
FUDJ: Flexible User-Defined Distributed Joins

Akil Sevim∗ Ahmed Eldawy∗ E. Preston Carman Jr.† Michael J. Carey§ Vassilis J. Tsotras∗
∗University of California, Riverside

†Walla Walla University, Washington
§University of California, Irvine

{asevi006, eldawy, vtsotras}@ucr.edu preston.carman@wallawalla.edu mjcarey@ics.uci.edu

Abstract—Join operations are crucial in data analysis, but
can suffer inefficiency with large datasets and complex non-
equality-based conditions. Optimized join algorithms have gained
traction in database research to address these challenges. One
popular choice for implementing join algorithms is distributed
data processing frameworks, e.g., Hadoop and Spark, but each
implementation is highly tailored for specific query types. As a
result, they do not address join queries that involve diverse and
complex conditions since they are not integrated into a holistic
query optimization engine like in DBMSs. On the other hand,
implementing new join algorithms on a DBMS from scratch
requires substantial effort and expertise. This paper introduces
FUDJ, Flexible User-defined Distributed Joins, a framework for
complex distributed join algorithms. The key idea of FUDJ is
to allow developers to realize new distributed join algorithms
into the database without delving into the database internals. As
shown, an algorithm implemented in FUDJ is up to an order
of magnitude faster than existing user-defined implementations
with an order of magnitude fewer lines of code.

Index Terms—distributed joins, database extensibility

I. INTRODUCTION

Joining datasets is a fundamental task that has been exten-

sively studied for decades. Historically, Database Management

Systems (DBMS) treated “join” as an operation for structured

data with simple conditions like equality. However, with the

growing volume and variety of data and the rise of data-

driven applications, various other types of join operations are

becoming increasingly popular. Today, data scientists must

combine large and diverse datasets from sources like social

networks and IoT devices using distributed systems. This calls

for optimized and complex join queries that operate on diverse

data types. As a result, there has been significant research in

the area. However, the availability of optimization techniques

for the new join types in DBMSs remains limited due to im-

plementation and integration complexities as explained below.

Currently, there are four methods for implementing new join

operators. First is the on-top approach that implements the join

predicate as a user-defined function (UDF) which the DBMS

uses with nested-loop join (NLJ). While easy to implement,

this approach has a limited performance due to the cost of

the nested loop. Second is the standalone approach [1]–[6],

where developers independently craft algorithms without any

platform integration. Third is the use of the programming

This research was supported in part by NSF award IIS-1838222, CNS-
1924694, IIS-1954962, IIS-1924694, IIS-1954644, IIS-2046236 and by the
Donald Bren Foundation (via a Bren Chair.)

paradigm of a distributed system, such as Spark [7], [8],

Hadoop [9]–[12], or Flink [13], [14]. The last two approaches

can be highly optimized but have limited application since they

cannot be integrated into a DBMS directly where users want to

perform all their analyses with the support of a comprehensive

query optimizer.
Besides these methods, a few studies have proposed a fourth

approach to implement a built-in optimized join within a full-

fledged DBMS, e.g., set similarity join on PostgreSQL [15]

and AsterixDB [16], interval join [17] on AsterixDB, and

spatial join on Paradise [18]. These approaches demonstrate

that incorporating new join algorithms in DBMSs has clear

benefits such as seamlessly integrating optimized joins with

other optimizations and enabling result pipelining for further

processing. However, they do not offer a universal implemen-

tation model for other join types. Consequently, each new join

method still requires implementation from scratch, and the

availability of DBMSs capable of accommodating an array

of optimization techniques is limited.

A. Motivation
To better clarify the importance of complex join query

optimization, consider a data science team that wants to

identify which parks were affected by wildfires in the last

year by using the “Wildfires” and “Parks” datasets with the

schemas shown below:

CREATE TYPE Parks Type {id: uuid, boundary: geometry, tags: string};
CREATE DATASET Parks(Park Type) PRIMARY KEY id;
CREATE TYPE Wildfire Type {id: uuid, lat: float , lon : float ,

fire start : datetime , fire end : datetime};
CREATE DATASET Wildfires(Wildfire Type) PRIMARY KEY id;

Type 1: Parks and Wildfires Type Definitions

To find recently damaged parks, the scientist wants to run

the spatial join query shown in Query 1 with the computa-

tionally expensive predicate ST Contains that detects whether

a wildfire location is contained by another park boundary poly-

gon. Note that Query 1 is not only a join query but involves

other operations like filtering, aggregation, and sorting.

SELECT p.id, p.tags , p.boundary, COUNT(w.id) AS num fires
FROM Parks p, Wildfires w
WHERE ST Contains(p.boundary, ST MakePoint(w.lat, w.lon))

AND w.fire start >= parse date(”01/01/2022” , ”M/D/Y”)
GROUP BY p.id, p.tags, p.boundary ORDER BY number of fires DESC;

Query 1: Spatial Join Query

4194

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00320

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
03

20

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

Despite all existing works for spatial joins, finding a dis-

tributed big data processing system with an efficient execution

plan for Query 1 is rare. The Hash Join (HJ) algorithm is

unsuitable due to its equi-join requirement, limiting options

to the NLJ operator. An alternative is leveraging a spatial

index with the Indexed-Nested Loop Join (INLJ) operator.

However, INLJ works well only when the non-indexed set

is relatively small. So, challenges persist in scalability and

resource utilization for large datasets. After Query 1, a member

of the team may want to find alternative parks for the ones

that are damaged by the wildfires to recommend to potential

visitors. This might be done with Query 2 by listing parks

that have similar “tags” for each damaged park since tags are

used to describe the properties of the parks with words like

“River, Scenic Landscape, Camping, Backpacking”. Assume

that damaged parks were stored in ”Damaged Parks” dataset

after Query 1.

SELECT dp.park id, p.id, jaccard similarity (dp. tags , p. tags) as sim
FROM Damaged Parks dp, Parks p
WHERE dp.park id <> p.id

AND jaccard similarity (dp. tags , p. tags) >= 0.5
ORDER BY dp.park id, sim;

Query 2: Text-similarity Join

Next, the team may want to investigate the relationship

between the weather and wildfires by using the “Weather”

dataset with the schema shown in Type 2.

CREATE TYPE Weather Type {id: uuid, location: geometry,
reading interval : interval , temp: int };

CREATE DATASET Weather(Weather Type) PRIMARY KEY id;

Type 2: Weather Type Definition

To find the average temperature for each wildfire that

has happened in each park, they can use a combination of

spatial and interval joins: Query 3 finds the weather readings

close to the wildfires that happened in each park by using

predicates ST Distance and ST Contains. Then, by using over-
lapping intervals, it detects whether two intervals, weather

sensor reading intervals, and wildfires, are overlapping or not.

Both Query 2 and Query 3 would likely end up being

processed by NLJ operators due to the limited availability of

ready-to-use optimization tools for text-similarity and interval

joins in most systems, even if we assume the data science team

employed specialized tools for spatial join queries for Query 1.

Further, note that Query 3 is a combination of both spatial and

interval joins which makes it even harder to optimize. To the

best of our knowledge, there is no DBMS today that would

generate an optimized query plan for such queries.

SELECT f.id, f . fire start , AVG(w.temp)
FROM Wildfires f, Parks p, Weather w
WHERE ST Contains(p.boundary, ST Make Point(w.lat, w.lon))

AND interval overlapping(
interval (f . fire start , f . fire end) , w. reading interval)

AND ST Distance(f.location, w. location) < 1
GROUP BY f.id, f.start ;

Query 3: Interval and Spatial Join Query

As a� Standalone Program

As a DBMS Operator

Using a Dist. Data Processing Framework

On-top Approach

FUDJ

Performance

Pr
od

uc
tiv

ity

Fig. 1: Productivity and Performance of Existing Optimized

Join Implementation Methods

B. A New Approach

We argue that if there were a straightforward way to imple-

ment and integrate optimized join algorithms into the query

optimization engines for DBMSs, those optimized algorithms

would efficiently process the queries above, enabling faster

data analysis. This work introduces the Flexible User-defined
Distributed Joins (FUDJ) framework, which enhances the

availability of optimized join algorithms within DBMSs. FUDJ

allows users to implement partition-based distributed join

algorithms without requiring in-depth knowledge of database

internals or distributed programming while still achieving

similar performance as if they were implemented as built-

in operators inside a DBMS. Figure 1 illustrates a high-level

summary of the performance and productivity evaluation of the

current implementation methods and NLJ (on-top approach)

for the optimized join algorithms. FUDJ’s position shows

it aims to provide high productivity and maintain on-par

performance compared to other options.

To achieve these goals, we propose a novel extensibility

architecture for implementing new join algorithms into a

distributed DBMS. Our approach involves identifying the

fundamental principles shared among various distributed join

techniques and integrating their touch points into the system’s

code base. The method is similar in spirit to User-Defined

Aggregates (UDAs) [19], where users provide a function that

aggregates a large set of values by computing partial aggre-

gates on partitions and then combining them to compute the

final result. FUDJ allows customization of the logic specific

to each join operation through a series of specialized UDFs.

In another sense, our approach is analogous to Generalized

Search Trees (GiST) [20]. In GiST, the common logic, such

as node merging and splitting, is implemented in the code base

of the DBMS while the developer defines index-specific logic,

such as comparison operations within tree nodes. In FUDJ, the

developer defines the logic specific to each join operation. This

specific logic is externalized through UDFs that encapsulate

the join-specific logic, such as determining how the data

will be partitioned and joined. This approach aims to strike

a balance between efficiency and productivity, enabling the

definition of new join operations with minimal lines of code

(LOC) while maintaining high execution efficiency.

4195

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

Our contributions can be summarized below.

• FUDJ Programming Model: A new programming

model that allows developers to implement existing or

new partition-based distributed join algorithms without

having database internal and distributed programming

experience.

• FUDJ Infrastructure: Design of components to support

FUDJ that could be applied to any DBMS with the

following generic extensions:

– Install join libraries (e.g., with a “CREATE JOIN”

statement),

– Detect FUDJ queries and generate optimized query

plans,

– Offer a Serialization/Deserialization protocol that ef-

ficiently transfers tuples between the database engine

and functions in the FUDJ library.

• Realization of the concept on AsterixDB as proof of its

feasibility, and providing FUDJ implementations for Spa-

tial, Overlapping Interval, and Set-Similarity Distributed

Joins.

• Run extensive experiments showing that the FUDJ imple-

mentations require roughly 10x less work while providing

as much as two orders of magnitude speed-up against on-

top approaches, which is close to built-in approaches.

The rest of this paper is organized as follows. Section II

discusses related work. Section III addresses the commonal-

ities and challenges of distributed optimized join algorithms.

Section IV presents our programming model, and Section V

shares the details of the realization of the architecture on

AsterixDB and describes three example join algorithm imple-

mentations. Section VI provides details about our framework

and its application to query optimizers. Section VII-B explores

the current performance of FUDJ, and Section VIII concludes

our study and discusses possible future work.

II. RELATED WORK

Both academia and industry have extensively studied joins
in various domains. For instance, many studies propose meth-

ods for spatial joins [18], [21]–[24], while survey papers like

[25]–[28] offer comprehensive evaluations of existing spatial

join methods. Set-similarity joins have been considered in [9],

[11], [12], [16], [29]–[33]. Trajectory joins are explored in

[7], [8], [34]–[37]; and surveyed in [38]. JSON similarity

studies have been addressed in [5], [6]. Interval joins have

been examined in [1], [4], [17], [39], while kNN joins are

explored in [40], [41]. It is important to note that each study

introduces a method tailored for a specific join type. However,

despite this rich literature, there is a scarcity of DBMSs that

comprehensively support a diverse collection of join variations.

The typical join implementation methods can be classified

into three categories: distributed data processing framework-

based, as standalone programs, or as special DBMS oper-

ators. The implementations based on distributed data pro-

cessing frameworks follow programming paradigms such as

MapReduce [42], RDD [43], or PACT [44] depending on

the system. Standalone implementations [1]–[6] usually build

their systems from scratch. However, these approaches assume

that join is a standalone program and ignore the realistic

scenario where it is a part of a complex query plan. A select

few approaches [16]–[18], [33], [39] implement their methods

within DBMSs. While these approaches advocate for the

advantages of DBMS integration, their applicability to other

optimized joins and DBMSs is limited, thereby necessitating

a fresh implementation for each new join method.

Related to the concept of database extensibility [45] are

commonly adopted concepts such as User-Defined Functions

(UDFs) and User-Defined Aggregates (UDAs). The General-

ized Search Tree (GiST) [20] introduces an extensible frame-

work that allows developers to implement and integrate custom

indexing methods. While GiSTs can enhance join performance

in specific cases when used with Indexed Nested Loop joins,

they lack the capability to integrate new join algorithms into

a Database Management System (DBMS). As a result, the

concept of database extensibility has not yet encompassed a

method for accommodating User-Defined Joins.

In summary, despite the rich existing literature for optimized

joins, their availability in DBMSs and systems that can opti-

mize a good variety of join types is limited. Also, the current

preferred implementation methods for these optimized joins

result in specialized programs which are far from being a

universal model when it comes to the integration to DBMSs.

Additionally, while the concept of database extensibility has

seen advancements through mechanisms like UDFs, UDAs,

and GiST, a comprehensive framework for accommodating

User-Defined Joins is missing.

III. COMMON CHALLENGES IN DISTRIBUTED JOIN

The strategies employed in optimized distributed join meth-

ods are crucial for scalable data analysis. In this context,

three primary optimized join approach categories stand out:

nested-loop joins, partition-based joins, and sort-merge-based

joins [46]. Nested-loop joins follow a straightforward im-

plementation to distribute the data but they exhibit limited

optimization potential due to their brute-force nature.Sort-

merge joins are preferred when the data is already sorted and

are effective in parallelization for some cases. However, they

encounter challenges in shared-nothing environments due to

the need for data shuffling across nodes and sorting leading

to increased network overhead.

On the other hand, partition-based joins exhibit promising

potential by leveraging data partitioning and local processing,

reducing data movement and network costs. These concepts

lead to more parallelism and efficient utilization of resources,

making the partition-based methodology the most popular

choice for optimizing joins in distributed systems in numerous

studies for various domains.

Since we aim to increase the availability of optimized

joins in DBMSs, the FUDJ programming model that we

introduce here is designed to allow easy implementation of

partition-based join algorithms on DBMSs. The key idea is

identifying the common logic of partition-based distributed

4196

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

COMBINEPARTITIONSUMMARIZE

R

Partitioner
Function

Match
Function

S

s1

s2

sm

...

⨝

⨝

⨝

...

SummaryR

SummaryS ...

r⨝s

r⨝s

r⨝sVerification

Filtering

Duplicate
Handling

r1
r2

rn

...

Fig. 2: Phases of Partition-based Distributed Joins

join techniques and injecting them into the code base of

DBMSs while externalizing the logic related to specific join

operations through user-defined joins that are implemented

using the FUDJ programming model.

In the rest of this section, we identify the common chal-

lenges and features in the two main phases of partition-based

joins, namely, partition and join, as shown in Figure 2.

A. Partitioning

The partitioning phase presents several challenges that re-

quire careful consideration [47]. One of the foremost chal-

lenges is achieving optimal data distribution across nodes.

Poor partitioning can result in data skew, where some nodes

are overloaded due to unevenly distributed data. Moreover,

identifying potentially matching keys is important to ensure

that related data ends up on the same node, reducing the cost of

inter-node communication during subsequent join phases. Bal-

ancing partition granularity and size is yet another challenge.

Overly fine-grained partitions might lead to excessive overhead

caused by duplication, while coarse-grained partitions could

affect parallel processing efficiency. Addressing these chal-

lenges in the partitioning phase is paramount for achieving a

well-balanced, efficient, and scalable partition-based approach

within distributed systems.

To ensure optimal performance and overcome these chal-

lenges, it is crucial to have a thorough comprehension of data

characteristics. As shown in Figure 2, an initial scan of the

input dataset to collect such information (Summary) to have a

better partitioning is one of the most common approaches. For

instance, the OIPJoin algorithm [1] requires minimum interval

start and maximum interval end times to divide the space

into equal-sized granules. PBSM [18] computes the Minimum

Bounding Rectangles (MBR) of the input and divides it into

tiles. Finally, text-similarity join [48] counts the words from

input datasets and sorts them by their occurrences to find the

least common words in each record. In all these scenarios, the

input space is then divided into buckets at the logical level,

and each record is assigned to a physical partition accordingly

by relying on buckets.

It is important to note that some partitioning approaches

result in data replication (multi-assign) across partitions while

others do not. Replication can help mitigate data skew and

reduce inter-node communication during joins, but it comes

R'

Single-assign
Partitioning

r'2

r'1

...

3 Value 3

1 Value 1

2 Value 2

r3

r1

r2

R

1 Value 1

2 Value 2

3 Value 3

 ...

k Value k

Value kk

Summary

Data Source Partitioned Data

(a) Single-assign

R'

Multi-assign
Partitioning

r'2

r'1

...
3 Value 3
1 Value 1

2 Value 2

r3

r1

r2

R

1 Value 1

2 Value 2

3 Value 3

 ...

k Value k

Value kk

Summary

2 Value 2

3 Value 3

Data Source Partitioned Data

(b) Multi-assign

Fig. 3: Partitioning Methods

at the cost of increased storage overhead and deduplication.

For instance, PBSM [18] assigns each geometry to all of the

tiles that they are overlapping with. In text-similarity join

[48], tokens within each text are sorted by rank based on

their occurrence frequencies and then assigned to a specified

number of least common words, determined by a similarity

threshold. Non-replicative strategies (single-assign), on the

other hand, focus on maintaining unique sets of data on each

node, reducing storage overhead but requiring more careful

load balancing and efficient data movement during joins. For

instance, OIPJoin [1] assigns intervals to the smallest interval

bucket that it can fit. Figure 3a illustrates the single-assign

method since each record is assigned to only one partition

after partitioning. On the other hand in Figure 3b, Value 2
from partition r1 is duplicated and assigned to both partition

r′1 and r′2 which makes that partitioning method a multi-assign

one.

In the rest of this paper, we use the terms that are defined

below to refer to the partitioning phase elements.

Definition 1: Summarization: The phase where the join

algorithms collect information about the data.

Definition 2: Summary: The data structure is where the

information is aggregated during the Summarization phase.

Definition 3: Divide: The function that combines the Sum-
mary from both sides of the join and any other required

information needed to determine the partitioning.

Definition 4: Partitioning Plan (PPlan): The data structure

that holds the partitioning information returned by Divide.

Definition 5: Bucket: A group of records that are grouped

based on the Partitioning Plan in a way that when the buckets

are joined, the records in the buckets from both sides are

potentially in the join result.

Definition 6: Assign: A function that determines which

record should be in which Bucket based on the information

provided by thePartitioning Plan.

B. Joining

One of the primary challenges in the joining phase is the

task of joining the buckets. Eliminating irrelevant buckets from

consideration or moving the buckets to the same nodes before

the join operation can reduce unnecessary data movement

and processing. The matching method for the buckets plays

a crucial role in having an efficient strategy for efficient

4197

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

r1
r2

rn

...

Single-join

s1

s2

sm

...

r1 s1

... ...

⨝

⨝

s2

sm

... ...

r2

rn

⨝

⨝

⨝

Partitioned
Data

Partition
Matching

(a) Single-join

r1 s1

... ...

⨝

⨝

r1 s2 ⨝

r1
r2

rn

...

Multi-join

s1

s2

sm

...

s2

sm

... ...

r2

rn

⨝

⨝

⨝

Partitioned
Data

Partition
Matching

(b) Multi-join

Fig. 4: Partition Matching Strategies

bucket joining. As shown in Figure 4, joining buckets can

be categorized as single-join or multi-join. In single-join,

each bucket on one side matches with a single bucket on the

other side resulting in a one-to-one correspondence between

buckets which can be efficiently done with hash-based join.

For instance, PBSM [18] only joins the records that overlap

with the same tiles, and in Set-similarity join [48], the records

that share the same tokens are matched. In multi-join, a bucket

can match with more than one bucket which makes it a theta-

join operation. As a result, buckets from one side are broadcast

in most of the cases. OIPJoin [1] is an example of that since

one interval bucket can match with multiple buckets.

Local optimization strategies are also applied during bucket

joins on each node. This includes implementing customized

join algorithms within individual nodes to minimize com-

putational and memory overhead. In cases of unbalanced

partitions, memory utilization can become problematic too.

Some partitions might not fit entirely in memory, requiring the

utilization of memory budget-aware operators that can spill to

the disk. Another optimization can be sorting of tuples within

partitions to apply merge join algorithms which can reduce

memory footprint.

In addition, partitioning strategies that involve duplicat-

ing tuples across multiple partitions (multi-assigning) can

introduce duplicate handling challenges. Duplicate elimination

becomes essential in subsequent stages, and it involves identi-

fying and eliminating duplicate tuples from the joined output

as illustrated in Figure 5a. Avoidance techniques, on the other

hand, aim to prevent duplicates during the join process itself by

cleverly designing matching and partitioning strategies. Hence

unlike duplicate elimination, it does not require an additional

step after joining as illustrated in Figure 5b. After the join

phase, the filtering and verification stages come into play.

Filtering involves eliminating tuples that do not satisfy the

join condition. Verification, on the other hand, ensures that all

tuples that should be in the join result are indeed present.

In the FUDJ programming model, we will refer to the

method that is used to match the buckets as match. The logic

of the match function defines whether the join is a single-

join or multi-join. For instance, if the match is a simple

equality, then the join becomes a single-join and the system

join

join

...

join

r⨝s

r⨝s

...

r⨝s

Op

Op

...

Op D
up

lic
at

e
El

im
in

at
io

n

(a) Duplicate Elimination

r⨝s

r⨝s

...

r⨝s

join

join

...

join D
up

lic
at

e
Av

oi
da

nc
e

(b) Duplicate Avoidance

Fig. 5: Partitioning Categories

can utilize its optimized hash join operator. Lastly, the function

that verifies the tuple pairs to finalize the join operation will

be called verify. The verify function can also use the PPlan
from the partitioning phase to determine whether the tuple pair

belongs to the final output or not.

Definition 7: Match: A boolean function that determines

whether two buckets should be joined or not.

Definition 8: Verify: A boolean function that determines

whether two records from matched buckets should be in the

final result or not.

IV. PROGRAMMING MODEL

To address the common challenges in partition-based dis-

tributed optimized join algorithms that we describe in Sec-

tion III, this section introduces the FUDJ programming model

that consists of three phases namely, SUMMARIZE, PAR-
TITION, and COMBINE. Figure 6 shows all the functions

within each phase. The rest of this section provides more

details about the phases and the functions.

A. SUMMARIZE

To successfully decide how to partition the datasets, many

join algorithms apply an initial step that analyzes and sum-

marizes the data to produce better partitioning in the second

phase. The summary can be the minimum bounding rectangle

for a spatial dataset [18], minimum starting and maximum

ending time for an interval dataset [1], or word frequencies for

text-similarity joins [9]. Since FUDJ is designed for distributed

systems, it follows a common two-step aggregation method

that first aggregates data locally within each node and then

combines the results to compute the final aggregate. We

provide two aggregate function interfaces as below.

local aggregate(T key, SUMMARY 〈T 〉S) :
SUMMARY 〈T 〉

global aggregate(SUMMARY 〈T 〉S1, SUMMARY 〈T 〉S2) :

SUMMARY 〈T 〉

The local aggregate function reads keys from the in-

put dataset and updates a SUMMARY object. Then all

SUMMARY objects are merged into global SUMMARY
objects by a global aggregate function. Note that the frame-

work allows to have two versions of local and global aggregate

functions one for each side of the join since key types can

be different. If both sides should be summarized in the same

way, the user provides one implementation only. In the case

of self-join, the framework will optimize the computation by

4198

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

COMBINEPARTITIONSUMMARIZE

summarize1
S1

�s�S summarize2

PPlan

PPlan
divide

n
assign1

assign2

S2

�r�R
bucket_id1, r,
bucket_id2,s

match

bucket_id1, r

bucket_id2, s

�r, s�verify R�⋈ S
Output

C

number of
buckets*

query
parameters*

(*optional)

dedup

Fig. 6: Flexible User-Defined Distributed Join Data Flow Diagram

summarizing the data only once. For simplicity, function name

SUMMARIZE will be used to refer to localaggregate and

globalaggregate functions combined in the rest of the paper.

Lastly, to divide the input domain space into meaningful

partitions, we provide the DIV IDE function that takes two

global SUMMARY objects, one from each side of the join,

and returns a PPlan object.

divide(SUMMARY 〈T 〉 S1, SUMMARY 〈T 〉S2) : PPlan

For instance, in spatial join, divide combines two MBRs from

both sides and returns the grid information for the join. For

interval join, it takes the minimum start time and maximum

end time for both datasets and finds the number of interval

partitions. For similarity join, it uses word counts from both

sides to create the ordered list of the least common words.

B. PARTITION

The goal of this phase is to assign the input datasets into

subgroups which we will call buckets, each identified with a

unique integer bucket id. The framework will then use the list

of bucket id’s and the logic of the join algorithm to decide

how to partition the input datasets. For example, in a spatial

join, a bucket is a tile and bucket id is the tile id, while for

text-similarity join, a bucket is a word from the word count

list and bucket id is the rank of that word.

assign(T key, PP lan) : int[]

The partitioning phase scans the input datasets and applies

the assign function on each key to return a list of bucket id
which is computed based on PPlan. A key can be assigned to

only one bucket (Single-Assign) or multiple buckets (Multi-

Assign). Similar to aggregate functions, a user can implement

a different assign function for each side of the join.

C. COMBINE

This final phase processes the data in all buckets to produce

the final answer, i.e., pairs of matching records. First, we

determine which bucket matches with another bucket by

using the match function. As mentioned before there are

two cases in this stage: single-join or multi-join. For single-

join algorithms, we provide a default match function which

checks whether both bucket id’s are the same or not. For this

type of algorithm, the developer should just use the default

implementation since further optimizations can be applied.

match(int bucket id1, int bucket id2) : boolean

After buckets are matched, the next step is verifying the record

pairs by using the verify function as below.

verify(T key1Tkey2) : boolean

As discussed in Section III, some algorithms yield duplica-

tion due to the assignment of records to multiple buckets. The

user should implement the dedup function as it handles the

duplicates. FUDJ’s default duplicate avoidance method relies

on the utilization of the assign functions with PPlan, and

producing the list of bucket ids for each record pair to find

if the matching buckets are the first matching pair or not. For

algorithms that do require a custom method for deduplication,

the user can easily override the dedup function provided by

the framework, or it can be disabled if there is no need for

the deduplication for more efficient query processing.

dedup(int bucket id1, T key1

int bucket id2, Tkey2, PP lanC) : boolean

V. EXAMPLE IMPLEMENTATIONS

This section provides the logic of three FUDJ example

implementations for spatial, text-similarity, and overlapping

interval joins. These examples represent the FUDJ versions of

the algorithms that we discussed earlier in Section III. In the

rest of the section SUMMARY will be denoted by S.

A. Spatial FUDJ

Our Spatial FUDJ implementation is based on the PBSM

algorithm described in [18]. We start by calculating the MBRs

of each dataset with the summarize function. Here, the

MBR() function returns the MBR of a given geometry and

the ∪ operator merges two MBRs and returns an MBR that

covers both MBRs.
1: function SUMMARIZE(geometry, S)
2: S ← MBR(geometry) ∪ S

After we compute MBRs from both sides of the join, we

then use the divide function to compute the final MBR and

create the grid that divides the space into n×n buckets. Next,

we store the final MBR and n into PPlan.
1: function DIVIDE(S1, S2, n)
2: MBR ← (S1 ∩ S2)
3: PPlan ← (MBR, n)
4: return PPlan

4199

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

Now, our spatial join algorithm can assign the data’s ge-

ometries to relevant buckets. To simplify the algorithm here

the function getOverlappingT ileIds() represents a function

that logically divides the 2D space into n×n equal-sized tiles

and returns the ids (numbered from 1 to n2 − 1) of the tiles

that overlap with the given geometry’s MBR.
1: function ASSIGN(geometry, PP lan)
2: MBR ← MBR(geometry)
3: return getOverlappingT ileIDs(MBR,PP lan)

When it comes to matching the data in buckets, since our

algorithm follows the single-joining strategy, it can simply

utilize the default equality-based match function. Finally, we

provide a simple verify function that checks if the actual

geometries are intersecting or not.
1: function VERIFY(tileId1, geometry1, tileId2, geometry2, PP lan)
2: return intersects(geometry1, geometry2)

B. Text Similarity FUDJ

Similar to [16], we first count the words of all the records

in the summary step by using a hash map that maps words to

counts. Here the tokenize(text) function is used to get the

list of the words of each text.
1: function SUMMARIZE(text, S)
2: tokens ← tokenize(text)
3: for each token ∈ tokens do
4: S[token]+ = 1

5: return S

In divide, we first combine the two hash maps that consist of

the number of occurrences of each word from both sides of the

join to get the overall word counts. Next, the sortByCount()
function sorts the words by their counts in ascending order

and returns a new hash map that has the rank of each word

as a value. Finally, the word rank map is put into the PPlan

along with the similarity threshold.
1: function DIVIDE(S1, S2, SimThreshold)
2: for each token ∈ S2 do
3: S1.merge(token, S2.get(token))

4: TokenRanks ← sortByCount(S1)
5: PPlan ← (TokenRanks, SimThreshold)
6: return PPlan

In assign, we first create a sorted ranked list of words for

each text. Then, we calculate the prefix length p [48] for each

text using the similarity threshold. Finally, we assign the text

to the buckets that are defined by the first p ranks of each text.

This method aims to assign each text to the fewest possible

buckets and choose the rarest words of each text to increase

the pruning.
1: function ASSIGN(text, PP lan)
2: tokens ← tokenize(text)
3: tokenRanks ← ∅
4: for each token ∈ tokens do
5: tokenRanks.add(PPlan.TokenRanks.get(token))

6: l ← len(tokens)
7: prefixLength ← (l − ceil(C.SimThreshold ∗ l)) + 1
8: bucketIds ← copyRange(sort(tokenRanks), prefixLength)
9: return bucketIds

Finally, in verify we calculate the Jaccard Similarity of

the two sides and return true if they are above the desired

similarity threshold.
1: function VERIFY(bId1, text1, bId2, text2, PP lan)

2: tokens1 ← tokenize(text1)
3: tokens2 ← tokenize(text2)
4: similarity ← (|tokens1 ∩ tokens2| ÷ |tokens1 ∪ tokens2|)
5: return similarity > PP lan.SimThreshold

C. Overlapping Intervals FUDJ

To partition the data, first, we need to divide the timeline

into granules. For that purpose, we start by finding the min-

imum start and maximum end times of each side of the join

with the summarize function.
1: function SUMMARIZE(interval, S)
2: S.minStart ← min(S.minStart, interval.start)
3: S.maxEnd ← max(S.maxEnd, interval.end)
4: return S

In the divide function, we first combine two sides’ summaries

and unify both timelines. Next, we divide the timeline into

NumberOfBuckets and calculate the length of each bucket.

Finally, we put all the information required to assign records

to the partitions together into PPlan.
1: function DIVIDE(S1, S2, NumberOfBuckets)
2: Range.minStart ← min(S1.start, S2.start)
3: Range.maxEnd ← max(S1.end, S2.end)
4: length ← (Range.maxEnd−Range.minStart)
5: d ← length/NumberOfBuckets
6: PPlan ← (Range, d,NumberOfBuckets)
7: return PPlan

Each interval needs to be assigned to the smallest bucket that

it can fit in. By using the length of each granule and the

minimum start time of the space, we find the starting and

ending granule IDs for each interval. Then we can combine

these two IDs into one integer as bits.
1: function ASSIGN(interval, PP lan)
2: R ← PPlan.Range
3: start ← (interval.start−R.minStart)/PP lan.d
4: end ← (ceil(interval.end−R.minStart)/PP lan.d)− 1
5: bucketId ← (front
 16)|end
6: return bucketId

Bucket matching here is not simply equality. So, here we

implement a match function that first extracts the starting and

ending granule IDs of each bucket and returns true if the

buckets are overlapping.
1: function MATCH(bucketId1, bucketId2)
2: b1Start = bucketId1 � 16
3: b1End = bucketId1&0xFFFF
4: b2Start = bucketId2 � 16
5: b2End = bucketId2&0xFFFF
6: return (b1Start ≤ b2End) and (b1End ≥ b2Start)

Finally, we test two intervals i1 and i2 to see if they are

overlapping or not in the verification phase.
1: function VERIFY(i1, bucketId1, i2, bucketId2, PP lan)
2: return (i1.start < i2.end) and (i1.end > i2.start)

VI. FUDJ INFRASTRUCTURE

This section presents the components of the FUDJ Frame-

work which relies on the common concepts of built-in func-

tions, UDFs, and query optimization. Section VI-A explains

how new join algorithms can be registered through a novel

statement “CREATE JOIN”. Section VI-B describes how the

logic from external join libraries will be linked into the system

through proxy built-in functions. Section VI-C discusses how

the DBMSs can utilize FUDJs and generate optimized query

4200

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

Proxy Built-in Function

DBMS Internal
Data Types

FUDJ Serializer /
Deserializer

DBMS Serializer /
Deserializer

FUDJ Library

External Function
Programming

Native Data Types

Fig. 7: A Proxy Built-in Function in FUDJ Framework

plans using rewrite rules. Finally, Section VI-D presents the

application of FUDJ on Apache AsterixDB.

A. Creating Joins

To facilitate a convenient installation of join libraries, FUDJ

introduces a new SQL statement called “CREATE JOIN.”

For the Apache AsterixDB example, a join library is a JAR

package that consists of the classes that implement the FUDJ

interfaces. Libraries are uploaded to the system through the

terminal. Query 4 is an example of creating a join with the

unique name “text similarity join” that takes two string keys,

and a double similarity threshold as inputs. The external logic

for this join is sourced from the “flexiblejoins” library, with the

full class name of “textsimilarity.TextSimilarityJoin.” Notably,

this join has three parameters. In this specific example, the join

is based on a similarity metric, and a predicate is considered

satisfied if the metric surpasses a specified threshold. Given

that the algorithm necessitates the threshold in all stages

(including prefix filtering), this information is embedded into

the caller function’s signature.

/* Creating a FUDJ*/
CREATE JOIN text similarity join(a: string , b: string , t :double)

RETURNS boolean
AS ” setsimilarity . SetSimilarityJoin ” AT flexiblejoins ;
/*Dropping a FUDJ*/
DROP JOIN text similarity join (a: string , b: string , t :double) ;

Query 4: Create Text-similarity Join

After executing Query 4, the DBMS creates all the corre-

sponding UDFs and registers the library information for them.

When it comes to removing a join, similar to other operations,

we only need to run “DROP JOIN text similarity join(a:

string, b: string, t: double),” and all UDFs will be removed.

B. Internal and External Actors

An efficient implementation of a join in DBMSs requires

access to the internal functionality of the DBMSs. Since this

is not a straightforward process for the users, FUDJ aims

to translate the external simple implementations into efficient

internal functions by extending the concept of UDFs. UDFs

are well-known components of modern DBMSs, allowing

users to implement custom functions and integrate them into

their system to process their data. With UDFs, complex join

predicates can be implemented, and various join operations can

be performed. However, since UDFs are primarily supported

as scalar functions, queries using UDFs may not achieve the

same level of performance as those employing optimized join

algorithms due to being processed by NLJ operators.

The FUDJ Framework revamps this principle to facilitate

user-defined joins. For each function within our programming

model, we provide a corresponding built-in function imple-

mented internally as internal actors. We also introduce a new

external function signature type associated with the FUDJ

framework. When a new join algorithm is created, the FUDJ

framework generates FUDJ-specific UDF signatures, which

include the join library information for all functions in the

programming model. These signatures are then registered with

the system as external actors. During runtime, whenever the

DBMS encounters an external actor call with the FUDJ’s

external function signature, it modifies the evaluator using

the information embedded in the signature. Subsequently, it

creates the internal actor evaluator and passes the external

FUDJ library information. Then in each internal actor, the

FUDJ library should be initiated as an object only once.

In each built-in function, DBMSs deserialize records before

processing. Most DBMSs internally implement data types for

various data types with specific serialization and deserializa-

tion methods. For example, Apache AsterixDB has specific

type handling internally for data types like “AInt” for integers.

However, in FUDJ, as the programming model is designed to

work with simple data types, an additional step is required to

convert DBMS-specific data into simple data types. Figure 7

shows how the data transfer works internally in a proxy built-

in function of FUDJ. It is worth noting that some types require

specific handling; for instance, intervals can be converted into

long arrays, where the first element represents the start time

and the second the end time. This aspect of the framework is

critical and requires careful implementation to avoid excessive

overhead during runtime. However, it is not a very expensive

step as the only requirement is retrieving the data from the

object that is already deserialized as we show with evaluations

in Section VII-B.

As discussed in Section IV, we have two states to con-

sider: SUMMARY and PPlan. Since DBMSs already have

solutions for built-in aggregate functions, we only need to

adhere to existing design principles and handle SUMMARY
as a regular state within a typical aggregate function. The

same principle applies to PPlan, which can be treated as

a single record with its type set as ”Object.” This approach

also simplifies state transfer, as both states appear as regular

records from the database perspective.

C. Query Optimizer Integration

The first task of the query optimizer is to determine whether

the join query includes a FUDJ predicate. This detection is

accomplished by examining the predicate function signature.

When a FUDJ predicate is detected, the query optimizer

retrieves the external library information from the metadata

and commences the generation of the join query plan. Based

on the commonalities of partition-based distributed joins that

are discussed in Section III, FUDJ modifies the query plan

and adds all required elements for each phase as depicted in

Figure 8. Please note that although Figure 8 shows the plan

starts with a data scan, the source of the data can be other

4201

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

C
O

M
B

IN
E

PA

R
T

IT
IO

N

S
U

M
M

A
R

IZ
E

R
DATA SCAN

local_aggregate(R.key) :
S1

AGGREGATE

R.key
PROJECT

global_aggregate(S1) :
S1

AGGREGATE

S
DATA SCAN

local_aggregate(S.key) :
S2

AGGREGATE

S.key
PROJECT

global_aggregate(S2) :
S2

AGGREGATE

CARTESIAN PRODUCT

divide(S1, S2) : C
ASSIGN

CARTESIAN PRODUCT CARTESIAN PRODUCT

R.key
PROJECT

S.key
PROJECT

assign(R.key, C) :
bucket_id1,R

UNNEST

assign(S.key, C) :
bucket_id2,S

UNNEST

match(bucket_id1,
bucket_id2)

JOIN

verify(R.key, bucket_id1,
S.key, bucket_id2, C)

JOIN

R�⋈ S

Fig. 8: Flexible User-Defined Distributed Join Logical Plan

operators too. The first group of elements added to the query

plan is about the SUMMARIZE phase and they locally and

globally aggregate the data and the summaries. The data is

first summarized through aggregate operators and The FUDJ

query plan starts with the scan of the data and continues

with aggregation For each stage in the FUDJ query plan, the

optimizer creates corresponding FUDJ external function calls.

During runtime, as mentioned in the preceding section,

each external FUDJ function undergoes modification to in-

corporate the related proxy built-in function, and external

library information is associated with it. The query optimizer

should also apply physical optimizations when applicable. In

this initial design, two further improvements are provided

in that context. The first one pertains to self-joins. To let

DBMSs optimize self-joins by replicating intermediate results

that are used multiple times during query processing, the

same proxy built-in functions can be used to handle both

sides of the join. For instance, in a Spatial self-join, the

resulting MBR (Minimum Bounding Rectangle) of one side

after the summarization stage can be replicated and fed into

the DIV IDE function since the MBR computation is the

same for both sides. Consequently, the only requirement for

the FUDJ framework is to detect whether FUDJ implements

separate SUMMARY and PARTITION stages or not.

This can be achieved by checking if FUDJ is overriding the

default summary and assign functions. If FUDJ uses the

default functions, the same function signature is used, enabling

the query optimizer to apply further optimizations.

The second optimization concerns selecting the appropriate

join operator for bucket matching. For single-join FUDJs

with a bucket matching condition as equality, the optimizer

can employ the Hash Join operator. This is advantageous, as

Hash Partitioning can also be applied. Similar to the previous

approach, the optimizer must check if the ’match’ function is

overridden or if it is using the default implementation to apply

further optimization by compelling the DBMS to utilize the

Hash Join operator and partitioning.

It is important to note that since the query optimizer

generates query plans for FUDJ join queries as part of its

overall optimization process, FUDJ query processing can take

advantage of all the optimizations applied by the optimization

engine. For example, if the join query involves filtering oper-

ations, the optimizer will prioritize executing them before the

join query plan. Similarly, if there is a group by operator in

the query, the optimizer can generate efficient query plans to

handle that part of the operation

D. FUDJ Prototype Implementation

To test the feasibility and scalability of FUDJ design,

we implemented two prototypes of FUDJ: a single-machine

standalone program, which we use for testing and debugging

new join implementations, and the other is built on Apache

AsterixDB, which tests the scalability on a distributed DBMS

engine. Notice that a user-provided implementation seamlessly

works on both due to our translation layer explained in

Section VI-B.

1) AsterixDB Implementation: Apache AsterixDB [49]

is an open-source, scalable Big Data Management System

(BDMS) that offers a flexible data model, distributed storage

and transactions, rapid data ingestion, and data-parallel query

execution runtime. This section briefly describes how we

implemented the FUDJ Framework on Apache AsterixDB by

adhering to the implementation guidelines.

Apache AsterixDB provides a variety of built-in functions

and supports UDFs for custom implementations. The FUDJ

framework enhances it by allowing developers to use Java

primitive types. While built-in aggregate functions exist, UDAs

are not currently supported. We modified the runtime mech-

anism to handle external aggregate functions by connecting

them through libraries.

Query optimization is done in Apache AsterixDB by

incorporating a set of predefined rules that dictate how queries

should be transformed and optimized. We implemented a

rewrite rule that checks the condition of the join query and

intervenes if the join condition involves a FUDJ function.

Then, the rule builds the query plan by following the steps

described in Section VI-C.

2) Standalone (Single-Machine) Version: One of the

biggest challenges for joining algorithm integration into

DBMSs is debugging and testing due to the complexity of

DBMSs. Having strict mechanisms for query processing and

4202

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

data reading makes it hard to handle bugs or test new ideas eas-

ily without rebuilding or redeploying the system. Motivated by

these challenges, we also provide a single-machine standalone

version of the FUDJ Framework. The standalone version can

run any FUDJ algorithm for testing and debugging purposes.

Since it simply reads the data and feeds it to FUDJ, finding

the logical bugs or trying new ideas is straightforward. We

share Java implementation1 with this study, but it can also be

transformed into another programming language easily.

VII. EXPERIMENTS

This section evaluates the FUDJ framework applied to

Apache AsterixDB, and Spatial, Interval, and Text-similarity

FUDJ implementations. The evaluation begins with a produc-

tivity assessment of the implementation methods (using the

FUDJ framework and as built-in operators). Next, the section

demonstrates that FUDJ framework usage causes minimal

query processing overhead when compared to the built-in

approach. The section continues with the performance and

scalability evaluations of three example join implementations

and compares them to the on-top solution (NLJ operator with a

UDF). Finally, it studies alternative duplicate handling strate-

gies and outlines future directions for the FUDJ framework

and programming model by comparing them against advanced

optimized join implementations.

Hardware setup: The experiments run on a cluster with

one head node and 12 worker nodes. The head node has

Intel(R) Xeon(R) CPU E5 − 2609 v4 @ 1.70GHz processor,

128 of GB RAM, 2 TB of HDD, and 2×8-core processors

running CentOS and Java 17.0.1. The worker nodes have

Intel(R) Xeon(R) CPU E5-2603 v4 @1.70GHz processor, 64
GB of RAM, 10 TB of HDD, and 2×6-core processors running

CentOS and Java 17.0.1.

TABLE I: Datasets for FUDJ Experiments

Name Size #Records Key Type
Wildfires [50] 22.1 GB 18M Point

Parks [51] 7.7 GB 10M Polygon
NYCTaxi [52] 38.8 GB 173M Interval

AmazonReview [53] 58.3 GB 83M Text

Datasets: We use four real-world datasets. For spatial join

queries, Parks [51] and Wildfires [50] datasets are used, NYC-

Taxi [52] is used for interval join queries, and AmazonReview

[53] is used for text-similarity queries.

Implementations: FUDJ framework and all of the join

algorithms are implemented on Apache AsterixDB 0.9.8. The

three example join algorithms Spatial, Interval, and Text-

similarity that are based on studies [1], [18], [48] are im-

plemented from scratch, and we will refer to them as built-
in implementations. The FUDJ versions of the example join

algorithms in Java2 are shared with this work. Finally, we will

use the term on-top to refer to join query processing using the

NLJ operator. Lastly, the generated query plans for both the

1https://github.com/akilsevim/FUDJ-Single-Machine
2https://github.com/akilsevim/FUDJ

on-top and FUDJ versions are inspected. It is confirmed that

they benefit from Apache AsterixDB’s optimizations, such as

predicate pushdown.

/* Spatial Join */
SELECT p.id, count(1) c FROM Parks p, Wildfires w
WHERE ST Contains(p.boundary, w.location) GROUP BY p.id
/*Text− similarity Join */
SELECT COUNT(1) FROM AmazonReview r1, AmazonReview r2
WHERE r1.overall = 5 AND r2.overall = 4 AND

similarity jaccard(word tokens(r1.review) ,
word tokens(r2. review)) >= 0.9;

/* Interval Join */
SELECT COUNT(1) FROM NYCTaxi n1, NYCTaxi n2
WHERE n1.Vendor = 1 AND n2.Vendor = 2 AND

overlapping interval(n1.ride interval, n2. ride interval) ;

Query 5: Queries for the experiments

Workload(Queries): We evaluate join implementations by

using the queries from Query 5. The spatial join query counts

the number of wildfires that occurred in each park. Text-

similarity join query computes the Jaccard Similarity of each

review pair that has overall ratings 4 and 5 and counts the

similar ones. Overlapping interval join query finds overlapping

taxi rides belonging to different vendors. For each experiment,

we stop query processing after 4000 seconds and assume the

setup is not scalable for processing the query.

A. Productivity

Since both FUDJ and Built-in versions implement the same

algorithms, we use Lines of Code (LOC) as a metric for

productivity evaluations. For built-in versions, we implement

a rewrite rule for the optimizer, an aggregate function to

summarize, an unnesting function to assign records to buckets,

a built-in function for bucket matching, and a built-in verify

function to filter keys pairs and deduplication if necessary.

On the other hand, as we explained in Section IV, FUDJ

framework empowers the developer to define the logic for

each function, allowing for flexibility and customization while

significantly reducing the LOC required. Table II shows that

TABLE II: Written Lines-of-codes for Example Join Imple-

mentations Using FUDJ Framework and as Built-in Operators

Implementation Types
Join Types FUDJ Built-in

Spatial 141 loc 1936 loc
Interval 95 loc 1641 loc

Text-similarity 231 loc 1823 loc

FUDJ versions of the Spatial, Interval, and Text-similarity

joins demand significantly fewer LOC, highlighting the effi-

ciency and developer-centric design of the framework and the

programming model. Please note that with the LOC metric,

we are not comparing FUDJ against the use of programming

paradigms in distributed systems. This is because the result-

ing applications cannot be directly integrated into DBMSs.

Therefore, it is still necessary to implement the algorithms

from scratch.

Furthermore, reduced LOC in FUDJ versions boosts produc-

tivity and streamlines debugging, testing, and code reviewing.

4203

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

2
8

K

2
8

0
K

2
.8

M

2
8

M

100

102

E
x
ec

u
ti

o
n

T
im

e
(s

ec
.) (a) Spatial

n=1200

1
7

3
K

3
4

6
K

8
6

5
K

101

102

Number of Records

(b) Interval

n=1000

FUDJ Built-in On-top

8
3

K

1
6

6
K

3
3

2
K

103

(c) Set-similartiy

t=0.9

Fig. 9: Join Performance of FUDJ, Built-in, and On-top

With fewer lines to manage, developers can pinpoint issues

more easily, expediting the debugging phase. Moreover, users’

control over FUDJ function logic allows fine-tuning for spe-

cific testing scenarios, enhancing application robustness and

reliability. These advantages underscore FUDJ’s efficacy in

distributed programming and database internals.

The integration of new join algorithms into traditional

DBMSs often incurs significant deployment costs. Typically,

after finalizing the implementation, DBMS software needs to

be rebuilt, a process taking approximately 5 minutes in our

experimental environment. However, in distributed systems,

deploying the rebuilt package to each node adds further com-

plexity and time. Additionally, DBMS often requires stopping

and rerunning, causing disruptions. In contrast, FUDJ offers

a distinct advantage. It eliminates the need for extensive de-

ployment procedures, allowing swift deployment of new FUDJ

packages within seconds without system disruption, making it

an efficient choice for introducing new join algorithms.

B. Performance

Figure 9 shows the evaluation of the three implementation

methods run on 12-core for a variety of data sizes. Here

we run queries using a subset of the datasets to control the

workload. For Spatial FUDJ, the number of buckets, which is

equivalent to the grid size that divides the space into tiles is

set to 1200 × 1200, and for the Interval FUDJ, the number

of buckets which is used to divide the time span into equal

segments is set to 1000. Finally, for Text-similarity FUDJ,

we use 0.9 as our similarity threshold since the algorithm is

an exact similarity algorithm and higher thresholds are useful

when it comes to the analysis of similar reviews that have

different overall ratings. In this experiment, the Spatial FUDJ

demonstrates a speedup of around 1200x, while the Text-

similarity FUDJ achieves a 6.5x improvement, and the Interval

FUDJ delivers approximately a 2.5x boost in performance.

Since the on-top approach cannot scale for Text-similarity

and Interval joins, these speed-ups had to be measured for

small datasets. Hence, the speed up compared to the Spatial

FUDJ seems smaller. In addition, we observe a high correla-

tion between the performance of Text-similarity join and the

dataset characteristics. We further discuss this in the following

48 96 144
0

100

200

300

E
x
ec

u
ti

o
n

T
im

e
(s

ec
.) (a) Spatial

n=1200

48 96 144
0

100

200

300

Number of Cores

(b) Interval

n=1000

FUDJ Built-in

48 96 144
0

200

400

600

(c)Set-similarity

t=0.9

Fig. 10: FUDJ Query Execution Times vs Number of Cores

sections. Finally, we also observe that Interval join suffers

mostly from NLJ operator that handles the bucket matching.

While FUDJ framework can utilize HJ for Text-similarity and

Spatial joins, it has to use NLJ since its matching function is

a theta function.

Figure 9 also shows that the overhead caused by the FUDJ

extensible framework is minimal. The difference between

FUDJ and Built-in methods for Spatial and Interval joins is

approximately 0 per record, while it is 0.061 ms. for Text-

similarity. This cost can be explained by the cost of having

summaries and config object as Hash Maps.

C. Scalability

To evaluate the scalability of our design, we present query

execution times of three versions of each algorithm by chang-

ing both the number of cores for joins and dataset sizes. Fig-

ure 10 shows that Spatial and Text-similarity FUDJ algorithms

scale well as compared to the on-top approach. Furthermore,

the difference between the built-in and FUDJ implementations

remains limited as we increase the number of cores and the

data size. As a result, FUDJ does not cause any issues from

the scalability perspective. On the other hand, as can be seen

from the charts for Interval FUDJ, we cannot say the scaling is

promising. This is due to the multi-join notion of the Interval

FUDJ that results in the NLJ operator used during the partition

matching phase. Since there is no partitioning mechanism

for Theta Join in Apache AsterixDB, this operation requires

one side to be randomly partitioned resulting in performance

degrading. We acknowledge this limitation and are developing

an efficient Theta Join operator for future enhancements.

D. Characteristics of the FUDJ Algorithms

In this section, we analyze the characteristics of the FUDJ

algorithms and the datasets. First, we study the effect of the

number of buckets for Spatial FUDJ, and Interval FUDJ.

Then, we show how the similarity threshold affects the Text-

similarity FUDJs performance.

1) Number of buckets: Deciding the number of buckets

is a crucial step for any distributed join algorithm. Before

starting to evaluate FUDJ framework, we first analyze the

logical characteristics of the FUDJ algorithms and dataset.

As we discussed in Section III, this step is crucial and a

4204

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

50
0

1,
00
0

1,
50
0

2,
00
0

2,
50
0

0

500

1,000

1,500

Number of Buckets

E
x
ec

u
ti

o
n

T
im

e
(s

ec
.) (a) Spatial

10M��18M

20
0

40
0

60
0

80
0

1,
00
0

200

400

600

(b) Interval

173K��173K

12-Core 48-Core 96-Core 144-Core

0.
86

0.
88 0.
9

0.
92

0.
94

100

500

2000

Sim. Threshold

(c) Text-similarity

415K��415K

Fig. 11: Effect of Num. of Buckets and Similarity Threshold

big challenge in complex join query processing. For Spatial

FUDJ and Interval FUDJ, we test the performance of the

query processing by varying the number of buckets. The query

execution times are shown in Figure 12.

2) Similarity threshold: On the other hand, although Text

similarity FUDJ does not require that the number of buckets

is determined, the characteristics of the dataset and most

importantly the similarity threshold are the main factors for

the execution performance. Furthermore, due to the duplication

and prefix filtering method, it starts to lose its benefits for low

thresholds as can be seen from Figure 12. We used the best-

performing number of buckets for the rest of the Spatial and

Interval FUDJ experiments. For Text-similarity FUDJ, we pick

0.9 as the similarity threshold since the goal of the query is

to find how 5-star reviews are similar to the 4-star reviews.

E. Duplicate Handling Methods

Duplicate handling is an important aspect of multi-assign

optimized join algorithms as discussed in Section III. In FUDJ

framework, the default duplicate handling method is Duplicate

Avoidance since it is more promising by not requiring an

additional shuffling stage after bucket matching. As a result,

the Text-similarity FUDJ is using the Duplicate Avoidance

in contrast to the proposed method in its original study

[48]. In this section, we first test the performance of these

two methods on Text-similarity join. Figure 12 shows that

Duplicate Avoidance outperforms Duplicate Elimination in all

of the dataset sizes by providing 1.15x speedup on average.

The FUDJ programming model also allows the developers

to implement their own Duplicate Avoidance methods. For

instance, in Spatial FUDJ, we implement the Reference Point

method described in [18] and compare the query execution

performances of both methods for a various number of buck-

ets. Since the number of buckets is the biggest factor in

the duplication, we measure execution times for a variety

of numbers. Figure 12b shows that there is not any notable

difference between the Reference Point and FUDJ’s duplicate

avoidance methods. Consequently, we show that our default

method can compete with one of the most successful Duplicate

Avoidance methods without any tuning from the DBMS admin

or implementation from the developer.

83K 249K 415K

200
400
600
800

#RecordsE
x
ec

u
ti

o
n

T
im

e
(s

ec
.)

(a) Set-similarity

t=0.9

1,0002,000

#Buckets

(b) Spatial

10M��18M

Avoidance Reference Point

Elimination

28K 280K 2.8M

2

4

#Records

(c) Spatial

10M �� 18M, n=1200

Spatial FUDJ

Adv. Spatial J.

Fig. 12: Duplicate Handling Strategies, and FUDJ and Ad-

vanced Optimized Spatial Join Comparison

F. The Effect of Local Join Optimizations

Finally, we will discuss the performance improvement po-

tential of FUDJ by comparing it to existing work such as

[4], [18], which involve advanced optimization techniques

like plane-sweep. For this purpose, we implemented a highly

customized Spatial Join Operator on Apache AsterixDB. The

main advantage of this operator compared to the FUDJ version

is its ability to apply local optimizations while joining the

buckets. Specifically, it employs the plane-sweep method by

first sorting the geometries in each tile and then applying

spatial merging to efficiently join geometries within each

tile. Figure 12c illustrates that having local optimization for

spatial joins yields a 1.38x speedup on average. We will

further explore this area and propose new operators enabling

developers to implement custom local joining mechanisms for

additional optimizations.

VIII. CONCLUSIONS AND FUTURE WORK

By offering FUDJ, a system can greatly simplify the way

that distributed join algorithms are implemented in data anal-

ysis. Such a system would empower users with varying levels

of expertise to efficiently leverage efficient purpose-designed

join algorithms, significantly reducing the code and knowledge

required for their implementation. The utilization of native

data types, flexible query execution plans, integration with

the query optimization engine, easy installation of compact

join libraries, and comparable performance to built-in imple-

mentations would unlock new possibilities for efficient join

operations. Ultimately, the system would facilitate more com-

prehensive data analysis, help users uncover hidden insights,

and drive accurate decision-making in diverse applications.

In the future, we plan to further enhance our system by

adding support for sort-merge-based distributed joins and local

join optimizations, such as plane-sweep. Additionally, we

aim to automate the process of finding the optimum number

of buckets by gathering more dataset statistics during the

SUMMARIZE phase. Furthermore, we intend to introduce

a Ternary Join Operator to combine MATCH and VERIFY

operations, as well as a Theta Join Operator to enhance SAMJ

processing for non-equality-based bucket matching.

4205

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Dignös, M. H. Böhlen, and J. Gamper, “Overlap interval partition
join,” in International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, C. E. Dyreson, F. Li, and
M. T. Özsu, Eds. ACM, 2014, pp. 1459–1470. [Online]. Available:
https://doi.org/10.1145/2588555.2612175

[2] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng, “Signature-
based trajectory similarity join,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 4, pp. 870–883, 2017. [Online]. Available: https:
//doi.org/10.1109/TKDE.2017.2651821

[3] L. Chen, S. Shang, C. S. Jensen, B. Yao, and P. Kalnis, “Parallel
semantic trajectory similarity join,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020. IEEE, 2020, pp. 997–1008. [Online]. Available:
https://doi.org/10.1109/ICDE48307.2020.00091

[4] P. Bouros and N. Mamoulis, “A forward scan based plane
sweep algorithm for parallel interval joins,” Proc. VLDB Endow.,
vol. 10, no. 11, pp. 1346–1357, 2017. [Online]. Available: http:
//www.vldb.org/pvldb/vol10/p1346-bouros.pdf

[5] T. Hütter, N. Augsten, C. M. Kirsch, M. J. Carey, and C. Li,
“JEDI: these aren’t the JSON documents you’re looking for?” in
SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Z. Ives, A. Bonifati, and
A. E. Abbadi, Eds. ACM, 2022, pp. 1584–1597. [Online]. Available:
https://doi.org/10.1145/3514221.3517850

[6] N. Karpov and Q. Zhang, “Syncsignature: A simple, efficient,
parallelizable framework for tree similarity joins,” Proc. VLDB
Endow., vol. 16, no. 2, p. 330–342, oct 2022. [Online]. Available:
https://doi.org/10.14778/3565816.3565833

[7] H. Yuan and G. Li, “Distributed in-memory trajectory similarity
search and join on road network,” in 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April
8-11, 2019. IEEE, 2019, pp. 1262–1273. [Online]. Available:
https://doi.org/10.1109/ICDE.2019.00115

[8] Z. Shang, G. Li, and Z. Bao, “DITA: distributed in-memory trajectory
analytics,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, G. Das, C. M. Jermaine, and P. A.
Bernstein, Eds. ACM, 2018, pp. 725–740. [Online]. Available:
https://doi.org/10.1145/3183713.3183743

[9] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity
joins using mapreduce,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
495–506. [Online]. Available: https://doi.org/10.1145/1807167.1807222

[10] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran, and J. D.
Ullman, “Fuzzy joins using mapreduce,” in IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.
Salles, Eds. IEEE Computer Society, 2012, pp. 498–509. [Online].
Available: https://doi.org/10.1109/ICDE.2012.66

[11] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng, “Massjoin:
A mapreduce-based method for scalable string similarity joins,”
in IEEE 30th International Conference on Data Engineering,
Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, I. F.
Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski, Eds.
IEEE Computer Society, 2014, pp. 340–351. [Online]. Available:
https://doi.org/10.1109/ICDE.2014.6816663

[12] D. Deng, G. Li, H. Wen, and J. Feng, “An efficient partition
based method for exact set similarity joins,” Proc. VLDB Endow.,
vol. 9, no. 4, pp. 360–371, 2015. [Online]. Available: http:
//www.vldb.org/pvldb/vol9/p360-deng.pdf

[13] J. Karimov, T. Rabl, and V. Markl, “Ajoin: Ad-hoc stream joins at
scale,” Proc. VLDB Endow., vol. 13, no. 4, p. 435–448, dec 2019.
[Online]. Available: https://doi.org/10.14778/3372716.3372718

[14] S. A. Shaikh, K. Mariam, H. Kitagawa, and K.-S. Kim, “Geoflink: A
distributed and scalable framework for the real-time processing of spatial
streams,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, ser. CIKM ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 3149–3156.
[Online]. Available: https://doi.org/10.1145/3340531.3412761

[15] Y. N. Silva, W. G. Aref, and M. H. Ali, “The similarity join database
operator,” in 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE 2010), 2010, pp. 892–903.

[16] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. Borkar, M. J. Carey,
and C. Li, “Similarity query support in big data management systems,”
Information Systems, vol. 88, p. 101455, 2020.

[17] J. Carman, Eldon P., “Interval joins for big data,” Ph.D.
dissertation, 2020. [Online]. Available: https://www.proquest.com/
dissertations-theses/interval-joins-big-data/docview/2458188626/se-2

[18] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,”
in Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996,
H. V. Jagadish and I. S. Mumick, Eds. ACM Press, 1996, pp.
259–270. [Online]. Available: https://doi.org/10.1145/233269.233338

[19] M. Stonebraker, J. Anton, and M. Hirohama, “Extendability in
POSTGRES,” IEEE Data Eng. Bull., vol. 10, no. 2, pp. 16–23, 1987.
[Online]. Available: http://sites.computer.org/debull/87JUN-CD.pdf

[20] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized
search trees for database systems,” in VLDB’95, Proceedings of 21th
International Conference on Very Large Data Bases, September 11-15,
1995, Zurich, Switzerland, U. Dayal, P. M. D. Gray, and S. Nishio,
Eds. Morgan Kaufmann, 1995, pp. 562–573. [Online]. Available:
http://www.vldb.org/conf/1995/P562.PDF

[21] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, “SJMR:
parallelizing spatial join with mapreduce on clusters,” in Proceedings
of the 2009 IEEE International Conference on Cluster Computing,
August 31 - September 4, 2009, New Orleans, Louisiana, USA.
IEEE Computer Society, 2009, pp. 1–8. [Online]. Available: https:
//doi.org/10.1109/CLUSTR.2009.5289178

[22] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam,
and M. K. Mohania, “Processing multi-way spatial joins on
map-reduce,” in Joint 2013 EDBT/ICDT Conferences, EDBT ’13
Proceedings, Genoa, Italy, March 18-22, 2013, G. Guerrini and
N. W. Paton, Eds. ACM, 2013, pp. 113–124. [Online]. Available:
https://doi.org/10.1145/2452376.2452390

[23] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in 2015 31st IEEE International Conference on
Data Engineering Workshops, 2015, pp. 34–41.

[24] E. H. Jacox and H. Samet, “Iterative spatial join,” ACM Trans.
Database Syst., vol. 28, no. 3, p. 230–256, sep 2003. [Online].
Available: https://doi.org/10.1145/937598.937600

[25] P. Bouros and N. Mamoulis, “Spatial joins: What’s next?” SIGSPATIAL
Special, vol. 11, no. 1, p. 13–21, aug 2019. [Online]. Available:
https://doi.org/10.1145/3355491.3355494

[26] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, p. 7–es, mar 2007. [Online]. Available:
https://doi.org/10.1145/1206049.1206056

[27] X. Zhou, D. J. Abel, and D. Truffet, “Data partitioning for parallel spatial
join processing,” Geoinformatica, vol. 2, pp. 175–204, 1998.

[28] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in 2015 31st IEEE International Conference on
Data Engineering Workshops, 2015, pp. 34–41.

[29] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proceedings of the 16th International Conference on World
Wide Web, ser. WWW ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 131–140. [Online]. Available:
https://doi.org/10.1145/1242572.1242591

[30] L. A. Ribeiro and T. Härder, “Generalizing prefix filtering to improve set
similarity joins,” Information Systems, vol. 36, no. 1, pp. 62–78, 2011,
selected Papers from the 13th East-European Conference on Advances in
Databases and Information Systems (ADBIS 2009). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437910000657

[31] W. Mann and N. Augsten, “PEL: position-enhanced length filter for set
similarity joins,” in Proceedings of the 26th GI-Workshop Grundlagen
von Datenbanken, Bozen-Bolzano, Italy, October 21st to 24th, 2014,
ser. CEUR Workshop Proceedings, F. Klan, G. Specht, and H. Gamper,
Eds., vol. 1313. CEUR-WS.org, 2014, pp. 89–94. [Online]. Available:
https://ceur-ws.org/Vol-1313/paper 16.pdf

[32] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: an
adaptive framework for similarity join and search,” in Proceedings
of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and

4206

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

A. Fuxman, Eds. ACM, 2012, pp. 85–96. [Online]. Available:
https://doi.org/10.1145/2213836.2213847

[33] Y. N. Silva, S. S. Pearson, J. Chon, and R. Roberts, “Similarity
joins: Their implementation and interactions with other database
operators,” Information Systems, vol. 52, pp. 149–162, 2015, special
Issue on Selected Papers from SISAP 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437915000186

[34] P. Bakalov, M. Hadjieleftheriou, E. Keogh, and V. J. Tsotras, “Efficient
trajectory joins using symbolic representations,” in Proceedings of the
6th International Conference on Mobile Data Management, 2005, pp.
86–93.

[35] P. Bakalov and V. J. Tsotras, “Continuous spatiotemporal trajectory
joins,” in GeoSensor Networks: Second International Conference, GSN
2006, Lecture Notes in Computer Science, vol 4540. Springer, 2008,
pp. 109–128.

[36] Y. Chen and J. M. Patel, “Design and evaluation of trajectory join
algorithms,” in Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2009, pp.
266–275.

[37] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis,
“Parallel trajectory similarity joins in spatial networks,” The VLDB
Journal, vol. 27, no. 3, pp. 395–420, 2018.

[38] S. Wang, Z. Bao, J. S. Culpepper, and G. Cong, “A survey on trajectory
data management, analytics, and learning,” ACM Comput. Surv., vol. 54,
no. 2, mar 2021. [Online]. Available: https://doi.org/10.1145/3440207

[39] A. Dignös, M. H. Böhlen, J. Gamper, C. S. Jensen, and P. Moser,
“Leveraging range joins for the computation of overlap joins,”
VLDB J., vol. 31, no. 1, pp. 75–99, 2022. [Online]. Available:
https://doi.org/10.1007/s00778-021-00692-3

[40] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing
of k nearest neighbor joins using mapreduce,” Proc. VLDB Endow.,
vol. 5, no. 10, p. 1016–1027, jun 2012. [Online]. Available:
https://doi.org/10.14778/2336664.2336674

[41] A. Shahvarani and H. Jacobsen, “Distributed stream KNN join,” in
SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos, and
D. Srivastava, Eds. ACM, 2021, pp. 1597–1609. [Online]. Available:
https://doi.org/10.1145/3448016.3457269

[42] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,”
in Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, S. D. Gribble and D. Katabi, Eds. USENIX
Association, 2012, pp. 15–28. [Online]. Available: https://www.usenix.
org/conference/nsdi12/technical-sessions/presentation/zaharia

[44] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: a programming model and execution framework for
web-scale analytical processing,” in Proceedings of the 1st ACM sym-
posium on Cloud computing, 2010, pp. 119–130.

[45] M. Carey and L. Haas, “Extensible database management systems,”
ACM SIGMOD Record, vol. 19, no. 4, pp. 54–60, 1990.

[46] M. T. Özsu and P. Valduriez, Principles of Distributed Database
Systems, 4th Edition. Springer, 2020. [Online]. Available: https:
//doi.org/10.1007/978-3-030-26253-2

[47] M. Bandle, J. Giceva, and T. Neumann, “To partition, or not to partition,
that is the join question in a real system,” in SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25,
2021, G. Li, Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp.
168–180. [Online]. Available: https://doi.org/10.1145/3448016.3452831

[48] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. R. Borkar,
M. J. Carey, and C. Li, “Similarity query support in big data
management systems,” Inf. Syst., vol. 88, 2020. [Online]. Available:
https://doi.org/10.1016/j.is.2019.101455

[49] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova,
R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok,
N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann, “Asterixdb: A scalable, open source BDMS,” Proc.
VLDB Endow., vol. 7, no. 14, pp. 1905–1916, 2014. [Online]. Available:
http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf

[50] S. Singla, T. Diao, A. Mukhopadhyay, A. Eldawy, R. Shachter, and
M. Kochenderfer, “Wildfiredb : an open-source dataset that links
wildfire occurrence with relevant features,” 2021, retrieved from UCR-
STAR https://star.cs.ucr.edu/?wildfiredb&d.

[51] A. Eldawy and M. F. Mokbel, “Boundaries of parks and green areas from
all over the world as extracted from openstreetmap.” 2019, retrieved from
UCR-STAR https://star.cs.ucr.edu/?OSM2015/parks&d.

[52] C. Wong, “Pickup and drop-off locations of taxi rides in new york city,”
2019, retrieved from UCR-STAR https://star.cs.ucr.edu/?NYCTaxi&d.

[53] R. He and J. J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in Proceedings
of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada, April 11 - 15, 2016, J. Bourdeau, J. Hendler,
R. Nkambou, I. Horrocks, and B. Y. Zhao, Eds. ACM, 2016, pp.
507–517. [Online]. Available: https://doi.org/10.1145/2872427.2883037

4207

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 01,2024 at 21:57:03 UTC from IEEE Xplore. Restrictions apply.

