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CRISPR/Cas9 manipulations are possible in many insects and ever expanding. Nonetheless, success in one spe-
cies and techniques developed for it are not necessarily applicable to other species. As such, the development
and expansion of CRISPR-based (clustered regularly interspaced short palindromic repeats) genome-editing
tools and methodologies are dependent upon direct experimentation. One useful technique is Cas9-dependent
homologous recombination, which is a critical tool for studying gene function but also for developing pest re-
lated applications like gene drive. Here, we report our attempts to induce Cas9 homology directed repair (HDR)
and subsequent gene drive in Tribolium castaneum (Herbst; Insecta: Coleoptera: Tenebrionidae). Utilizing
constructs containing 1 or 2 target gRNAs in combination with Cas9 under 2 different promoters and corre-
sponding homology arms, we found a high incidence of CRISPR/Cas9 induced mutations but no evidence of
homologous recombination. Even though the generated constructs provide new resources for CRISPR/Cas9
modification of the Tribolium genome, our results suggest that additional modifications and increased sample
sizes will be necessary to increase the potential and detection for HDR of the Tribolium genome.

Key words: CRISPR/Cas9, Tribolium, homology directed repair, non-homologous end joining, gene drive

Introduction

CRISPR/Cas9 homology directed repair (HDR) has become an in-
valuable tool for studies of gene function (Shalem et al. 2015, Wang
et al. 2016, Khadempar et al. 2019) and serve as the basis for gene
drive systems that have increased the possibility of devising synthetic
methodologies, versus utilizing naturally occurring selfish elements,
for controlling insect pests and limiting the spread of disease vectors
(McFarlane et al. 2018, Asad et al. 2022, Bier 2022). CRISPR based
HDR has been demonstrated in several insect species and subse-
quent gene drives have now been demonstrated in Drosophila and
mosquitos, both Anopheles and Aedes (Gantz and Bier 2015, Gantz
et al. 2015, Hammond et al. 2016, Kyrou et al. 2018, Li et al. 2020).
Success and ability to drive through a population is dependent on nu-
merous factors (e.g., diploid versus diploid/haploid genomes (Scott
et al. 2018), nature (e.g., sterility, viability, maternal effect (Backus
and Delborne 2019)) and timing of drive-gene expression (Burt and
Crisanti 2018), mating system (Drury et al. 2017), and frequency
of drive-resistant alleles (Champer et al. 2017, Drury et al. 2017).

Moreover, CRISPR/Cas9 HDR is dependent on the choice of DNA
double-strand break repair via homologous recombination versus
non-homologous end joining (NHE]). HDRis necessary to permit
the conversion of a targeted locus and thus subsequently change in-
heritance frequencies. Whereas, if NHE] occurs, it tends to be error
prone, creating by insertion or deletion new alleles which are re-
fractory to a gene drive system. Moreover, HDR is restricted to the
S and G2 phases of the cell cycle, while NEJH is active throughout
the cell cycle (Brandsma and Gent 2012). Therefore, CRISPR/Cas9
HDR based mechanisms are not only dependent on the molecular
mechanisms of repair but also on unique aspects of the species of
interest.

Tribolium castaneum, like Drosophila, is an established model
organism for developmental, evolutionary, and applied (e.g., in-
secticide) biology but is also a known agriculture pest throughout
the world (Beeman et al. 1989, Brown et al. 2009, Adamski et
al. 2019, Rosner et al. 2020, Pointer et al. 2021, Campbell et al.
2022, Klingler and Bucher 2022). Hence, to demonstrate a proven
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methodology for CRISPR/Cas9 HDR, and subsequently, its appli-
cation to gene drive would be beneficial to the research community.
The genetic tools available to Tribolium include transgenesis, RNAi,
and CRISPR/Cas9 genome editing (Klingler and Bucher 2022). Cas9
editing has been achieved by injection of ribonucleoprotein (RNP)
complexes (Adrianos et al. 2018, Shirai and Daimon 2020, Shirai et
al. 2022), plasmid encoded reagents (Gilles et al. 2015, 2019, Rylee
et al. 2018), and injection of plasmid encoded gRNAs into trans-
genic Tribolium expressing Cas9 (Rylee et al. 2022). CRISPR/Cas9
edited genes include but are not limited to vermilion (Adrianos et
al. 2018, Rylee et al. 2022), E-cadberin (Gilles et al. 2015), cardinal
(Shirai and Daimon 2020, Shirai et al. 2022), and foxQ2 (He et al.
2019) as well as the ability to target inserted exogenous sequences
like GFP (Gilles et al. 2015, 2019). Whereas the capability to utilize
CRISPR/Cas9 edit the genome is established in Tribolium, the ex-
tent and possibility of HDR is limited to 3 reports and with various
success/efficiency (Gilles et al. 2015, Rylee et al. 2018, Farnworth
et al. 2020). Here, we attempted to demonstrate the ability of
CRISPR/Cas9 dependent homologous recombination and possibly
gene drive in Tribolium. Our results indicate that even though ge-
nome editing was achieved, our injections did not result in any
recovered HDR modifications, only NHE] repair, and thus subse-
quent methodologies and modifications will be needed to detect and
increase a bias towards HDR in Tribolium.

Materials and Methods

Tribolium Husbandry and Strains

All animals were raised at 28 °C on a standard flour yeast mix. The
following strains were utilized: vermilion"* (v*), (Lorenzen et al.
2002), GA-1, and Henderson Black (HB) (Ruckman and Blackmon
2020).

Vectors and gRNA Sequences

Tc-v 1gRNA Backbone Drive Homology Construct

The following components were synthesized and cloned into pUC57
(Synbio Technologies). vermilion left homology arm (1,000 bp),
U6a promoter driving the expression of Tcv95 gRNA (Adrianos
et al. 2018), Ascl cloning site, and vermilion right homology arm

(1,000 bp).

Tc-v 2gRNA Backbone Drive Homology Construct
The following components were synthesized and cloned into
pUCS7 (Synbio Technologies). wvermilion left homology arm
(1,000 bp), Uba promoter driving the expression of TcV95 gRNA
(5"-AAATTAAGTGAAGCCCAAGAAGG-3’) (Adrianos et al. 2018),
U6b promoter driving expression of TcV412 gRNA (5-GGATCAA
AACAACACGATTGAGG-3), Ascl cloning site, and vermilion right
homology arm (989 bp).

hsp68-nls-Cas9-hsp3 UTR cassette was excised from p(bhsp68-
Cas9) (Gilles et al. 2015) Addgene (#65959) using flanking Ascl
sites and ligated into the AscI of constructs containing either 1 or 2
gRNA homology repair drive constructs.

nanos-nls-Cas-9-T2A-EGFP-nanos ~ UTR
flanked by Ascl sites synthesized and cloned into pUCS57 (Synbio
Technologies). The potential nanos promoter consists of 347 bp of

cassette was

the first coding Methionine of nanos and nanos 3’UTR sequence
is represented by 406 bp of DNA immediately downstream of the
nanos termination codon. The Cas9 cassette was excised using
flanking Asc1 sites and ligated into the Ascl of both homology re-
pair drive constructs.

All sequences of plasmids injected can be found in Supplement
Material as.gb files.

Tribolium CRISPR injections: Injections were performed at 25
°C and embryos were then returned to 28 °C for development and
hatching. Each construct was resuspended in 1x injection buffer
(0.5 mM KCl; 0.01 mM NaPO4 buffer pH 7.5) at a concentra-
tion of 1 pg/pL and injected into GA-1 or HB embryos. Individual
injected GO males were mated to 2-3 v females and individual
injected GO females were mated to 2-3 v males. Progeny were then
subsequently screened for the loss of pigment in the eye. The progeny
from each individual founder GO cross (GO x v*) that generated ver-
milion, non-pigmented eyes, were saved for future analyses. To test
for gene drive, two individual vermilion progeny from each posi-
tive GO founder were crossed to the pigmented HB or GA-1 strain.
If gene drive was present, we would expect to see vermilion, non-
pigmented individuals in the progeny from this cross. Second, ad-
ditional individual F1 vermilion progeny from each positive GO
founder individual were tested for the presence of Cas9, utilizing
PCR primers directed against a 579 bp of the Cas9 coding region.
In addition, samples were subjected to PCR and sequenced for the
identification and confirmation of CRISPR/Cas9 editing.

PCR and Sequence Confirmation of CRISPR/Cas9 editing:
Genomic DNA was isolated from individual animals by crushing an
individual in 50 pl of extraction buffer (100 mM Tris-HCI, 50 mM
EDTA, 1% SDS) with a pestle in an Eppendorf tube. The mixture
was subjected to a § min incubation at 95 °C, then chilled on ice.
The mixture was then digested with Proteinase K (50 pg/mL) for
1 h at 55 °C, followed by heat inactivation at 95 °C for § min. 200
pl of 0.1x TE buffer was added to dilute the sample. Finally, 100
pl of the gDNA solution was purified using the Zymo Genomic
DNA Clean and Concentrator-10 kit (Zymo Research #2D4010)
following the manufacturer’s instructions. Amplicons spanning
the gRNA target sites were amplified from 1 pl of purified gDNA
using HotStar PCR Master Mix (Qiagen). Half of each reaction
was run on a 1.5% agarose gel, and the other half of the reaction
was purified using the Qiaquick Gel Extraction Kit (Qiagen). The
purified fragments were submitted to Eurofins Genomics for Sanger
sequencing, and the sequences were analyzed using Sequencher
(Gene Codes Corp.). The following primers were used to amplify the
vermilion DNA flanking the targeted gRNA sites: 5-ACCTAAGGT
CACGCGGAAGTATCGCATCGT-3" and 5-CAGGAGCCTGAACT
GCAGGCTCTGGAACCC-3’ and amplify an 806 bp fragment. The
vermillion PCR products were sequenced with the following primer:
5-TATCGCTTTAGTTAGTCTAAA-3". The following primers were
used to detect the presence of Cas9 5-CTCTAATCGAAACTAATG
GGGAAACTGGAG-3" and §-GTTCGTTATCTTCTGGACTACCC
TTCAACT-3" and amplify a 579 bp fragment.

Results

We chose to take a dual approach to examine for evidence of CRISPR/
Cas9 homologous dependent repair and subsequent gene drive.
Utilizing a process based on the mutagenic chain reaction (Gantz
and Bier 2015), we developed a set of components to target the ver-
milion locus of Tribolium. We chose vermilion because it has been
successfully targeted by CRISPR/Cas9 (Adrianos et al. 2018, Rylee
etal.2022), and loss of function mutations result in an easily scorable
visible phenotype and loss of pigment in the adult eye. We generated
2 HDRback bone constructs in which various versions of Cas9 can
be inserted. The backbone constructs differ in the number of gRNAs
expressed, 1 versus 2, and subsequently, different sequences for the
right homology arms based upon the position of the second gRNA
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utilized (Fig. 1). The HDR backbones were designed to disrupt
the open reading frame of vermilion. The single gRNA backbone
contained the TcV95 guide RNA (Adrianos et al. 2018) and T¢V935
has previously been demonstrated to guide Cas9 for genome editing.
The two guide RNA backbone contained TcV9S a second gRNA,
TcV412, which had not been tested previously. For Cas9 expres-
sion we utilized 2 different Cas9 expression vectors. The first was
the established hsp68Cas9 cassette (Gilles et al. 2015), where Cas9
expression is under the control of the core hsp68 gene promoter, pre-
sumably active in both the germline and soma of Tribolium and does
not need a heat pulse for expression and contains a single nuclear lo-
calization signal on the 5" end of Cas9 (Schinko et al. 2010). In addi-
tion, the Cas9 has the associated 3 UTR of hsp68. The second Cas9
cassette has Cas9 expression controlled by the putative promoter
for Tribolium nanos. In Drosophila, nanos is a germline specific
transcript and thus, this cassette could potentially limit Cas9 expres-
sion to the germline. However, this exact role of nanos in Tribolium
has not been demonstrated but T. nanos is required for posterior
patterning (Schmitt-Engel et al. 2012). In addition, the construct has

the associated 3" UTR of nanos, which in Drosophila is necessary
for both localization and translation at the embryonic posterior pole
(Gavis and Lehmann 1992, 1994). Overall, four different constructs
were injected. For injections, we chose to inject wild-type Tribolium
strains that had pigmented eyes, HB, and GA-1. For the majority of
injections, GA-1 was utilized due to its apparent but not quantified
greater fecundity; embryos were readily available for injections from
the GA-1 stock but not from HB.

For each construct, at least 2 rounds of injections were completed.
Surviving injected individual males and females were outcrossed to
v* beetles. v¥ contains a large deletion that removes most of the
vermilion locus and results in non-pigmented eyes (Adrianos et
al. 2018). As such, in the F1 generation potential HDR and drive
candidates were identified by the loss of pigment in the eye. For all
4 constructs, non-pigmented F1 progeny were identified (Table 1).
In any particular cross that generated non-pigmented progeny, the
number of F1 vermilion progeny ranged from a few to over 50%.

Upon the identification of wvermilion progeny, 2 subsequent
analyses were conducted. To test for the presence of homologous

A. Tribolium vermilion locus
PCR5 PCR3
— —

== gRNA (TcV95) === gRNA (TcV412)

B. Tribolium vermilion 1lgRNA HDR and Drive constructs

Left Homology Arm

| hspé8-nis-Cas9-hsp IUTR |

U6b gRNA scaffold

Right Homology Arm

A |Tscl

nanos-nls-Cas9-T2A-GFP-nanos 3'UTR |

Left Homology Arm

U6b gRNA scaffold

Right Homology Arm

TcVa5 ITscl

C. Tribolium vermilion 2gRNA HDR and Drive constructs

Left Homology Arm

Left Homology Arm

U6a gRNA scaffold

U6a gRNA scaffold

| hsp68-nis-Cas9-hsp 3'UTR |
Uéb gRNA scaffold Right Homology Arm

|Kscl

| nanos-nis-Cas9-T2A-GFP-nanos 3'UTR |

U6b gRNA scaffold
TeV95

}Kscl

Right Homology Arm

Fig. 1. vermilion locus and Cas9 dependent homologous repair drive constructs. A) Schematic of the vermilion locus and location of gRNAs and PCR primers
for amplifying the region surrounding the potential region of CRISPR/Cas9 editing. gRNATcV95 and gRNA TcV412 are on different DNA strands. B) The two
constructs for HDR and gene drive containing a single gRNA (TcV95). Cas9 was either expressed from the ubiquitous heat shock protein 68 (hsp68) promoter or
the nanos promoter.The left homology arm (1,000 bp) extends from the upstream non-coding region of the vermilion locus to the gRNA and includes the gRNA
sequence except for the PAM site. The right homology arm (1,000 bp) extends from the gRNA PAM site into exon 4. C) The two constructs for HDR and gene
drive containing 2 gRNAs (TcV95 and TcV412). Cas9 was either expressed from the ubiquitous heat shock protein 68 (hsp68) promoter or nanos promoter. The
left homology arm is identical to the left homology arm in the single gRNA construct B). The right homology arm (989 bp) includes the gRNA sequence except

for the PAM sequence and extends into exon 5.

$20Z 1890190 |0 U0 Jasn Aieiqi meT uoibuiwoolg-Alsiaaiun eueipu| Aq 02295 .2/S | /v/vZ/8101ue/80usiosioasull/woo dnooiwspese//:sdny woll papeojumoq



Journal of Insect Science, 2024, \Vol. 24, No. 4

recombination and subsequent functional drive, 2, where possible
a male and a virgin, vermilion F1 progeny were crossed to GA-1
pigmented individuals. These F1 would be heterozygous for any in-
sertion of the HDR construct or for incorrect repair of the vermilion
locus via NHE] and the second allele would be v*. If HDR did occur
and genetic drive was active, we would expect 50% of the resulting
progeny to contain non-pigmented eyes, the result of inheriting the
HDR allele, which then was expected to mutate the wild-type ver-
milion allele inherited from the GA-1 parent. The other 50% of
progeny were expected to be pigmented as a result of inheriting max-
imally 1 v allele and the presence of a wild-type vermilion allele from
the GA-1 parent. None of the presumed F1 CRISPR edited vermilion
progeny, when crossed to GA-1 resulted in the presence of vermilion
progeny, suggesting incorrect repair of the vermilion locus via NHE]

and a lack of drive. However, our constructs do lack a visible marker,
e.g 3XP3-Fluoresence, and thus relied on drive as an indicator of
HDR. These results combined suggested that CRISPR/Cas9 directed
HDR did not occur.

Lastly, we needed to confirm that the vermilion progeny obtained
were the result of CRISPR/Cas9 editing and with respect to the 2
gRNA constructs, do both gRNAs work and can we detect editing
with both gRNAs on the same DNA molecule? For each F1 progeny
from the GO injected individuals that resulted in vermilion, non-
pigmented eyes, genomic DNA was isolated, and primers were used
to amplify DNA spanning across the location of the directed gRNA
cuts (Fig. 1). For those samples that resulted in a PCR product (Figs.
2A and 3A), the PCR product was sequenced and examined for
changes in the DNA. Some samples did not result in a PCR product,

Table 1. Summary of injections and recovered vermilion edited progeny

# of GO individuals

# of GO individuals with
vermilion progeny

Construct injected Genotype injected Female Male Female Male % of GO individuals with vermilion progeny
hs-Cas9 1gRNA Henderson Black 32 33 4 13 26.1%
nanos-Cas9 1gRNA GA-1 69 77 4 3 4.8%
hs-Cas9 2gRNA GA-1 124 95 8 5 5.9%
nanos-Cas9 2gRNA GA-1 56 70 1 6 5.5%

hs Cas9 Q@ 4 42"' &u(k{b@'(b&q?(&u SFCPS

1 Kb
750 bp

SETe @ ¥

° o

N
nanos Cas9 ¥ ' & A 1{3’ & @

—

1Kbp ...

vermilion TTACAATTAATCGTAAATTAAGTGAAGCCCAAGAAGGCGACCAACTGAGCG
hs m3(injl) TTACAATTAATCGTAAATTAAGTGAAG-——-——————— CGACCAACTGAGCG
hs ml3 TTACAATTAATCGTAAATTAAGTGAAG-TGAAGAAGGCGACCAACTGAGCG
hs ml TTACAATTAATCGTAAATTAAGTGAAGTG-AAGAAGGCGACCAACTGAGCG
hs f4 TTACAATTAATCGTAAATTAAGTGAAGCCC-AGAAGGCGACCAACTGAGCG
hs fé6 TTACAATTAATCGTAAATTAAGTGACGTAAATTAAGAAGGCGACCAACTGAGCG
hs m8 TTACAATTAATCGTAAATTAAGTGGAGCCCAAAGAAGGCGACCAACTGAGCG
nanos f1 TTACAATTAATCGTAAATTAAGTG--———~—~— AGAAGGCGACCAACTGAGCG
nanos f18 TTACAATTAATCGTAAATTAAGTGAAG-CCA-GAAGGCGACCAACTGAGCG
nanos m26 TTACAATTAATCGTAAATTAAGTGAAGT ----GAAGGCGACCAACTGAGCG

gRNA TcV95

AAATTAAGTGAAGCCCAAGAAGG

Fig. 2. PCR and Sequencing results of CRISPR/Cas9 editing utilizing a single gRNA combined with Cas9 expressed from the hsp68 or nanos promoters. A) PCR
amplicons from isolated vermilion progeny from injections with the HDR constructs containing 1 gRNA and Cas9.The PCR amplicons are relatively equal in size
or smaller to the expected to the unedited vermilion locus, demonstrating the lack of homologous recombination in the vermilion progeny. The numbers above
each lane refer to the GO injected individual, m-male and f-female. B) Alignment, sequence confirmation, identificati,on and nature of CRISPR/Cas9 editing in a
sample of the PCR amplicons from the isolated vermilion progeny. Dashes represent deleted bases and red color bases indicate insertions.
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© P PP AP RPN g s PR A
. hsCas9 ' & " Q7O QO NN & ¢ nanosCasd ' & & & & & ¢
3 -
d [
1 I J
et —
| — ‘
750 bp - — - —— ——— - T50 bp e e - =
e
B.
vermilion AAATTAAGTGAAGCCCAAGAAGGCGACCAACTGAGCG. ... . (267 bp).....CCTCAAACGCCTCAATCGTGTTGTTTTGATCC
hs f25a AARATTAAGTGAAGCCCAAGTGAAGGCGACCAACTGAGCG: . s s ssssussnssns CCTCAAACGCCTCAATCGTGTTGTTTTGATCC
hs m9 AAATTAAGTGAAGCC-AAGAAGGCGACCAACTGAGCG. « « v v e v vnssoossos CCTCAAACGCCTCAATCGTGTTGTTTTGATCC
hs £17 AAATT-=========x, AAGAAGGCGACCAACTGAGCG . s s s sssssassasssns CCTCAAACGC-======<' TGTTGTTTTGATCC
nanos md3 AAATTAAGTGAAGCCA-GAAGGCGACCAACTGAGCG. . s s sssssssssansnsns CCTCAAACGCCTCAATCGTGTTGTTTTGATCC
nanos m48 AAATTAAGTGAAGCGAAGTGAAGTGAAGGCGACCAACTGAGCG. « v v v v veesaa CCTCAAACGCCTCAA---TGTTGTTTTGATCC
nanos £12 AAATTAAGTGAAG————————————m e mmmmm e CTPRNT = o s s s TGTTGTTTTGATCC

gRNA TcV95 ARATTAAGTGAAGCCCAAGAAGG

gRNA TcV412 CCTCAATCGTGTTGITTTGATCC

Fig. 3. PCR and Sequencing results of CRISPR/Cas9 editing utilizing a 2 gRNAs combined with Cas9 expressed from the hsp68 or nanos promoters. A) PCR
amplicons from isolated vermilion progeny from injections with the HDR constructs containing 2 gRNAs and Cas9.The PCR amplicons are relatively equal in size
or smaller to the expected unedited vermilion locus, demonstrating the lack of homologous recombination in the vermilion progeny. The numbers above each
lane refer to the GO injected individual, m-male and f-female. B) Alignment and sequence confirmation and identification and nature of CRISPR/Cas9 editing in
a sample of the PCR amplicons from the isolated vermilion progeny. 12, represents a deletion that spans between the 2 gRNA target sites. Dashes represent
deleted bases. Red color bases indicate insertions and a dot represents base pairs that are present but not shown.

possibly suggesting the CRISPR modification affected 1 or both
PCR primer sites. Alternatively, NHE]J or incomplete HDR could
have resulted in insertion of parts of the HDR construct, or HDR
did occur, but drive was not functional. All 3 possibilities would
hamper the appearance of a PCR product. To test these possibilities,
we examined each F1 individual that lacked a PCR amplicon for the
presence of Cas9 via PCR of a small, 579 bp, amplicon of the coding
region of Cas9. We did not detect the presence of Cas9 in any of
these samples (data not shown).

With respect to the samples that did result in a PCR product, as
expected, the 1 gRNA backbone HDR construct with either Cas9
under the control of hsp68 or nanos resulted in deletions, insertions
or a combination of both (Fig. 2B). With respect to the 2-gRNA
backbone HDR constructs, we found examples in which a single
gRNA was utilized and examples of DNA molecules that contained
evidence of CRISPR/Cas9 editing at both targeted sites on the same
DNA molecule with either hsp68 or nanos promoter driving Cas9
expression (Fig. 3B). Furthermore, we recovered 1 edited muta-
tion, f12, that deleted the entire region, except for the insertion of 6
nucleotides, between the 2 gRNA target sites (Fig. 3B). Overall, our
results demonstrated that both HDR backbone constructs, gRNAs,
and Cas9 expression cassettes can induce double strand breaks, the
individual gRNA RNP complexes can induce changes independently
of each other and the lack of HDR may not be due to the function-
ality of the designed components.

Discussion

There are many possibilities for the failure to detect HDR and subse-
quent gene drive. However, with respect to our study, a couple stand
out. First, our detection of HDR was dependent on a second func-
tional event, gene drive versus the detection of a visible marker (Gilles
et al. 2015). To date, there have not been any reports of successful
CRISPR/Cas9 induced gene drive in Tribolium. Moreover, our small
sample size for detection of HDR could have hampered our detec-
tion of HDR given the reported low frequencies of HDR (Gilles et al.

2015, Rylee et al. 2018, Farnworth et al. 2020). Furthermore, we did
not test every individual F1 vermilion, non-pigmented progeny, from
each individual GO. Any injected GO can give rise to several different
CRISPR/Cas9 gene edits and thus only sampling some of the Fls
from each GO further reduced our sample size and the probability of
detecting a HDR event.

Nonetheless, our study has demonstrated and reinforced a few
key principles that will aid future editing in Tribolium. We have
demonstrated the functionality of our gRNAs and the ability to di-
rect Cas9 editing to 2 sites on the same DNA molecule. If we com-
pare the use of one versus 2 gRNAs with respect to generating a
mutant phenotype, non-pigmented eyes, we observe only a small
difference in our results, 4.79% (nanos—1 gRNA) versus 5.56%
(nanos-2 gRNA). But the simultaneous utilization of 2 gRNAs did
generate a deletion between the 2 gRNAs and thus raises the pos-
sibility to make specific deletions in the genome. Interestingly, we
did observe a greater CRISPR/Cas9 efficiency in the HB strain, but
we cannot speculate why, and the result would need to be repeated.
Besides, as previously mentioned, the fecundity, and the ability to
get a reasonable number of embryos to inject was difficult from the
HB strain.

Furthermore, we have shown the functionality of our nanos Cas9
cassette, providing a second methodology to express Cas9. However,
1 key caveat is that we do not have any evidence that our nanos
Cas9 construct is specifically expressed in the germline. The activity
of Cas9 observed may simply be due to spurious transcription from
a core promoter contained within the genomic DNA utilized. The ef-
ficiency of generating CRISPR/Cas9 edited alleles of vermilion in our
experiments is 8% of surviving GO progeny. It is difficult to directly
compare with other studies given the differences in methodology and
the variability of the injections themselves. Even though an unbiased
study would be required to confirm, we feel the inclusion of both the
gRNAs and the expression cassette for Cas9 on the same plasmid as
a general approach guarantees that all the components required for
CRISPR/Cas9 are expressed together in any particular cell and thus
possibly increasing the efficiency.
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Is there a possible methodology to skew repair towards HDR
versus NHE] in future work? One possibility would be to eliminate
the function of Lig4; Lig4 is a critical enzyme for NHE] (Teo and
Jackson 1997, Wilson et al. 1997). In Drosophila, Lig4 mutants are
homozygous viable (McVey et al. 2004) and editing of the genome
with zinc-finger nucleases or CRISPR/Cas9 viable HDR was biased
towards HDR (Beumer et al. 2008, Gratz et al. 2014). In addition,
RNAI depletion of Lig4 in Drosophila tissue culture cells increased
the frequency of HDR versus NHE] when utilizing CRISPR/Cas9
(Bottcher et al. 2014). In Tribolium, RNAi knockdown of Lig4 did
not significantly improve knock-in HDR, but the authors could not
eliminate the possibility that maternal deposited Lig4 protein was
accounting for this result (Gilles et al. 20135). Interestingly, Tribolium
has not 1 but 2 orthologs of Lig4 (LOC657210 and LOC657043)
and thus future experiments may require mutating one or both
and testing whether NHE] with respect to CRISPR/Cas9 editing
is decreased with subsequent increase in the frequency of HDR.
Moreover, in Drosophila HDR frequencies were the greatest when
plasmids encoding the gRNAs and the homology repair template
were injected together into Drosophila transgenic lines expressing
Cas9 in the germline (Gratz et al. 2014). Currently in Tribolium,
there is not a well-established transgenic Cas9 with expression lim-
ited to the germline, but a transgenic version of the hs-Cas9 cassette
exists (Rylee et al. 2022) and can be used in future CRISPR/Cas9
HDR attempts and may increase HDR efficiencies.
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