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Abstract: We use coarse-grained molecular dynamics simulations to study deformation of networks
and gels of linear and brush strands in both linear and nonlinear deformation regimes under constant
pressure conditions. The simulations show that the Poisson ratio of networks and gels could exceed
0.5 in the nonlinear deformation regime. This behavior is due to the ability of the network and
gel strands to sustain large reversible deformation, which, in combination with the finite strand
extensibility results in strand alignment and monomer density, increases with increasing strand
elongation. We developed a nonlinear network and gel deformation model which defines conditions
for the Poisson ratio to exceed 0.5. The model predictions are in good agreement with the simulation
results.

Keywords: Poisson ratio; polymer networks; gels; gel deformation; computer simulations of networks
and gels

1. Introduction

The mechanical response of elastic materials is determined by the Young’s modulus,
E, and the Poisson ratio, ν, which quantify the change in a sample shape upon application
of external forces [1–4]. The Young’s modulus defines sample elongation or compression
in the direction of the applied force while the Poisson ratio couples deformations in the
transversal and longitudinal to the applied force directions. The Poisson ratio can take on
values within the interval −1 ≤ ν ≤ 0.5 depending on the internal structure of the material.
This range of Poisson ratios is bound on the ratio of the Young’s modulus and the bulk
modulus K = ρ0∂P/∂ρ0, which describes compressibility of a material with an equilibrium
density ρ0 under an external pressure P. For incompressible materials, such as natural
rubber, E/K � 1, and the Poisson ratio ν ≈ 0.5 [5,6], and sample deformation occurs at a
constant volume. For compressible materials with E > 3K, the Poisson ratio is negative, and
the elongation of the sample is accompanied by bulging in the transversal to deformation
directions [3,7]. In hard materials (metals, alloys, and ceramics), the recoverable (elastic)
deformation range is usually a few percent, such that the material constants E and ν are
determined by their equilibrium properties in an undeformed state. Soft materials (polymer
networks and gels), however, could recover their initial shapes after undergoing extensions
up to 1000% [5,6,8–11]. Such large deformations occur in the nonlinear deformation regime,
with deformation-dependent material properties [12]. The question which we want to
address here is as follows. Is it possible for soft materials to have a Poisson ratio larger than
0.5 and what conditions should be satisfied for this to become possible?

To answer this question, we will use a general definition of the Poisson ratio which is
valid for the large uniaxial deformations [13]:

λν
‖λ⊥ = 1 (1)
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It couples the elongation ratios in the longitudinal λ∥ = L∥/L0 and transversal
λ⊥ = L⊥/L0 to deformation directions in a cubic sample inside the bulk material with the
initial linear size L0 and corresponding sizes in the deformed state L∥ and L⊥. Here, we
assume that a sample is deformed uniaxially along the z-axis with free boundary conditions
in the xy direction (see Figure 1). Combining Equation (1) with the expression for relative
volume change Q from the initial volume in undeformed state V0 to V upon deformation

Q =
V
V0

=
L∥L2

⊥
L3

0
= λ∥λ2

⊥ (2)

results in the following expression for the Poisson ratio:

ν =
1
2
− 1

2
ln Q
ln λ∥

(3)
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works and gels made of bead–spring chains with bead diameter 𝜎. The interactions be-
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tions are given in the Supplementary Materials. In our simulations, we study networks 
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Figure 1. Uniaxial deformation of a network from volume V0 and initial dimensions L0 = L0,x = L0,y = L0,z

to volume V with longitudinal L∥ = Lz and transversal L⊥ = Lx = Ly dimensions.

In the gel literature, Q is also known as a gel swelling ratio [14,15]. It immediately
follows from Equation (3) that for a Poisson ratio to be larger than 0.5, the volume of the
deformed sample, V, should be smaller than its volume in the undeformed state, V0, leading
to Q < 1. This could happen when the material density increases upon deformation. We
will show that this condition is satisfied in networks and gels undergoing large (nonlinear)
deformations.

2. Poisson Ratio of Polymer Networks and Gels

We performed coarse-grained molecular dynamics simulations [16] of polymer net-
works and gels made of bead–spring chains with bead diameter σ. The interactions be-
tween beads are described by the pure repulsive truncated–shifted Lennard–Jones potential
and bonds between monomers connecting them into chains are modelled by the FENE
bonds [17]. The functional forms of the potentials and their parameters used in simulations
are given in the Supplementary Materials. In our simulations, we study networks and gels
of linear chains and gels of brush strands (Figure 2). The networks of linear chains were
made by crosslinking a melt of the precursor chains with the degree of polymerization
(DP) N = 1025 by crosslinks connecting every nx-th monomer [18]. In brush networks,
the brush strands were crosslinked by ends of the side chains of brush macromolecules
with the degree of polymerization of the brush backbones nbb = 129, to which the side
chains with DP = nsc were grafted every ng bonds (Figure 2b) [19]. The gels were prepared
by swelling networks of linear and brush strands at P = 0, which corresponds to implicit
solvent simulations. In this case, by fixing pressure, we effectively allow implicit solvent
exchange between the gel and the solvent reservoir surrounding it. The simulations of the
uniaxial deformation of the networks and gels were carried out at a constant pressure cor-
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responding to that of polymer melt (P = 4.97 kBT/σ3) and free-standing gels with implicit
solvent (P = 0). This was achieved by coupling the system to a Nose–Hoover barostat
acting in the transversal (x − y plane) to deformation directions. This eliminates the volume
conservation constraint and allows for the volume change upon uniaxial deformations.
The constant temperature T∗ = 1.0 in energy units was maintained by implementing
Langevin thermostat. All simulations were performed by using LAMMPS [20] under 3D
periodic boundary conditions. The system-specific simulation details are summarized in
the Supplementary Materials.
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Figure 2. (a) Networks of entangled linear chains with the degree of polymerization between
crosslinks nx. Crosslinked beads are shown in red. (b) Network of brush strands with the number
of the backbone monomers between crosslinks nx crosslinked by the ends of side chains with the
degree of polymerization nsc and ng backbone bonds shown in yellow between neighboring side
chains colored in blue. Crosslinks between ends of the side chains are shown in red.

2.1. Linear Chain Networks

Figure 3a shows stress–deformation curves for linear chain networks with nx = 20–60.
All curves have a characteristic upturn at large deformation ratios indicative of the crossover
to the nonlinear deformation regime. The volume change of the deformed networks
described by Q = V/V0 (Figure 3b) has a nonmonotonic dependence on the deformation,
λ∥. It first increases with deformation, passes through the maximum, and finally begins to
decrease. In the nonlinear deformation regime, the value of Q becomes smaller than unity,
pointing out that the network density is larger than that in the undeformed state. In this
deformation regime according to Equation (3), we should expect values of the Poisson ratio
to exceed 0.5. This is confirmed in Figure 3c, showing variation in the Poisson ratio with
network deformation.

To provide a theoretical explanation of the observed trends and express Poisson ratio
in terms of the network parameters, we adopt a formalism developed in [21] accounting for
the large variations in network or gel volume upon nonlinear deformations (Supplementary
Materials). For network deformation under constant external pressure conditions, there
are two equations that describe mechano-chemical equilibrium in a network. The first
relationship describes true stress in a network undergoing uniaxial deformation.

σtrue =

(
λ2
∥

Q
− 1

λ∥

)(
GeQ
λ∥

+
G
3

(
1 + 2

(
1 − β

3

(
λ2
∥ + 2Qλ−1

∥

))−2
))

(4)

where G is the network structural modulus associated with the crosslinks, crosslink func-
tionality, and network defects, and Ge is modulus due to entanglements. The finite strand
extensibility is characterized by the extensibility ratio β =

〈
R2

in
〉
/R2

max, quantified by how
much a network strand with the degree of polymerization between crosslinks nx, bond
length l, and the mean-square end-to-end distance

〈
R2

in
〉

in the undeformed state could be
stretched to its fully extended conformation with Rmax = nxl.
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Figure 3. (a) True stress in uniaxially deformed networks of linear chains with nx = 20, 40, 60.
(b) Dependence of Q = V/V0 on the elongation ratio λ∥ for networks in panel (a). (c) Dependence of
the Poisson ratio on the elongation ratio λ∥ for networks in panel (a). Simulations were performed at
a constant pressure of the polymer melt Pext = 4.97 kBT/σ3 with monomer density 0.85 σ−3. kBT is
the thermal energy and σ is the bead diameter.

The second expression connects change in the network volume with deformation:

Ge

(
λ∥ +

Q
λ2
∥

)
+

G
3λ∥

(
1 + 2

(
1 − β

3

(
λ2
∥ + 2Qλ−1

∥

))−2
)

= P(ρ)− Pext (5)

where P(ρ) is the network pressure as a function of the network density ρ (or volume) and
Pext is the external pressure, which, in our simulations, is equal to the barostat pressure.

In the limit of small deformations λ∥ = 1 + ε∥, expanding Equation (5) in the power
series of ε∥ and taking into account that ρ = ρ0V0/V ≈ ρ0(1 − ∆V/V0), we obtain the
expressions for the equilibrium network density ρ0,

G0 + Ge ≈ P(ρ0)− Pext (6)

and for the Poisson ratio,

ν0 =
1
2
− 1

2
G0

K0
(7)

in terms of the corresponding shear modulus

G0 ≡ Ge +
G
3

(
1 + 2(1 − β)−2

)
(8)

and the bulk modulus K0 = ρ0∂P/∂ρ0. Here, we use subscript “0” to indicate that these rela-
tionships and material parameters describe properties of the system in an undeformed state.

In the nonlinear deformation regime, we can approximate Q ≈ 1 + ∆Q (see Figure 3b)
and expand pressure in a power series of ∆ρ = ρ − ρ0. After some algebra and using
Equation (6), we arrive at

g
(

λ∥

)
≡ Ge

(
λ∥ +

1
λ2
∥

)
+

G
3λ∥

(
1 + 2

(
1 − β

3

(
λ2
∥ + 2λ−1

∥

))−2
)

≈ G0 + Ge − K0∆Q (9)

Note that the function g
(

λ∥

)
representing the l.h.s of Equation (9) has a minimum as a

function of λ∥; therefore, in the range of network deformations such that g
(

λ∥

)
< G0 + Ge,

the solution of Equation (9) only exists for ∆Q > 0. However, for sufficiently large λ∥

for which g
(

λ∥

)
> G0 + Ge, we have ∆Q < 0. This peculiar behavior is a direct result of

the finite extensibility of the network. Note that for the interval of positive ∆Q > 0, the
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corresponding Poisson ratio is smaller than 0.5, while for the interval ∆Q < 0, the Poisson
ratio exceeds 0.5 (Figure 3c)

2.2. Gels of Linear and Brush Networks

Analysis of the elastic response of polymer networks presented above demonstrates
that in the limit of the large network deformations, the Poisson ratio of the network could
be larger than 0.5—the upper bound value assumed for materials. It is worth pointing out,
however, that for networks of linear chains, there are only small deviations of the Poisson
ratio from 0.5 (Figure 3c). To magnify this effect, we performed simulations of the gels of
linear and brush networks undergoing large uniaxial elongations in contact with implicit
surrounding solvent. The deformation of such gels is described by the deformation ratio
and volume change with respect to a free-standing gel occupying volume Vs with the linear
dimension Ls = Ls,x = Ls,y = Ls,z. This volume change corresponds to a gel swelling ratio
Qeq = Vs/V0 with respect to a dry gel state with the initial volume V0 and equilibrium
deformation ratios along x, y, and z-directions λs,z = λs,x = λs,y = Q1/3

eq (Figure 4). Thus,
the following set of parameters characterizes the gel deformation with respect to a new
equilibrium state (free-standing gel)

Qg = V/Vs; αz = α∥ = λ∥/Q1/3
eq ; αx = αy = α⊥ = λ⊥/Q1/3

eq (10)
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Figure 4. Swelling of a dry brush network from volume V0 to volume Vs followed by gel uniaxial
deformation with final volume V.

Note that, in Equation (10), Vs = V0 are reduced to a set of parameters describing the
deformation of dry networks.

Figure 5 summarizes data for the deformation of gels obtained by swelling networks
of linear chains. The main difference between results shown in Figures 3 and 5 is that for
gels we see a much more dramatic change in Qg and Poisson ratio with deformation, α∥. It
starts from a smaller value ~0.3 at small deformations (Figure 5c). This is an indication of
the large compressibility of the gels, comparable with the Young’s modulus in comparison
with that for dry networks, which results in a decrease in the Poisson ratio below 0.5 [22–25].
For large deformations, the Poisson ratio approaches a value of 0.6 (Figure 5c). This is a
significantly larger increase than the one observed in networks (Figure 3c). Thus, one can
say that in gels, a solvent plays the role of the “free volume” on steroids, magnifying the
effect of polymer density change on the gel mechanical properties.
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(b) Dependence of swelling ratio Qg = V/Vs on the elongation ratio α∥ for networks in panel (a).
(c) Dependence of the Poisson ratio on the elongation ratio α∥ for networks in panel (a). Simulations
are performed at a constant pressure Pext = 0.

To demonstrate that the observed trends are not unique to gels and networks of linear
strands, Figure 6 presents data for the brush gels. In particular, Figure 6a shows the de-
pendence of the true stress in a gel undergoing uniaxial deformation with the deformation
ratio α∥ for several brush gels with different ng values. The Qg vs. α∥ curves (Figure 6b)
have shapes similar to Q vs. λ∥ plots, shown in Figure 3b, highlighting similarities in the
gel and network behavior. As in the case of the polymer networks (Figure 3a), there is a
clearly identifiable regime of the nonlinear gel deformation. In this regime, the gel swelling
ratio Qg is a decreasing function of α∥. For sufficiently large deformations, Qg becomes
smaller than unity. In this deformation regime, the gel Poisson ratio exceeds a value of 0.5,
as confirmed in Figure 6c.
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We can apply our model of nonlinear network deformation to a gel. In the case of
the unentangled gels (Ge = 0), Equations (4) and (5), describing network deformation and
volume change, are reduced to:

σtrue =

(
λ2
∥

Q
− 1

λ∥

)
G
3

(
1 + 2

(
1 − β

3

(
λ2
∥ + 2Qλ−1

∥

))−2
)

, (11a)

G
3λ∥

(
1 + 2

(
1 − β

3

(
λ2
∥ + 2Qλ−1

∥

))−2
)

= Πgel . (11b)
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Recall that λ∥ and Q are measured with respect to the dry network state. The equilib-
rium swelling condition for the free-standing gel with σtrue = 0 corresponds to λ∥ = Q1/3

eq .
The gel osmotic pressure Πgel , which drives network swelling, can be calculated by using
the lattice model of polymer solutions with the Flory interaction parameter χ and lattice
cell volume v0: [5,8,26]

Πgel = − kBT
v0

(
ln
(

1 − Q−1
)
+ Q−1 + χQ−2

)
. (12)

The focus on properties of unentangled gels is justified by the well-established fact
that the contribution from entanglements in network elasticity diminishes with increasing
gel swelling or deformation [5].

Figure 7 shows results of the numerical solution of Equations (11)–(12) for gels with
Gσ3/kBT = 0.01 and different values of the strand extensibility β = 0.01, 0.05, 0.1, and 0.25
swollen in a theta solvent with χ = 0.5. For these calculations, we set v0 = σ3. Comparing
Figure 7 with Figures 5 and 6, we can conclude that the nonlinear gel deformation model
correctly captures the main effect of nonmonotonic dependence of the gel swelling ratio
Qg and monotonic increase in the Poisson ratio with gel uniaxial extension α∥ observed
in computer simulations. The only difference between these figures is the magnitude of
the effect, which is controlled by the solvent quality for the gel strands and topology of the
networks determined by the values of shear modulus G and β parameter.
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Figure 7. Numerical solution of the uniaxial deformation of polymer gel swollen in solvent with
χ = 0.5 having modulus Gσ3/kBT = 0.01 and different strand extensibility: β = 0.01, 0.05, 0.10, and
0.25. (a) True stress as a function of the elongation ratio for gels. (b) Dependence of swelling ratio
Qg = V/Vs on the elongation ratio α∥ for gels in panel (a). (c) Dependence of the Poisson ratio on the
elongation ratio α∥ for gels in panel (a).

3. Conclusions

We use molecular dynamics simulations and theoretical analysis of the polymer
network and brush gel deformations to show that the Poisson ratio of soft materials could
exceed 0.5. This unusual behavior is due to the ability of the networks and gels to sustain
large reversible deformations, which is impossible to achieve for hard materials. Specifically,
the main reason behind the observed trend is the finite extensibility of the polymer strands
making up networks and gels. The strand stretching is offset by changes in the network
and gel volumes. This effect is more pronounced for gels, since the solvent could be viewed
as a “free volume” on steroids. The results of computer simulations are in good qualitative
agreement with the predictions of the nonlinear gel deformation model, which accounts for
solvent redistribution upon gel deformation.

The observed range of Poisson ratios for strongly deformed polymer networks and
gels bears similarities with the behavior of liquid-crystal elastomers for which reported
values of the Poisson ratio could be as large as 0.6–0.7 in anisotropic samples [24,27,28].
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Note that deformation on networks and gels results in alignment of the polymer strands
along the deformation direction, effectively inducing a sample anisotropy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels10070463/s1, Simulation details, Model derivation [29–33].
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