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Low back pain poses a significant societal burden, with progressive intervertebral
disc degeneration (IDD) emerging as a pivotal contributor to chronic pain.
Improved animal models of progressive IDD are needed to comprehensively
investigate new diagnostic and therapeutic approaches to managing IDD. Recent
studies underscore the immune system’s involvement in IDD, particularly with
regards to the role of immune privileged tissues such as the nucleus pulposus
(NP) becoming an immune targeting following initial disc injury. We therefore
hypothesized that generating an active immune response against NP antigens
with an NP vaccine could significantly accelerate and refine an IDD animal model
triggered by mechanical puncture of the disc. To address this question, rabbits
were immunized against NP antigens following disc puncture, and the impact
on development of progressive IDD was assessed radiographically, functionally,
and histologically compared between vaccinated and non-vaccinated animals
over a 12-week period. Immune responses to NP antigens were assessed by
ELISA and Western blot. We found that the vaccine elicited strong immune
responses against NP antigens, including a dominant ~37 kD antigen. Histologic
evaluation revealed increases IDD in animals that received the NP vaccine plus
disc puncture, compared to disc puncture and vaccine only animals. Imaging
evaluation evidenced a decrease in disc height index and higher scores of disc
degeneration in animals after disc punctures and in those animals that received
the NP vaccine in addition to disc puncture. These findings therefore indicate
thatitis possible to elicitimmune responses against NP antigens in adult animals,
and that these immune responses may contribute to accelerated development
of IDD in a novel immune-induced and accelerated IDD model.
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1 Introduction

Low back pain is a common multifactorial condition in the general
population, causing a great economic impact due to loss of productivity
and increased health care costs (1). Intervertebral disc degeneration
(IDD) has been identified as one of the main causes of low back pain
(2). Several animal models have been developed to understand the
pathophysiology and evaluate new therapeutic strategies for low back
pain caused by IDD (3, 4). However, there is scientific consensus
around the need for improved animal models for elucidation of
potential novel targets and approaches to treat IDD (5, 6).

The intervertebral disc (IVD) is the largest avascular structure in
the human body. It is composed of an outer Annulus Fibrosus (AF),
made up of concentric lamellae rich in collagen type I, and a central
gelatinous nucleus pulposus (NP), rich in proteoglycans and collagen
type II. With increasing age and degeneration, the disc tissue becomes
disorganized (2). Specifically, irregularities and loss of hydration to the
AF through aggrecan degradation occurs, which leads to progressive
loss of space between vertebrae, and fissures of the AF fibers often
leading to disc herniation and exposure of NP to the vascular system
and subsequently to the immune system (7-9).

An immune component in the development of IDD has recently
attracted the attention of several researchers (10-12). There are differing
theories on the role that immunologically privileged features of certain
tissues of intervertebral disc, most notably the NP antigens, play in the
pathogenesis of the IDD (12-14). In healthy IVD, the NP is avascular
and isolated from the immune system by the AF (15, 16). As IDD
progresses, the vascularization process and fissures within the AF results
in exposure of the NP antigens to cells and antibodies of the immune
system. Degradation products of disc proteins can trigger an immune
reaction experimentally, and there is evidence from clinical studies that
IVD injury can induce the production of anti-NP antibodies (15, 17).
Common techniques used to induce IDD in preclinical models involve
disrupting the AF and exposing the NP antigens to the peripheral
immune system. This exposure could trigger inflammatory responses
within the IVD, thereby promoting further IVD injury (18). Several
previous studies have reported finding anti-NP antibody and cellular
responses in humans with IDD, as well as in animal models (17, 19-21).
We hypothesized that administering a vaccine containing NP material
would increase disc degeneration signs in an animal model compared
to animals solely subjected to disc puncture without the vaccine. Our
study is, to our knowledge, the first to combine inducing anti-NP
immunity with mechanical IVD injury to accelerate IDD in an animal
model. In this report, we present the results of our efforts to replicate
and refine IDD in a rabbit model through vaccination against NP
antigens combined with surgical IVD injury.

2 Materials and methods

2.1 Animals

This study was performed with approval from the Institutional
Animal Care and Use Committee at Colorado State University
(protocol#: 20-9762A). A total of 12 female New Zealand White
rabbits (age range 12-16months, weight range 4.3-5.2kg) were
acclimated at least 2weeks prior study initiation. Animals were
randomly assigned to NP-Vaccine group (NP-Vac), NP-Exposure
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group (NP-Exp) or NP-Vaccine + NP Exposure
(NP-Vac+NP-Exp) (n=4 rabbits per group).

group

2.2 Vaccine preparation

Nucleus pulposus material was collected from two healthy sheep
to prepare the NP antigens. Sheep were selected as a source of NP
material because injected rabbits would likely have a higher chance of
developing an immune reaction to NP proteins due to the species
cross-reactivity. The NP tissue was then processed following the
protocol proposed by Capossela (22). Briefly, the NP tissue samples
were pulverized on dry ice in a stainless-steel mortar. Collagenase
(Type 2, ThermoFisher Scientific) was added to cause digestion of the
tissue, and lysates were homogenized using a Sonicator ultrasonic
device. After 15min of incubation at room temperature, lysates were
centrifuged at 17,000g for 15min at 4°C to remove debris. Protein
concentrations of supernatants were measured by BCA protein assay
(Axonlab). To prepare the NP vaccine, NP proteins were mixed with
a liposome-TLR agonist vaccine adjuvant, which has previously been
reported to elicit high levels of both antibody and cellular immunity
to a number of different protein and peptide antigens (23-25). The
vaccine was developed under stringent conditions in a dedicated BSL2
laboratory. Each batch of the vaccine was uniquely derived from ovine
nucleus pulposus extraction, ensuring consistency and uniformity
across administrations. The rabbits were immunized with 250ug NP
protein via the subcutaneous route, administered once every 2 weeks
for a total of three immunizations, with the first dose being
administered immediately before surgery.

2.3 Surgical intervention

All surgical procedures were conducted under aseptic conditions.
Animals were pre-medicated with glycopyrrolate and buprenorphine.
Once initially sedated using ketamine/dexmedetomidine, animals
were placed on Isoflurane face mask at 4-5% until they reached a
surgical plane of anesthesia, then maintained on 2-3% Isoflurane and
100% oxygen. Prior to surgery, each rabbit was placed in right lateral
recumbency, and the posterolateral aspect (over the lumbar spine) was
shaved and prepped using an alternating combination of 70% alcohol
and chlorhexidine. For NP-Exp and NP-Vac+NP-Exp groups the
lumbar spine was approached from the left side and the technique
described by Luo et al. (26) was performed. Briefly, a minimally
invasive transcutaneous needle puncture technique, guided by
fluoroscopy, was employed using a 16G spinal needle to puncture the
L2-3, 13-4, L4-5, and L5-6 intervertebral discs. Needle placement was
confirmed through fluoroscopic images until it passed through the full
diameter of the intervertebral disc without puncturing the
contralateral annulus fibrosus.

2.4 Detection of anti-NP antibody
responses by ELISA

Blood serum was collected prior to surgery and NP vaccine

injection, and at 0, 2, 4, 8 and 12 weeks after these procedures to detect
the presence of anti-NP antibody responses using an NP ELISA
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custom created for this study. Briefly, a 96-well Immulon plate
(ThermoFisher) was coated with 100 pL of NP protein isolated from
pooled sheep NP material collected at necropsy. The NP protein was
diluted to a concentration of 20ug/mL in carbonate buffer. After
incubation overnight at 4°C, wells were washed with PBS Tween using
a plate washer, and non-specific binding sites were blocked for 2h at
room temperature with PBS+10% BSA. After washing with PBS,
100 pL of rabbit serum (diluted 1:100 in 1%BSA/PBS) were added to
the plates and incubated for 2h at room temperature. After a second
plate wash, 100 uL of 1:3000 dilution (in PBS + 1% BSA) of peroxidase
conjugated donkey anti rabbit IgG (Jackson Immuno Research) was
added and incubated for 1 h at room temperature. Following washing
with PBS, TMB-ELISA Substrate Solution (ThermoFisher) was added
and incubated for 10 min. Finally, 50 pL TMB stop solution was added
and the optical density (OD) was measured at an absorbance at
450nm. Optical density values were plotted, and pre-vaccination
serum ODs were compared to post-vaccination ODs.

2.5 Western blot

The sheep NP proteins used to prepare the vaccine were also used
in the Western blotting procedure. The NP proteins were prepared
under reducing, denaturing conditions, and 20ug total protein was
loaded into a 4-20% Mini-PROTEAN TGX gel (Bio-Rad) and
transferred to PVDF membrane (Bio-Rad). After blocking the
membrane with 5% BSA in Tris-buffered saline with 0.1% Tween
(TBST) for 1h, the membranes were then incubated with blood serum
samples from 0 weeks and 12 weeks. Serums were diluted 1:100,000
using 5% BSA in TBST and incubated overnight at 4°C. The
membranes were incubated 1 h at room temperature with Peroxidase
AffiniPure™ Goat Anti-Rabbit IgG (H + L) (Jackson Immunoresearch,
United States), followed by washing, the blots were developed using
Clarity Western ECL Substrate (Bio-Rad) and imaged on ChemiDoc
XRS+ with Image Lab Software (Bio-Rad). Bands of gel that showed
robust antibody response were isolated and submitted for proteomic
evaluation using Mass spectrometry analysis (Orbitrap Eclipse,
Thermo Scientific). Raw data was evaluated using Proteome
Discoverer 3.0 (Thermo Scientific) and interrogated against the
FASTA reference proteome of Oryctolagus cuniculus (rabbit, taxon ID
9986) from Uniprot. Additionally, the cRAP proteome was included
(The common Repository of Adventitious Proteins -cRAP- contains
commonly found contaminant proteins in proteomics experiments).

2.6 In vivo imaging

Radiographs and MR (Magnetic Resonance) imaging of the
lumbar spines were performed prior to injury, 8 weeks post-injury, and
immediately pre-mortem at 12weeks (Figure 1). Animals were
pre-medicated and anesthetized by initial induction of 4% isoflurane,
with maintenance at 1-3%, and placed in the prone position. Lateral
and dorsoventral digital radiographic views of the lumbar spines were
acquired for each animal and use to evaluated significant bone
abnormalities. The MR imaging was performed using a 3T MR
scanner (Siemens 3T MAGNETOM Skyra MR Scanner) to obtain
2-dimensional T1 and T2-weighted sequences in sagittal orientation,
and axial views with a T2-weighted sequence. The following basic
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protocol parameters were used for image acquisition: RT 3010 ms, ET
97 ms, 1.5mm slices, acquisition matrix 384 x 288, Flip Angle of 260
degrees, and bandwidth of 480 Hz. Evaluation of MR images was
completed by two blinded observers (AB, JE) and used to determine
disc height index (DHI) (27, 28), and Pfirrmann grade (29). MRI was
chosen to assess DHI due to its superior resolution, which enables
precise evaluation of disc height changes within the same slice or
plane, enhancing the accuracy of measurements and analysis.

2.7 Euthanasia and sample harvest

The rabbits were humanely euthanized 12 weeks after surgery and/
or first vaccination by intravenous overdose of pentobarbitone sodium
(88 mg/kg), in accordance with the American Veterinary Medical
Association (AVMA) guidelines. The lumbar spines were removed to
complete the ex vivo evaluation. Additional evaluation methods,
including Micro-CT, biomechanical testing, biochemical assays (L3-4,
L5-6), and histomorphometry, along with corresponding results, are
detailed in the Supplementary material.

2.8 Histopathological analysis

Two functional spinal units (L, 5, L, 5) were bisected in the sagittal
plane and processed for decalcified histological analysis. Following
fixation, specimens were decalcified using EDTA 10%. Then,
specimens were processed using standard techniques (Tissue-Tek VIP,
Sakura, Torrance, CA) and embedded in paraffin. Two slides were
produced from each sample. One was stained with Hematoxylin Eosin
and the other with Alcian blue for evaluation of glycosaminoglycans
(GAG). Histology sections stained for analysis underwent meticulous
evaluation by two blinded observers, one being a certified veterinary
pathologist. Utilizing a specific scoring system tailored for IDD in
rabbit models (30), various parameters including nucleus pulposus
(NP) morphology (shape and area), NP matrix integrity, NP
cellularity, distinction of annulus fibrosus (AF) and NP border, AF
morphology, and endplate (EP) thickening were assessed.

2.9 Statistical analysis

Following data processing, statistical analyses were performed on
all outcome parameters. Standard two-way ANOVA test, followed by
Tukey’s multiple comparison test, was performed to determine
statistically significant differences (p<0.05) within and across
treatment groups (GraphPad Prism 8.3.0, San Diego, CA). Data for
ELISA, histological grading, Pfirrmann grade, and disc height are
presented as mean + SD.

3 Results

3.1 Assessment of anti-NP immunity using
ELISA screening

We assessed the impact of NP vaccination on induction of anti-NP
antibody responses to determine the effectiveness of the NP vaccine.
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FIGURE 1
Schematic representation of the study design. Rabbits were allocated into three groups, NP-Vaccine group (NP-Vac), NP-Exposure group (NP-Exp) or
NP-Vaccine + NP Exposure group (NP-Vac + NP-Exp). NP vaccine (syringe) was administered at O, 2, and 4 weeks for NP-Vac and NP-Vac + NP-Exp
groups. Imaging, comprising radiographs and MRI, was conducted at 0, 8, and 12 weeks (Yellow and green circles, respectively). Subsequent blood
collection for ELISA and Western blot evaluation took place at O, 2, 4, 8, and 12 weeks (Pink circles).
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FIGURE 2

Evaluation of IgG in animals after induction of IVD degeneration.
Animals from NP-Vac + NP-Exp group showed higher levels of IgG at
2-weeks, 4-weeks, 8-weeks, and 12-weeks compared with animals
from NP-Vac and NP-Exp groups. An increase trend in IgG in the
NP-Exp in time is also evident after exposure of the NP for NP-Exp
group. Data are presented as mean with SD for each group with
values normalized to 0 and excluding negative values; OD, Optical
density.

Serum samples from animals in all three study groups were evaluated
for the presence of anti-NP antibodies using an NP ELISA (see
Methods). In both groups receiving the NP vaccine, strong IgG
antibody responses to NP antigens developed and were detectable
after the first immunization, increasing further by weeks 8 and 12
(Figure 2). Conversely, anti-NP antibody responses were not detected
in the control or disc puncture only groups of animals. Notably,
antibody responses were detected at numerically higher in the NP
vaccine plus disc puncture group of animals, though the differences
in antibody responses between the vaccine only group and the vaccine
plus disc puncture groups did not reach the level of statistical
significance. These findings indicate, therefore, that the NP vaccine
effectively elicited rabbit humoral immune responses against NP.

3.2 Western blot

Next, we used Western blotting to identify dominant NP antigens
being recognized by the anti-NP antibody responses. Intriguingly, in
both groups of NP vaccinated animals, there was strong antibody
recognition (Figure 3). Proteomic analysis of the bands exhibiting
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strong antibody response revealed the presence of 193 proteins and
958 peptides. Table 1 presents the most abundant proteins identified,
which correlate with the molecular weights observed in the Western
blot results. Therefore, evidence from this study suggests that few
highly immunogenic NP proteins may be targets for immune
recognition in cases of naturally occurring IDD. Identifying the nature
of these antigens is important for better understanding IDD
pathogenesis and designing potential therapeutic interventions in
patients with IDD.

3.3 Histopathological analysis of IVD
tissues and impact of NP vaccination

All three groups of animals in the study showed varying signs of
IDD development, involving the AF, NP, and endplates, compared to
healthy control reference values (30). Varying degrees of loss of
distinction of structural components of the disc were evident in all
three groups over the 12-week study period. Animals from NP-Vac
group showed clear NP shape and evident integrity of the AF area but
of the endplates,
NP-Vac+NP-Exp groups. In contrast, these latter two groups

sclerosis compared with NP-Exp and
exhibited irregular NP shape and area, loss of distinction between NP
and AF, and sclerosis of the endplates. Histological assessment showed
increased severity of IDD in the NP-Vac+NP-Exp group compared
with both the NP-Vac or NP-Exp groups, as well as with healthy
control references (30). Histological scoring for rabbit IVDs showed a
significantly higher degree of IDD, specifically for NP-Vac+ NP-Exp

animals compared with NP-Vac group (p=0.339) (Figure 4).

3.4 Imaging of IVD injury sites following
surgery and NP vaccination

Evaluation of the DHI showed a significant decrease for all groups
after surgical intervention (disc puncture). The NP-Vac group showed
a decrease in DHI at 8 weeks (p=0.0255) and 12 weeks (p=0.0119)
compared to baseline. Animals from the NP-Exp group exhibited a
decrease in DHI between 0 and 12 weeks (p=0.0254) and between 8
and 12 weeks (p=0.0076). Animals from NP-Vac+NP-Exp showed a
decrease in DHI at 8 weeks (p=0.0420) and 12weeks (p=0.0398)
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FIGURE 3
Representative Western blot results demonstrating distinct immunoreactivity patterns among experimental groups. Clear bands at the 12-week time
point in lanes corresponding to the NP-Vac group and the NP-Vac + NP-Exp group indicate a robust antibody response post-vaccination (Red squares).
In contrast, no observable bands are seen in the lane representing NP-Exp group, emphasizing the lack of immunoreactivity in this group. Results of all
groups are presented in the Supplementary material; MW, Molecular weight.

TABLE 1 Most abundant proteins with similar molecular weights to those
observed in Western blot results.

Accession Molecular

Description

weight (kDa)
GISHY5 Hyaluronan and proteoglycan link 40.2
protein 1
AO0A5F9DKI8 Actin, cytoplasmic 2 40
GI1T5HO0 HtrA serine peptidase 1 36.4

compared to baseline. The comparison of DHI between groups
showed a decrease in DHI across all groups, although no significant
differences were observed between them (Figure 5). Four animals
(two from NP-Vac group, one from NP-Exp group, and one from
NP-Vac+NP-Exp group) showed signs of IDD in the MR images at
baseline (Average of Pfirrmann grade of the 4 lumbar disc levels=1.5,
2.625, 1.367 and 2.875 respectively).

Magnetic resonance imaging was also used to evaluate the impact
of surgical disc disruption alone or in combination with an NP vaccine
in the rabbit model. We found that MR and radiograph imaging did
not detect evidence of new bone formation (osteophytes) or
abnormalities after NP vaccination or vaccination plus disc puncture
in any of the injured disc spaces from any of the three groups of
animals. MR images from NP-Vac group of animals showed consistent
homogeneous high-signal intensity within the central region of the
IVD over the 12-week study period, indicative of healthy IVD. In
contrast, MR images from the NP-Exp and NP-Vac + NP-Exp groups
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showed a significant decrease in signal intensity within the central
region of the IVD, indicative of moderate IDD. No significant
differences were noted in Pfirrmann grades at either 8 or 12 weeks
between NP-Vac and NP-Exp groups. However, Pfirrmann grades
were significantly higher in the NP-Vac + NP-Exp group compared to
the N'P-Vac group at 8 weeks (p=0.0114) and 12 weeks (p=0.0241)
(Figure 6). These findings are consistent with the acceleration of disc
injury in the animals that received the NP vaccine plus disc
puncture surgery.

4 Discussion

This study, to our knowledge, is the first to provide evidence that
immunization against NP antigens can refine and/or accelerate IDD
in an animal model. Key findings from this study were induction of
strong immune responses against a dominant NP antigen by NP
vaccination and the progression of disc degeneration parameters in
animals that received the NP vaccine plus surgical disc puncture. Our
findings also indicate that this new animal model of accelerated IVD
damage by immune processes could be an important new tool to
elucidate the role of immune responses in human IDD and to develop
new medical or surgical interventions to ameliorate anti-NP immunity
(31). These new findings suggest that indeed anti-NP immune
responses may be an important part of the progressive nature of IDD
in animal models and that immune interventions designed to blunt
these immune responses may be one strategy to slow or reverse IVD
progressive damage.
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FIGURE 4

Representative histological images of the IVD and histopathological scoring from NP-Vac, NP-Exp, and NP-Vac + NP-Exp groups. (A) Animals from
NP-Vac group showed clear NP shape (Black arrowhead) and good integrity of the AF area (Black arrow), and sclerosis of the endplates (Red arrows).
Conversely, NP-Exp (B) and NP-Vac + NP-Exp (C) groups showed irregular NP shape area, and less cellularity (Black star), and loss of distinction
between NP and AF (Red arrowhead). Subjective histological assessment showed increased IVD degeneration in NP-Vac + NP-Exp animals compared
with NP-Vac group or NP-Exp animals. (D) Objective blinded histological scoring showed a significantly higher degree of IDD for NP-Vac + NP-Exp
group animals compared with NP-Vac group (p <0.05); NP, Nucleus pulposus; AF, Annulus Fibrosus; H&E, scale bar: 200 pm.

The potential role of the immune system in the development and
progression of IDD was introduced several decades ago (16, 32). In
vitro studies support the notion that both degenerated and normal NP
proteins can elicit detectable immune responses (17). Additionally,
clinical findings by Kim et al. (32) demonstrated increased anti-NP
antibodies in patients with spontaneous disc herniation. Satoh et al.
(21) also identified antigen-antibody complexes in herniated NP
tissue compared to non-herniated NP tissue. Capossela et al. (22)
detected antibody responses against specific proteins in the NP in
patients with IVD, confirming an immune reaction against the
immune-privileged NP antigens.

In this study, we offer an insight into the proteins recognized by
the NP vaccine. HtrA serine peptidase and Hyaluronan and
proteoglycan link protein 1 (HAPLN1) proteins may serve as potential
targets as they were both abundantly detected in the Western blots
reacting to NP vaccine serums. HAPLN1 has been implicated in the
degradation of the extracellular matrix and the process of
intervertebral disc degeneration in both humans and animals (33-35).
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Similarly, HtrA serine peptidase is recognized for its involvement in
osteoarthritic pathology and intervertebral disc degradation. Notably,
elevated HTRA1 mRNA expression in degenerated disc tissue has
been associated with the promotion of IVD degeneration through the
proteolytic cleavage of fibronectin and subsequent activation of
resident disc cells (36).

We found that animals that received the NP vaccine and then
underwent disc puncture developed stronger antibody responses
than animals that only received the NP vaccine. This finding would
therefore be consistent with exposure of NP proteins to the immune
system by virtue of physical barrier disruption (AF/disc puncture),
which would serve to accelerate anti-NP immunity induced by the
NP vaccine. While the literature primarily focuses on anti-NP
immunity in disc herniations, our rationale for utilizing healthy NP
tissue stems from its ability to serve as a reliable antigen source while
minimizing potential complications associated with diseased tissue.
Additionally, previous studies have demonstrated in vitro immune
reactions to healthy NP cells (20), suggesting their suitability for
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FIGURE 5
Changes in disc height index (DHI) for all experimental groups. (A) NP-Vac group showed significant changes between baseline (0 weeks), 8 and
12 weeks. (B) NP-Exp group showed significant differences in the DHI between 0 and 12 weeks, and between 8 and 12 weeks. (C) NP-Vac + NP-Exp
group showed significant differences in the DHI between 0 and 8 weeks, and between 0 and 12 weeks. (D) Noticeable reduction in DHI is evident
across all experimental groups, indicating a consistent trend of disc height decrease over time; * = p <0.05, ** = p <0.01; DHI, Disc height index.

stimulating an immune response in the context of vaccine
development. It is also important to note here that the NP vaccine
used in this study was derived from sheep NP material and was
therefore immunologically foreign to rabbits in this study, which
likely resulted in enhanced immune recognition, compared to
immunization against rabbit NP proteins. It would be important to
determine in subsequent studies whether immunization with
autologous NP proteins derived from rabbit NP material could also
induce strong anti-NP antibody responses in rabbits. Our intriguing
early findings nonetheless suggest that the exposure of the NP to the
immune system by needle puncture, coupled with the administration
of an NP vaccine, can generate an enhanced immune reaction, as
reflected by higher antibody titers in animals receiving disc puncture
and the NP vaccine.

With respect to morphological markers of IDD, we noted a
significant decrease in DHI across all three treatment groups, as
reflected by sequential imaging. Intriguingly, even though the IVDs
in the NP-Vac group were not punctured, baseline MR images
revealed that these animals already displayed spontaneous signs of
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IDD. The observed spontaneous IDD changes at baseline align with
previous reports indicating age-dependent alterations in intervertebral
discs among rabbits (37, 38). This apparent naturally occurring IDD,
combined with the immune effects of the NP-Vac, might account for
an increase in IDD-related inflammation, leading to a reduction in the
DHI for this group. While the NP-Exp (disc puncture) group showed
consistent and expected MR changes and Pfirrmann grades to
previous studies in rabbits (39-41), NP-Vac + NP-Exp resulted in more
severe decreases in signal intensity within the disc. The increase in
Pfirrmann grades of the animals from NP-Vac+NP-Exp group at
8weeks, without significant changes at 12weeks, suggest that a
shortened study of only 8 weeks could be used for the establishment
of the proposed accelerated and sustained model of IDD. Developing
a more effective model to induce IDD would hasten the currently
prolonged periods of time required for IDD progression, thereby
reducing model time and costs. Furthermore, identifying and
suppressing this immune response could also be used to decrease the
development and progression of IDD in patients affected by the
condition (31, 42, 43).
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presented as mean and SD.

Magnetic resonance (MR) imaging evaluation showed higher degeneration grade for animals from NP-Exp group and NP-Vac + NP-Exp compared to
NP-Vac. (A) Representative T2-weighted MR images from each group. NP-Exp and NP-Vac + NP-Exp groups showed more drastic decreases in signal
intensity and increases in Pfirrmann grade defect types (Yellow and red arrows respectively) compared to NP-Vac group (White arrows) at 8 or
12-weeks. (B) Comparison of Axial and Sagittal T2-weighted MR views from the same disc in representative animals from each group at 12 week time
point. Normal signal intensity of the NP is evident in NP-Vac group (white arrow heads) but decreased in NP-Exp group (Yellow arrow heads) and even
more in NP-Vac + NP-Exp group (Red arrow heads). (C) Evaluation of the Pfirrmann grade showed significant differences with a higher degree of
degeneration in animals from NP-Vac + NP-Exp group compared with NP-Vac group, after 8 and 12 weeks of intervention; * = p <0.05. Data are

With the progression of IDD, the structure of the IVD becomes
disorganized. Histologically, there is loss of distinction between the
NP and AE a reduction in cell density, and NP shape, and a
progressive disorganization of AFE. Our results show similar
histological signs of IDD progression to previously reported IDD in
rabbits with different methods to induce IDD (44). However, higher
values of degeneration were observed in the NP-Vac + NP-Exp group
using the standardized histopathology scoring system for IDD in
rabbit models. This supports our hypothesis that the exposure of NP,
in addition to the immune effects of receiving the NP vaccine,
induced more severe changes compared to IDD induced through
needle puncture alone.

The small sample size is a major limitation of this study, as is the
lack of a control group of animals that received no interventions.
Nevertheless, despite the limited number of animals in this study,
we were able to identify evidence of a treatment effect from NP
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vaccination combined with surgical disc puncture. Therefore,
we propose that there was sufficient evidence of immune activation of
the IDD process in this new animal model to warrant further
investigation, including studies with larger groups and additional
controls, and with an optimized NP vaccine protocol.

Finally, the NP vaccine antibody results combined with
significant changes in the Pfirrmann grade and histological
evaluation, provide compelling evidence demonstrating the influence
of the immune response on the development of IDD in a new in vivo
model for IDD. In general, these results support our hypothesis that
rabbits vaccinated with NP proteins developed a heightened immune
response and increased IDD compared to rabbits undergoing IDD
via a traditional needle puncture approach. However, further studies
are imperative to gain a more comprehensive understanding of the
role played by immune responses, particularly the relative importance
of humoral responses (measured in the current study) and cellular
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responses (e.g., T cell responses) in the overall development of
accelerated and sustained disc degeneration.
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