An admissible deadline for node ¢ can be found by build-
ing a Simple Temporal Problem (STP) for the plan prefix
H,, solving it to find the latest feasible timestamp tmax of
each step, and taking the minimum of these across all steps:

latest_start(H;) = miII} tmaz(a;)

a; i
In practice, a more informative but inadmissible estimate is
found based on the temporal relaxed planning graph (TRPG)
(Coles et al. 2010) heuristic by additionally including the
relaxed plan 7; in this STP. This estimate is called the es-
timated latest start time for node ¢ and is used as a known
deadline (that is, D; assigns a probability of 1 to this being
the deadline).

To estimate M, the planner relies on the notion of expan-
sion delay (Dionne, Thayer, and Ruml 2011)—the average
number of expansions between when a node is generated and
when it is expanded. A distribution is built around this esti-
mate based on statistics collected during search; the details
of how this is done are omitted for the sake of brevity.

With these estimates of M; and D;, the planner can com-
pute @; for each node on the open list and sort the open
list based on Q. Since the DDA scheme is based on allo-
cating t,, units of computation time to the chosen process
1, the planner performs ¢,, expansions in the subtree rooted
at ¢; after ¢,, expansions, the non-expanded (frontier) nodes
in this subtree are added to the open list and another state is
chosen according to @). Additionally, as the estimates for M;

could change (because the statistics collected during search
to estimate M; change), the () value is recomputed for all
the nodes on the open list every ¢,, expansions.

So far we discussed how DDA, a metareasoning scheme
for S(AE)?, was integrated into a planner. The issue with
integrating CoPE into a planner is that the planner’s esti-
mates of the M; and D; distributions can be quite far off
the mark, especially early in the search; thus might lead to
wrong decisions. In situated temporal planning, this is not
critical, because a wrong decision wastes only some search
effort (a few node expansions). However, in concurrent plan-
ning and execution, a wrong decision to dispatch an action
can frequently be fatal. Therefore, our first step is develop-
ing an improved metareasoning model, which accounts for
the information gathered by ‘measurements’ during search.

4 Metareasoning with Measurement Model

We now present our new CoPEM abstract metareasoning
model, extending CoPE by explicitly making the more re-
alistic assumption that computation actions deliver informa-
tion that can update the distributions. COPEM is obviously at
least as computationally hard to solve optimally as CoPE, so
except for restricted cases, we do not attempt to solve it op-
timally. Its main role is to specify a notion of what it means
to be optimal in concurrent planning and execution. Never-
theless, we leverage ideas from optimal solutions of the re-
stricted cases towards an actual implementation solving the
concurrent planning and execution problem from Section 2.

4.1 The CoPEM Model

As in the CoPE model, we have n processes pj...pn, all
searching for a plan starting at a known initial state. Each
process p; has already computed an initial action sequence
H;, where each action in H; has a specific time window for
execution. For each process we have a random variable M;,
a performance profile determining how long it needs to com-
pute until termination. Random variable D; is a distribution
over the induced deadline of process p;: the time by which
the last action in H; and the rest of any solution found by
process p; must be executed in order to be successful. In
general, the random variables may be dependent.

There are three types of actions: real-world actions to be
dispatched corresponding to the next action from some H;,
a computation action ¢; allocating a processing time unit to
process p;, or commit to a complete correct plan found by
any terminated process p;. All actions are non-preemptible
and mutually exclusive, except that computation actions can
be run concurrently with at most one real-world action. A
computation action ¢; can make the process terminate (with
probability determined by M;), in which case the process
delivers a solution and its true deadline is revealed.

Up to now, this is the same as the CoPE model. How-
ever, in CoPEM the distributions over the random variables
M; and D; are just priors: a computation c; also delivers an
observation o € O; (for some observation space O;) as evi-
dence that affects the posterior distributions over the random
variables according to a known measurement model. In other
words, the action ¢; has a stochastic effect on what the M

and D; distributions would be in the next (belief) state, after
updating them according to the observation o.

To parameterize a restriction on the model complexity, we
define a parameter K, the time at which we no longer allow
a real-world action to be dispatched ‘early’ (i.e. before plan-
ning terminates), and a parameter L, the last time at which
observations can be received (when a computation action ¢;
performed at time ¢ causes the observation o to be received
in time to make the decision at time ¢ + 1). The CoPE model
is a special case of CoOPEM where L = 0 and K = oco.

We assume here that the measurement model is known
and that we can perform Bayesian updating on the runtime
and deadline distributions. Under this assumption, like many
metareasoning problems, the CoPEM model is a POMDP,
the solution of which is intractable: potentially exponential
in the number of time units in the model, thus certainly not
optimally solvable in real-time. We therefore examine some
special cases, and leverage their solutions towards a greedy
decision-making algorithm to handle CoPEM in practice.

4.2 Basic Tractable Case

We begin with the restricted CoPEM case that we call fully
resolved. Given a CoPEM instance I and a commitment to
execute all the actions in some H; at certain times (an initia-
tion function f), (I, f) is fully resolved if the induced dead-
lines are known and no further information can be obtained
by computations about any of the M; distributions.

Theorem 2 If (I, f) is fully resolved, the optimal policy for

I under initiation function f is equal to that of an equivalent
KDS(AE)? instance 1(1, S).

Proof: If no further information on the M, can be
obtained by computation, and the induced deadlines are
known, we have an instance of KIDCoPE. Since we also
have a fixed initiation function f, by Theorem 1 we can con-
struct an instance K. DS(I, f) whose optimal computation
policy is also optimal for I. [

Leveraging this tractability property to solve instances of
CoPEM would be advantageous. However, its application
is nontrivial, since a CoPEM instance is not fully resolved,
even for K = L = 0 and with known induced deadlines, the
first action in any of the H; could be dispatched at t = O (or
none), i.e. we do not have an initiation function.

Nevertheless, consider a CoPEM instance restricted to
K = L = 0, known induced deadlines, and |H;| = 1 for
all 7. Opting not to dispatch an action at ¢ = 0, we are not
allowed to dispatch any actions early subsequently. Since no
further information on M; can be acquired, effectively we
have a fully resolved equivalent instance. Consequently, we
can formulate an equivalent KDS(AE)? instance denoted as
Ty. Likewise, when opting to dispatch the only available ac-
tion @ € H; for some 1 < i < n, K = 0 implies f(a) = 0,
so again we have a fully resolved instance, We denote the
respective KDS(AE)? instance by Z;.

Once we generate these n + 1 KDS(AE)? instances, we
solve each of them optimally in pseudo-polynomial time by
dynamic programming, obtaining a value v; (probability of
success) for each of them. Our dispatch decision is then
given by arg max;._, v;, where a decision of ¢+ > 0 indicates

dispatching the first action in H;, and a decision of ¢ = 0
indicates not dispatching any action. This scheme, hence-
forth called Solve0O(-), returns the best v; and (optionally)
the solution for the respective KDS(AE)? instance.

Theorem 3 Given an instance I of COPEM with K = L =
0, known induced deadlines, and |H;| < 1 forall1 <i <mn,
Solve00(I) yields the optimal policy for I.

Note that the above method is applicable for |H;| > 1, but
the DP solution to the KDS(AE)? instance is not guaranteed
to be an optimal CoPEM solution beyond |H;| = 1.

4.3 Extension to Incorporate Measurements

The above restrictions can be relaxed to scenarios with a
bounded number L of informative (w.r.t. M;) computation
actions and K dispatch decisions, as long as our observa-
tion space O; for each computation action c¢; is finite. Let
Opmaz = max; |O;]. We focus on K = L = 1, which is sim-
ilar in spirit to the Russell and Wefald myopic assumption
(Russell and Wefald 1991; Tolpin and Shimony 2012).

We also assume here known induced deadlines, and
jointly independent M; distributions. For clarity, we further
assume that a computation action ¢; yields perfect informa-
tion, i.e. an observation o equal exactly to the remaining
computation time for process p;. Note that this assumption
can be easily adjusted should an alternative measurement
model for each computation action be available. With these
assumptions, the only uncertainty is in the M;, and in ob-
servations to be received due to the first computation action.
Perfect information implies that computation ¢; will observe
o = t with probability P(o = t) = m;(t).

For conciseness and concreteness, we define notation for
CoPEM and KDS(AE)? instances created due to dispatching
decisions and/or observations, and how they are defined. Let
7 be the original CoPEM instance with K = 1, L = 1. We
break this down into two subcases:

Not dispatching at time 0: Executing a computation c¢;, we
then get an observation o € O;, and in each such case we
need to optimize a new CoPEM instance, where the current
time is ¢ = 1. We can shift the origin of the ¢ axis to 1 and
treat the resulting state as a X' = L = 0 instance. Let us de-
note each such problem instance by Z(¢;, 0). Denote by sub-
scripting Z; the problem instance resulting from dispatching
decision ¢, which is dispatching the (first and only) action
in H;, or deciding not to dispatch at this time for ¢ = 0. An
instance Z(c;, o) after a dispatch decision, denoted Z;(c;, 0)
is now a KDS(AE)? instance, since no more observations
can be received, and no additional early dispatch decisions
are allowed. Note that the distribution model of Z;(c;, 0) is
the same as that of Z; for all processes except m;, which is
replaced by the degenerate d-distribution §(0).

Dispatching at time 0: Alternatively, we can decide on an
early dispatch in Z at time ¢ = 0, resulting in an instance
Z;. Note that the result is not a KDS(AE)? instance. How-
ever, since no further actions can be dispatched, each Z; is
essentially a K = 0, L = 1 instance. But after the next com-
putation c; is done, we receive the observation o and get a
KDS(AE)? instance again: not the same as Z; (¢j,0) because
here an action from 7, has been dispatched at time 0, rather

than 1, so we denote this by Z?(c;, 0). To find the probability
of success of the optimal policy, compute:

Solve01(Z;) = max E m;(0)Solve00(Z} (c;,0)) (3)
J
o€ support(m;)

and any c; achieving the maximum is optimal.

All in all, the K = L = 1 case is handled by pseudo-
polynomial time computation of the following equations,
denoted as Solvell. Forall 1 <3 < n:

Pi= >

o€ support(m;)

m;(0)Solve00(Z;(c;,0)) 4

P! = Solve01(Z;) Q)

Then, select the policy corresponding to the maximum value
of all P; (compute at time O policies) and all P/ (dispatch
at time O policies). Essentially we evaluate a depth 2 ex-
pectimax tree, with leaf nodes being KDS(AE)? instances,
and return the best policy and its corresponding probabil-
ity of success. The overall complexity of this scheme is
O(T?1*O,q,) where T is the number of time steps. T2n?
is the time taken to solve a single KDS(AE)? instance by dy-
namic programming, and n20,,,, simply counts the loops
to compute the equations.

In principle, this scheme can be extended to greater K
and L, paying a factor n“+¥OL by optimizing over all
possible action and observation sequences of length L and
dispatching decision sequences of length K. However, since
even the K = L = 1 case, despite being tractable, is too
heavy to use in metareasoning, this is not examined here.

4.4 Leveraging the Tractable Case in Practice

In applying the CoPEM model to concurrent planning and
execution, obviously our metareasoning assumptions of in-
dependence, known induced deadlines, and the myopic K =
1, L = 1 assumptions do not hold. Nevertheless we can use
this as a first approximation.

Let P be the success probability of instance Z deciding
not to dispatch any action, and under the assumption that
computations do not provide information about any M;. Ex-
amining the algorithm for X' = L = 1, we see that an action
a in H; is potentially dispatched only if it has a probability
of success P/ higher than P} (not dispatching an action). The
difference P/ — P} in probability of success is the gain for
dispatching a. Alternately, one can do a computation c; first,
and then decide on dispatching. This is worthwhile only if
the expected utility (measured in probability of success P;)
is increased on average vs. dispatching an action immedi-
ately by doing c; first. The gain P; — max; P](is called the
net value of information (VOI) for ¢; (at the initial state).
In an optimal policy, an action a is dispatched immediately
only if no ¢; has a positive net VOI.

A practical algorithm based on approximating the optimal
policy would thus consider whether dispatching some action
a; is beneficial (improves success probability), and given
such an action, checks whether some computational action
¢; has a positive net VOI, in which case a; is not dispatched
immediately. That is the gist of our proposed scheme.

Several complications hinder the implementation of this
scheme. First, the success probability values are computed
exactly in KDS(AE)? instances, but in fact the deadlines are
also uncertain and distributions are not independent, making
the success probability computed for a KDS(AE)? instance
an incorrect estimate of the actual success probability, as
well as too slow to use for metareasoning within a planner.
We also lack a good measurement model for the computa-
tions, and the perfect information assumption is also not re-
alistic. Overcoming these problems towards an approximate
realization of this scheme within a planner is described next.

5 Implementation within the Planner

The insight from the optimal solution of the restricted case
is that we need to measure the expected gain for dispatching
an action and to consider VOI of computation. Below we
discuss how these are actually done in the planner.

5.1 State-Space Modifications to Support Acting

We assume that at any given point we have dispatched m
plan steps 1 = [aj..a,,| (where m is initially 0), with
dispatch_time[j] being the time at which step j € [1..m]
is to be executed. All states on the open list begin with these
m steps, so the resulting planning task is equivalent to search
from the state reached by those m steps, subject to states re-
specting temporal side-constraints as described next.

First, in the situated temporal planners, the STP used to
capture the temporal constraints on a plan (Cashmore et al.
2018), included the temporal constraints required in OPTIC
and also required t(a;) > 50, for all plan steps — because
execution cannot start earlier than t,,,,, (the current time).
In our case, as the first m actions have been dispatched —
so can go ‘before now’” — we keep the temporal constraints
required in OPTIC but instead also require:

Vaj € H; t(aj) = dispatch_time[j] if j <m
t(aj) 2 tnow otherwise

Second, an STP is additionally used to find the
dispatch_time values themselves. If at time ¢,,,,, the de-
cision is made that the m + 1th plan step to be dispatched is
the snap action a,,+1, we take the STP that would be built
for the state reached by the snap action sequence [a1..0y+1]
and set dispatch_time[m + 1] to the earliest feasible value
tmin(am1) of step a1 in this STP: the earliest time it
can occur considering the ordering constraints between plan
steps and the dispatch times of the previous steps.

Third, we redefine the notion of the ‘latest start time’ for
states. The scalar value described in Section 3.3 is defined
with respect to all plan steps in an STP. As this would now
include the m steps that have been dispatched, we are instead
interested in a latest start time that is conditional on m, i.e.
what is the latest time we must dispatch step m + 1:

latest_start(H;,m) = min

tmax(a;
a;€EH;|j>m (J)

Finally, we must consider the consequences of action
dispatch on the open list, and on duplicate state detection
(which in OPTIC and prior work is through maintaining a set

of memoized states). The open list issue is easy: if we dis-
patch the snap action a,,, as step m, then we remove from the
open list every state whose plan prefix H; does not have a,,
as step m. For duplicate detection, we must be more careful:

* We identify a set of states to ‘un-memoize’: any mem-
oized state whose plan prefix H; does not begin with
[a1..Gpm+1], and remove them from the memoized states.

* We add to the open list for re-expansion any state S; ex-
panded earlier in search, whose plan prefix H; does begin
with [a;..ap,+1], and for which one or more of its suc-
cessor states was pruned due to being equivalent to one
of these un-memoized states.

5.2 Dispatch Estimates during Search

Having discussed modifications to the state space, we now
turn to how to make metareasoning decisions in the plan-
ner. If we have dispatched the plan steps 7 = [a;..ap),
then our metareasoning decision is either to not dispatch
something yet or to dispatch now one of the snap-actions
next = [aq..«,] applicable in the state reached by m. We
need to assess the utility of each of these possibilities, i.e.
the probability of success in each case, which we assume to
be related to its LPF via 1 —e“"F". We denote the probability
of success for not dispatching, and for each of next, as Pnq
and Py .. Py, respectively.

We approximate these utilities by simulating for each case
what would be the allocations of the computation time to
processes in the ensuing search, over a simulated open list
sim_open. When estimating Pyg, we use open: the open
list at the current moment in search. For Py, € [Py..Pg,),
we consider only the nodes on the open list whose plan step
m + 11is ay:

sim_open(open, ar) = [H; € open | Hjm + 1] = ay)

We then compute context-dependent LPFs for nodes on
the simulated open list, with a context ¢ being the number
of dispatched steps: ¢ = m for Pyg4, ¢ = m + 1 otherwise.
This is to use the appropriate latest_start estimates: when
calculating LPF we use the same calculation as Eq 1, ex-
cept we base D; on latest_start(H;,c). Thus, ¢ = m + 1
means the dispatch options benefit from step m + 1 hav-
ing been dispatched. We approximate the LPF of allocating
time to processes pi...p, in this order, starting at time %,
with t, = t,0, for each of Py...Py, (we would dispatch
now); and tp, = ty0u + twaeir for Pyg, as ‘not dispatching’
means waiting some amount of time. We assume ¢4t = 4.
Then, the LPF under context c of an open list is:

LPF(p1.p,) = Y LPF{(E(M;) ty+ Y E(M;))
]

i€[1..n] JEl.t

This is an imprecise (but empirically informative) mea-
sure in a number of important regards. First, we assume each
node p; is allocated E(M;) expansions — the expected num-
ber of expansions for it to reach the goal. This is reason-
able if p; is the best option for reaching the goals, ps is
the second-best option, and so on; which in reality, would
require inter alia a perfect heuristic. Second, the order in

which processes are considered is crucial: we fix the or-
der here according to a snapshot of open, whereas in search
proper, the order is due to the) values of processes, which
in turn are a function of the time at which computation is to
be allocated to them.

5.3 Metareasoning for Action Dispatch Decisions

Having defined how we estimate LPFs for candidate options
(not dispatching yet, or dispatching some action) we now
formulate dispatch rules. A naive rule would be ‘dispatch the
best o, where Py, > Ppyg . Since we only have inherently
noisy and possibly biased estimates (due to expansion delay,
a global one-step-error estimate, and an imperfect heuris-
tic), rather than actual probabilities, we must be wary of dis-
patching an action if the benefit of doing so is small, and/or
little search has been performed in the subtree reached by
oy in order to substantiate its probability approximation.
To address these issues, we first identify dispatch candi-
dates explored C next, where ay, € explored if a minimum
number of expansions have been performed in its subtree,
and sim_open(open, ay,) is of a minimum size (these are
hyperparameters). Then, if explored # () we find:

ap = argmax Py
ay €explored

and dispatch o« if Py, > Pyg + dt where dt is our dis-
patch threshold. A caveat of this, however, is that if search
is predominantly focusing on the subtree beneath only a sub-
set of next (which is typically the case for heuristic search),
any ay, ¢ explored will never be considered for expansion,
even if their probabilities of success are ostensibly better. To
address this, we additionally find:

Oy = arg max Py
ay €(next\unexplored)

and if Py, > Pynq + sft, where sft is our subtree focus
threshold, we constrain search to only expand nodes beneath
ay,. This embodies common sense, insofar as while we do
not want to dispatch an action with nebulous evidence, the
value of information for exploring its subtree is intuitively
high — as it will help us decide whether to dispatch it later.

6 Empirical Evaluation

Concurrent planning and execution is meant to be used in
situations with time pressure. Unfortunately, most Interna-
tional Planning Competition domains were designed for of-
fline planning and do not have inherent time pressure. There-
fore, in our evaluation we focus on domains inspired by
real problems involving robots: planning problems from the
Robocup Logistics League (RCLL) planning competition
(Niemueller, Lakemeyer, and Ferrein 2015) with one, two,
and three robots, as well as planning problems for a Turtle-
bot performing an office delivery task. These were both
used to evaluate situated temporal planning (Shperberg et al.
2021). The results for Turtlebot are not interesting — nearly
every instance is solved by every configuration, and thus
these results are relegated to the supplementary material'.

! Available at https://arxiv.org/abs/2403.14796

80 RCLL (1 Robot)
60
]
Q°
=
R 10
153
20
—e— nodisp —— disp(0.1)
0 disp(0.025) —4— disp(0.25)
0 200 400 600 800 1000
Expansions Per Second
50 RCLL (2 Robots)
10
T
=
[}
5]
2 9
10
—&— nodisp —— disp(0.1)
0 disp(0.025) —— disp(0.25)
0 200 400 600 800 1000
Expansions Per Second
25
= RCLL (3 Robots)
20
E 15
2
S
5]
X210
5
—e— nodisp —— disp(0.1)
0 disp(0.025) —— disp(0.25)

0 200 400 600 800 1000
Expansions Per Second

Figure 1: Problems solved vs. expansions-per-sec: RCLL

We compare our concurrent planning and execution ap-
proach, denoted by disp, to the situated temporal planner
(Shperberg et al. 2021) using its default parameters, denoted
by nodisp. As both approaches use the same situated tem-
poral planner, both are equally informed, thus allowing for
a clean evaluation of the value of allowing dispatching ac-
tions before search completes, as well as the ability of our
metareasoning approach to make these decisions correctly.
Most parameters for disp are the same default parameters
used for nodisp. For the new parameters introduced for mak-
ing dispatching decisions, we set the minimum number of
expanded nodes in the subtree for dispatching and the mini-
mum number of nodes in sim_open for expansion to 10. We
vary the dispatch threshold (trying 0.25, 0.1, and 0.025), and
set the subtree focus threshold to half the dispatch threshold.
Ablation studies with other parameter settings (described in
the supplementary material) show that these settings do cap-
ture a VOI criterion, which is important to the performance
of our planner, as suggested by our theoretical results.

Furthermore, because both approaches rely on the same

planner, we choose to measure planning time by the num-
ber of expanded nodes rather than real wall-clock time. This
allows for reducing random noise due to timing issues and
makes all of our experiments deterministic. Specifically, we
use a user-specified parameter specifying how many node
expansions we can perform per second and then timing in
the planner is based on the number of nodes expanded so far
(divided by this parameter) rather than on the time that ac-
tually elapsed. We can then vary the number of expansions
per second, simulating different ‘CPU speeds’.

Figure 1 shows the number of problems solved by both
approaches for different CPU speeds. As the results show,
when the CPU speed is low (meaning fewer nodes can be ex-
panded before the deadline expires), the benefit from using
concurrent planning and execution is high. When the CPU is
fast enough, the difference decreases. Furthermore, in cases
where the CPU exhibits sufficient speed to solve the problem
before the deadline, it is plausible that the no-dispatch strat-
egy could surpass all dispatching policies, which may com-
mit to a suboptimal action. This is in line with the theoretical
limit of an infinitely fast CPU, where the best approach is to
use offline planning to find a complete plan, then start exe-
cuting it at time 0. On the other hand, CPU speeds of robotic
space explorers are typically at least an order of magnitude
less than CPU speeds of computers on Earth, and thus we
believe this is one area where our approach can be useful.

7 Discussion and Future Work

We have formalized the CoPEM metareasoning problem,
aimed at bridging the gap between planning and acting con-
currently. Insights from optimal solutions of a restricted ver-
sion of CoPEM are used in a new metareasoning algorithm
deciding whether to dispatch an action during search. De-
spite having only rudimentary probability estimates and no
realistic measurement model (improving them is an impor-
tant issue for future work), our empirical evaluation shows
that our algorithm works well under time pressure. In fu-
ture work, we intend to develop a way to identify whether a
current problem instance has strong time pressure, thus auto-
matically switching between concurrent planning and execu-
tion, situated planning, and offline planning. More generally,
we will explore the connection to other types of thinking fast
and slow in AI (Booch et al. 2021).

We are still a long way from the integration of our algo-
rithm with real robots. First, there are technical challenges
involved with actually dispatching an action on real hard-
ware. Second, the real world features uncertainty. Actions
can fail, or take longer or shorter than expected to exe-
cute, and the executive must handle these. Even introducing
actions with controllable durations raises questions about
dispatchability (Morris 2016) that need to be addressed.
One possibility is to leverage the replanning compilation
suggested for situated temporal planning (Cashmore et al.
2019), which can also be used for our concurrent planning
and execution formulation. Additionally, uncertain action
durations can be handled as part of the planning process
(Cimatti et al. 2018). Thus, we believe the framework pre-
sented here can serve as a principled basis for an executive
that can be used on real robots.

Acknowledgements

This research was supported by Grant No. 2019730 from the
United States-Israel Binational Science Foundation (BSF)
and by Grant No. 2008594 from the United States National
Science Foundation (NSF). The project was also funded by
the EPSRC-funded project COHERENT (EP/V062506/1),
the Israeli CHE Data Science Grant, by a Grant from the
GIF, the German-Israeli Foundation for Scientific Research
and Development, by ISF grant #909/23, by MOST grant
#1001706842, and by the Frankel center for CS at BGU.

References

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In Proceedings of ICAPS.

Booch, G.; Fabiano, F.; Horesh, L.; Kate, K.; Lenchner, J.;
Linck, N.; Loreggia, A.; Murugesan, K.; Mattei, N.; Rossi,
F.; and Srivastava, B. 2021. Thinking Fast and Slow in AL
In AAAT 2021, 15042-15046. AAAI Press.

Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal Planning while
the Clock Ticks. In Proceedings of ICAPS, 39-46.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2019. Replanning for Situated
Robots. In ICAPS.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtés, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In ICAPS 2015, 333-341. AAAI Press.

Cimatti, A.; Do, M.; Micheli, A.; Roveri, M.; and Smith,
D. E. 2018. Strong temporal planning with uncontrollable
durations. Artif. Intell., 256: 1-34.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of ICAPS, 4249.

Cresswell, S.; and Coddington, A. 2003. Planning with
Timed Literals and Deadlines. In Proceedings of 22nd Work-
shop of the UK Planning and Scheduling Special Interest
Group, 23-35.

de Pomaine, E. 1930. French Cooking in Ten Minutes:
Adapting to the Rhythm of Modern Life. North Point Press.

Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
Aware Search Using On-Line Measures of Behavior. In
Proceedings of the Symposium on Combinatorial Search
(SoCS).

Edelkamp, S.; and Hoffmann, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical Report 195, University of Freiburg.
Elboher, A.; Bensoussan, A.; Karpas, E.; Ruml, W.; Shper-
berg, S. S.; and Shimony, S. E. 2023. A Formal Metareason-
ing Model of Concurrent Planning and Execution. In AAAI
2023.

Eyerich, P.; Mattmiiller, R.; and Roger, G. 2009. Using the
Context-enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In ICAPS 2009. AAAL

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research (JAIR), 20: 61-124.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
Through Stochastic Local Search and Temporal Action
Graphs in LPG. J. Artif. Intell. Res., 20: 239-290.

Gu, T.; Ruml, W.; Shperberg, S. S.; Shimony, S. E.; and
Karpas, E. 2022. When to Commit to an Action in Online
Planning and Search. In Proceedings of the Fifteenth Inter-
national Symposium on Combinatorial Search, SOCS 2022,
Vienna, Austria, July 21-23, 2022, 83-90. AAAI Press.

Lemai, S.; and Ingrand, F. 2004. Interleaving Temporal
Planning and Execution in Robotics Domains. In AAAI
2004, 617-622. AAAI Press / The MIT Press.

Morris, P. H. 2016. The Mathematics of Dispatchability Re-
visited. In ICAPS 2016, 244-252. AAAI Press.

Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In ICAPS Workshop on Planning and Robotics
(PlanRob).

Rankooh, M. F.; and Ghassem-Sani, G. 2015. ITSAT: An
Efficient SAT-Based Temporal Planner. J. Artif. Intell. Res.,
53:541-632.

Russell, S. J.; and Wefald, E. 1991. Principles of Metarea-
soning. Artificial Intelligence, 49(1-3): 361-395.
Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating Planning Effort
When Actions Expire. In AAAI 2019, 2371-2378. AAAI
Press.

Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS 2021, 340-348.
AAAI Press.

Tolpin, D.; and Shimony, S. E. 2012. Semimyopic Measure-
ment Selection for Optimization Under Uncertainty. /EEE
Trans. Systems, Man, and Cybernetics, Part B, 42(2): 565—
579.

Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In ICAPS 2004, 150-160. AAAL
Vidal, V.; and Geffner, H. 2006. Branching and pruning:

An optimal temporal POCL planner based on constraint pro-
gramming. Artif. Intell., 170(3): 298-335.

