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ABSTRACT: In this paper we explore pp — W*(£*v)y to O(1/A*) in the SMEFT expansion.
Calculations to this order are necessary to properly capture SMEFT contributions that grow
with energy, as the interference between energy-enhanced SMEFT effects at O(1/A%) and
the Standard Model is suppressed. We find that there are several dimension eight operators
that interfere with the Standard Model and lead to the same energy growth, ~ O(E*/A%), as
dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our
calculation includes the complete set of O(1/A*) SMEFT effects consistent with U(3)5 flavor
symmetry. Additionally, we include the decay of the W* — ¢*v, making the calculation
actually g¢ — ¢Tvy. As such, we are able to study the impact of non-resonant SMEFT
operators, such as (Lia*r! L)(QTa"7! Q) B,,,, which contribute to gq' — (*vy directly and
not to g¢' — W+*v. We show several distributions to illustrate the shape differences of the
different contributions.
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1 Introduction

In this paper we explore pp — W*~y production to O(1/A*) with the Standard Model Effective
field theory expansion (SMEFT) [1-3]. The SMEFT framework extends the SM by a series
of higher dimensional operators (formed from the SM fields and their derivatives),

Q,u,d,Le,HB WL oGgA 1Dy,
ESMEFT—£SM+ZZ S A; e ) (1.1)
d=5 i=1

where d labels the operator mass dimension, and ¢ enumerates the independent operators at

1

a given mass dimension'. The scale A is assumed to be > all other masses and energies;

we take it to have the same value for all operators, encoding any relative differences in the

(d)

strengths operators into the Wilson coefficients C;’. While any UV scenario with a single
source of electroweak symmetry breaking and with all states far heavier than the SM can

be mapped into the SMEFT, our interest will be to use it from the bottom up, keeping all

"While the sum in Eq. (1.1) begins at d = 5, in this work will assume that baryon number and lepton
number are preserved. This removes odd dimensions from the sum, so that d = 6 is the lowest dimension.



operators to a given order in 1/A and with minimal assumptions about the relative sizes of
the C?.

Diboson processes such as pp — W~ are key LHC process from the SMEFT perspective
as they provide insight on the nature of the triple gauge couplings VV'V. The first constraints
on the VVV couplings come from LEPII [4-7], with updates from studies at the Tevatron
and LHC, e.g. Ref [8-13]. Phrased in the language of operators/Wilson coefficients, fermion
pair production, either from e*e™ — ff at LEP or Drell-Yan at the Tevatron/LHC set
strong constraints on SMEFT operators that affect fermion-fermion-gauge boson couplings
ffV, but have no impact on the operator CI(;) ergx WY WPWE and only indirect (via
input parameter dependence) on CE?I)/V pHITIH Wlfl,B’“’ (working in the Warsaw [2] basis,
and considering tree-level effects only).

Given its role in constraining new SMEFT operators and thereby helping to piece together
a global picture of deviations from the SM, it is important to provide accurate theoretical
predictions. Usual perturbative SM corrections fall in this category, but the purpose of this
paper is to study corrections from higher order terms in the SMEFT expansion. The lowest
order terms come from dimension six operators interfering with the SM, O(1/A?), and have
been studied extensively; see Ref [14-22] for diboson-focused analyses. The next highest
term in the SMEFT expansion is O(1/A*%), which can either come from the product of two
dimension six contributions (either the square of a single operator, which we’ll call ‘self-
square’ terms, or the product of two different operators), or from the interference between a
dimension eight operator and the SM.

One motivation to look at higher orders comes from energetics. When SMEFT operators
are added to an amplitude, they turn into contributions of O(E4~*/A%~*), where E is roughly
the partonic center of mass energy of the process?. As such, a natural place to look for SMEFT
effects is at high energy, in the tails of kinematic distributions. However, the higher the energy,
the larger the expansion parameter F/A and the larger the impact from higher order terms.

For diboson processes, there is reason to believe the O(1/A%) effects are particularly
important. The operator that leads to the strongest energy growth at dimension six is
C‘(/g) E[JKW/{’V WZ;]”W,J(“?’, with Ac,, ~ E?/A?. However, the enhanced part of Acy, in-
volves different W/~ polarizations than the dominant SM piece (in the limit £ > v), so the
interference between the two is suppressed [23]*. To see the energy enhancement from CI(/g),
one needs to work to O(1/A%) and include the self square, |Ac,, |?> ~ E*/A%. However, once
we look to higher order, we must consider all O(1/A%) effects, and, in particular, dimension
eight operators that lead to energy enhanced amplitudes in the polarization channels where
the SM is largest. A set of these dimension eight operators and their effect on WW and WZ

2For operators containing Higgses, the energy growth can be slower, with powers of the Higgs vev replacing
powers of energy. In those cases, O(E~*/A%™") is the leading energy behavior.

3In this paper, we will often use the shorthand of referring to operators by their Wilson coefficients, e.g.
053) €1J KW; VP WPK ¥ becomes C’é?,) . Our convention for operators is explained in Sec. 2.

4The suppressed interference holds at the level of the total cross section. Interference can be revived to
some extent by looking at the azimuthal distributions of the reconstructed vector bosons [24, 25]



has been discussed in Ref. [26], motivated by this large E' argument.

In addition to studying a different diboson process, our calculation includes the full
O(1/A*) calculation consistent with U(3)% flavor and CP symmetry. Our motivation for the
full calculation is that, while energy arguments are a good starting point, they only involve
a subset of the operators and may be offset by hierarchies among coefficients. We also decay
the W, so that the full SMEFT calculation is pp — ¢*vy. Compared to pp — W, the
2 — 3 calculation includes non-resonant effects, meaning operators that contribute to ¢*v~y
without an intermediate, on-shell W. From energy arguments, several of these non-resonant
effects, such as a g¢’'f*v contact interaction with a photon emitted off the ¢, ¢ or ¢* lines, are
energy enhanced and could complicate interpretations of high energy ¢*vy events in terms
of triple gauge vertices. Prior studies [27] have assumed that the non-resonant contributions
can be controlled with analysis cuts, but this has not been explicitly checked.

There are several advantages to using W*(¢*v)y as a laboratory for O(1/A%) effects.
First, only left handed fermions participate in the SM amplitude, and since dimension eight
operators must interfere with the SM to contribute at O(1/A*), we only need to consider
dimension eight operators containing left handed fermions. Second, the final state is charged,
so there are no gluon initiated effects (at the 2 — 3 level). Finally, the final state including
W# decays is three-body, while cousin processes like WTW = or W*Z are four-body when
fully decayed.

The rest of this paper is structured as follows. In Sec. 2 we break down the various tree
level contributions to pp — W*(¢*v)y into subcategories depending on the topology of the
Feynman graphs and whether or not the /*v system is resonant. For each subcategory, we
derive the helicity amplitudes (taking all fermions to be massless) in Sec. 3, followed by the
corresponding coupling factors in Sec. 4, noting the order in the SMEFT expansion where
each appears. These amplitudes and their accompanying coupling factors are the main result
of this paper. Before turning to numerics, in Sec. 5 we study the polarization breakdown of
the resonant terms, as this controls which SMEFT effects are dominant in the high-energy
region (V3 > v). We then explore the (v/§ > v) regime numerically in Sec. 6, showing
how non-resonant terms can be mitigated by additional cuts. This section also contains
some kinematic distributions, which further illustrate the similarities and differences between
different SMEFT operator effects. Section 7 contains our conclusions.

2 SMEFT contributions to pp — W=*({*)y

SMEFT effects enter into pp — W*(¢*)v in three ways:

e Through input parameter dependence, the way SM inputs such as g1, g2, v are connected
to experimental data.

e Through altered three-particle vertices, specifically those involving two fermions and
a vector boson (ggW=* (*vW* and ffv,f = q,£%) or three vector bosons VVV =



WTW~=~. The ffv vertex remains unchanged (when the fermions have the same chi-
rality) in SMEFT due to gauge invariance. All other three-particle vertices receive
SMEFT corrections.

e Through contact four and five-particle vertices gg'W*~, (XvW*~, G¢'¢*v and Gq'¢*vy.
These have no SM analog and are purely SMEFT effects. Note that the five particle
vertices lead to ‘non-resonant’ contributions.

Within the geoSMEFT framework, the first two types of SMEFT effects have already con-
veniently been set — meaning the set of possible kinematic forms and the operators that can
contribute have been enumerated and grouped into field-dependent ‘metrics’. As explained
in Ref. [28], these contributions are functions of v/A alone and can therefore be expressed in
compact, all-orders forms. To get the O(1/A*) contributions, we simply need to expand the
metrics to that order. What remains is to find all the four and five-particle interactions that
can affect g¢/ — W+ (Ki)v. A few four and five-particle interactions are contained within the
geoSMEFT ‘metrics’ ®, however to capture all four and five-particle effects we will need to
look beyond geoSMEFT.

We will first sort SMEFT effects diagrammatically, then connect to operators. The set
of diagrams are presented below in Figs 1 and 2, grouped into whether the ¢*v system is
resonant or not.

Diagrams i.) and iii.) show the SM contributions. Extended to SMEFT, the couplings
that accompany these diagrams will contain effects from higher dimensional operators. In
the terminology of Ref. [28] the metrics appearing are the hr;(¢), gap(¢) and Ltf’ 4(#), which
correspond to corrections to the Higgs kinetic term, the W/Z/~ kinetic term, and the coupling
of fermionic currents to gauge bosons, respectively. Here, ¢> = HTH /A2, the indices I, J label
the four degrees of freedom in the Higgs, A, B label the four gauge bosons, and v indicates the
fermion type. See Ref. [28] for the expansions of these metrics in terms of higher dimensional
operators, or Ref. [29] for the coupling shifts as a function of the Wilson coefficients up to
O(1/A*). For the triboson coupling VVV, SMEFT effects will also introduce new kinematics.
Despite their non-SM kinematics, these interactions still lie in the geoSMEFT framework,
meaning they can be expressed as a Higgs-dependent metric multiplying three field strengths
fUK(¢)T/V,{’VW[,]’pr’“, with the form of f;;x(¢) known to all orders in ¢. Note that no
derivatives appear in any of the geoSMEFT metrics (they are e.g. hr;(¢), not hry(¢,09)),
as terms with derivatives either reduce to existing terms or only contribute to vertices with
more than three particles [28].

Diagram ii.) contains a G¢'W*+ contact interaction. This does not occur at dimension
six, at least within the Warsaw basis. At dimension eight, operators in the class® Q?>X?D

SFor example, the operator i(QTz?”Q)(HTﬁHH) contains a correction to the ggZ vertex if both Higgses
are set to their vevs, hence it is a member of the geoSMEFT metric L}{A, but it also generates GqgZh, gqZh?,
etc. vertices

5By class we are referring to the field and derivative content only. When discussing operator classes, we will
follow the convention of Red [2, 30], using X to denote any field strength and D for powers of derivatives. We
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Figure 1: Tree level resonant topologies for pp — W~ (¢~ )y in SMEFT. External labels for
all diagrams are the same as in the upper left diagram, and all momentum have been taken
to be outgoing.

and Q*X H?D will contribute; Q>X?2D clearly contains the field content required, while for
Q?’X H?D, we get a contribution when the derivative is placed on the Higgs field and the
Higgs is set to its vev, i.e. D,H D ng;t. Note we do not consider operators with right
handed fermions, i.e. Du2H?X since dimension eight operators must interfere with the SM
amplitude to contribute to the cross section at O(1/A%) and the SM amplitude only involves
left handed fermions. One may have expected operator class Q>H?D? to contribute, however
once these operators are expanded out we find no g¢'W=*~ vertices. This is not surprising
given that Q?H?2D3 has no field strength X to represent a transverse photon. Had we explored
pp — W*Z, Q*H?D3 would contribute to the longitudinal W/Z polarizations (see Ref [26]).
Diagram vi.) is the leptonic version of diagram ii.) and is affected by L2X?D and L?X H?D
operators.

The remaining two sets of diagrams ((iii.), (iv.)) contain four fermion vertices at their
core. Diagram iv.) is sensitive to any four fermion operator containing the right field content
at dimension six, while at dimension eight only four fermion operators with left handed
fermions are relevant, Q?L?H? and Q?L?D?. The fact that the chirality (and flavor) of the
dimension six operators entering diagram iv.) is not affected by the requirement of interference
with the SM leads to a proliferation of potential operators. To tame this abundance of
operators and focus on questions of energy enhanced amplitudes and the role of non-resonant
contributions, we will impose U(3)° flavor symmetry as defined in Ref. [31]. This assumption,
eliminates all four fermion operators except those with QTQLTL form (only left handed fields).

use @, L, u., etc. to indicate the fermion type, but won’t bother distinguishing fermions from antifermions.
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Figure 2: Tree level nonresonant topologies for pp — W~ (¢~ )~ in SMEFT. External labels
for all diagrams are the same as in the labeled diagram, and all momentum have been taken
to be outgoing.

It also removes dipole operators and right handed W* currents, both of which would otherwise
contribute to diagrams i.) and iii.). Breaking the U(3)® by reinstating third-generation
Yukawa couplings, or by moving to full minimal flavor violation [32], does not admit any
additional operators.

Finally, diagram v.) contains the five-particle contact terms. These can be generated by
the Q?L?D? operators via the covariant derivative, or by operators in the Q?L?X class.

Based off of this enumeration, the list of operators that contribute to the four and five-
particle diagrams are listed below in Table 1. The operators contributing to three-particle
vertices. and input parameter dependence have already been listed in Ref. [28, 29]. We
impose U (3)° flavor symmetry, as explained, as well as CP symmetry, given that CP violating
interactions are tightly constrained by low-energy experiments [33]. The operators are listed
by mass dimension and class/field content.



Class V> XH?D, ¢ = Q, L Class ¥?X%D, ¢ = Q, L
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Table 1: Operators at dimension six and eight that contribute to contact terms in the process
pp — WE(l*v)y. We have imposed CP conservation and U(3)® flavor symmetry to avoid a
proliferation of dimension six operators, whose self square contribution to O(1/A*) results is
not restricted by the need to interfere with the SM. Operators not on this list either have the
wrong particle content, violate either the flavor or CP assumptions, or — for dimension eight
operators — have the incorrect fermion helicity structure to interfere with the SM. We have
used the naming convention from Ref. [30] for all cases except Q?L2D?, where we place the
derivatives in slightly different positions (as done in Ref. [29]). For non-contact operators,
we will use the definitions and naming convention from Refs. [29], rather than Ref. [30]. The
explicit form of these operators can be found in Appendix A.

3 Amplitudes for pp — W*((*)y

In this section we provide the helicity amplitudes for pp — W% (¢*)y for the topologies
shown in Fig. 1, 2. We group the terms by the helicity of the final state photon and whether
or not the diagram is resonant. Resonant diagrams follow a simple replacement procedure
when swapping + <+ — photon helicity, while off-resonant diagrams do not, due to the fact
that the neutrino doesn’t radiate. We take all fermions to be massless, using the ‘MCFM’
convention [34-38] for spinor helicity variables, and work with all momenta taken to be
outgoing.

We first consider W~ production from quark (p2) antiquark (p;) including the W~ de-




cay to an electron (p3) and anti-neutrino (p4) plus a positive helicity photon (ps5). We will
comment on how to convert to W™ and negative helicity photons shortly. For brevity we will
refer to the momenta by this numbering scheme, dropping the ‘p’ in the following.

First the SM-type diagrams, i.) and iii.). These contains the SM, plus all SMEFT input
parameter effects and three-particle vertices with SM-like structure:

ASMflikea_u 2+7 3_7 4+7 5+)7‘€S = 2\[ @ui] (Q - ]B(Qd - Qu) 325) (3'1)

s34 (15) (25)
_ _ . (13)2 P12 (Qa — Qu)[24]
ASM—like(l 72+7 3 74+> 5+)non.res = —1 2\@ <15> 5 <35>

(3.2)

where
Sij
8ij — m%/v + iDywmw

ﬁij =

The sum of the two contributions can be massaged into the form found in MCFM [35, 36,
39, 40]. Note that while SMEFT effects will enter into the coupling that accompany this
amplitude, they will not introduce any new kinematics (and the same holds for all other
amplitudes shown in this section).

SMEFT VVV couplings include two structures beyond what’s found in the SM. We’ll
refer to these as ‘Cy’ type, and ‘Cywp’ type, naming them after the leading SMEFT oper-
ators which contribute. Sewing these VV'V vertices into the § channel piece of diagram set

i.) we have

Acsorn (17,27,37,47,57) 04 _zf@@<13)[25][45] (3.3)
512 S34
“ACW(l_’2+73_’4+’5+)T€S =—1 \/513121334%- (34)

Up to overall normalization, these match the anomalous triple gauge amplitudes in Ref. [41].
At dimension eight, a third type of anomalous V' V'V interaction can enter, stemming from
operators in the class H*X D? and encapsulated in the x4 (¢) metric of Ref. [28]. However,
for W+W ~~ the /1‘14] terms have the identical amplitude (kinematic) structure as the Cryp
type term, so we don’t need a new amplitude for them.

The final resonant diagram (type ii.)) comes from the dimension eight contact terms.
Some contact terms, specifically those coming from Q?XH?D operators, lead to pp —

W= (£~ v)y amplitudes that are the same as A minus the s-channel propagator piece,

CHWB
so we will not repeat their form here. There are two new structures arising at dimension



eight. Connecting these into contributions to pp — W~ (£~ v)~, we have:

ontact(17,2F,37, 47 5%5—zfjj[j?(<31>[541<sz5—515>+[52]< 1)((314] - (324)))
(3.5)
Alontact(17,21,37,47,5%),0s =i @@<<31>[54](525_515)+[52]< 21)((314] + (324])+
534 \f

2<13>[42]<21>[51]). (3.6)

Here, (314] etc. are a shorthand, (314] = (31)[14].
For resonant diagrams, the negative helicity terms can be found by making the following
replacements in the above:

142,34, <[,Q. Q4

Moving on to the non-resonant terms, we have the set of terms in diagram iv.). The form
of these amplitudes depends on the nature of the four fermion vertex, specifically whether or
not there are any derivatives present. For dimension six contact terms and dimension eight
terms of the form Q*L?H?, the amplitude for a positive helicity photon is:

4 (13 24
V3 (15) (3)

where we have included the fermion electric charges in the amplitude rather than in the

./41/,4(1_, 2+7 3_7 4+a 5+)non.res = -

~Qug) 67

((Qi—Qu) iy
couplings.
At dimension eight, there are two operators with four fermions and two derivatives in-

volving the final states we are interested in (and can interfere with the SM), entries QL2 D?
in Table 1. Their contributions to Fig. 2 diagram iv.) contain extra powers of momenta:

[24] [43]
(35) (25)

((Q —Qu) <[24]> (s13 + s15 + S24)—
<[25]>(813 + S24 + S45)>-

Operators of the type Q?L?D? also contain five-particle vertices — diagram v.) — where

8 (13)2
(15)
(13)?
(15)

AD2'¢)4,5(1_7 2+a 37, 4+a 5+)non.res =1 ((Qd - Qu) 512 — Qd (312 + 315))

‘AD2¢4¢(1_7 2+a 37, 4+a 5+)non.res =1

Sl Sl

Qa

the photon comes directly from the covariant derivative rather than being radiated off one of
the external lines. Grouping the fermion charge with the amplitude, these are:
. 8 (13)[42]
G —
V2 (15)

{
- _ .4 (13)]42
AD2¢4,t,5pt(1 a2+> 3 74+> 5+)n(m.res = =1 \/§< <1>5[> ]

'AD2’4/1478,5P15(1_’ 2+> 37, 4+> 5+)mm.res =

Q. [52](21)

(Qu[53](31) + Qa[54](41)).

,10,



This class of diagrams also gets a contribution from Q*L?X operators, with amplitude:
A¢4X,5pt(177 2+7 377 4+7 5+)non.res =—1 \/5 <31> [52] [54]

The last class of diagrams (vi.)) contain an interaction similar to the contact terms in
Eq. (3.5), except now the contact portion of the amplitude is on the lepton side, with the
W= propagator stitched to the initial quark current.

2 1
512 v/2(15)
(31)[54)((132] — (142]) (515 + s25) — (354](152]((132] — (142 )

. (1_72+73_74+75+)n0n.r65 =

contact

(4152)(31)[54] (535 — s145)+

bz 1
512 v/2(15)
([531) — [341)) (515 + s25)) + (354)(152] (531) — [541)))

AL (17,27 37 AT 55 0 res =

contact

((13)[42)([521) (515 — s35)+

Operators of type L2X H?D also lead to diagrams of this type and generate amplitudes with
the same structure as Ay x 5,¢, though with an additional propagator:

Apramax(17,2F,37, 47 5% on res = —iﬂ%[@][m} (31)

To derive the amplitudes for a negative helicity photon, the amplitudes involving a five
particle vertex follow the same simple replacement rule as the resonant terms. The other
non-resonant terms do not follow the rule (though they do follow a more complicated rule
involving the complex conjugate of process calculated using right handed fermions so they
must be listed explicitly. They are presented in Appendix B. Similarly, the amplitudes for
W production can be obtained from the above — both resonant and non-resonant — by a
combination of complex conjugation and swapping indices:

Ap+(17,2%,37,4%,5%) = (A (17,2%,47,3%,5%))° (3-8)

4 Coupling factors in SMEFT

With the helicity amplitudes known, the next step is to establish the coupling factors for
each and, importantly, what order in the SMEFT expansion the couplings arise at, as this
determines whether we keep ‘self-square’ pieces at O(1/A%).

The coupling factors are summarized in the table below. We've listed the amplitude
from the previous section, the product of couplings that accompany the amplitude, and the
lowest order in the SMEFT expansion where the operator appears. All factors of 4 have been
incorporated into the amplitudes already. Note that Acyy,s and Ay x appear several times, as
these structures are generated by multiple operators. For Acy, two different V'V'V metrics
(using the geoSMEFT language) and, up to a propagator factor, contact terms from operators

— 11 —



amplitude coupling factors lowest SMEFT order
AgM—tike gwq gwee 0(1)

Actws 9wq 9We YHW B O(1/A?)
Acaws gwWq 9We KHW B O(1/A%)
ACHWB Iwe9pQ2H2 X 0(1//\4)
Acyy 9Wq gwe G O(1/A2)
Admsact Iwe 9pQ2x2 O(1/A%)
Ay 922 € O(1/A?)
A2yt (s.) 9D2Q212,s €, 9D2Q>L2 1 € O(1/A%)
Ap2yt spt 9D2Q212,5 €, 9D2Q212,4 € O(1/A%)
Aw‘lX 9Q212x 0(1/1\4)
Ayax IWqIDL2H2X O(1/A%)
A 1oX2 nonres gWagLix? O(1/AT)

Table 2: Amplitudes, their corresponding coupling factors, and the order in the SMEFT
expansion where the coupling factors first enter. The double line separates the resonant
(above) and non-resonant (below) categories. The difference between A p2ya 5, and Apzya (54
is whether or not the photon comes from the same vertex as the four fermions. The coupling
for the five-particle vertex contains a factor of e, but we have separated it so that Apzya 5,
and Apzya (54 have the same coupling dependence.

in the class QX H?D all contribute. Explicitly, the coupling-dressed term proportional to

AcHWB 1s:

_ _ S
gwe Acyys (17,27,37,47,57), (gwq (9gwB — KHWB) — ﬁz QDQ2H2X>- (4.1)

In later sections, we’ll refer to this combination as ‘having Cywp type kinematics’. An
analogous expression can be written for A,.x.

Each of the coupling factors in Table 2 can be expanded in terms of Wilson coefficients.
To be more transparent, we’ll list the expansions for the individual coupling components
rather than the product. Before proceeding, we need to pick an EW input scheme. As we
have W¥ propagators all over the place, and following the advice of Ref. [42], we will use the
my scheme. The translation between observables and SM inputs and SMEFT coefficients
that this leads to has been given explicitly in Ref. [43]. In the following, we will also use the
variable x = v% /A%, where vy is the true minimum of the Higgs potential including SMEFT
effects. Its relation to G, extracted from muon decay, can be found in Ref. [43].

® gwg and gy are the W# couplings to left handed quarks and leptons respectively.
Their SMEFT expansion can be found in Ref. [29], along with the expression for Ty .”

"Had we chosen the Gy scheme, my becomes a derived quantity and has a SMEFT expansion. See
Ref. [29].
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e gpwp is a VVV vertex with anomalous kinematics. As suggested by the name, it is
affected by C§ﬂ)/V p» though the dependence is a bit subtle as C’}N),V p (and its higher
dimensional analogs) is also involved in determining the translation between the vector
boson gauge and mass eigenstates. To keep things straight, we can work with the
geoSMEFT metrics first, then expand. Done this way, we find:

gHWB = é(( gy’ (%@3@ + <933)) - 1>, (4.2)

When expanded to O(1/A%), this yields:

2
%é( () L@acll + e a0l —2v26689)+
S

JHWB = JJC}{%/VB % +

2 ) ~4Ciin)-

Here we have used the convention [28, 43] where couplings without bars are SM La-
grangian parameters, while couplings with bars are combinations of Lagrangian param-
eters and gauge boson metric entries that are most readily compared with experiment.
Hatted couplings/angles (c; = cos 0, 55 = sin é) are experimental inputs®.

e gy is the second type of anomalous VVV interaction. It can also be expressed in
geoSMEFT metric, all-orders form as:

g = g%(\/gny (6 (fi23) +2 <f124>;]—j>. (4.3)

Once expanded to O(1/A*), this becomes:

60 s;  ,3s5(6C% O —2v20%) 56 4 )

gws = T +x 02
36O (4CHw s + Clipca/s))

202

e The final anomalous VV'V coupling comes from the x metric, which is non-zero only at
dimension eight and above.

2 ) 9 é2 (C’(g) c; +C®) s5)
wiws = 5 (V3 e () + (st T )|, =t P DI
z 0

$Within the 7w input scheme, & = 1/(2/4GF),0 = sin™' (/1 — m2, /m2),é = 2 x 2Y/* 1w/ Gréy. We
use G'p = 1.1663787 x 107° GeV ™2, 7z = 91.1976 GeV, and 7w = 80.387 GeV [44].
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e For the resonant contact terms, the operators in Table 1 translate into coupling factors

as:
(8),1 . ~(8),3 (8),11 (8),9
Ipotpay = —2° (CQQBH2D iCorpmap)s + (Cosiwpep +1Cosiypap)

DQ2H2X NPT

8),2 8),1 . (8)2
a (C( Q)WBD - (Q)WBD) gt C; Q)WQD 59
Gppa 2 = 72 —2 9 Q (4.4)
V20! '

8),2 8 1

Ipgex2 =% \/51}4

e Continuing to the couplings for interactions leading to non-resonant pieces:

2005 (OB — 1O ) (9 o)

Q212 2722 272 2 202w S 2021 €

gQ2L2:$ A2L +ZL’ QL7H 62 QL7H s ngLQX:—Qx LQW€®4 L*Q"B 6
, 20505 , 20505
Q*L Q2L
9D2Q2L2,s:—$ o4 ) 9D2Q2L2,t:—9€ A

The gpr2x2 and gpr2pg2x couplings are identical to Eq. (4.4), with quark fields replaced
by leptons.’

Note the ffW couplings and contact terms from ¢?X2D,¢?>XH?D, *X and *H?
(v = Q,L or combinations of them) are complex, with imaginary pieces all entering at
O(1/A%). In these cases, we show the sign for W~ (¢~ v) production; complex conjugating
gives the expressions for W (¢Tv) production.

5 Resonant diagrams: Polarizaton study

Before launching into the full 2 — 3 calculation, let us take a step back to the 2 — 2
process ¢ — W*~ and explore how the various polarization subamplitudes within the SM
and SMEFT vary with energy. We focus on the resonant pieces as part of the goal of this
study is to understand how robustly high-energy diboson processes can be used to constrain
the anomalous Cy type VVV coupling at the LHC. From this perspective, non-resonant
pieces are a nuisance that we can hopefully mitigate with selection cuts (See Sec. 6). As
a side benefit, this polarization study will help us build intuition about how various higher
dimensional SMEFT operators enter, which we can port to other processes.

Restricted to resonant terms, there are only four type of SMEFT effects we need to
consider: i.) those with SM kinematics, ii.) contributions where the VV'V vertex has Cyw p
kinematics (see Eq. (4.1)), iii.) contributions where the VV'V has Cy kinematics (C‘(,IG,) and its
higher dimensional iterations), and iv.) contact terms from Q2X?D class operators. Using the

9Explicitly, mapping onto Ref. [30], these are sz)BlHQD, C£%)§H2D’ CéiV;;zD, Cé?"/aHzD for gpr2p2x and
C(S) 1 0(8)12 C(S) 2 for
L2WBD’> “L2WBD’ ~L2W2D 9pr2x2-
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methods of Ref. [45], it is straightforward to construct the 2 — 2 amplitudes for the different
possible W*+ polarization combinations. We are most interested in the energy dependence
of the various terms, and in particular how they behave at large §. This dependence is shown
below in Table 3 for the four different contribution types:

evew | SM-like | Crwp VVV | Cyw VVV | Q*X?D terms
T 2 o7 E Eal
B A? A2 AT
+— 1 0 0 AT
+0 \;g 7)1;/2§ ’UX/2§ UiS‘I/Q

Table 3: Energy dependence of the amplitudes for different ¢q¢ — W~ polarization possi-
bilities. Amplitudes with polarizations flipped + <> — are identical. We have removed all
coupling factors, set myy ~ v and dropped all dependence on the scattering angle. The energy
dependence shown is just the leading behavior in the limit of large §, meaning each column
may contain pieces suppressed by additional factors of v? /A2 or v?/5. The amplitudes in the
first column are the purely SM pieces, with all SMEFT corrections coming with powers of
1/A2.

There are several takeaways from Table 3. First, the C'gyw p type contribution has weaker
energy dependence than the other two SMEFT columns, so we will ignore it. Next, we see
the well-known fact that the Cyy structure does not contribute to the dominant +— SM
polarization [23]. As such, if we want to find an energy enhanced (meaning growing with
§) amplitude squared using C‘(,g), we need to look to the squared terms, \AJC“;;P, |AJ58/ 2. Of
these, ]AJCC:;]Q has the strongest energy growth, ~ §2/A*. If we forget the contact terms, all
of which arise at dimension eight, this contribution should dominate the high energy regions
of G¢' — W*~. Or, flipping the logic, if we ignore dimension eight operators, the high energy
regions of g¢' — W~ are the place to look for/constrain C"(,?,) effects. Similar conclusions
can be drawn for WHW~ and W*Z, see Ref. [26], and this behavior is evident in diboson
SMEFT studies at dimension six [14-22].

However, once we admit dimension eight operators, and in particular the Q*X?2D contact
type terms, other terms in the SMEFT contribution can have significant energy enhancement
and cannot be ignored. In particular, the Q?X?2D terms contribute to the polarization com-

bination, +—, where the SM is largest, thus the interference AJSFJ\_/IA*’Jr_

contact Das the same

energy scaling, ~ §2/A* as the 01(/‘6/) squared piece. Thus, interpreting high energy regions
of ¢ — Wy solely in terms of CI(/I?) could be misleading. The fact that dimension eight
pieces interfering with the SM can have the same energy growth as the largest (energy-wise)
dimension six squared terms in other diboson processes has recently been pointed in Ref. [26].

Finally, while the energy parametrics are the same in |Aat 2 and A& AL

, are the
same, they involve different polarizations. It would be interesting to pursue the degree to
which these could be separated, either by their kinematic distributions [46-49] or via the use

of ‘polarization taggers’ [50, 51].
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Our study also clues us in to shortcuts for identifying which polarization combinations a
particular operator will contribute to, using just the field content of the operator. The first
shortcut is one we have already mentioned: transverse gauge bosons live primarily in field
strengths, while longitudinal gauge bosons (which vanish in the limit v — 0) reside primarily
in D, H type terms. By primarily, we mean in the V5 > myy limit, where the price to convert
from transverse to longitudinal (i.e. the amount of longitudinal W& in a field strength) is
~ mw /V3.

To go further and understand +/— polarization, let us revert the operators to a more
group theoretical, rather than phenomenological, form. By this we mean we are only inter-
ested in the representations of the fields involved in the operators and not how indices are
contracted. When looking at representations, field strengths are most conveniently expressed
in L and R combinations Wy gp = W, + iWW, as these objects have simple Lorentz group
representations, W, = (1,0),Wgr = (0,1) of SU(2)r, ® SU(2)g. The Lorentz group repre-
sentations tell us the particle’s helicity, + for Wx and — for W (in our convention). In

. . 6 . 8
this group representation form, C’I(,V) operators have the form Wg or WI%, (vg)hlle C’éy) 2p all

involve Wy Wpx (or B, Wg, etc.)!?. From this group structure, we expect Cy/ will contribute
strongest when both of the external gauge bosons have the same helicity/polarization while
Q?X?%D will contribute primarily to opposite helicities/polarizations — exactly the pattern
seen in Table 3.

Analyzing C’gj‘),[, g~ H 2WpBr, + h.c. from this angle, we see it also involves particles of
the same helicity and contributes predominantly to ++ and ——. It’s weaker energy scaling
compared to C‘(/g) comes from vev counting. By dimensional analysis, dimension six operators
will contribute to a 2 — 2 amplitude ~ v?/A% vv/5/A? or §/A2, and since we need to set both
Higgses in C’}?I),V p to vevs to make a vertex with no Higgses, this exhausts the mass/energy
powers in the numerator forcing us into the v?/A? category. Operators without Higgses, such
as C’é?/) or C’S? 2 can contribute to vertices relevant for 4q¢ — W~ without having to set
any vevs, and therefore will have stronger energy growth.

6 Results for pp - WT({Tv)y

In this section we present results for the full proton-level calculation of pp — W~ (£~ v)y,
W (¢tv)y. We dress each amplitude with the respective couplings, then square and sum
over both photon helicities, making sure to retain pieces only out to O(1/A%) = O(z?). By
this we mean we retain only the interference terms for the amplitudes in Table 2 that first
appear at O(1/A%), but we retain both the interference and squared terms for amplitudes
which begin at O(1/A?). Interference between two different O(1/A?) amplitudes is included
in what we call the squared term.

The net amplitude squared is combined with phase space, initial state factors, and con-
volved with parton distribution functions to get the total integrand. To manipulate the spinor

10WWhile Ref. [30, 52] have bases in phenomenological form, lists of the group theoretical form used here can
be found in Ref. [53, 54] based off of Hlibert series counting techniques.
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helicity products and convert them into Lorentz invariants, we use the packages SpinorHe-
licity4D [55] and FeynCalc [56, 57]. The integrands — corresponding to various terms in the
amplitude squared — are then integrated using the method described in Ref. [27]. All numer-
ical integration is handled by GSL [58] library and routines. We use the NNPDF3.0 parton
distributions [59, 60], interfaced to the code with LHAPDF [61]. In the numerical results
shown below, we use a factorization scale of up = my, as = 0.118 and a collider center of
mass energy of 13 TeV. In addition to determining the total cross section (as a function of the
final state cuts — which are necessary even in the SM to avoid a singularity associated with
collinear photons), we also generate kinematic distributions using the reweighting technique
from Ref. [27]. This is straight forward for pp — W*(¢(*v)y as only one fermion helicity
combination contributes.

We make the following simplifications to shorten our results and focus on the physics
we are most interested in. First, writing I'yy as a SMEFT expansion and expanding, we
can generate new terms in the amplitude squared proportional to 6I'y. In keeping with a
consistent expansion, these effects can only accompany amplitudes whose coupling factors
are O(z) or lower. Reference [27] explored these terms in the context of V. H production and

found them to be smalll!

, so we will ignore them in the numerical study here. We emphasize
that the full SMEFT dependence is captured in Sec. 3 and 4 in the amplitudes and coupling
factors, should the reader wish to retain the 61" effects. Second, we see that several SMEFT
couplings are complex. In a cross section calculation, the real part of a product of couplings
multiplies the real part of the corresponding product of (coupling-stripped) amplitudes, while
the imaginary part of a coupling product multiplies the imaginary part of the amplitude
product. The imaginary part of the amplitude product is proportional either to I'y or €, p0-
Both of these are suppressed compared to other terms; I'yy is suppressed as Iy < my, V'§
(for the range of collision energies we are interested in), while €,,,, is zero if integrated
over the entire phase space'?. Finally, we take the CKM matrix to be diagonal, as Yukawa
couplings are absent in the strict U(3)® limit. Keeping U(3)° for all higher dimensional terms
while allowing the SM (d = 4) Yukawa interactions reinstates the CKM matrix for all (SM
and SMEFT) gq’ vertices. This would lead to effects of order O(V,2) times the ratio of iis to
ud parton luminosities, roughly 3% [27].

We impose the following parton level cuts, implemented to avoid regions of phase space
where the photon and lepton become collinear and to focus on the § > v regime where
energy-enhanced SMEFT effects will be more pronounced.

pre > 10GeV, [ny < 2.5
Py > 200GeV, |0y < 2.5 (6.1)
AR&’Y > 0.4

Since the width involves the same ffV couplings that enter into the vertex, there is no way to adjust the
Wilson coefficients to affect 6I" alone (meaning leaving gw4 or gwe unchanged).

12 As we will impose cuts and look differentially, the €,.,, pieces are not exactly zero, however we find them
to be very small compared to the real part of the amplitude products
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The cross section for each of the contributions is shown below in Table 4. The SM term is
the first row, followed by the O(1/A?) resonant pieces and their self-squares. Below those are
five O(1/A*) resonant pieces. All of the terms below the double line are the non-resonant
contributions, grouped as i.) O(1/A?) piece, ii.) the self squared O(1/A*) piece, then iii.) all
non-resonant O(1/A%) interference pieces — both SMx dimension eight and the interference
between two different dimension six.

We follow the same presentation scheme as in Ref. [27], meaning all the numbers in the
second row and below should be multiplied by the first row entry to get the true value. Said
another way, the numbers show the cross section relative to the SM structure. As an example,
the @d — £~ cross section proportional to [gwg|? [gwe|? g3 g is:

lgwal® lgwel® 9Frwp % (0.74pb) x (17.65) (6.2)

The cross sections are for an individual lepton, so to convert these numbers into pp — (Tv
we need to sum the different partonic contributions and multiply by the number of lepton
flavors considered. Note that we have factored out powers of ¥ in several of the rows to make
the numbers more similar. These factors are often, but not always, set by the A order of
the couplings involved. More accurately, they are determined to offset powers of 1/¢ in the
couplings in Sec. 4.

Inspecting Table 4, we see that several SMEFT amplitudes are enhanced relative to
the SM. Among the resonant pieces, the enhanced terms include those with couplings g%vg,
gaDQQX2 and gll))Q2X2> all of which is to be expected given the arguments in Sec. 5 and the
fact that the cuts applied put us in a regime where § > v. However, several of non-resonant
terms are also large compared to the SM, notably the four fermion terms at dimension six
( coupling factor |gg2;2[*) and the four fermion, two derivative terms at dimension eight
(couplings gp202125,9p2g2r2,) (vecall that the difference between the two occurrences of
terms with coupling gp2g2r2 s, gp2g212,+ is whether or not the photon comes from the same
vertex as the four fermions — topologies of type iv.) vs. v.) in Fig. 2. If we assume all
Wilson coefficients have roughly the same size, the fact that multiple SMEFT contributions
are enhanced relative to the SM makes the task of disentangling any observed differences
between high energy pp — W+ (¢*v)y data and SM much trickier.

To try to isolate different contributions we can impose cuts that focus on/off of the
resonant W¥ region. As the neutrino is not observed, we cannot cut on an invariant mass so
the best we can do is to place cuts on the transverse mass mzy,. To focus on the resonant
region, we impose a cut |myz g — mw| < 20GeV in addition to the cuts in Eq. (6.2). The
results, presented in the same format as Table 4, are shown below in Table 5.

Comparing Table 5 to Table 4, we see that the SM is reduced by about 50%. The values
for the resonant SMEFT subprocess (relative to the new SM value) are similar to the values
without the mp cut. In some cases, the relative value is larger. This can be explained
by the fact that the SM-like term contains both resonant and non-resonant pieces, and is
therefore more affected by the my cut, than the purely resonant SMEFT terms. The non-
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partons

(Legr dependence)/N, | ud cs du de
lgwql? lgwe?€® | 0.74 | 0.08 | 1.51 | 0.07
lowal? lgwel? eguwr | -0.72 | -0.86 | -1.16 | -1.15
lgwal? lgwel2egws o2 | 016 | 018 | 022 | 021
lgwal? lowel? 9%wp | 17.65 | 16.82 | 17.95 | 16.2
lgwal? lgwel> 935 0% | 33.59 | 23.46 | 42.05 | 20.8
lgwql? lgwel? gws grwp 92 | -8.52 | -8.25 | -8.7 | -8.0
lgwql? lgwel? e kpwp ©* | 0.49 | 0.61 | 0.79 | 0.82
lgwel® eRe(giy, 9pgem2x) 9% | 2.86 | 3.30 | 7.51 | 5.21
lgwel* e Re(iy, 9hgex2) 0* | 40.10 | 26.48 | 43.5 | 19.4
lgwel? e Re(giy, 9hgey2) 80 | 36.79 | 2654 | 39.1 | 20.0
e* Re(giy, 9ive 9g2r2) 9% | 0.93 | 0.68 | 3.55 | 1.92
e?|gger2[* 0% | 13.02 | 6.76 | 58.7 | 155
eRe(gwq gwe) 9g2r2 gawp 9 | -0.29 | -0.23 | -0.32 | -0.22
eRe(gwqgwe) 9ger2 gws 0* | 128 | 0.79 | 1.62 | 0.63
e’ Re(gwq gwe gp2ger2,s)0* | 1276 | 813 | 1262 | 41.1
e’ Re(gwq gwe gp2g2r2,)o* | -8.66 | -5.45 | -85.8 | -27.4
e’ Re(gwq gwe ggzr2x) 0 | -0.03 | -0.02 | 0.009 | -0.005
eRe(gwq gwe gp2geres) 0 | 558 | 2.76 | 7.58 | 1.92
eRe(gwqgwe gp2ger2,) 0 | -1.44 | -0.58 | -1.94 | -0.31
elgwql? Re(gwe g5 2x2) 9% | 0.05 | 0.03 | 0.06 | 0.02
elgwql? Re(gwe g ox) 0% | -0.32 | -0.18 | -0.44 | -0.22
elgwql? Re(gwe gpramx) 0 | -0.002 | -0.002 | -0.001 | -0.001

and scale choices.
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Table 4: In the first column we show the coupling dependence for the different SMEFT
contributions to pp — WT~y — ¢FTry. All numbers are in pb and are shown relative to the
‘SM-like’ term, which sits in the first row (assuming a single lepton flavor in the final state).
Several entries in the first column include powers v, which have been included to offset powers
of 1/ in the couplings. See the text for details on cuts, parton distribution function choice,




partons

(Log dependence)/N, ud cs du de

lgwal? lgwel>e® | 0.35 0.04 | 0.65 0.03

lgwal? lowel?egaws | -0.19 | -0.28 | -0.44 | -0.48
lgwql? lgwel? e gws 92 | -1.25 2117 | -1.35 -1.16

lgwql? lgwel? 95wg | 17.45 16.48 | 19.3 16.8

<

gwal? lgwe2g25 0 | 3317 | 2331 | 450 | 222

lgwal? lgwel® gws grws 8 | -9.06 | -8.72 | -10.05 | -8.91
lgwql? lgwe|* € kpw B 9% 0.26 0.32 | 0.44 0.48
lgwel? e Re(giy, 9p@em2x) 02 1.01 1.46 | 3.41 2.67
lgwel? e Re(glyy 9hgey2) | 50.33 | 3349 | 60.0 26.7
lgwel® e Re(giy, ngQQXQ) ot | 23.34 17.22 | 24.4 13.0

e* Re(giy, Give 9g212) 0 0.07 0.07 | 0.25 0.26

e*|ggar2|* ot 0.34 0.26 | 1.17 0.79

eRe(gwq gwe) 90212 grwp 0> | -0.22 | -0.20 | -0.26 | -0.21
eRe(gwq gwe) 9g212 gws 0* 0.17 0.15 0.22 0.15
e’ Re(gwq gwe gp2o2r2,s) 0 0.10 0.18 | 3.11 2.66

e’ Re(gwq gwe gpeger2,) 04 | -0.11 -0.15 | -2.28 -1.8

o
e’ Re(gwq gwe 9g2r2x) 0* 0.01 0.01 | 0.03 0.01

~

0.41 0.29 0.61 0.29

>

eRe(gwq 9we 9p20212 5)

)

~

eRe(qu awre gDQQQLQ,t -0.08 —0.04 -0.10 -0.03

)
e lgwql> Re(gwe g5 2x2) 9 | -0.01 | -0.004 | -0.01 | -0.005
elgwql? Re(gwe g 22) 04 | -0.025 | -0.018 | -0.04 | -0.02

elgwql? Re(gwe gpramex) 8 | 3 x 1074 | 107 | 0.001 | 4 x 1074

)
)
)
)

Table 5: Identical setup as Table 4 except we have imposed an additional cut on the trans-
verse mass of the /*v system, |m7 e, —my| < 20GeV. All numbers in the second and lower
rows are shown relative to the ‘SM-like’ term, which sits in the first row (given in pb assuming
a single lepton flavor in the final state).
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resonant SMEFT terms are much smaller with the mp cut, with values roughly two orders
of magnitude smaller than in Table 4.

To further illustrate the impact of the myp cut, as well as to understand how various
SMEFT contributions affect pp — W ({Tv) 4+~ in more detail, we turn to differential distri-
butions. To form differential distributions, we produce a sample of pp — W™ (¢~ v)+~ events,
where each event (set of initial/final four vectors) is accompanied by an array of 22 weights,
one for each of the rows in Table 4. These weights are generated using the method described
in Ref. [27] (itself inspired by the reweight [62] approach in MadGraph[63]), and boils down
to evaluating generated phase spaces point for each of the 22 matrix elements squared. Com-
bining the numerical weight for each matrix element squared with the corresponding coupling
factors and summing over all 22 contributions, we get a weight for each event as a function of
the Wilson coefficients (as well as = = ©/A, and inputs such as é, 54, etc.). Feeding that total
weight into weighted histograms for any (parton level) kinematic variable, we can analyze
how the distribution shape changes as we vary the Wilson coefficients.

In Fig. 3 below we show three distributions generated with the basic cuts: pr ., the
transverse mass mr,, and y, — y,. All distributions are area normalized in order to focus
on shape differences. To study the SMEFT effects, we turn on one operator at a time. In the
plot below, we show distributions for i.) C$), the dimension six, triple-W operator, ii.) ng’S

the dimension six, four fermion operator that includes a product of charged currents, and iii.)

0(8)72
Q2WBD
these three operators as they span the set of energy enhanced SMEFT contributions.

the dimension eight contact term with two field strengths (see Table 1). We chose

Inspecting the pr 4, plot —a proxy for V/§ — we see all three operators lead to enhancements

in the kinematic tails. For C’gg?){?/ pp» the fact that the SMEFT is enhanced relative to the SM

is sign dependent and actually requires a negative coefficient (with our operator convention),

while the effect for dimension six terms is independent of the sign of C"(,g),C’g3 %’3. Taking

all coefficients equal to +1 with a scale A = 3TeV, the effect from C"(,g) is largest, though
that is partially due to our choice of normalization. We have taken the operator to be
C"(,g) €1y KW/{ v wLe WpK # which generates coupling factor ~ 3! C‘(,S). Normalizing the operator
to absorb the factorial from repeated fields, the effect of Céf? is much closer to the other
operators shown (which are unaffected by the normalization change as they don’t involve
repeated fields). The distribution for CI(/g) = 1/6 is shown in the dashed magenta line in
the pr g, plot; the fact that the normalization change is so dramatic is because the energy
enhanced terms from CI(/IG,) come from its self square and not from interference with the SM.

In the middle panel we show mr 4, the transverse mass of the lepton-neutrino system. We

see that the Cég), ngf/?/BD

the C'SSQ)’L?’Q curve is enhanced at large mTﬁ,l?’. This is expected, as the CI(/ib;)v CSBQ){?/BD SMEFT

(area normalized) curves are indistinguishable from the SM, while

BT here are some small differences between the C‘(,g) and the SM mr distributions. Cég) does not interfere
with the SM and therefore does not feel it’s off-resonance contributions (topology iii.) in Fig. 1, while Cg%; X2
does. These differences are not visible with the plot zoomed out as shown. As such, we have only shown
results for C‘(,g) =1
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Figure 3: Area normalized distributions of p7 4, (top panel) and mg g, (middle panel) and
AY =y, — y¢ (lower panel) in the SM (red solid line) and including three different Wilson
coefficients. For the SMEFT plots, we set A = 3TeV with the displayed coefficient set to +1
(unless otherwise specified), and all other Wilson coefficients set to zero. X on the vertical

axis refers to the kinematic quantity on the horizontal axis.
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(Eg 72 is not. Clearly, imposing the cut |mr g — mw| <
20 GeV will retain the former two SMEFT effects relative to the SM, while removing a larger
amount of Cg;)f’g.

format see Appendix C.

contributions are resonant, while C 62) 3
To see the individual shapes of the contributions, rather than the stacked

The last distribution in Fig. 3 is the rapidity difference between the photon and the lepton
AY = y,—y,. We chose this distribution as it manifests aspects of the ‘radiation zero’ in (tree-
level) W=~ production'?, seen as the dip in the SM curve around AY = —1. The radiation
zero is a natural place to look for new physics as the SM background is low [64]. Honing in
on this region, all of the operators we turned on predict deviations from the SM shape. Note
that the deviations from the two resonant terms CI(/‘?) (either with coefficient 1 or 1/6) and

ng){f/ pp have different shapes, which we can again trace back to the fact that they enter the

O(1/A%) cross section differently. The shape difference between CI(/S) and C’gg)"?, pp means AY
(6)

could be use to disentangle any observed excess in pr,. The non-resonant operator CQG L’3
mimics C‘(,[G,), however as we have illustrated in Table 5 and the middle panel of Fig. 3, this
contamination can be suppressed by an mg g, cut (at least in the Vi regime).

7 Conclusions

In this paper we have calculated the SMEFT helicity amplitudes for gg — W= (¢*v) +~ pro-
duction up to O(1/A%). This task is expedited by working with the geoSMEFT construction,
where operators contributing to two and three-particle vertices have been worked out to all
orders in 1/A and grouped into ‘metrics’ dressing kinematic structures. Our calculation in-
cludes the decay of W* — ¢*u to facilitate comparison with experimental data and to study
the effects non-resonant (meaning where the /*v do not originate from a W*) SMEFT ef-
fects. We break down gq' — W~ into different polarization combinations to determine which
(resonant) SMEFT operators lead to cross sections with the strongest energy enhancement
(in the limit v/5 > v). The largest energy enhancement comes in the + + / — — polariza-
tion channel from the self-square of amplitudes including the dimension-six triboson operator
C‘(,g) €rJ KW,{ v we WpK # as well as in the + — / — + channel from the interference between
the SM and amplitudes including dimension eight Q2DX? type operators. As both sources
have the same energy dependence, O(52/A%), interpreting experimental data in terms of only
one type of operator may be misleading. We then numerically explored the v/ > v regime at
the full 2 — 3 level. We find that several of the non-resonant SMEFT contributions are also
energetically enhanced, however this ‘pollution’ from non-resonant effects can be tempered
by cuts on the transverse mass of the * — v system. To supplement the fiducial cross section
calculations and better illustrate the effects of different interesting SMEFT operators, we
provide several differential distributions.

14 A more dramatic plot would be cos 8*, where 6* is the angle between the incoming quark and the outgoing
photon. However, this is not viable at the LHC as we do not know which direction the initial quark came
from.
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A Definitions and naming conventions for non-contact operators

For operators contained within geoSMEFT metrics, we use the naming conventions from
Ref. [28, 43]. We repeat them here for convenience. In the following, n is a positive integer
controlling the number of (HTH) factors present and 7/ are Pauli matrices. For operators
with fermions ¢ labels the type of fermion, while p, r label the fermion generation. We include
the later for completeness and to match previous literature, as our flavor assumption implies

the fermion interactions are universal among generations.

Bosonic operators with three field strengths:

O e (HVH) WL, Weedw ok (A1)
Oy e (BYH)" (Y H) W, wer K B (A.2)

Bosonic operators with two field strengths (gap metric):

ol6+2n) ( H)”+1 BB, (A.3)
i (1 H)”+l Wiwl, (A.4)
ity ()" (HiTTH) Wi B, (A.5)
Cl (HTH) (# 1) (H'H) W W0 (A.6)

Bosonic operators with a single field strength (k7 metric):

n) . n+1 5
Clibbi (HUH)" (D) (D, H) B (A7)
n n+1 .y
Clipinw 1017 (H 'H ) (DuH)' 7! (D, H) W) (A8)
Clivanz e (HUH)" (HITTH) (D) 7 (D, H) W, (A.9)

Bosonic operators without field strengths (h;; metric):

n n+2
ol (HTH) (D, H) (D"H) (A.10)
n+1
chip’ (Btm)" (HtrH) (D) T (D ) (A1)
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Fermion bilinears (le;fir metric):

n <— _

CL(6+2m) ( H) HUiDF H iy, b, (A.12)
n <~ _

CHO (B H) " HY DY Gy, (A.13)

sy
02 (8+2n) (HTH) (HTTIH) H'i DE Hepyyreh, (A.14)
n RN _
CREP LI () (i) HY DY Gyt (A.15)

pr

Lastly, 5G%6) contains corrections to the Fermi constant coming from four-fermion contact
operators and deviations in the ffW vertex for muons or electrons:

1 1
s = o (e et - jiery wery ) (a0
ee i pneep eppe

B Nonresonant Amplitudes for negative helicity photons

For resonant diagrams, the negative helicity amplitudes for ¢qg — W~ (¢~ v)+~ can be obtained
from the positive helicity results shown in Sec. 3 by replacing 1 <> 2,3 <> 4, () <> [], Qu < Q-
For the nonresonant diagrams, this replacement doesn’t work (as the neutrino line does not
emit a photon), so we present those amplitudes here.

ASM—like(1_7 2+a 3_7 4+7 5_)non.res = —1 2\/5 [[2542]]2 f’i (Qd _[56:23?)<14> (B'l)
4 [24]? 43 41
Ags (17,2537 4% 57 Yo rea = —i ﬂ[[52]]<Q“<[51]> — (Quq— Qu)<[53]>> (B.2)
AD2w4,s(1_7 2+a 3_> 4+a 5_)non.res =1 \Sf ]] (Qu <[§z1g]> (512 + 325) (Qd - QU)E;?SlQ)
AD21/;4,t(1—7 2+, 37, 4+, 5_)mm_res =3 \4f [[ ]] (Qu <[L51:13]> (513 + s35 + 824)+
(Qa — Qu) <[ ]> (813 + 815 + 824)) (B.3)
AD2¢4,S,5pt(177 2+a 377 4+7 57)n0n.res =—1 55 <1?5>2[Z]12] Qd <51>[12] (B4)
AD2w4,t,5pt(177 2+7 377 4+7 57)n0n.res =—1 \;Lg <1?5>2[Z]12] (Qu<53> [32] + (Qd - Qu)<51>[12]

+Qa(54)[42])  (B.5)
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Apaxsp(17,27,37,4% 57 ) nonres = —i V2[25)(15)(35) (B.6)

c - - - P 1
contact(1 72+7 3 74+7 5 )non.res =1 i \/5[52] <<152]<35>[24}(335 - 345)+ (B'7)
(35)(24] ((132] — (142]) (515 + s25) — (354](512]((132] — (142]))
. - - - _ b2 1 S45 — 8
Acontact(l 72+7 3 74+7 5 )non.res =1 512 \/5[52] <<13> [42](<512]( 45 35)+ (B'S)

(532) — (542])(s15 + s25)) + (354)(152] ((532] — (542)))

Aprarrax (17,2537, 47, 5 ) nonres = —i \/iiﬂ<15><35>[24] (B.9)
12

C Shape analysis of mr,

To further understand the impact of the |mgp, — my| cut, in Figure 4 we show the mp
distributions from several of the individual contributions listed in Table 4. The distributions
for the individual matrix element contributions are superimposed and area normalized (rather
than stacked on top of the SM as in Fig. 3) to emphasize their different shape. The curve for
the SM-like matrix element is peaked at mp ~ myy and falls steeply afterwards. The curves
associated with the resonant SMEFT contributions follow the same pattern, falling even more
steeply than the SM, while the non-resonant SMEFT terms have broad my distributions.
Truncating my close to my, we can see that only a small fraction of the non-resonant SMEFT
pieces are retained.
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