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ABSTRACT: In this paper we develop a semi-standard Young tableau (SSYT) approach to
construct a basis of non-factorizable superamplitudes in A/ = 1 massless supersymmetry. This
amplitude basis can be directly translated to a basis for higher dimensional supersymmetric
operators, yielding both the number of independent operators and their form. We deal with
distinguishable (massless) chiral/vector superfields at first, then generalize the result to the
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1 Introduction

In a previous work [1], we established a one-to-one correspondence between non-factorizable
superamplidtudes, higher dimensional N = 1 massless supersymmetry operators, and Young
tableaux. The key to that connection is the existence of a U(N) symmetry, where N is the
number of superfields in the operator/number of superstates involved in a superamplitude.
Imposing this symmetry, the spinor helicity variables \;, X\i — used to represent components
of on-shell superstates — are placed in the fundamental (for )\;) and antifundamental (for
5\2) U(N) representations. An additional ingredient when working with superamplitudes is
the Grassmann coordinate 7;, which is used to construct superstates as (fermionic) coherent
states. Invariance of the supercharges Qqn, Qs demands that 7; also transform as a funda-
mental of U(N). Superamplitudes — products of \;, Ai, m; — are thus tensor products of U (N)
fundamentals and antifundamentals, and have a natural home in terms of Young tableaux
(YT). Crucially, kinematic constraints (on s, A;) such as equations of motion and integration
by parts and supersymmetry constraints (on \;,7;) from the Ward identities are manifest
in the shape of the Young tableaux and make it easy to spot which combinations of U(N)
fundamentals and anti-fundamentals in the tensor product are viable. The net result is that,
given a set of (massless, distinguishable) chiral/vector superfields and superderivaties, we get
a unique Young tableau shape.

From that set of chiral/vector superfields and superderivatives, the next step is to form
a operator basis. Specifically, how many independent operators are there with the specified
field /derivative content, and what is their form — meaning where are the derivatives applied



and how are gauge and Lorentz indices contracted? If we are only concerned with the number
of operators, Hilbert series techniques [2, 3] suffice (see Ref. [4-7] for a review of Hilbert series
for non-supersymmetric effective field theories), however knowing both the number and the
form is often more useful. For non-supersymmetric theories, higher dimensional operators
can be represented by YT, and it has been shown [8-10] that labeling the Young tableau
boxes with particle numbers, 1 for the first particle in the operator, 2 for the second, etc.
and arranging the enumerated boxes according to the reduced semi-standard Young tableaux
(SSYT) filling selects a basis. To make use of the SSYT technique, one needs to know
how many boxes to fill for each field in the operator (= particle in the non-factorizable
amplitude) — how many 1s, 2s - - - Ns for an operator with N fields. This number depends on
the number of times Aj, Ag, etc. appear in the spinor helicity form of the operator. In Ref. [9],
only a small number of operators were considered, and the authors just expanded out each
operator of interest and counted the \;’s. Subsequently, Ref. [10] found a simple algorithm to
determine the number of times a particular index ¢ € 1.. N appears purely from the number
of derivatives present in the operator and the helicity of particle ¢ — making it unnecessary
to expand operators in spinor helicity form to determine the basis. With this simplifying
step, the authors were able to determine the complete dimension eight operator basis in the
Standard Model Effective Field Theory, and there have been several follow-ups to even higher
mass dimension and expanded field content [11-20]. The first goal of this paper is to use the
reduced SSYT filing to find a basis for superoperators, which boils down to find a similar
algorithm for the number of times index ¢ appears in YT representing superfield operators.
This task requires altering the algorithm that works for non-supersymmetric theories, as now
there is an additional ingredient, 7;, and there are two types of derivatives.

The second goal for this paper is to extend the operator <+ YT and SSYT techniques
to operators involving indistinguishable fields. Indistinguishable fields introduce Bose/Fermi
statistics, which need to be imposed by hand on the YT. This manipulation doesn’t care
about supersymmetry, and techniques for imposing Bose/Fermi statistics on YT have been
discussed for non-supersymmetric theories in Ref. [10]. We propose an alternative, and we
believe simpler (especially for operators with fewer fields), technique for imposing identical
particle symmetry/antisymmetry.

The rest of this paper is constructed as follows: In Sec 2, we review the translation of
superfield operators into YT form using a replacement rule that takes superfield operators to
augmented spinor helicity variables. Next, in Sec. 3, we introduce a SSY'T basis for YT. In
order to apply the SSYT basis to YT from supersymmetric operators, we develop a counting
scheme — meaning how to translate the number and type of superfields involved in an operator
to labels used to fill in the boxes of the YT. This scheme depends on the number of fields and
derivatives alone. In Sec. 4, we show how to systematically reduce the basis of operators when
two or more fields are indistinguishable. The technique we use is independent of whether the
operators are supersymmetric and is easily automated. We present our conclusions and a
comparison of the YT and Hilbert series approaches to supersymmetric operator counting in
Sec. 5.



2 Methods and Results

The focus of our previous work, which we continue here, is to determine the number and
basis for higher dimensional supersymmetric operators in a given class. By class, we mean
a list of how many different chiral (and anti-chiral) and vector superfields are present, along
with the number of derivatives, e.g. D2ﬁ2<1>3(<I>T)2. We will begin with the case when the
fields are distinguishable (e.g. the ®3 in the example just stated correspond to three distinct
fields), returning later to indistinguishable fields. These higher dimensional operators can
either reside in the superpotential (if purely chiral or anti-chiral) or in the Kéahler potential.
However as explained in Ref. [2], terms with superderivatives can always be manipulated to
sit in the Kéahler term, so we will concentrate on setups of the form

/d49 O(®,d", W, W; D, D). (2.1)

We assume that all fields are massless. Once the number of chiral and vector multiplets
plus derivatives is fixed, the goal is to find the number of independent operators (free from
equation of motion (EOM) and integration by parts (IBP) redundacies) and their explicit
form.

In Ref. [1], we showed that each operator class can be represented by a Young tableau,
at least when all fields are distinguishable. The shape of the Young diagram is set by the
number of superderivatives and the number of chiral superfields present in the operator. In
this section, we recap the derivation of the YT operator form.

2.1 From operator class to Young tableau

In order to prove the YT form for supersymmetric operators, we followed the same logic
as in non-supersymmetric theories. We first introduced a replacement rule which takes La-
grangian level (off-shell) superfields to on-shell massless spinor helicity expressions. Spinor
helicity expressions are on shell therefore they are functions of (super)states rather than of
(super)fields. In supersymmetric theories, the replacements involve spinor helicity variables
i, X as well as n;, a Grassmann variable introduced for each field in the operator to keep
track of different components (helicity states) that are linked by supersymmetry, for example
a superstate ®; = ¢; +n; ¢; (a symbolic form for |s = 1) + n|s = 0), where s is the helicity).
Superstates can be formed in several different ways, depending on which supercharge one
chooses to raise/lower helicity and whether one builds superstates starting from the highest
helicity component (as in ® above) or the lowest. Importantly, the choice of convention does
affect how the supercharges act on the superstates and leads to some apparent asymmetry
between how chiral vs. anti-chiral fields/states appear. In this work, we use the so-called 7
convention /representation throughout. See Ref. [1] for discussion of how to convert from one
convention to another.

The complete 1 representation superfield replacement rules are listed below in Table 1
for chiral, anti-chiral, and vector superfields and their superderivatives. One may worry that
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Table 1: Replacement rule in the n basis, expanded to include vector superfields. Additional
powers of the superderivatives can be added to the above simply by applying D = \;0/9n;
or D = 5\1771 Spinor indices have been suppressed, but can be reintroduced; note that when
repeated A; or by appear we are taking the symmetric spinor combination, e.g. M\, —

(Aii)(ap)-

the rules in Table 1 replace a field by its lowest component only, e.g. the chiral superfield
® is mapped only to 7;, the coefficient of the scalar (lowest helicity) part of the superstate.
However, this is completely compatible with the superspace formalism. To be more precise,
the 0 integration picks either the lowest component ¢ or the higher component v and will never
project out both two simultaneously. The replacement rule then states that the appearance of
® in the expansion gives ¢, while D® gives ¢, etc. The latter identification is made between
the lowest components of D® y;jq and Q®Pstqte, the fermion field ¢ in this case. In addition,
massless EOM are automatically obeyed by replaced forms.

Using the replacement rule, we derive the spinor helicity form for the operator class in
question. This involves picking a particular partitioning of any derivatives, but any legal
choice will suffice. We emphasize that using the replacement rule and picking an example
operator from the class are crutches used for intermediate steps. Once we understand the
YT form and how it depends on properties of the operator class, we can go directly from the
operator class to the YT without replacing fields with spinor-helicity form.

Upon replacement, the representative operator is now a product of spinor helicity vari-

ables

O is a Lorentz singlet, so all of the (suppressed in the above) spinor indices are contracted.

"When gauge interactions are present, one expects the super gauge-covariant derivatives V., V4 to appear



Rather than keeping track of these contractions, we endow the spinor helicity variables
with U(N) representations, where N is the number of fields present in the operator; A\ and
n are taken to be U(N) fundamentals, while X are taken to be antifundamentals®. This is
useful, as the operator is now a tensor product of U(N) fundamentals and antifundamentals
and can be visualized using YT. Furthermore, the symmetries in a YT (whether boxes are
symmetric or antisymmetric under interchange) are tied to the Lorentz (spinor) properties of
the A, \. For example, in the spinor product eag)\f‘)\f the spinor indices are antisymmetric.
The U(N) indices go along for the ride and are also antisymmetric, meaning the YT boxes
for A;,\; sit on top of each other as their own column of height two. Applying this logic to the
set of \;, A in O, the Lorentz singlets will be the tensor products of paired A;, A; (columns
of height two), and all pairs of A’A/ (antisymmetric combinations of antifundamentals). To
avoid having to keep track of both fundamental and antifundamental indices, we convert
each pair of antifundamentals into an antisymmetric product of N — 2 fundamentals using
the U(N) epsilon symbol, NN — €1,mrijomr NAN . Diagram-wise, these appear as columns of
height N — 2 in the YT.

We are now left with a collection of height two columns and a collection of height N — 2
columns. The next step is to determine which tensor products between these two collections
are legal. Additionally, we need to include the 7;, which we have said transform as U(N)
fundamentals, and we need to account for the integration over d*6 to convert the Kéhler term
into a (higher dimensional) Lagrangian term.

As shown in Ref. [8, 9], keeping only the YT with height N — 2 columns to the left of
the height two columns is equivalent to removing all IBP redundancies. We’ll refer to this
as the “harmonic” YT form. Ref [8, 9] dealt with spinor helicity representations of non-
supersymmertic theories. The fact that this result holds in our case — for the \;, A" pieces of
the operator before integrating over d*f and ignoring the n; — is because the Poincare algebra
is a sub-algebra of supersymmetry and the usual IBP redundancies only care about the total
derivative generated by the same momentum operator P. In other words, a “complete” YT
diagram (which respect supersymmetry algebra and is IBP(9)-free) contains a “harmonic”
YT as its sub-diagram.

The role of d*@ and the 7; dependence can be determined from the supersymmetric
Ward identities. First, one can express d*f = D’D? up to a total derivative (there is an
implicit sum over ¢ running 1 to N on each derivative). As D; = Aiaim’ the D? will only
affect the 7 pieces of O, ignoring the harmonic structure of the A, A tensor product explained
above. The D? replaces two 7; with A\;. These two )\; and any free 1; must combine into a
totally antisymmetric U(N) product in order to satisfy the supersymmetric Ward identity

rather than D,, Ds. For the purposes of forming on-shell amplitudes/YT, what we care about is the Lorentz
and supersymmerty properties of the derivatives, which are the same for V and D (and V,D). We will
therefore use D, D for all derivative instances to keep things simpler.

This assignment keeps the supercharges Q@ = 3. \;d/(9m:),Q = 3, Ain; U(N) invariant, and can be
thought of as the extension of the little group for N massless fields from U(1)Y — U(N). To keep track of
fundamental vs. antidundamentals, we will use lower ¢ indices for the former and upper indices for the latter.



QAy = 0 [1]. This antisymmetric product is a column of height IV, > 2, a number that
depends on the number of chiral superfields and derivatives. To form a legal YT, this new
column must sit between the group of N — 2 height columns and the height two columns.

n m n m
2 2 2 2
A A A A
r r B r B r B

Figure 1: The complete supersymmetric YT shape for IV, > 2 which satisfies QAy = 0.

Astute readers may immediately notice that the above replacement automatically van-
ishes once there is no or only one 7, i.e. ()‘ia%i)Q(l) = )\ia%i(nj) = 0. In this case one needs
to go to the 7 basis either by performing a Grassmannian Fourier transformation or using
the dual replacement rules under the 77 basis, which we discussed in our previous work [1].
In this paper we will only consider the operators containing more than one 7 after applying
replacement rules.

The final ingredient, D’ generates the delta function 62(Q') to enforce the QT Ay = 0
Ward identity. It is left off the diagram just as the total energy momentum delta function
§%(P) is omitted from non-supersymmetric diagrams. The presence of the delta function is
automatic for amplitudes in the 7 basis, and Ref. [1] showed explicitly how D? leads to this
factor in several examples.

To summarize — we started with a selected operator from a class we were interested in,
and the end result is a YT. For our representative operator, we know exactly what particle
number indices accompany each spinor helicity variable, so we can even fill in the tableau with
numbers. To illustrate the steps outlined above consider the operator class D252<I>2(<I>T)3.
Choosing the representative operator and replacing the fields with their spinor helicity form,

Do ®1 D ®o®LDs®i D DL — Mo A§ Aaa A a5 = (12315 MN°Y) (4 75) (A1aAS ), (2.2)

where we used €12345 to convert all U(N) indices to fundamentals in the last step. Each
grouping in the line above corresponds to a YT column, and the groups have been rearranged
so gluing their respective columns together gives a legal, harmonic YT.

Rather than listing the spinor contractions as in Eq. (2.2), we can use angle and square
bracket shorthand, (45)[12][[45]], where we have introduced the notation [[ij]] to indicate the
product of n’s. Had we picked a different representative operator, say

(DaDa®1)(D* D*®5) @5 0] 0] ~ (12)[12][[12] (2.3)
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Figure 2: Young tableaux for two different operators in the class D2E2<I>2(<I>T)3. The leftmost
column contains the products of A; (expressed in terms of U(N) fundamentals using the
U(N) € symbol), the right column contains the product of );, and the middle, shaded column
contains an additional product of \; that originates from the D? € d*#. The indices in the
boxes correspond to the ¢ index in e.g. A\; and change as we shuffle where the derivatives are
placed.

we would have found a YT with the same shape but different filling. The two different YT
corresponding to Eq. (2.2) and (2.3) are shown below in Fig. 2.

Now that we understand the process, we can skip the intermediate steps and go directly
from the operator class to the YT shape. Consider an operator with N chiral/antichiral
superfields, Ng of which are chiral, along with m D and n D. Consulting the replacement
rule, the numbers of A and \ are clearly m and n, implying m/2 and n/2 columns, while
N,y = No —m +n. With that information, and knowing the allowed YT shape, we can find
the unique YT for the operator class. Including vector superfields, the counting changes to
(m+ Nw)/2 height 2 columns, (n+ Nyj-)/2 height N — 2 columns, and one column of height
N, = No + Nw — m + n, where Ny, Ny, are the number of W and W superfields.

Applied to the example above, D252<I>2(<IJT)3 has n = m = 2,Niy = Ny = O,N =
5, Ne = 3. Using the counting above, this translates to a leftmost column of height 3, a
middle column of height N, = 2 and a right hand column of height 2, as shown below in
Fig. 3.

. 1
. . ) .
S
. : P .
® . . ~Y P .
OO

b2

===
[}
]

e —

I
[@\
I
2
Ne+Ny+n—-m=1

2 2

1 D2D*®2 13

Figure 3: Young tableau shape for D2ﬁ2¢2(<p1)3 class operators. This shape is determined
entirely by counting the number of chiral and anti-chiral superfields and the total number of
derivatives and does not require us to pick a representative operator within the class to use
as a guide. Notice that, at this stage we have no input into what index to put in each box.

As a second example, consider D?D®®IW2W. Here m = 2,n = 1, Ny = 2, N7 =



1,N =5, Ng = 1, leading to a YT shape shown in Fig. 4 shown below — right hand column
of height 3, followed by a column of height IV,, = 2 representing the 7 pieces, and a block of
two height 2 columns.
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Figure 4: Young tableau shape for D?D®®TW2W class operators. As in Fig. 3, the shape
is determined purely by the number of fields of each type (chiral/vector) and the number of
derivatives.

We emphasize that the outcome of this class <+ YT translation is just the tableau shape.
When we considered representative operators, these gave us the table shape and information
on how the boxes should be filled with particle number indices. What we’d like is a way to go
from the YT shape directly to a basis of operators for the class without having to think about
all possible ways to partition derivatives and contract indices. Not only is the latter method
tedious, it almost always over counts the number of independent operators as it is easy to
miss redundancies due to group identities, integration by parts, and the equations of motion.
A more systematic method is presented below utilizing Semi-Standard Young tableaux.

3 Semi-Standard Young Tableaux

Having reviewed how we go from an operator class to a unique YT shape, we move on to using
the YT to find a basis for the operators in the corresponding class. By basis, we mean the set
of independent operators that can be manipulated — via integration by parts, the equations
of motion, or group (Fierz/Schouten) identities — into any operator with the same field and
derivative content.

The YT are indispensable for this task, as it is well known that an independent basis of
a given shape and fillings of a Young tableau is formed with the following two rules:

e The numbers along a certain row weakly increase;
e The numbers down a certain column strongly increase.

The result is called semi-standard Young tableaux (SSYT) basis [21, 22] and forms a natural
basis of the U(N) representations, i.e. operators in this paper. The number of SSYTs equals
the dimension of each representation.? In this paper we will only care about how to form the
basis and we are not interested in finding a preferred basis, i.e. a basis under which certain
calculations become easier.

3There are multiple bases for an YT, as one can always choose a linear combination among all elements.



The question then arises of how to find the fillings/numbers with a given superopera-
tor/superamplitude without having to expand it in spinor helicity form. Explicitly, what we
need are the number of entries, which we’ll refer to as #1¢ in the following, for each of the N
particles in the operator/amplitude (again, for now we are sticking to operators formed from
distinguishable, massless fields).

In non-supersymmetric (massless) theories, Ref [10] showed that #i could be determined
from the number of derivatives and the helicities of the particles involved:

. Np al
#i=—+ > hj—2h (3.1)
4,k >0
where Np is the number of derivatives present, h; are the helicities (0,41/2,£1) of the N
fields in the operator, and the sum extends only over the positive helicites. Once we know the
complete set of numbers and fillings in the YT using these arguments, we immediately have
the basis — both its size and the explicit form of the operators — just by knowing properties of
the operator class. What we would like is the analog of Eq. (3.1) for supersymmetric theories.
The algorithm above (Eq. (3.1)) is, at its heart, just a mechanism for counting the number
of \; (or 5\1) without having to pick a representative operator from the class to expand as a
guide. Note that counting the number of \; (or 5\’) is really a proxy for counting the number
of U(N) fundamentals (antifundamentals) — so when we look at superamplitudes we will want
to count \;, \' and n;. Additionally (in both the supersymmetric and non-supersymmetric
cases) we will use the €;...y to relate any pair of N to N — 2 fundamentals, so e.g for N =5,
A2 is equivalent, in terms of U(N) indices, to A3AgAs.
Focusing first on operators composed purely of chiral/anti-chiral superfields — operators
classes (Ng chiral fields and Ng+ antichiral) —

D™D "® 1By - Dy, O D B

Ng+1 " Np+2 ’ NCD"’N(I,T’ (32)

let’s examine how each piece, D, D, ®;, @}L- contribute U(N) indices. Reviewing the replace-
ment rule, we see each ® contributes one fundamental, while each ® contributes nothing.
Each D, removes one 7; but replaces it with a A;, so no net change in the number of funda-
mentals. This leaves us with D = sz‘ as the only other factor contributing to index counting.
Each pair of D (and for operators of the form above, n must be even) generates Y , which,
upon contracting with €;...y generates a fundamental index for all of N = Ng + Ngt except
for i and j. However, the D pair also introduces 7;n;, exactly compensating for the indices
omitted when contracting the pair of A with e. Thus, we get an index for each chiral field

plus an index for all (chiral and antichiral) fields for each pair of D. In summary,

) 14+ 2 for ®;
#Z = { % 2 fOr @T . (33)

Now let’s allow vector superfields. The most general operator class we can consider is

D™ D" (@) (@1) Yot (W) M (W) N (3-4)

,10,



where n + Ny and m + Ny must be even by Lorentz invariance. Consulting Table 1, each
W; is straightforward to count as it introduces two fundamental indices. The W' are more
subtle, as they only introduce a single M., and the procedure above assumed all A’ came in
pairs and were each accompanied by an 7;. Had each W; contained an n;, the combination of
D" and (W) w would look like (from spinor-helicity perspective), n + Ny derivatives, which
- copies of all N = Ng + Ngt + Nw + Ny indices. However,
minus the accompanying 7;, we need to remove one index for each W,;. Altogether,

we know from above gives —

1+ n+NW for ®;
n—&-N—

W for gt
= 2 . 3.5
# 24 N for W; (8:5)

M for W

Note that the combination (n+ Ny7)/2 is the only thing that appears in #i, while we need in
addition the total number of fields IV, the number m of D and the number of chiral superfields
Ng + Ny to determine the YT shape.

3.1 Examples

Now that we have worked out how the YT shape and index counting (#1,2,--- N) depend
on properties of the operator class, let us look a few examples.

For our first example, let us see operator class D2ﬁ2<1>2((I>T)3 ~ D2f2@1q)2¢>gq)jl@g
through to the end. We need the latter expression to know which particle number indices be-
long to chiral fields and which belong to antichiral fields. The YT shape for this operator class
has been shown in Fig. 3, derived from N =5,m =n =2, Np = 2 and Ngi = N — Ng = 3.
Following Eq. (3.3), these seven boxes should be filled with indices i, where #i = 2 for each
chiral superfield and #i = 1 for each anti-chiral, so {1,1,2,2,3,4,5}. There are six possible
SSYT fillings, shown below in Fig. 5. The number of independent operators — 6 — matches

1f1ia: [4 1§2 1 1_{3 1 1f2 1 -15'3. 1f1i2
2}2is5: [2fais: [2f2i5: |2 3is: [2f2i4: |2]8ia:
2752 ta Tt
D’D’®, 0,00 0!

Figure 5: The SSYT basis for the operator class ~ D2E2<I>1<I>2<I>£<I>l<1>g. The spinor helic-
ity form for each independent operator can be read directly from the diagram, and can be
converted to superfield format as explained in the text and in Ref. [1].

what we get using the Hilbert series method [2, 3]. However, using the SSYT approach, we
also get the form of each basis operator. The spinor helicity form can be read off directly, e.g.

— 11 —



(45)[45][[12]] for the leftmost operator in Fig. 5, where we use [[- - -]] to represent the ’super-
symmetrization’ piece of the diagram. This can be converted to superoperator form by drop-
ping the [[---]] and mapping |i] — Dj, [i) — D, e.g. (45)[45][[12]] — ®,®®,DD®| DD®!.
See Ref. [1] for more details on the spinor helicity to superoperator tranlastion, and in par-
ticular how to adapt the procedure when vector superfields are present.

Note that, while the particular form of the filled YT — the #i — depends on our choice
to label the fields as <I>1<I)2<I>J§<I>ZCI>E, beginning with the chiral superfields sequentially starting
with index #1, followed by the anti-chiral fields, the counting is independent of this choice.
We would get six operators applying the SSYT to any other labeling choice, such as ~
D2ﬁ2<1>4<135<1)1<13§d)£ or ~ D2ﬁ2©1®5@;¢£@24 A different ordering does result in a different
basis, and it may be the case that one choice is better than another for certain calculations,
however for our purposes we only care about finding “a” basis, so we are free to pre-order the
labels as in (3.2)

As a second example, we add an additional chiral superfield — D232<I>1 <I>2<I>3<I>ZCI>;<I>};, SO
N=6,m=n=2,Np =3=N,and Ngit = N—Ng = 3. The YT now has 9 boxes, arranged
into a column of height N —2 = 4 from D, a column of height N, = 3 and a column of
height 2 from the D. The #i counting is identical to the first example, there are just more
chiral fields — #i = {1,1,2,2,3,3,4,5,6}. Filling the YT, we find 17 SSYT, corresponding to
a basis of 17 operators. The fillings are shown below in Fig. 6

Again one can directly read the operator SH form directly from the YT. For example,
the first diagram reads: (56)[56][[123]] = (56)[56] >
the operator <I>1<I>2<I>3<I>ZDE<I>£DE<I>;E.

For our final example, we return to D2bd¢1fb£W§‘W4aW5d. The YT shape for this
class can be found in Fig. 4, using N = 5,m = 2,n = 1, Np = Ngt = Ny = 1 and
Ny = 2. These 9 boxes are to be filled with #i following Eq. (3.5) with (n 4+ Nyr)/2 = 1:
#i=1{1,1,2,3,3,3,4,4,4}. The three possible SSYT fillings are shown below in Fig. 7, and
correspond to the operators (25)[24][34][[13]] = ¢1Dﬁﬁa®£W§‘DﬂW4aW5d, (45)[34)%[[14]] =
OB DyW D" DP W, Wss, and (35)[34]2[[13]] = @185 D" DPWE DWW

Notice that in previous studies [8, 9] one reads off the amplitude/operator from a given

perm=1.2,3([[27]]71), which corresponds to

diagram by taking certain symmetrization/antisymmetrization among columns and rows,
resulting in an amplitude which is annihilated by the conformal generator K = a% a%' However
one can always use total (super-)momentum conservation to add arbitrary polynomials of
momentum P = A\ and leave the on-shell expression unchanged. Therefore the easiest choice
is simply to take the fillings and form a monomial following the rules [15]. This is the ’trick’

we apply when reading the diagrams.

4Said another way, by construction, the counting of SSYT stays the same under an arbitrary permutation
of indices/labels.
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Figure 6: The SSY'T basis, 17 total operators, for the operator class ~ D2E2<I>1<I>2<I’3<I>jl(1)g.
As in the previous example, while the operator form (either as YT or superfields) will depend
on how we label the fields, meaning which we take as field #1, which as #2, etc., the number
of independent operators does not depend on this choice.

1f1i2:3; 1f1isia: 1f1isia!
3j3i4ia: 2faia:ia: 2}8i4:i4:
4 3 4

Figure 7: The SSYT basis, 3 total operators, for the operator class D25d<1>1<1>£W3aW4aW5a.

4 Indistinguishable Superfields

Having discussed the construction of a basis for higher dimensional supersymmetric operators
formed from (massless), distinguishable superfields, we now turn to the case where identical
superfields appear in the operator.

Formally, one can pick the basis for operators with identical superfields by taking the
quotient of operator basis with distinguishable superfields with respect to the following equiv-
alence relation(s):

O((I)LQV“? (I)];,Q,W) ~ Ol(q)1,2,"‘ ym—1lm=nm+1, ‘@11- 2, ,m—l,m:n,m—i—l,m)? (41)

)

assuming @m(CI),Tn) is identified as another superfield <I>n(<I>L), where O denotes the opera-
tor with indistinguishable superfields. One operator @ may be identified with several O's?,

°In terms of spinor helicity variables, this relation leads to a linear relation with two or more terms. A
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which indicates that not all of them are linearly independent, and we need to remove such
redundancies when constructing the basis.

It is straightforward to see that the existence of indistinguishable superfields will lead to
fewer independent superamplitudes, since the new symmetry group G now is not the entire
U(N) symmetry among A, 5\,77, but becomes the quotient space because of the S, groups
among identical fields, with S,,, being the usual symmetric group and n; is the multiplicity
of each field,

N
G=UN)/]] S (4.2)

To construct a basis with symmetry G, the recipe we follow is: construct the basis with all
distinguishable superfields and then breaks U(N) — G, which is the actual symmetry when
identical superfields are involved. The S,, symmetry is removed by calculating the quotient
space with the equivalence relations defined in Eq. (4.1).

One may wonder if we could directly construct the SSYTs for G instead of the single
U(N). After all, Young diagrams can describe S,, symmetry and we should expect that
G as a quotient shares a similar property. However, this topic is beyond the scope of the
current paper.% For now, we will apply a somewhat brute force matrix approach to deal with
indistinguishable superfields. Despite being cumbersome, this approach is general and should

work for any case.”

4.1 General Approach

For a given operator class containing N fields, we first form the SSYT basis following the
steps in Sec. 2, 3 assuming all particles are distinguishable. Each particle (or state, when the
operators are viewed as a non-factorizable amplitudes) comes with its own label, which we
use to fill the YT following the SSYT prescription. We then combine the basis elements into
a vector A = (A1, Ag, -, An)T, where A; = A;(\, A, 1) corresponds to the ith YT /amplitude
and n is the basis size for the operator class in question. From this setup, we want to make
two states — which formerly carried labels ¢ and b € 1--- N — identical.

Starting with an amplitude of distinguishable states, let’s act on it with Sy, interchanging
the labels of the states (a <+ b). The resulting amplitude will not necessarily be an element of
the SSYT basis ff, but as the basis is complete we can always express it as a linear combination
of the A;. Mathematically, we phrase this as A S—2> H /Y, such that the i*" row of H gives the

linear combination of basis operators that A; transforms into under .Ss.
However, if two states are identical, how we label them in an amplitude should not matter,
meaning swapping what we call state a and state b must get us the same amplitude up to

concrete example is given later in Eq.(4.5) to (4.7).
SGarnir relations [23] may be helpful and give some insight for readers who are interested in this direction.
"For cases involving more global /gauge symmetries, one may refer to [10] where a rigorous tensor represen-
tation approach is built for non-supersymmetric EFTs and it’s not difficult to generalize to the supersymmetric
we study here.
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a sign — +1 for bosonic states and —1 for fermionic. This statement is true regardless of
the number of states present or the nature of the interactions (meaning whether they are
momentum-dependent). In terms of the ff, we can express this as A — MA under label
exchange, where M = diag(m;;) and mj; = £1.

Demanding

HA=MA, or (H-M)A=0 (4.3)
sets the amplitudes with labels a <> b exchanged equal to £ the original amplitudes — the
result when a and b represent indistinguishable states. The matrix equation we get from
imposing (4.3) tells us what relations among the A; result from a <> b indistinguishability.
First off, H — M may have rows that are all 0. These tell us nothing as Eq. (4.3) is satisfied
for all ff, so let us remove them by row reducing. This gets us a p x n matrix we call T', where
p = rank(H — M) and n is the number of amplitudes in A. As T # 0, Eq. (4.3) can only be
satisfied if there are relations among the A;. These relations are collected in the null-space
vectors P of T.8

The procedure we just described works for two identical particles. If three or more idential
particles, the symmetry group is Sp>2, we then break S, <9 into generators (labeled by k;)
and repeat the procedure leading up to Eq.(4.3) for each generator: (Hy, — Mkl)ff = 0. For
each k;, we can row reduce and find the non-zero matrix 7}, then stack them together into
a single (3_; rank(Ty,)) x n matrix. The null-space of this combined 7" tells us the relations
among operators under the full S;,~o.

The M matrix merits further comment because it depends on the type of superfield. For
identical anti-chiral superfields M = +1,,x, (meaning each amplitude goes to itself under
interchange of identical particles), while for chiral superfields M = —1,x,. Why are the
signs in M opposite for chiral superfield and anti-chiral superfield if they are both ’scalar’
fields? We should remember that we are working under n-representation and chiral superfields
under this parametrization are associated with an inherent Grassmann variable. The upshot
here is that assigning n’s to chiral superfields makes them Grassmann and we cannot naively
exchange the two fields without adding a minus sign. In the case of anti-chiral superfields,
this is not a problem because they are still 'numbers’.? To better illustrate the procedure, let
us work through some examples

4.2 Examples

We will study the case D2ﬁ2q>1q)2q>gq>1q>g for example. Recall the six independent terms we
got in the previous section:

$ Do ®LDDPI DD®L, &, D@ DO DDDL, &, DDPL®I DD,

7 _ I o (4.4)
®, DD, DOLDI DD®!,  ©,9,DDOLDDOIDL, &) DD, DL DD ®].

8 A nullspace vector defines a linear combination of operators which vanishes under IBP and EOM equiva-
lence relations.

91f we work under 7j-representation, exchanging two anti-chiral superfields will introduce a minus sign while
chiral superfields are treated as 'numbers’.
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which we can write in terms of A, \, n and label Ay - -- Ag:

Ay =[45](45)[[12]],  Ap = [25](45)[[14]], A3 = [35](35)[[12]],

g =[25)35)13)), A5 = (3438 [12]),  Aq = [24](34)[[13]]. o)

Let us consider the case where ®; and ®5 are identical chiral superfields, which means
a So symmetry. To determine the matrix H, the first step is to act on A; with the Ss
permutation (generator) (12) (which swaps 1 <> 2), labelling the result B;:

By =[45](45)[[21]], By = [15](45)[[24]], Bz = [35](35)[[21]],

By =[5)(35)[28]], By = [34(30)[[21]], By = [14](34)[[23]] o

Using properties of spinor products such as antisymmetry and the Schouten identity, the B;
can be re-expressed as combinations of the A;:

By =—-Ay, By=A4;— A4
By =—A3, By= A4 — Aj (47)
Bs = —A;, Bg= Ag — As.

This action under (12) can be expressed in matrix form as A — B = HA where:

Sa
-1 00 00 O
110 00 O
0 0-100 O
H = (4.8)
0 0—-110 0
0 00 0-10
0 00 0-11
Next, since ¢1 and ®y are chiral superfields, A M fT, where M = —14x6. From these two

matrices, we can form F' = H — M and row reduce to get rid of the zero rows, leaving 7.

000 00 O
-1 2
R 12000 0
F= , T=[0 0-120 0]. (4.9)
0 0-120 0 0 00 0109
0 00 00 O
0 00 0-12
The nullspace vectors for 1" are given by:
p1=1(2,1,0,0,0,0)",py = (0,0,2,1,0,0)", p3 = (0,0,0,0,2,1)". (4.10)

From the three nullspace vectors p; 23 we get the relations

Ay~ 24y Ay~ 24, |, As ~ 2As. (4.11)
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Each '~ defines an equivalence relation between two operators (with respect to IBP and
EOM) after the identification of the two chiral superfields. We get three equivalence rela-
tions from (4.11), so the number of independent operators reduces from six to three. The
three independent basis vector therefore are easily read off as a1 Ay + asAs, agAs + s Ay,
asAs + agAg, or any non-trivial linear combination of the three, provided o35 # —2a2.46
respectively.

As a second example, let us work out the procedure when more than two superfields are
identical. The example we will study is still the D232<I>1<I>2<I>§<I>Z<I>T, but now we take the
indistinguishable superfields to be <I>T, <I>L @g. In this case the symmetry group is S3 and we
take the generators to be (34) and (45). Let us first act (34) on Eq. (4.5), yielding

[351(35)[[12]],  [25(35)[[13]},  [45](45)[[12]],
[25](45)[[14]),  [43](43)[[12]],  [23](43)[[14]].

Following the previous procedure, we can find the matrices N34y, M(34) and the nullspace

(4.12)

T(34)2
00100 0
00010 0
10000 0 10-1 000
Han=| 41000 o Mey=+lexe, Tan=| 01 0 —10 0 | (413)
00 0 0 1 -2
00001 0
0000 1-1

We then repeat the procedure for the generator (45):

100000
1-1000
000010 1-200 0 0
Hu)= | o 0 000 1| Mus=+Lexs, Tus={ 00 1 0-1 0 (4.14)
0 10 -1
001000
000100

We then combine T{34) and T{45) together to form 7"

10 -1 0 0 O
01 0 -1 0 O
T 00 0 0 1 =2 ’ (4.15)
1-2 0 0 0 O
00 1 0-10
00 0 1 0 -1

which has nullspace P = (2,1,2,1,2,1)7. Same as before one gets the following relations
among the six operators: A; ~ Az ~ A5 ~ 245 ~ 244 ~ 2A¢, which reduces the number of
independent operators from 6 to 1. Therefore we know that any operator in the original basis
can be selected as the basis when antichiral superfields are identified.

,17,



5 Conclusion and Discussion

In this paper we have developed a SSYT approach to construct a basis of N' = 1 super-
symmetric effective operators at arbitrary mass dimensions with any number of distinguish-
able/indistinguishable superfields and superderivatives. We have proven the relation between
classes of operators and SSYT using an internal U(N) symmetry (N = number of fields in the
operator) that acts on helicity amplitude variables and supersymmetric state Grasmmanian
variables. Given the contents of the target operator space, we first treat all superfields as
distinguishable and order them in the standard form (see eq. 3.4). The number of undotted
and dotted indices, combined with the number of chiral superfields determine the shape of
YT, while the number of chiral superfields and derivatives determine the supersymmetric part
of the complete YT under n-representation (check Fig. 1 and the text around). The power
of each building blocks, set by the number of D and W determines the set of numbers to fill
the boxes, i.e. eq. (3.3) and (3.5). Finding all SSYTs is straightforward and these diagrams
correspond to a basis free of EOM and IBP redundancies. If there are identical superfields, we
can pick the subspace spanned by the set of identical superfields and remove the redundant
operators using the matrix approach introduced in Section. 4. We summarize the steps in
the flowchart Fig. 8.

Given a set of superfield operators
O ~ DD (@)Ne(FYNot(W)Nu(W)Nw

pf(l)rcli?.l::?zttsjr::ﬁ:e ( | Find the fillings/numbers

A ~ (ABmNy) @ JON+NwY @ (n®2 @ 182) F = #D @ #DT @ #W  #W
#®, = 1+ (n + Nyp)/2
\L #O! = (n+ N)/2
#W, =2 + (n + Ny)/2
Determine the shape of Young Tableaux #W. = (n + Nyp)/2 -1
L
l Indistinguishable Solve for the
superfields N —| nullspace vectors
SSYT — |HA =MA| — |Basis ¥

Find matrices M, H

Figure 8: Flowchart summarizing the results of our paper.

One can already notice that the SSYT approach becomes complicated when indistinguish-
able superfields are involved, and this clearly comes from the fact that one cannot construct
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a diagram without labelling fields, but the labelling explicitly breaks the permutation sym-
metry.

If one only wants to find the dimension of the basis for a given supersymmetric operator
class, a recent approach via the Hilbert series [2, 3] is more effective. Whether or not the
superfields are indistinguishable doesn’t complicate the calculation, in contrast to the SSYT
approach we studied here, where we need to find matrices H, M for indistinguishable cases.
However Hilbert series method has its own problem: the calculations become unwieldy if the
number of derivatives or fields of the operator class becomes large. The two approaches give
exactly the same counting of independent operators at any given mass dimensions, and serve
as complementary methods and cross-checks.

Some future avenues of research along this direction are: extending this approach to
the massive case, where the little group for each state in an amplitude is SU(2) rather
than U(1); studying the possible recursive pattern between amplitudes; relating component
amplitudes and supersymmetrization, or analyzing the possible role of superconformal or dual
superconformal [24] symmetry.
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