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1 | INTRODUCTION
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Abstract

Seminal fluid protein composition is complex and commonly assumed to be rapidly
divergent due to functional interactions with both sperm and the female
reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal
fluid may contain structures, such as mating plugs and spermatophores. Here, we
investigate the evolutionary diversification of a lesser-known ejaculate structure: the
spermatostyle, which has independently arisen in several families of beetles and true
bugs. We characterized the spermatostyle proteome, in addition to spermatostyle
and FRT morphology, in six species of whirligig beetles (family Gyrinidae).
Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they
possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly
abundant, and their localization to spermatostyles was confirmed by immuno-
histochemistry. Although there was evidence for functional conservation of
spermatostyle proteomes across species, phylogenetic regressions suggest evolu-
tionary covariation between protein composition and the morphology of both
spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have
evolved a novel structural role in spermatostyles and discuss spermatostyles as

adaptations for delivering male-derived materials to females.

KEYWORDS

Coleoptera, evolution, fertility, protease, reproduction, sexual selection

100 proteins that have been demonstrated to be transferred to

females during mating (McCullough et al., 2022). Ejaculate proteins

Ejaculates are comprised of sperm and seminal fluid, the latter being a
complex mixture predominantly of proteins, sugars, and lipids
(Gillott, 2003). For example, human seminal plasma is believed to
contain thousands of proteins (Samanta et al., 2018), and seminal

fluid of the fruit fly, Drosophila melanogaster, includes approximately

have diverse impacts on postcopulatory events shaping fertility,
including inducing changes to female reproductive tract (FRT)
immunity, stimulating ovulation, and influencing female metabolism,
physiology, and receptivity to mating (e.g., Abu-Raya et al., 2020;
Berland et al., 2016; Schwenke & Lazzaro, 2017; Tsukamoto
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et al., 2014; Walker et al., 2015). Ejaculates can also include distinct
structures. These may be produced by males and transferred to
females along with seminal fluid and sperm, such as the fine strands
and vesicles observed in the semen of D. melanogaster (Perotti, 1971;
Wainwright et al., 2021) and numerous other Drosophila species
(S. P., personal observation), the nutrient-containing spermatophylax
of some crickets and katydids (Alexander & Otte, 1967,
Sakaluk, 1984), and the spermatophores (i.e., capsule, sheath, or
mass surrounding sperm) of diverse animals lacking direct transfer of
the ejaculate by the male into the FRT (e.g., scorpions, salamanders,
and octopuses; Mann, 1984; Schaller, 1971). Alternatively, ejaculate
structures may form within the FRT during and/or immediately
following copulation from components transferred by males. Exam-
ples of such structures include the spermatophores of butterflies,
beetles, flies, and other insects (Davey, 1960; Mann, 1984) and the
mating plugs of diverse taxa (e.g., primates, rodents, garter snakes,
insects; Avila et al., 2015; Dixson & Anderson, 2002; Mcdonough-
Goldstein et al., 2022; Schneider et al., 2016; Voss, 1979). Here, we
report a molecular and evolutionary investigation of another
somewhat obscure class of ejaculate structure: spermatostyles.
Spermatostyles are slender, hyaline rods to which sperm attach
to form conjugates (Figure 1). Conjugation refers to the phenomenon

FIGURE 1 Spermatostyle morphology in Dineutus assimilis whirligig beetles. SEM (a, f, g), TEM (b), DIC (c, €), and darkfield micrographs (d) of

of two or more sperm physically uniting for motility or transport
through the FRT (Higginson & Pitnick, 2011). The term “spermatos-
tyle” was coined by Breland and Simmons (1970) when describing the
sperm conjugates of Dineutus spp. whirligig beetles, although the
structures were first described by Gilson (1884) in an investigation of
ground beetles (where they were incorrectly referred to as
“spermatophores”). Spermatostyles occur in several families of
adephagan beetles (ground beetles, diving beetles, and kin; families
Carabidae, Dytiscidae, Gyrinidae, and Haliplidae; Breland &
Simmons, 1970; Dallai et al., 2019, 2020; Giglio et al., 2024; Gémez
& Maddison, 2020; Higginson et al., 2015; Higginson & Pitnick, 2011;
Mercati et al., 2023; Salazar et al., 2022, 2023) and auchenorrhynch
true bugs (cicadas, planthoppers, and spittlebugs; families Aphro-
phoridae, Cercopidae, Cicadidae, and Cicadellidae; Chawaniji
et al., 2005, 2006; Chevaillier, 1963; Chevaillier & Maillet, 1965;
Folliot & Maillet, 1970; Hayashi & Kamimura, 2002a, 2002b;
Maillet, 1959; Roberston & Gibbs, 1937; Sodré et al, 2024).
Spermatostyles vary in their length, from 17 um to 4.1cm, the
location, density, and organization of attached sperm, and their
ultrastructural appearance (e.g., Giglio et al., 2024; Goémez &
Maddison, 2020; Higginson & Pitnick, 2011). Spermatostyles clearly
have independent evolutionary origins in true bugs and beetles.

spermatostyles isolated from male seminal vesicles (a—d, f, g) or female sperm storage (e). (a) Multiple spermatostyles with numerous attached
sperm. (b) Transverse cross-section through a spermatostyle showing peripheral cavities within embedded sperm heads. (c) A single

spermatostyle with bound sperm. (d) Two sonicated spermatostyles without attached sperm. (e) Several bare spermatostyles recovered from the
spermatheca of a wild-caught female following sperm dissociation. (f) Sonicated spermatostyle highlighting the highly ordered distribution of
sperm cavities at regularly spaced intervals. (g) Close-up of a sperm head embedded in a cavity (arrow). Scale bars: 200 um (c, d), 100 um (e),

5um (a, f), 2 um (g).
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However, ancestral state reconstructions suggest spermatostyles are
ancestral to adephagan beetles, including ground, diving, and
whirligig beetles (Gémez & Maddison, 2020; Gomez et al., 2023).

Although spermatostyles are often functionally associated with
sperm conjugation, there is no direct evidence to support this as their
primary adaptive function, and alternative hypotheses have been
proposed (see Higginson & Pitnick, 2011). In fact, spermatostyles are
neither required for conjugation nor are they the only mechanism by
which sperm unite to form conjugates. Conjugation has indepen-
dently evolved numerous times and includes a wide array of sperm
binding mechanisms exclusive of spermatostyles (Higginson
et al., 2012a; Higginson & Pitnick, 2011). In addition to serving as
scaffolding in conjugation, spermatostyles might also perform
adaptive functions within the FRT (Pitnick et al., 2020). Under this
general scenario, it is intriguing to reconsider the interaction of sperm
with spermatostyles as one in which sperm are responsible for the
delivery of the spermatostyle (and its molecular cargo) to a precise
location in the FRT. For internally fertilizing species, sperm, seminal
fluid, and ejaculate structures all engage in complex interactions with
the FRT that influence fertilization efficiency and competitive
fertilization success (Lupold et al., 2020; Pitnick et al., 2020; Pitnick,
Wolfner, et al, 2009; Ravi Ram & Wolfner, 2007; Sirot &
Wolfner, 2015; Sirot et al., 2014). In fact, female-derived proteins
substantively contribute to sperm and ejaculate (i.e., spermatophores
and copulatory plugs) form and function within the FRT (Dean
et al, 2011; McCullough et al, 2022; McDonough-Goldstein
et al., 2022; Meslin et al., 2017). Post-insemination functionality of
spermatostyles would be consistent with the expansive role of
seminal fluid proteins (SFP) in mediating postmating responses by
females (Hopkins et al., 2017).

Discrimination among alternative hypotheses for the adaptive
value of ejaculate structures requires a deeper understanding of the
interactions underpinning their form-function relationships inside
FRTs (Higginson et al., 2012b; Lipold et al., 2020; Meslin et al., 2017;
Pitnick, Wolfner, et al., 2009; Syed et al., in review). For example, the
initial discovery that bumblebee copulatory plugs consist of fatty
acids (Baer et al., 2000) led researchers to identify linolic acid as the
major plug constituent responsible for female remating delays (Baer
et al., 2001). Here, we combine phylogenetic, morphological, and
molecular approaches to (i) characterize spermatostyle proteomes
and structures, (ii) assay spermatostyle proteolytic activity, and (iii)
test for covariation between spermatostyle proteome composition
and the form of both spermatostyle and the FRT in whirligig beetles.

2 | METHODS

2.1 | Specimen collection and spermatostyle
isolation

Our investigation included a representative of two of the three clades
of Gyrinidae known to produce spermatostyles (Gustafson &
Miller, 2017; Salazar et al., 2022). Six species were sampled: five
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species of North American Dineutus (tribe Dineutini; D. ciliatus, D.
discolor, D. nigrior, D. assimilis, and D. hornii) and the Palearctic
whirligig Orectochilus villosus (tribe Orectochilini). Beetles were
collected using aquatic nets in ponds and creeks in the United States
of America and France (see Supporting Information S1: Table 1 for
study sites). All studied specimens are stored in the personal research
collection of the lead author and are available upon request.

Spermatostyles were isolated for proteomics by microdissection
from the male seminal vesicles (SV, Figure 1c; Supporting Information
S1: Table 1). SV contents were evacuated into a clean drop of
phosphate-buffered saline (PBS) supplemented with protease inhibi-
tors (cOmplete Protease Inhibitors Cocktail; Roche) on a subbed slide.
Following the removal of any extraneous tissue, spermatostyles were
pooled and stored at -80°C.

2.2 | Characterizing spermatostyle and FRT
morphology

Using the methods described above, males were dissected (N =5 per
species) to isolate sperm and spermatostyles for morphological study.
Total sperm length, sperm head length, and spermatostyle length
were measured from 10 sperm or spermatostyles per male using
routine DAPI staining (Gémez & Maddison, 2020). Female genitalia
were dissected (N = 3-5 females per species) and prepared following
the methods of Miller and Bergsten (2012) to quantify spermatheca
maximal length, spermatheca maximal width, spermatheca area,
spermathecal duct length, fertilization duct length, and the diameter
of the apical orifice of the fertilization duct. All morphometric
measurements (Supporting Information Material S1) were obtained
from photomicrographs (differential interference contrast, darkfield,
or fluorescent) acquired using an Olympus DP-71 camera mounted
on an Olympus BX60 microscope using FlJI (Schindelin et al., 2012).

2.3 | In vitro sperm removal and spermatostyle
protein solubilization

Sperm were removed from isolated spermatostyles by sonication
using a Misonix S-4000 sonicator (Misonix) followed by centrifuga-
tion and purification with a cell strainer filter (pore size 40-70 um) to
remove sperm (Figure 1d). Spermatostyles on the filter were washed
with PBS and centrifuged before transfer to 40 uL of 1-2X Laemmli
sample buffer with 25 mM Bond-Breaker TCEP solution (Thermo
Fisher Scientific) and protease inhibitors. Vortexing and heating (95°C
for 5min) were used to ensure complete solubilization. To evaluate
the effectiveness of our spermatostyle purification protocol, five
samples of sonicated and unsonicated D. assimilis spermatostyles
were prepared for electron microscopy (EM) following the methods
of Dallai et al. (2020). EM of samples prepared for proteomic analysis
confirmed that our protocol successfully removes bound sperm,
although we note the persistence of a small amount of residual sperm

fragments (Supporting Information S1: Figure 1).

QSUDIT suowwo)) dAnear) a[qedrdde oy Aq pauroaos are saponIe YO sn Jo sa[ni 10y Areiqi aurjuQ £3[IA\ UO (SUONIPUOD-PUB-SULIR}/WO0d KA[Im” Areiqijaul[uo//:sdiy) SUONIpUO)) pue SWd ], oy 39S *[+70Z/01/10] U0 Areiqr auruQ A[IM ‘1S9 L Aq SHLET PIW/Z001 01 /10p/wod Kopim: Areiqiaurjuo//:sdyy woiy papeoumod ‘S ‘$70T ‘S6LT8601



4 of 15 Molecular Reproduction

GOMEZ ET AL.

%Development

2.4 | RNA extraction, RNAseq, and de novo
transcriptomics

De novo transcriptome assemblies and gene model annotations were
completed for all six species to facilitate phylogenetic analyses and
establish species-specific, predicted protein databases for tandem
mass spectrometry (MS/MS) spermatostyle characterization (Sup-
porting Information S1: Tables 1-2). Total RNA was extracted from
whole males to prepare Illumina TruSeq Stranded mRNA libraries for
sequencing on an lllumina NextSeq. 550 with 75 base pairs, paired-
end reads. Between 6 and 8 library preps were multiplexed per
sequencing lane to obtain approximately 50 million reads per
transcriptome. The raw reads are available via the NCBI SRA
(BioProject Accession PRINA1063663).

The transcriptomes were assembled de novo using the Trinity
pipeline (version 2.13.2; Grabherr et al., 2011). Quality control with
BUSCO scores (289%) and transrate (20.25) (Supporting Information
S1: Table 2) were used as filters. De novo annotation was performed
with the Trinotate pipeline (Bryant et al., 2017), including protein
prediction with TransDecoder (Grabherr et al., 2011) for transcripts
with a minimum open reading frame length of 20 amino acids (-m 20)

or significant homology.

2.5 | MS/MS and protein identification

Two replicate samples were prepared for each species by pooling
spermatostyles from either 20 males per species in Dineutus spp. or
50 males of O. villosus. The entire volume of each sample was
separated on a 1.5mm 12% SDS-PAGE gel stained with colloidal
Coomassie dye and divided into four slices. Slices were analyzed with
a Dionex UltiMate 300 rapid separation liquid chromatography
nanoUPLC system (Thermo Fisher Scientific) coupled with a Lumos
mass spectrometer (Thermo Fisher Scientific) (see McDonough-
Goldstein et al., 2021 for details of MS/MS methods).

Mass spectra data were searched in a species-specific manner
against their predicted proteome (see above) using the PEAKS Studio
X software (Bioinformatics Solutions Inc.). We appended each
reference proteome with the cRAP v. 1.0 contaminant database
(thegpm.org) and used the following PEAKS parameters: semi-
specific digestion with up to three missed tryptic cleavages, parent
monoisotopic mass error of 15.0ppm, and fragment ion mass
tolerance of 0.5Da. Three posttranslational modifications were
included in our searches: carabamidomethylation (cysteine; fixed),
oxidation (methionine; variable), and deamidation (glutamine and
arginine; variable). For each species, we included those PSMs with
-10logP scores that yielded a total false discovery rate of 1%
(estimated with a decoy-fusion approach; Zhang et al., 2012), a
PTMA score >100, or a de novo identified score > to 50. We retained
only those proteins with a -10log p > to 20, identification by at least
two unique peptides and at least six spectral hits. A single
representative protein was included for protein groups resulting
from isoforms. These criteria resulted in the retention of between

779 and 1086 spermatostyle proteins per species (Supporting
Information Material S2). Protein abundances were established with
label-free quantitation, relying on feature intensity from MS1 as the
basis for estimating protein abundances (Cox & Mann, 2008). To
facilitate comparisons among species, these values were normalized
following Wisconsin double standardization. MS/MS data is available

via the ProteomeXchange Consortium (Project accession
PXD048928).
2.6 | Confocal microscopy and

immunohistostaining

To validate our proteomic discovery of sperm-leucylaminopeptidases
(S-LAPs) at high abundance in spermatostyles, D. assimilis sperma-
tostyles were stained using a mouse polyclonal antibody against
D. melanogaster S-LAP-1 (Laurinyecz et al., 2019) and the methods of
White-Cooper (2004) with the dilution factor originally used by
Laurinyecz et al. (2019). Confocal images were acquired using a
LSM980 confocal microscope with high-resolution airyscan (Blatt

Bioimaging Center; Syracuse University).

2.7 | Orthology and phylogeny characterization

To conduct evolutionary comparisons among spermatostyle pro-
teomes, we reconstructed orthology relationships for our transcrip-
tomic data using Orthofinder v. 2.5.4 (Emms & Kelly, 2015, 2019).
Orthofinder recovered pairwise orthology relationships for
51.6%-73.1% (average = 63.0%) of all genes, and 7999/27,908
(28.6%) of orthogroups were present in all species. 2851/27,908
(10.2%) of orthogroups were estimated to be single-copy and present
in all transcriptomes. The maximum-likelihood species tree was
determined based on single-copy orthogroups with RAXML-NG v.
1.1, as implemented by Orthofinder (Kozlov et al., 2019).

2.8 | Protease assay

We assayed the proteolytic activity of D. assimilis spermatostyles
using the Pierce fluorescent protease assay (Thermo Fisher Scien-
tific). Two samples of sonicated spermatostyles isolated from 20
males and pooled in PBS supplemented with 0.01% Triton-X 100
were incubated in parallel with six serial dilutions of 0.5 ug/mL
trypsin standards at room temperature for an hour, and changes in
fluorescence polarization were recorded using a SpectraMax Micro-

plate Reader.

2.9 | Gene ontology (GO)

GO terms were obtained from the Trinotate pipeline for the
transcriptome of each species. Significantly enriched GO terms (using
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a Fisher's exact test) from each spermatostyle proteome were
identified using the R package TopGO (Alexa & Rahnenfuhrer, 2023)
after limiting the search to the highest abundance proteins that

account for 75% of the cumulative protein abundance per proteome.

2.10 | Phylogenetic analysis of proteome and
reproductive trait co-diversification

To facilitate phylogenetic comparative analyses of all morphological
traits and proteome composition, the species tree from Orthofinder
was ultrametricized using established divergence time estimates
(Gustafson, Prokin, Bukontaite, et al., 2017). Protein abundance
values were summed by orthogroup. All phylogenetic comparative
analyses and principle component analyses (PCAs) were conducted in
R v. 4.1.2 (R Core Team, 2021). Phylomorphospaces were recon-
structed using phytools v. 1.9.6 (Revell, 2012). Phylogenetic general-
ized least squares (PGLS) and phylogenetic ANOVA were conducted
using the R packages caper v. 1.0.2 (Orme, 2018) and phytools,
respectively, to examine covariation between proteome composition
and morphological traits (spermatostyle length, fertilization duct
length, the width of the apical orifice of the fertilization duct, and
spermatheca area). Correlation coefficients were obtained using
phylogenetic independent contrasts with ape v. 5.7.1 (Paradis &
Schliep, 2019) for PGLS models that fit Brownian motion or Pearson's
correlation for models that did not require phylogenetic correction
(i.e., A=0).

3 | RESULTS
3.1 | Spermatostyle, sperm, and FRT evolution

A well-resolved ultrametric phylogeny was obtained from maximum-
likelihood analysis of 2851 one-to-one orthologs present in our de
novo transcriptome annotations for all six species (1,168,346
concatenated bps; Figure 2a). Dineutus and Orectochilus were each
recovered as distinct lineages. Divergence time estimates for the
previously unsampled assimilis-group species suggest that D. hornii
diverged from its sister group 12.4 million years ago (mya), and
D. assimilis diverged from D. nigrior 9.4 mya. The phylogenetic
distribution of spermatostyles in whirligigs suggests that they have
possibly been retained in these beetles across hundreds of millions of
years (Gustafson & Miller, 2017; Gustafson, Prokin, Bukontaite,
et al., 2017).

Spermatostyles from male SV vesicles appear as rope-like
bundles (Figure 1a,c) due to the hundreds of sperm embedded via
their heads in peripheral cavities found in the homogenous
spermatostyle material (Figure 1b,f,g; Salazar et al., 2022). Electron
micrographs of spermatostyles after the removal of sperm showed
that these cavities are arranged with highly ordered positioning
between cavities (Figure 1f). Spermatostyles vary morphologically

among our sampled species principally in length (Figure 2a), and
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because of the regular pattern of sperm attachment, spermatostyle
length closely covaries with the number of sperm with which they
associate (R. A. G., personal observation). Linear morphometrics of
sperm and FRTs also exhibit substantial interspecific variation
(Figure 2a; Supporting Information Material S1).

Spermatostyles and the proteins of which they are composed
may function in multiple sites in FRTs. Spermatostyles were observed
in both the spermathecae and fertilization ducts of wild-caught D.
assimilis females (n =5 out of six females examined; Figure 1e). FRT
morphology differed among species (Figure 2a), particularly the
design of the fertilization duct (Figure 2a) and the size of the
spermatheca (Figure 2c; Miller & Bergsten, 2012). Dineutus assimilis
and D. nigrior are notable for possessing voluminous spermathecae
(Figure 2a,c) capable of storing hundreds of spermatostyles (R. A. G,,

personal observation).

3.2 | Composition of spermatostyle proteomes

MS/MS proteomic analysis of spermatostyles was conducted in a
species-specific manner using predicted proteins from de novo
transcriptome annotations in all six species. This resulted in a mean of
148,717 (range: 77,169-214,388) peptide-spectrum matches and the
identification of 978 + 135 (mean + 1 SD, range: 779-1086) sperma-
tostyle proteins per species (Supporting Information Material S2).
Protein identification was highly reproducible between samples as
nearly all spermatostyle proteins were identified in both biological
replicates per species (range = 97.3%-99.5%). Mapping spermatos-
tyle proteins to their corresponding orthology groups revealed that
approximately one-quarter of all proteins (362/1472) were identified
in the proteomes of all six species (Figure 3a). When excluding the
outgroup species O. villosus, the remaining proteomes overlapped in
at least one-half of their orthology groups (Figure 3a).
Spermatostyle proteomes possessed several notable features.
First, the proteomes of all six species were largely comprised of a
small number of highly abundant proteins (Figure 3b). The top 10
most abundant proteins in each proteome accounted for
60.0%-65.6% of total protein composition. Second, the single most
abundant spermatostyle protein in all Dineutus species was an S-LAP
(Dorus et al., 2006, 2011; Wasbrough et al., 2010) that accounted for
an average of 17.2% of total protein abundance. In O. villosus, the
most abundant protein (19.1% of total protein abundance) shared
sequence homology with a major limpet shell matrix protein
(ELDP2_LOTGI; Mann & Edsinger, 2014), an extracellular matrix-
related protein that might contribute to shell mineralization (Marie
et al.,, 2013); an S-LAP was the third most abundant protein. When
considering all six species, the top 10 proteins consistently included
1-3 copies of an S-LAP family member, a non-S-LAP M17 leucine
aminopeptidase (M17 LAP; Drinkwater et al., 2019), a chymotrypsin
and a homolog of a limpet shell matrix protein. Third, a comparison of
high abundance spermatostyle proteins (i.e., those accounting for
75% of the total protein content per species) revealed high levels of

proteome conservation (typically >50%; range 44%-85%) among
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species with an average conservation percentage of 66% for all

pairwise comparisons among Dineutus species (Figure 3c).

3.3 | S-LAP localization in spermatostyles and
S-LAP diversification

Drosophila S-LAPs are testis-specific in expression and are amongst
the most abundant integral sperm proteins (Dorus et al, 2011;
Garlovsky et al., 2022; Wasbrough et al., 2010). To visually confirm
S-LAP presence in spermatostyles, in addition to whirligig sperm, we
conducted immunohistochemical confocal imaging of D. assimilis
spermatostyles and sperm stained with a polyclonal S-LAP1 antibody
(Figure 4a-g), DAPI, and the actin stain phalloidin. As expected, the
antibody detected S-LAP proteins in sperm, particularly their flagella.

It was also evident from composite images that spermatostyles
exhibited anti-S-LAP signal in regions that were absent of bound
sperm heads, as judged by the lack of DAPI signal. This direct
visualization confirmed the presence of S-LAP proteins in the
spermatostyle, thus corroborating our proteomic results. Phalloidin
staining was also observed in both sperm and spermatostyles, which
is consistent with the identification of actin in our spermatostyle
proteomes and the presence of actins in insect sperm more generally
(Degner et al., 2019; McCullough et al, 2022; Whittington
et al,, 2017).

To determine if the contribution of members of the S-LAP
protein family to spermatostyles was conserved, we investigated
S-LAP abundance variation in a phylogenetic framework. This
revealed that S-LAPs were distributed across three major phyloge-
netic clusters that were variable in their contribution to

ASUAIIT suowwo)) aAnear) a[qeorjdde ayy £q pauraros are sa[onIe Y SN Jo sNI 10J A1eIqI AuIUQ KI[IA UO (SUONIPUOD-PUB-SUWLIS)/ WO KI[1M” AIeIqI[auljuo//:sdny) suonipuo) pue swid [, ay) 23S “[z0z/01/10] uo Kreiqi auruQ L3IM 1S9, AqQ ShLEZ PIW/Z001 0 1/10p/wod Ka[im’ Kreiqiautjuo//:sdny woiy papeo[umo( S ‘20T ‘S6LT8601



GOMEZ ET AL

Molecular Reproduction 7 of 15

(@)

D. hornii

D. ciliatus

58

D. discolor

27

D. nigrior

5
evelopment

(b) g '°

o

c

©

©

c 05

>

Q

©

o o

> 1.0

=]

o

=}

E 0.5

=1

(@]

2] [ ]
0 2000 0 20000 2000

Protein Number

() ‘

D. assimilis
D. nigrior
D. hornii

D. ciliatus
D. discolor

0. villosus

overlap (%) P PbLBLO

p 7o ® 3 T 0 Q <

_ [7] ‘E- o = a. =
253 8¢ ¢

0.00 0.25 0.50 0.75 1.00 § e = 5, <3 ‘g
5 5

FIGURE 3 Whirligig spermatostyle proteome characterization. (a) Edwards-Venn diagram of spermatostyle proteome conservation across
species based on. (b) Bubble plots of the cumulative abundance profiles for spermatostyle proteins in each proteome: protein number (x),
cumulative abundance (y), and the individual protein's abundance (circle size). (c) Overlap between whirligig spermatostyle proteomes.

spermatostyle composition (Figure 4h,i; Dorus et al., 2011). All
whirligig spermatostyles except D. assimilis include cluster | and
cluster Il orthologs in high abundance, and three out of the six
proteomes included additional S-LAP copies from a third previously
uncharacterized cluster (Figure 4h,i). S-LAP abundance may also be
associated with spermatostyle structure as the short spermatostyles
of Orectochilus and D. assimilis both feature smaller quantities of
cluster Il S-LAPs (Figure 4i). We conducted phylogenetic ANOVA and
PGLS to determine if spermatostyle lengths differ significantly with
the abundance of their included S-LAPs. Linear regression did not
support a significant relationship between spermatostyle length and
S-LAP cluster Il protein abundance (F14=6.18, p=0.06). However,
discretization of spermatostyle length data into two groups permitted
a phylogenetic ANOVA that revealed a weakly significant relationship
(F1,4=7.11, p=0.035) between S-LAP cluster Il protein abundance in
species possessing either short or long spermatostyles. Drosophila S-
LAPs are notable among M17 aminopeptidases for possessing
putatively disruptive substitutions at catalytic sites (Dorus
et al., 2011). The absence of enzymatic activity has subsequently
been confirmed for S-LAP 1 and 6 using in vitro assays (Laurinyecz

et al., 2019). These novel substitutions have led authors to question
the function of these proteases given their extreme abundance in
sperm (Dorus et al., 2011), and novel functionality of S-LAPs can
readily be envisioned as M17-LAPs in other organisms perform a host
of aminopeptidase-independent functions (Drinkwater et al., 2019).
Sequence alignment with Drosophila and beetle S-LAP amino acids
revealed that whirligig S-LAPs have conserved catalytic site residues
but have experienced novel amino acid substitutions in key residues
involved in coordinating metal ion binding (Supporting Information
S1: Figure 2a). Specifically, these involve the replacement of
negatively charged residues with those that are neutral or hydropho-
bic (Supporting Information S1: Figure 2b; Maric et al., 2009).

3.4 | Spermatostyle proteome functionality and
proteolytic activity

GO enrichment analyses of molecular function were conducted
independently for each of the six species-specific spermatostyles
proteomes (Supporting Information S1: Table 3). Given the
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FIGURE 4 S-LAPs localize to whirligig spermatostyles. (a—g) Confocal micrographs of three partial Dineutus assimilis spermatostyles isolated
from seminal vesicles and stained for DNA (DAPI), actin (Phalloidin), and S-LAPs (S-LAP-1 polyclonal primary antibody followed by AlexaFluor
secondary antibody). Note the presence of an S-LAP signal in both sperm and spermatostyles, particularly in regions of the latter that clearly lack
bound sperm heads (arrows). (a-c) Individual channels, (d-f) dual channels, and (g) composite images of all three channels. (h, i) S-LAP
diversification in whirligig spermatostyles. (h) S-LAP protein tree showing the major protein clusters. (i) Barplots displaying S-LAP abundance (as
a percentage of total proteome abundance) per species and spermatostyle length. Spermatostyle length covaries with S-LAP abundance (see
Results). Small black (cluster 1) or gray (cluster Ill) triangles beside bars denote S-LAP copies with very small cumulative abundances. S-LAP,

sperm-leucylaminopeptidases.

substantial conservation across proteomes studied, it was not
unexpected to observe consistent significant enrichments of prote-
ases (and other catalytic classes of proteins) and structural proteins
(primarily tubulins and actins). In total, 9.7%-12.3% of the proteome
was predicted to be catalytic. Although proteases were not the
largest class in number (~2%-3% of all proteins), they consistently
accounted for a large proportion of the total amount of protein
(31%-51% of cumulative abundance). In contrast, structural proteins
were similar in absolute number but far less abundant (4%-6% of all
proteins; 3%-7% cumulative abundance). To explore overall inter-

specific variation in functional conservation, we plotted

spermatostyle GO terms by their average abundance and significance
of enrichment. This highlighted the following two groups of
significantly enriched terms: those that comprised highly abundant
proteins and those comprised of lower abundance proteins (e.g., the
top two quadrants in Figure 5). Among the highly abundant proteins
(see Figure 5) were terms for peptidase activities, manganese ion
binding activity, transaminase activity, and transferase activity, and
among the lower abundance proteins were a wide variety of
additional enzymes and proteins characterized in seminal fluid and
in reproduction (e.g., spermine and prostaglandins; Supporting
Information S1: Table 2; Mann, 1974; Mayoral Andrade et al., 2020).
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number of proteins matching that term (bubble size).

The enrichment and abundance of proteolytic enzymes in
spermatostyles was perhaps unexpected in light of the assumed
role of spermatostyles as the structural scaffold for sperm during
transfer to and migration through the FRT (Higginson &
Pitnick, 2011). To test whether proteases within spermatostyles
retain enzymatic activity, we conducted proteolytic assays with
spermatostyles isolated from D. assimilis SV. These assays revealed
that one male equivalent of D. assimilis spermatostyles had
enzymatic activity comparable to approximately 0.01-0.02 ng/mL
of trypsin, which is similar to the concentration of trypsin found in
mosquito midguts immediately following a bloodmeal (Noriega
et al., 1996; Pennington et al., 1995). We note that this assay does
not provide information about the specific proteins contributing to
this activity, including whether S-LAPs may have enzymatic
capacity.

3.5 | Proteome co-diversification with
spermatostyle and FRT structure

Spermatostyle structure and composition are predicted to covary
with the FRT, with which they interact. We used a PCA to
characterize compositional variation in the proteome underlying
spermatostyle evolution across the phylogeny (herein referred to as a
“phyloproteospace” [Figure 6a], a proteomic application of a
phylomorphospace approach (see Sidlauskas, 2008)). The first
principal component (PC) captured 59.4% of the variation and was
almost entirely accounted for by abundance variation of the S-LAP
and shell matrix protein families (Figure 6éb). PC2 captured 31.9% of
the variation and was largely accounted for by M17 LAP abundance
differences. PC3 and PC4 described 5% and 2.4% of the variation,
respectively. We note that the clustering of several Dineutus species
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FIGURE 6 Co-diversification of spermatostyle proteome composition with spermatostyle and FRT design. (a) “Phyloproteospace” of the first
two principal components (PC) of spermatostyle proteome composition. (b) Trait contributions for PC1 of spermatostyle composition. (c)
Phylomorphospace of the first two PC of the whirligig spermatostyle, sperm, and FRT traits. (d, e) Correlation coefficients from phylogenetic-
controlled regressions color-coded by correlation strength. (d) Regressions of proteome composition PC1 and univariate morphological traits. (e)
Bivariate regressions of the first three PCs of both proteomic and morphological variation. FRT, female reproductive tract.

in phyloproteospace was due to the high abundance of S-LAPs and
lower quantities of a shell matrix protein, which was absent from the
D. hornii proteome altogether.

PCA of spermatostyle and FRT traits revealed a robust
divergence between Orectochilus and Dineutus. Both clades of
Dineutus localized to a similar region of phylomorphospace
(Figure 6c). The major contributors to PC1 included (i) the width of
the apical orifice of the fertilization duct (accounting for 58.1% of
PC1 variance), (ii) sperm head length (16.5%), (iii) spermatheca length
(8.9%), (iv) spermatheca area (6.7%), and (v) spermatostyle length
(4.3%). PC2 was largely accounted for by (i) spermatheca area
(accounting for 52.5% of PC2 variance), (ii) spermatheca width
(28.1%), and (iii) width of the apical orifice of the fertilization
duct (14.5%).

Phylogenetically controlled regressions between major PCs
(Supporting Information S1: Table 4; Figure éd,e) indicated evolu-
tionary covariation between the composition of the spermatostyle
proteome and spermatostyle and FRT morphometry. It is important
to note that the power of these analyses is limited by our sample size,

and none of the p-values remained significant after multiple test
corrections (Supporting Information S1: Table 4). Nonetheless,
consistently high goodness-of-fit measures (R? > 40%) were sugges-
tive of functional and/or evolutionary relationships between the
scores and loadings of major PCs and studied traits (Supporting
Information S1: Table 4; Figure 6d,e). Specifically, models predicted
that as spermatostyles elongate and fertilization ducts lengthen and
narrow, S-LAPs increase in abundance with a corresponding decrease
in the shell matrix protein. This pattern was similarly reflected in the
strongly negative correlation found between PC1 of both datasets
(r=-0.87; PGLS p=0.02 before correction; Figure 6e; Supporting
Information S1: Table 4). Covariation was also observed between
morphometric PC2 and proteome composition PC3 (r=-0.64; PGLS
p=0.16 before correction; Figure 6e; Supporting Information S1:
Table 4). This relationship suggests that spermatheca size decreases
are associated with increasing chymotrypsin abundance. Despite our
limited taxon sampling, these patterns suggest evolutionary co-
diversification at the molecular and morphological levels between

spermatostyles and the environments in which they function.
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4 | DISCUSSION

The remarkable structural and biochemical diversification of ejacu-
lates is almost certainly attributable to the diversity of postcopulatory
roles they contribute to in the FRT (Dorus et al. 2004; Higginson
et al., 2012b; McCullough et al., 2022; Pitnick, Hosken, et al., 2009;
Pitnick et al., 2020; Ravi Ram & Wolfner, 2007). In this study, we
characterized the proteomic composition and evolution of sperma-
tostyles, which to date have received little attention beyond
morphological examination (Breland & Simmons, 1970; Chawaniji
et al., 2005, 2006; Chevaillier, 1963; Chevaillier & Maillet, 1965;
Dallai et al., 2019, 2020; Folliot & Maillet, 1970; Giglio et al., 2024;
Gomez & Maddison, 2020; Hayashi & Kamimura, 2002a, 2002b;
Maillet, 1959; Mercati et al., 2023; Roberston & Gibbs, 1937; Salazar
et al., 2022, 2023; Sodré et al., 2024). Although functional data are
generally lacking, it has been assumed that the adaptive value of
spermatostyles is the facilitation of cooperative sperm migration
through the FRT (Higginson & Pitnick, 2011; Immler, 2008; Pizzari &
Foster, 2008). As such, we anticipated that spermatostyles would be
largely composed of structural proteins (e.g., tubulins, actins, dyneins)
and that other types of proteins (e.g., enzymatic or metabolic) would
be underrepresented. On the contrary, our proteomic characteriza-
tion revealed that spermatostyles are comprised of a conserved
repertoire of highly abundant proteolytic enzymes. Notably, there are
only a limited number of putatively structural proteins found in high
abundance in all species such as a homolog of a limpet shell matrix
protein. Biochemical analyses further confirmed that spermatostyles
have proteolytic activity, although the precise identity of the protein
(s) contributing to this activity remains unknown. Nothing is known
about the mechanisms responsible for sperm dissociation from the
spermatostyle. Based on the results of the present study, we
speculate that spermatostyles may contain the molecular cargo
(e.g., proteolytic enzymes and other catalytic proteins) responsible for
the precise regulation of sperm dissociation (perhaps in conjunction
with female-derived factors). When considered with the observation
that spermatostyles persist in the FRT for a prolonged period of time
following sperm dissociation (Breland & Simmons, 1970; Gustafson &
Miller, 2017; R. A. G. and S. P., personal observation), these results
are also consistent with the general hypothesis that spermatostyles
are involved in other postmating functions (Pitnick et al., 2020). It is
noteworthy that the enrichment in proteolytic pathways in sperma-
tostyles mirrors similar enrichments in both SFPs and FRT secretions
in other insects (McCullough et al, 2022; McDonough-Goldstein
et al,, 2021; Meslin et al., 2017; Plakke et al., 2019; Qian et al., 2023;
Rogers et al., 2009).

The localization and persistence of SFPs in the FRT have not
been widely investigated (but see Avila et al., 2011; McCullough
et al., 2022; Ravi Ram et al., 2005; Ravi Ram & Wolfner, 2007), but
such information is critical for understanding their function and
evolution. In D. melanogaster, only a restricted subset of SFPs
accompany sperm into the female's sperm-storage organs
(McCullough et al., 2022; Wolfner, 2011). The persistence of only a
few male-derived molecules may be dependent upon specific
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interactions between these molecules and sperm. For example, the
SFP known as “Sex Peptide” is transported to the sperm-storage
organs after binding to the plasma membrane of sperm flagella. It is
then gradually released by cleavage from sperm over the course of
days to impact female remating and other postmating responses
(Hopkins & Perry, 2022; Kubli, 2003; McCullough et al., 2022; Peng,
Chen, et al., 2005; Peng, Zipperlen, et al, 2005; Ravi Ram &
Wolfner, 2007, 2009; Wainwright et al., 2021). In contrast, the vast
majority of Drosophila SFPs are greatly reduced in abundance or
undetectable across FRT tissues within hours of insemination
(McCullough et al., 2022). Clearly, the robust physical association of
spermatostyles with sperm (Figure 1) ensures that spermatostyles
accompany sperm during their migration through the FRT and into
the spermatheca (Breland & Simmons, 1970). After sperm dissocia-
tion, whirligig spermatostyles are known to exhibit prolonged
persistence within female sperm-storage organs (Breland &
Simmons, 1970; Gustafson & Miller, 2017; but see Salazar
et al., 2023). Bare spermatostyles have also been observed in both
the fertilization ducts and spermathecae of wild-caught female D.
assimilis (Figure 1e; R. A. G., personal observation). Spermatostyles
are thus available to participate in prolonged physical and
biochemical interactions with the FRT. Although resolving the precise
nature of these interactions requires further investigation, the
existence of such functional interactions is supported by our
observation that spermatostyle proteome composition covaries with
various axes of FRT morphology.

The redeployment and specialization of existing molecular
systems in novel contexts, oftentimes through gene duplication and
gene family diversification (Conant & Wolfe, 2008), is prevalent in the
evolution of reproductive systems (Begun et al., 2006, 2007; Chen
et al, 2013; Dorus et al., 2011; Laurinyecz et al., 2019; Levine
et al., 2006; Loppin et al., 2005; Luis Villanueva-Canas et al., 2017;
Meslin et al., 2017). S-LAPs are some of the most abundant proteins
in insect sperm (Degner et al., 2019; Dorus et al., 2006, 2011;
McCullough et al., 2022) and a primary component of the paracrystal-
line component of the mitochondrial derivatives that flank the
axoneme of insect sperm flagella (Jamieson et al., 1999; Laurinyecz
et al, 2019). This material has been credited with the unusual
elasticity observed in swimming insect sperm (Baccetti et al., 1977;
Werner & Simmons, 2008). Drosophila S-LAPs have experienced
disruptive amino acid substitutions at key catalytic and co-factor
binding residues, which likely explain the lack of enzymatic activity in
S-LAP mutants (Laurinyecz et al., 2019) and may also contribute to
their functional specialization in sperm (Dorus et al., 2011). Our
discovery of S-LAPs in whirligig spermatostyles provides a new
example of functional redeployment in which these insect sperm
proteins have been co-opted to function within an ejaculate structure
(Figures 4 and 5). It is noteworthy that our analyses revealed
covariation between S-LAP abundance and spermatostyle length.
Whirligig S-LAPs, unlike those of Drosophila, retain many of the core
catalytic residues (Figure 4, Supporting Information S1: 2). In
contrast, they have experienced substitutions in cation cofactor

binding residues (Figure 4, Supporting Information S1: 2), which
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suggests they may lack canonical M17 aminopeptidase activity (i.e.,
typical M17 aminopeptidases digest proteins following binding of a
metal cofactor; Cadavid-Restrepo et al. 2011; Drinkwater et al., 2019;
Lowther & Matthews 2002; Modak et al. 2016).

Although S-LAPs and other metal-dependent M17 aminopepti-
dases were consistently the most abundant spermatostyle proteins,
our comparative proteomic analyses also revealed divergence in
family member contribution to spermatostyle composition. These
findings support a model in which the S-LAP family (and other M17
aminopeptidases) serves as a molecular toolbox of interchangeable
components that facilitates the evolutionary diversification of
spermatostyles. Although it is unclear if S-LAPs are proteolytically
active, the potential for evolutionary variation in S-LAP functionality
may provide the mechanistic link that explains the observed
covariation between spermatostyle length and this class of predomi-
nant spermatostyle proteins (Figure 6). In addition to biochemical and
structural analyses, proteomic characterization of spermatostyles
(and sperm) in hemipterans, which diverged from our current study
species over 400 million years ago and include lineages with
independent evolutionary origins of spermatostyles, will further
inform our understanding of the deployment of the S-LAP molecular
toolbox across distinct and rapidly evolving male reproductive cells
and structures.
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