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ABSTRACT: Following a recent publication, in this paper we count the number of independent
operators at arbitrary mass dimension in N = 1 supersymmetric gauge theories and derive
their field and derivative content. This work uses Hilbert series machinery and extends a
technique from our previous work on handling integration by parts redundancies to vector
superfields. The method proposed here can be applied to both abelian and non-abelian gauge
theories and for any set of (chiral/antichiral) matter fields. We work through detailed steps
for the abelian case with single flavor chiral superfield at mass dimension eight, and provide
other examples in the appendices.
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1 Introduction

Higher dimensional operators are a key ingredient in effective field theories (EFT), they encode
our lack of knowledge on the theory above a scale Ag '. These non-renomalizable operators
are built out of combinations of field and derivatives. However not all operators you can
build for a given dimension are linearly independent under the equivalence relations defined
by integration by parts (IBP) and equations of motion (EOM). It is therefore important to
be able to give a complete list of independent operators once those redundancies are taken
into account.

It has been known for a some time that in the non-supersymmetric case, one can remove
both IBP and EOM redundancies using a Hilbert series approach [1-18], originating from the
deep connection between conformal group/algebra and operator basis [2, 4, 5|. Several other
methods, such as the on-shell Young Tableau construction [19-26], also serve as complemen-
tary ways to give the number and explicit form of these operators. However, neither of these
methods can be directly generalized to the supersymmetric theory, due to the existence of 4
additional Grassmannian variables (for N’ = 1, 4D supersymmetry), which induces 4 extra
superderivatives. As a result, the usual way to remove IBP and EOM relations no longer
works in this scenario.

Nevertheless, an approach based on Hilbert series techniques was recently put forward
[27] to count the number of independent operators in supersymmetric theories. It showed
how the existence of two superderivatives implies IBP-like relations among operators that do

'Not to be confused with a chiral superfield A that appears in supersymmetric gauge transformations.



not appear in non-supersymmetric theories. The method allows one to find the operator basis
for arbitrary mass dimensions. In Ref. [27], the method was demonstrated for theories with
chiral and anti-chiral superfields only, hence the goal of this paper is to extend the formalism
to include vector superfields and gauge interactions.

Supersymmetric gauge theories with higher dimensional operators as EFTs have been
studied before [28-32], including supersymmetry breaking, equivalence between certain higher
dimensional operators with derivatives and second order supersymmetry (without derivatives)
with additional superfields, etc. However, a complete analysis of the full operator basis hasn’t
been studied yet. In this paper we calculate the number of different independent operators
by studying abelian supersymmetric gauge theories first, and then explore the non-abelian
case using the previously built Hilbert series method.

In non-supersymmetric theories, adding gauge/internal symmetry groups into the theory
is accommodated by adding additional Haar measures, characters, and related group param-
eters (complex, unit modulus numbers parametrizing elements of the maximal torus of the
group) into the corresponding Hilbert series. However, as we will see in this paper, in a
supersymmetric gauge theory we need to double the group parameters in order to make use
of the Hilbert series. This doubling originates from the fact that the gauge transformations in
supersymmetry are defined through superfields instead of real-number phases, and is needed
to ensure that the Hilbert series do not generate unwanted terms.

The paper is organized as follows: In Section 2 we will give a short introduction of the
approach of Ref. [27], explaining the meaning of each term in the master formula Eq. (2.1).
Then we apply it in an abelian supersymmetric gauge theory, defined in Section 2.2, where we
work out an example explicitly. In Section 2.4 we make a generalization to the non-abelian
case and we work through an example as well. Section 3 provides a short discussion and
possible future applications. We will follow the notations and conventions the same as our
previous paper [27]2.

2 Methods and Results

2.1 Methods

Hilbert series are a useful tool for determining the number of group invariants [33-47]. For-
mally, Hilbert series are a power series H = ) ¢,t" where ¢, is the number of invariants at

order t". Applied to field theory (both supers;mmetric and non-supersymmetric), the invari-
ants are operators that are singlets under all Lorentz and internal symmetries, and the order
of the invariant is set by the mass dimension of the operator. By construction, the Hilbert se-
ries accounts for group redundancies (e.g. operator relations via Fierz transformations) when
combined with Haar measure. However, when counting operators with derivatives, additional

2Through out the paper we adopt the most-negative metric tensor in Minkowski space, i.e. n*" = nu, =

diag(+1,—1,—1,—1). Totally antisymmetric tensor in two dimensions eap(A4,B = 1,2) are defined to be

€12 = €2! = 1; €91 = €'? = —1. In addition, a useful identity we will use is eapecp + €acepn + €apenc = 0.



ingredients are required to remove operator redundancies due to equations of motion (EOM)
and integration by parts (IBP). The IBP relations are where the main differences between
supersymmetric and non-supersymmetric theories lie, and were the topic of Ref. [27]. Ad-
justed to remove these redundancies related to derivatives, the master Hilbert series formula
for counting invariants in a supersymmetric theory of chiral and antichiral fields is:

H(P7 Q7 {q)a}) = /d/JLorentszgauged/JUR(l)P1(Pa Q?avﬂa Z)PE[Z (I)aXaX;]‘ (2'1)

Here, {®,} are a set of spurions representing the chiral/antichiral superfields in the theory, i.e.
{Py} = {P1, Do, - @I, (I%, --+}. The fields, along with their Lorentz and internal symmetry
characters Xq, X, respectively, are grouped into a function — the plethystic exponential (PE)
— that generates all possible products of {®,} and their derivatives. The other ingredients in
Eq. (2.1) are dug, the Haar measure of group G, and P~Y(P,Q, o, 3, 2) a factor that removes
IBP redundancies. The arguments of the IBP factor include spurions P, () representing the
superderivatives Dy, D4, and their group characters.

The output of Eq. (2.1) is a graded Hilbert series, meaning it returns not only the number
of invariant operators at each mass dimension, but also their field content — the number of
D, <I>ZT, D,,Dg4. While the field content of an invariant is known, no information on exact
placement of the derivatives within the operator or how all indices are contracted is provided
by the Hilbert series and must be worked out by other means.

Having shown the master formula, let us now give a few more details on each of its main
ingredients.

e Plethystic Fxponential and Haar Measure

The plethystic exponential generates all products of its arguments consistent with the
statistics (symmetric or antisymmetric) of each ingredient. For a single argument, it is defined
as

PE[@R] = exp{ > %(il)”“@%xgﬁ L (2.2)

where we choose +1 for symmetric products (bosonic fields) and —1 for antisymmetric prod-
ucts (fermionic fields). Each argument ®p (for our purposes, a spurion representing a field
in the theory) is accompanied by the character x corresponding to it’s representation (R)
under all groups (G) of the theory®. The characters encapsulate the transformation proper-
ties of each product of ® in the PE, e.g. a symmetric product of two SU(2) triplets would
be accompanied by the character for the SU(2) triplet representation. For multiple spurions
(fields), the net PE is the product of each individual spurion’s PE.

3)(53 is a shorthand for xg r(a™, 8", ) where a, 8, etc. are the group parameters for G.



To project out products of ®; that transform under certain representation, we can use
character orthonormality:

/dug XG,1 XG,J = 017, (2.3)

where dug is the Haar measure for the group G, provided G is compact. Specifically, the
products of ®; we are most interested in are the G invariants, as these form the Hilbert se-
ries. These can be obtained by multiplying the PE by the character for the trivial/singlet
representation, Xg triviat = 1 and integrating over dug.

e Conformal Characters: Removing EOM

Forgetting any internal symmetries for the moment, each field ®; sits in some repre-
sentation of the Lorentz group, and must carry the character for that representation with
it in the PEY. Moreover, as explained in Ref. [1], we want to lump all powers of deriva-
tives acting on the field/spurion (minus those removed by EOM) in with each field in the
PE. For example, if ®; is a Lorentz scalar, we want to extend the argument of the PE to
D x(0,0) + (PQ)I,P X(1.1 + (PQ)QE){H’,,}@ X(1,1) + -+ -; note that the character changes as
we include more derivatives, and we include the spurion product (PQ) to count the number

of (super) derivatives®.

The sum over all possible derivatives on ® can be carried out, and
the results take the form of characters for short representations of the conformal symmetry
group. Viewed from the conformal perspective, each field sits along with all its derivatives in
a single infinite-dimensional representation where the initial field is denoted as the primary
component and all derivatives as descendants. The conformal characters for several impor-

tant representations are listed below, denoted as x( where j1,j2 indicated the Lorentz

j17j2)’
representation of the primary:

X(0.0) = Cla, 8, P,Q)(1 = (PQ)?) (2.4)

Ko = Cla A P.Qa+3) - (PQIE+ 3) (25

2 - (PQ)a+ ) (26)

X = 0o, 8, P,Q)(0? + 1+ ) ~ (PQ)(a+ 2)(5 +

X(O,%) = C(O[,ﬁ,P, Q)((ﬁ +

;> L(PQY)  @27)

Lyeed. s

7) - (PQa+ )6+

X(Ol ( ﬂaPQ)(<ﬂ2+l+52

The factor C(a, 8, P, Q) is defined as:

PQ)|  PQay, PQ3y 29)

Ol 8, P.Q) = (1= PQaB)(1 — )1 = )1 — ==

4For supersymmetric theories, each ®; also has an R-charge as well.
°In a non-supersymmetric theory, a single spurion, D is sufficient to count derivatives.




where o and (3 are group parameters related to SU(2);, and SU(2)g and P, @ are spurions
to represent D, and Dg.

The conformal symmetry link was crucial to the understanding of Hilbert series in non-
supersymmetric theories [2, 5]. The obvious extension for supersymmetric theories would be
to organize things using superconformal representations. However, so far we have not found
this direction to be fruitful (see Ref. [27] for some discussion on this point). Therefore, for
now we will utilize the y simply as neat packages of fields and their derivatives, forgetting
their connection to conformal field theory.

A further complication for the derivative “tower” for superfields is the application of a
superderivative Dy, Dy to a superfield flips the statistics of the field, e.g. for a bosonic super-
field ®, D,® is fermionic. This pattern continues with subsequent derivatives, so that when
we want to combine a superfield and all its superderivatives into a term in the PE, we need
two terms — one for the bosonic combinations of field plus superderivatives, and one for the
fermionic combinations. Thus, for a bosonic superfield ®, we add ®x(g,0) to the bosonic PE
(even numbers of D,, Ds) and P(D®) X(10) (odd numbers of D, Dg) to the fermionic PE.
Here, we treat (D®) as a different spurion, ignoring any connection to ®, using the spurion
P to track the extra derivative factor contained in (D®).% The fact that each superfield leads
to a term in both the bosonic and fermionic PE is a manifestation of supersymmetry.

e P~ Y(p,q,a,3,2) Factor: Removing IBP

The last piece needs to be clarified in (2.1) is the P71 (P,Q, a, 3, z) factor, which is
explicitly given by an infinite sum of spurions P, () as well as group parameters z = a+ é, Yy =

1.
B+3:

P (p,q.0,B,2) =1
— (Pz + Qy)
+ (PQ*x + P*Qy + P*(2* — 1) + Q*(y* — 1)) (2.10)
— (PQ*zy + P*Quy + P°(a® — 22) + Q°(y° — 29) + P?Q%)

This factor allows one to fully remove IBP redundancies in N = 1 supersymmetry, as demon-
strated in our previous work [27]. The terms in the expansion of (2.10) count the relations

in ‘correction spaces’ for any given term in the PE.

Putting the pieces together, we can now read off what (2.1) does. To count the indepen-
dent operators, one starts by determining the representation (both spacetime and internal)
of each superfield, then taking the plethystic exponential of the product of corresponding

SFor ®', the replacement is "P‘L)Z((),o) in the bosonic PE and Q(ﬁ@f)f((o’%) in the fermionic PE, where D®'
is a separate spurion.



group characters with a spurion for the field. This allows one to work with the building
blocks free of EOM. Adding the P~1(P,Q, a, 3, z) factor will remove all IBP redundancies,
and finally integrating over Haar measure of both spacetime and internal groups projects out
the invariant operators. Although the formal expansion of P~(P, Q, o, 3, 2) (2.10) is infinite,
it actually terminates at given order due to the fact that one cannot build arbitrary larger
representation with finite number of superfields and derivatives. To speed up calculations,
it is often beneficial to determine the maximum representation (for a given field/derivative
content) before plugging into (2.1) and truncating P~(P, Q, «, 3, 2) appropriately.

There is a subtlety we should mention before moving forward. The conformal characters
for the representations listed earlier are not orthonormal, a consequence of the fact the that
conformal group is non-compact. As aresult, Eq. (2.1) contains an unwanted A H piece, which
is common both in non-supersymmetric case [5] and supersymmetric case [27]. However, as
proved/argued in these papers, this term only contains operators with mass dimensions less
than or equal to four, and is therefore irrelevant if our goal is to determine the operator basis
for higher dimensional operators (dimension > 5). As a result, we will ignore this term in the
rest of this paper.

Having reviewed (2.1), we are now prepared to include gauge interactions, where one
needs to consider gauge invariance in addition to Lorentz symmetry and R-symmetry. To get
familiar with how the procedure works, we first discuss the abelian case in the next section,
and then move to non-abelian case in section 2.4.

2.2 Abelian supersymmetric gauge theory

In an N = 1 supersymmetric U(1) gauge theory, chiral superfields ®; transform as,
O — &) = e 0Dy df - & = N P (2.11)

where t; is a real number (identified as the gauge charge) and A, AT are chiral and antichiral
superfields; A and AT must be superfields in order for the transformed D) (@;T) to remain chiral
(antichiral). To build a gauge invariant term out of these chiral and antichiral superfields, we
need to introduce a vector superfield V that transforms as V. — V/ =V + 8§ + ST, where S
is a chiral superfield. Setting S = iA and ST = —iAT, we find that the following term (for a
single flavor) is gauge invariant under the U(1) local transformations (2.11):

ofetVd - o'feV' o' = ol @, (2.12)

This term can be treated as a generalization of the Kahler term ®f® without gauge interac-
tions. To build a gauge invariant term out of the vector superfield alone — the generalization
of the field strength F'* in a non-supersymmetric case — one constructs the following:

1 1
W, = —ZDZDQV, W =—1D"DsV. (2.13)

The transformation laws W, — W/ = W, W4 — W:l = W4 follow from the gauge transfor-
mation of vector superfield defined above.



The renormalizable Lagrangian which is invariant under this local U (1) symmetry is then
formed as:

1 — — 1 1
L= Z(WO‘WO( -+ WdWa)]: -+ ((I)zretlv(l)l)p -+ [(gmijd%@j + ggijkq)iq)jq)k)]—' + h.c.], (2.14)
where the subscripts D, F represent D-term and F-term by taking the Grassmann integration
with d*0 and d?6 respectively.

The final object we will need in the superderivative. When there is no gauge symmetry

present, recall that the two superderivatives Do, Dg4: are defined as:

0

Da= 55— io" 6%, (2.15a)
Dy = —aczd +i0%" 0, (2.15b)

where 6, and 6” are two dimensional Grassmann numbers, and 9, is the usual partial deriva-
tive. They satisfy the following anticommutation relation:

{Dq,Da} = 2ick 0, (2.16)

When acting on superfields transform as (2.11), these derivatives need to be covariantized to
respect both supersymmetry and local U(1) symmetry. For this purpose, we define the action
of covariant supersymmetric derivatives V, and V4 on superfields as:

Va® = (Do + D, V)®, V@ = D@ =0, (2.17a)
Va®' = (Dg+ DaV)®, Vg = Dy® = 0. (2.17b)

Here, ® is a chiral superfield and ® is an antichiral superfield. These two covariant su-
perderivatives also respect supersymmetry, i.e. {V,,Va} = 2z‘agdv#, where V, is the usual
Lorentz covariant derivative. The equation of motion for these super field strengths are given
by:
oP(V
VW, + 8§/ ) =0, (2.18)

where P(V') is the term that couples the supercurrent to the vector superfield.

Finally, N = 1 supersymmetric gauge theories contain a U(1)gr symmetry under which
the Grassmann parameter 6 carries charge +1 and @ carries charge —1. This assignment
dictates that D, has R-charge —1, Dg has charge +1. Unlike chiral/antichiral superfields,
which may have any R charge, the R charge of the gauge superfield strengths is set by the
kinetic term; +1 for W, and —1 for W4".

"When specifying a superfield’s R charge, we are referring the charge of the lowest component field. As R
symmetry does not commute with supersymmetry, higher component fields will have higher or lower charge.



2.3 Operator counting for supersymmetric abelian gauge theory

Adapting the program and main results from Ref. [27] to a N = 1 supersymmetric abelian
gauge symmetry involves a few complications.

e The main ingredient in the Hilbert series is the plethysm of the relevant degrees of
freedom (and derivatives of them), with each spurion accompanied by its representative
field’s group characters. For the theories studied in Ref. [27], the basic building blocks
were (potentially multiple flavors of) chiral and antichiral fields. For gauge theories,
the superfield V' appears (and has nice/linear transformation properties) within the
field strengths W, and W4 and €¥. So, do we include all of these, or is there some
double-counting given that it is the same V' in all three?

e The second complication is that the gauge transformation parameters in supersymmet-
ric theories are full chiral superfields rather than real numbers. How do we implement
this difference in terms of the field /spurion characters, which carry out the group mul-
tiplication in the field /spurion plethysm? As an example that emphasizes the role this
can play, consider eV, which becomes e~ M Vel ynder a gauge transformation (setting

t =1). If we were to count net U(1) charge, V should have charge zero — as assignment

justified either by what happens in the non-supersymmetric case, or by counting A as

a real valued constant. However, by this counting, e"’

carries no quantum numbers and
is dimensionless, so there is nothing to prevent the Hilbert series from adding arbitrary

powers of e to any operator.

Ignoring these subtleties for a moment, let us proceed exactly as in Ref. [27] and iden-
tify the relevant degrees of freedom and their Lorentz representations. By looking to the
lowest component, we see ®, & and e ~ (0,0); W, ~ (%,0); Wy ~ (O,%). Next, we
identify the representations of the (covariant) derivatives acting on these objects. From
our experience with chiral/antichiral theories, we know that odd numbers of acting on a
superfield change the statistics of a field, e.g. @& is a scalar, while V,® is a fermion,
which must be reflected in how the spurion/field appears in the PE. From our past work,
we know Vo, ~ (%,0), V@' ~ (0, %) Applying the same logic to superfield strengths,
VgWay ~ (1,0); V(BW@) ~ (0,1), where the (---) subscript represents the symmetrization
among spinorial indices, e.g. V(gWy,) = VW, + VW3, etc. This leaves derivatives acting
on eV, which seems more complicated. However, consider the following:

V(@7 ®) = Do(0TeV @) = 0TV, (eV®) = dTD, (¥ @)

which follows from gauge invariance and the fact that ®' is antichiral (Eq. (2.17)). Dropping
the @1, this becomes:

(VaV)eV® + eV (Vo®) = (Do V)eV® + eV (Dy®) = e (Do 4 (D V)@ = (Vo ®),



from which we conclude that V,V = 0. By the same logic, one can show that V4V = 0, and
therefore that Va,e¥ = Ve = 0. Since all covariant derivatives are zero when acting on eV,

we can neglect them from the PE,
PE[®, 0, V"®;, VAR, W, W4, VEWS, VAW 4, €V], (2.19)

where i labels different matter superfields.

This omission of e" derivatives clears up one of the subtleties raised at the beginning of
the section. The dynamics of the vector superfield V' are contained in the superfield strengths
and their derivatives, while ¥ only plays the role of maintaining gauge invariance. In other
words, the e piece is fully determined by the gauge invariance constraint and its derivative
terms will not enter Hilbert series as independent fields/spurions.

Now that we’ve established the relevant operator building blocks (PE arguments), our
next step is to determine whether we need to consider the superpotential terms (F-terms),
Kéhler terms (D-terms) or both when thinking about higher dimensional operators. As in
Ref. [27], we find we can focus almost entirely on the K&hler term. First, for superpotential
terms with no field strengths, the same logic as Ref. [27] applies. For superpotential terms
containing one or more field strength, the constraints from chirality and gauge invariance are
strict, and one can readily verify that it’s impossible to add ® or ®' charged under the gauge
symmetry without violating one or both constraints. A caveat in this reasoning is if there
exists a neutral chiral superfield ®,®, which isn’t forbidden from the superpotential solely
by gauge invariance. In this case one can form an F-term as [ d*0(W,W)®y. However, in
this case one cannot add any additional superderivatives, otherwise chirality will be violated.
This point is easily realized by noticing that a chiral superfield will no longer be chiral once
it carries superderivatives in front of it. As a result, we will only focus on Kéahler terms.

In Eq. (2.19), we have been a bit sloppy with the index n on the derivative powers,
as derivative powers of a superfield that reduce by EOM should be omitted from the PE.
This can be accomplished compactly by using the short conformal representation appropriate
to the field in question: Eq. (2.4) for ®, Eq. (2.5) for V,® and W,, Eq. (2.7) for V,Wp,
etc. The fact that we’re considering superfields or gauge theories has no effect on this step.
Similarly, the P~(P,Q, a, 3, z) factor which removes IBP redundancies carries over from
Ref. [27] exactly. IBP redundancies only deal with the derivatives (e.g. they shuffle among
operators with the same quantum numbers), or, to be more precise, the Lorentz structure
of derivatives. Therefore, the form is independent of whether we are working with normal
superderivatives or covariant superderivatives.

With the architecture of the supersymmetric gauge theory in place, the last item we must
deal with is the second subtlety mentioned earlier — how to treat the gauge charges of fields
in terms of characters. Recall, the issue is that the gauge transformation parameters are su-
perfields rather than real valued functions. Naively proceeding as in the non-supersymmetric

81n principle, this can be a product of arbitrary number of superfields, as long as it carries neutral charge
and is chiral.

,10,



case leaves eV

carrying no weight in the PE, meaning one can add arbitrary powers of it to
any operator. To account for the complex nature of the supersymmetric gauge parameter A
we label fields with two gauge charges, one corresponds to A and the other corresponds to
AT (said another way, as the real and imaginary parts of A). Under this parametrization,
the representation of a general superfield is given by S ~ (j1, jo; 91, g2; 2), where ji, jo label
the Lorentz group representation and g1, go represent charges under A, AT, respectively. For
example, ®; ~ (0,0; —¢;,0), @Zf ~ (0,0;0,%), etc. To project a gauge-invariant operator, we
need two U(1) group parameters, as well as two U(1) Haar measures.

Putting the pieces together, let us apply the method to study the operator basis for an
abelian, supersymmetric U(1) gauge theory with a single flavor of matter superfields. For
simplicity, we’ll take the U(1) charge to be t; = 1 and R[®] = 0. Here, the explicit form for

the Hilbert series is:

H(P,Q,®, & W, W, e")

= / At Lorent=Aptgaugediv 1y P~ (P, Q. a, B, 2) PE[Z(®, @1, W, W™ V)], 220
where the Haar measures are
it Lorent: = (2732)2 7I{a|=1 %a(l —a?) j{m:l d§(1 — B?), (2.21a)
1 d d
dpigauge = ri? 7{711 f o f, (2.21b)
dpug ) = % 7{2:1 %, (2.21c¢)
and
Z(®, 1, Wo, W, e hos = g7 T(0.0) + 92X (0.0)+ (2.22)

P(DWa)X(1,0) + Q(DWOC)S((OJ) +e"g195"
Z(®, 0", W, W, eV ferm = P(D@)gflz—lx(%m + Q(E@T)gng((& )+ WazX(1 )+ Wo‘z—lx(o 1

3 3 3
are the arguments of the bosonic and fermionic plethystic exponentials'®. The conformal
characters y are given in (2.8) and g1, g2 are the group characters for the two U(1) groups;
® is accompanied by the group parameter for one U(1), ®' is accompanied by the group
parameter for the other U(1), and €¥ appears with both group parameters. Note that, like
the chiral superfields, the field strength superfields contribute one term to the bosonic PE
and one term to the fermionic PE, and we have used new spurions ((DW) and (DW)) to
represent odd powers of superderivatives on the field strengths.

9Here we have neglected A terms. As explained in the text, these only contribute to operators with mass
dimension d < 4.

ONote that, in Eq. (2.22), the indices «,% are purely cosmetic. The Lorentz transformation properties they
imply are carried by the characters x

— 11 —



Say we want to study the specific set of operator O(@@TW§W‘5‘V3V@), meaning operators
built from one chiral superfield ®, one antichiral superfield ®f, two W,’s, one W* and three
derivatives V2V,. To find/project such operators, in terms of spurions (O(@@TWQQWQP2Q)),

we simply select the terms in the expansion, i.e. H(P,Q, P, @T,Wa,Wa,eV)]
1%

PRI P2Q
One should notice that we do not put any constraints on e" since this is totally fixed by
gauge invariance. The result consists of several operators, but if our aim is to simply count
the number instead of knowing the details, we can take all spurions to be 1 to get the number
we want. In this case, we’ll get 7 — 7+ 1 =1 term left in the operator basis, which indicates
that only one term is independent at order O(®PTW2W"V2V,). One can check this by
using a direct, brute force calculation along the lines of Ref [3, 27], and we give the details in

Appendix A.

2.4 Non-Abelian Case

The main lesson from the supersymmetric abelian gauge theory is that the P~! piece carries
over unchanged from theories with purely chiral /antichiral fields. Said another way, P~! only
involves the Lorentz/derivative structure of operators and is blind to how the internal sym-
metry is handled. Given that non-supersymmetric Hilbert series exhibit the same behavior,
this ‘factorization’ is not surprising

With this understanding, the non-abelian case is a direct generalization, where one re-
places U(1) gauge symmetry with a more complicated group, SU(2), SU(3), etc.. The trans-
formations in Eq. (2.11) now become:

O = D) = e Ny B - b, = N D], (2.23)

where A = T*A% is a matrix, with T% the hermitian generators of the gauge group. As
before, A are chiral superfields such that the transformations (2.23) will not change the
chirality conditions. The vector superfield V' becomes V = T*V% and one can verify that
V5 eV = "MV eiA gtill holds in non-abelian case. The validity
of this transformation indicates that (2.12) is still a candidate for the D-term.

the transformation law e

Non-abelian superfield strengths are not gauge invariant, rather they transform covari-
antly, i.e. W, — W/ = e~ M W,eit . In addition, the covariant superderivatives (2.17) need
to be modified for the non-abelian case:

Vo® =eVDy(eV®), Vodf = D, 0" =0, (2.24a)
Vadl = eV Dy(e7 V@), Vad = Dy® =0, (2.24b)

Although the action of these covariantized derivatives are different from the ones in abelian
case, their representation under Lorentz group doesn’t change at all. Additionally, covariant
derivative acting on e" still vanishes as in the abelian case. Therefore the form of the Hilbert
series will not change and the only difference is the way one labels each superfield.

Recall that, in the abelian case, we need two parameters to label the single U(1) gauge
symmetry, due to the fact that superfields transform not up to a phase, but instead in terms
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of superfields. As a result one needs twice the number of group parameters to label different
superfields. The same argument holds in the non-abelian case, so we must indicate two dif-
ferent representations for each superfield, S ~ (Iy,l2;71,72; 2), where r1,r9 label the represen-
tations under the two copies of the non-abelian group (and z is the R-charge). Taking SU(2)
as an example with matter in the fundamental representation, we have ® ~ (0,0;2,0;7),
®f ~ (0,0;0,2;7~1). With these building blocks, we can construct the operator basis for
non-abelian case follow the same steps used as in the abelian case.

As an example, let’s consider the simplest non-abelian case — gauge group SU(2) — with
matter content consisting of a single chiral superfield flavor ®, ®' in the fundamental repre-
sentation. The Hilbert series in this case looks identical to (2.20):

H(P,Q, &, &, W, W e") = (2.25)

/ d,UfLOT‘entzdugauged,U’UR(l)Pil(Pu QJ «, /67 Z)PE[I(@7 @T7 WOM Waa eV)L
but the Haar measures are different:

1 dg1 2 j{ dgo 2
d auge — . f —(1— —(1— s 2.26
Hgaug (27”)2 1l=1 a0 ( gl) o]=1 9 ( 92) ( )

as we need two SU(2) measures (with group parameters g1, g2) instead of two U (1) measures.
The argument of the PE, again for the choice R[®] = 0, is:

—d 1. 1. .
(2, @1, Wa, W™, e¥ )pos = ®(g1 + a)X(o,o) +@f(gp + ;)X(o,o)‘F (2.27)
- ™ 1 1
P(DWa)X1,0) + QDW %01y + €' (g1 + ;)(92 + g)

= 1, 1. — 1, .
I((I)> (I)T7 Wa, W 76V)ferm = P(D(I))(gl + E)Z 1X(%,O) + Q(D¢T)(g2 + g)ZX(O,%)—i_
WazX(.0) + W X(o,1):

1
27

with conformal characters x given in (2.8).

3 Conclusion and Discussion

In this paper we show how to count operators in N = 1 supersymmetric gauge theories.
We provide two examples: the abelian case and the non-abelian case with the explicit and
detailed Hilbert series constructions. The main difference between supersymmetric gauge
case and the non-supersymmetric gauge theory is that one has to double the number of gauge
group parameters in order to give the correct e structure. Although the two examples
given in the text only deal with single flavor in the fundamental representation, the approach
can be extended to include more flavors of any representation and with arbitrary number
of vector/chiral /antichiral superfields. A shortcoming of the Hilbert series method (for both
supersymmetric and non-supersymmetric theories), however, is that it does not explicitly

,13,



give the detailed structure of the operators — meaning where derivatives are placed and how
indices are contracted — so additional work is required if one wants the actual operator forms.
Nevertheless, being able to count the operators in supersymmetric gauge theories will benefit
future EFT study of supersymmetric theories.

In non-supersymmetric theories, one can find the explicit form of operators using the
Young Tableau construction [19-26], as mentioned earlier. Progress on a generalization of
the Young Tableau technique to supersymmetric theories will appear in future work [48].
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A Cross-check of counting for O(POW2W V2V ,) operators
There are seven operators at O(@@TWO%W@V?IW@):

a1 = Vo ®e" VW WV, ay = eV VoWV WAV, 0 T,
a3 = VOO WWPV 0o @, a4 = BV VOWWIV &, (A1)
a5 = VoDV Vo WsWP BT | a5 = Vaa®@eV VOWWEDTT,

a7 = BV Voo W VWP ST,

There are five IBP relations among these seven operators from the V,, branch:

| = V(Va@e" WWEV D TWY) ~ —2a; + a3 ~ 0

= V(" Vo WsWHV 0 W) ~ —a1 — ag + a4 ~ 0

= V(@ WsWPV e ® W) ~ as + 2a4 ~ 0 (A.2)
(
(

— «

= V(Veaa®@e" WsW DTWY) ~ 2a6 ~ 0
= V(@' Ve WsW DTW) ~ a5 — ay ~ 0,

and two IBP relations from the V, branch:

Val(VadeV VW WADITW) ~ —ag — a5 — ay ~ 0
V(@ Vo W VOWADTWY) ~ 2a7 — a2 ~ 0 (A.3)

The seven c¢; are not all independent, as ¢; + 2co = ¢3 + ¢4 + 2¢6 + 2¢5 + ¢7. Taking this into
account, there are only six relations among the seven operators, leaving one independent a;
term.
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B

Characters and Haar Measures

Here we list a few characters in group U(1), SU(2) and SU(3) that are used in this paper.
And we also list the related Haar measure for each group. For further characters, please refer
to [40].

The characters are given by:

Xu@) = e“, (B.1a)
1
XSU(2) fund = % T > (B.1b)
Z9 1
XSU(3) fund = #1 T - + P (B.1¢)
where ), z, z1, zo are related group parameters.
The Haar measures are given by:
1 dz
d = — — B.2
/ uU(l) 271 %z|=l z’ ( a)
1 dz
d = — —(1 -2 B.2b
Jnsoe = 5§ T (B.20)
1 dz1 dzo z% Z%
du = . f — —(1 — z129 — —=)(1—--=). B.2¢
Jasoo =g Tf Ta-am0-Tho- 2 (8.2
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