
Evaluating Distributional Predictions of Search Time: Put Up or Shut Up Games

Sean Mariasin1, Andrew Coles2, Erez Karpas3,

Wheeler Ruml4, Solomon Eyal Shimony1, Shahaf Shperberg1

1Ben-Gurion University,
2King’s College London,

3Technion,
4University of New Hampshire

seanmar@post.bgu.ac.il, andrew.coles@kcl.ac.uk, karpase@technion.ac.il
ruml@cs.unh.edu, shimony@cs.bgu.ac.il, shperbsh@bgu.ac.il

Introduction

In many real-world applications, heuristic search may take
longer to complete than the remaining time before execu-
tion must begin. Recognizing such situations is important,
as then fallbacks can be employed: opting for a suboptimal
solution rather than an optimal one, beginning to execute a
partially developed plan while continuing the search, or even
declaring failure early, hoping to ‘cut your losses’.

A metalevel controller seeking to make such decisions
needs a reliable prediction of whether such search is tak-
ing too long. For example, situated planners (that plan ‘on-
line’ while time is passing) need to assess the probability
that a candidate partial plan will be executable at the time
search terminates, thus requiring a distribution over remain-
ing search time. Currently, basic distribution estimates are
available, such as one based on one-step-error (Shperberg
et al. 2021). While there is a body of work on attempting
to predict the remaining amount of search effort (Thayer,
Stern, and Lelis 2012; Sudry and Karpas 2022), typically
these methods deliver a single number corresponding to the
expected value, or other point estimate, of this quantity.

Developing distribution estimators raises the question
of how to evaluate them. Testing in the context of met-
alevel control is unattractive, as most metareasoning control
schemes are hard to analyze. But gauging the accuracy of
the distribution estimate in isolation is also problematic, as a
ground truth distribution is not available. The distribution of
the remaining search time that we wish to model is over all
possible problem instances consistent with the observations
made so far, which is not realistically obtainable. Instead, we
exploit the subjectivist Bayesian interpretation of probabil-
ity, in which a rational agent that believes that some event e
will occur with probability p must accept a bet where it pays
less than p to gain a reward of 1 if e occurs.

Put Up or Shut Up Games

We propose ’put up or shut up’ games as a measure of the
quality of a subjective probability of remaining runtime. A
given search algorithm (e.g. A∗, with a known heuristic h)
runs on a given problem instance. An agent observes the
search algorithm run up to a certain point and then, given

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a deadline, has to bet whether to 1) quit (shut up) or 2) pay
a sum (put up) and collect a reward if the search ends suc-
cessfully before the deadline.

Definition 1 (BPSG). Basic put-up or shut-up game: given
a search algorithm A running on a problem instance I , ob-
servations O, a remaining time target t. Should we (shut up)
stop the computation, avoiding any cost or gain, or (put up):
paying an ante of θ, to get a known reward of R (thus net
gain R− θ) iff A solves instance I before t time passes?

To play the game rationally, we must estimate the subjec-
tive probability p̂ = P (t(A, I) ≤ t|O), the probability that
algorithm A will solve instance I in remaining time t(A, I)
that is less than t, given our observations O. The rational
agent should not put up unless p̂ ≥ θ

R
. The latter ratio is

also called betting odds of θ to R− θ.

This paper assumes an expansion-step-based search algo-
rithm and that time is in units of expansion steps. Success
at BPSG hinges on having a reliable error model; merely
achieving a better prediction (such as a lower RMSE on a
numerical estimate) is insufficient — a predictor more ac-
curate in expected error may perform on average worse in
BPSG than a predictor with a higher RMSE:

Example: Suppose that search algorithm A will run for an-
other 100 or 101 expansions, each with probability 0.5. This
is unknown to the agent, which relies on predictors to gauge
the anticipated remaining search time, thereby informing
its decision on whether to prolong or terminate the search,
which must conclude within 100 more expansions to be us-
able. We have two predictors: predictor a is an accurate point
estimator that has an unbiased error of at most 1, uniformly
distributed. Importantly, the agent is unaware of the true un-
derlying error model, and incorrectly assumes that predictor
a delivers exactly the correct value. That is, when the true
remaining number of expansions is 100, a will predict either
99, 100, or 101, each of these predictions having a proba-
bility of 1

3
of being made, and the agent will believe that

the predicted value is exact. Predictor b has an unbiased er-
ror of at most 2 expansions, uniformly distributed. Yet, un-
like a, predictor b outputs a distribution. The returned dis-
tribution results from randomly drawing a value uniformly
from within the range of ±2 expansions from the true value,
then constructing a uniform distribution within ±2 around
the predicted value. For instance, if the true expansion value




