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Abstract: We develop Standard Model E↵ective Field Theory (SMEFT) predictions of

�(G G ! h), �(h ! G G), �(h ! AA) to incorporate full two loop Standard Model results at

the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultane-

ously report consistent �(h !  ̄ ) results including leading QCD corrections and dimension

eight SMEFT corrections. This extends the predictions of the former processes �,� to a

full set of corrections at O(v̄2T /⇤
2(16⇡2)2) and O(v̄4T /⇤

4), where v̄T is the electroweak scale

vacuum expectation value and ⇤ is the cut o↵ scale of the SMEFT. Throughout, cross con-

sistency between the operator and loop expansions is maintained by the use of the geometric

SMEFT formalism. For �(h !  ̄ ), we include results at O(v̄2T /⇤
2(16⇡2)) in the limit where

subleading m ! 0 corrections are neglected. We clarify how gauge invariant SMEFT renor-

malization counterterms combine with the Standard Model counter terms in higher order

SMEFT calculations when the Background Field Method is used. We also update the pre-

diction of the total Higgs width in the SMEFT to consistently include some of these higher

order perturbative e↵ects.ar
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1 Introduction

In this paper we calculate production and decay results of the Higgs boson in the Standard

Model E↵ective Field Theory (SMEFT) to O(v̄2T /⇤
2(16⇡2)2) and O(v̄4T /⇤

4).1 SMEFT per-

turbations to the SM predictions of �(GG ! h), �(h ! AA) need to be characterized to

higher orders in the e↵ective field theory (EFT) due to the relative sensitivity that these

(SM loop induced) processes carry to SMEFT corrections, compared to other (typically SM

tree level) processes [2–4]. This introduces a relevant numerical sensitivity to the treatment

of higher order corrections and interference e↵ects in these processes in future (and current

[5–8]) global SMEFT fits. In addition, we report results in the m ! 0 limit for subleading

corrections up to dimension eight, and including one loop QCD corrections, for �(h !  ̄ ).

To develop such SMEFT results in a reproducible manner, a clear calculation scheme

needs to be adopted for perturbative (~/16⇡2), and SMEFT operator (1/⇤) corrections. To

systematically calculate in the SMEFT, with fully defined O(v̄4T /⇤
4) corrections for the mass

eigenstate fields requires a characterisation of the low n-point interactions that define key

experimental quantities (mass, mixing angles, coupling and canonically normalized fields).

The geoSMEFT was defined in Ref. [9–12] and is a compact formalism that accomplishes

this task using field space geometry. These geometries are reflective of the underlying field

redefinition invariance present in the SMEFT. We use the geoSMEFT (see Appendix A) to

define O(v̄4T /⇤
4) corrections in this work.

In Ref. [12], it was emphasised that the geoSMEFT – as it is a background field indepen-

dent formulation of the SMEFT expansion – encourages a class of perturbative corrections

1
Here v̄T is the electroweak scale vacuum expectation value, including higher dimensional operator correc-

tions [1], and ⇤ is the cut o↵ scale of the SMEFT. G is the canonically normalised gluon in the SMEFT. A is

the canonically normalized photon field in the SMEFT.
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to be calculated in a specific background field independent manner using the Background

Field Method (BFM) approach to gauge fixing. The operator and loop expansions are not

formally independent in SMEFT calculations – due to scheme dependence introduced by defin-

ing conventions in leading order results. The geoSMEFT and the BFM are, in this sense,

fundamentally linked when theoretical self consistency is demanded to subleading order(s).

The scheme dependence is unsurprising in principle, as higher order perturbative corrections

always carry a significant scheme dependence. However in the case of the SMEFT, scheme

dependence is not simply numerical. Formulated at the Lagrangian level, the SMEFT is based

on the freedom to redefine the theoretical description with operators being removed or intro-

duced by field redefinitions (or appropriate use of the Equations of Motion). As such, scheme

dependence in the SMEFT is also associated with operator basis dependence, and the specific

parameter dependence present in a calculation. This scheme dependence is also present in

the geoSMEFT, despite its background field independence, when the field space connections,

metrics, etc are expanded out to a particular order in 1/⇤ in a particular operator basis.

In this paper, we extend/replace and update results in Ref. [12] by adding a class of

O(v̄2T /⇤
2(16⇡2)2) corrections to �(G G ! h), �(h ! AA) and �(h ! G G).2 This upgrades

these results to include a full set of self-consistent and cross-consistent O(v̄2T /⇤
2(16⇡2)2) and

O(v̄4T /⇤
4) corrections at the observable level. We also report corrections to �(h !  ̄ )

up to dimension eight and including the leading QCD corrections in the m ! 0 limit for

subleading corrections. Finally, we also update the calculation of the total Higgs width in the

SMEFT to include a full set of these corrections.

2 Framework of the calculation

Consider the perturbation due to a SMEFT operator to a dimensionless SM amplitude in an

on shell process (such as �(G G ! h) or �(h ! AA)):

A = h· · · iSM +
X

i

C
(6)
i h· · · iv̄2T /⇤2 + · · · (2.1)

For three-particle on shell processes, such as 1 ! 2 decays or 2 ! 1 production, derivative

terms O(@2/⇤2) are trivial within the SMEFT expansion so all corrections scale with v̄
2
T /⇤

2.

Thus, each amplitude has a series of SMEFT corrections

⌃nh· · · iv̄2nT /⇤2n (2.2)

associated with operators in L
(4+2n).

2v is sometimes used to denote the vacuum expectation value in the SM, and the bare version of this pa-

rameter is v0. The inferred vacuum expectation value will necessarily be v̄T when higher dimensional operators

are present, or v when such operator corrections are not present experimentally perturbing measurements. As

such, our use of v̄T and v is interchangeable in most results below.
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2.1 Terms retained in the calculation(s)

Due to a proliferation of superscripts and subscripts indicating the various expansions present

in these calculations, we introduce a more schematic notation. Amplitudes are expanded as

A =
X

i,j

h· · · | · · · i
i
(v2/⇤2)j . (2.3)

We generally use � to indicate a loop correction while a power of � is used to indicate a

SMEFT perturbation / 1/⇤2 for more condensed notation, and to track the scaling of cross

terms in the expansions. In this work, we focus on improving the treatment of hFF|hi
0,1,2, and

hh|FFi
0,1,2, where F = {G,A} compared to Ref. [12]. Each of the terms for the amplitudes

in this work scale as

hFF|hi
1
SM ⇠ �, hFF|hi

2
SM ⇠ �2

,

hFF|hi
0
O(v2/⇤2) ⇠ �, hFF|hi

0
O(v4/⇤4) ⇠ �

2
,

hFF|hi
1
O(v2/⇤2) ⇠ �� hFF|hi

2
O(v2/⇤2) ⇠ �

2
�,

and so on. Cross terms when the amplitude is squared scale as

hFF|hi
1
SM hFF|hi

1
O(v2/⇤2) / �

2
�. (2.4)

In this work, we include the corrections hFF|hi
2
SM and hFF|hi

1
O(v2/⇤2) as defined above. The

first term leads to corrections of the order

hFF|hi
2
SM hFF|hi

0
O(v2/⇤2) / �

2
�, (2.5)

which should be retained for consistency at the amplitude squared level when hFF|hi
1
SM

⇥hFF|hi
1
O(v2/⇤2) terms are retained, as in Ref. [13]. We retain the terms that scale as �, �,

�
2, �2, �� in the amplitude expansion in this work. Note that �,�2 terms are pure SM

terms. We retain the SM cross terms of order �2, �3 in the amplitude squared. As well as

terms of order ��, ��2, �2, �2� for the SMEFT corrections in the amplitude squared. All

other higher order terms are consistently dropped.

Note that when constructing the interference term, one could choose to numerically retain

the corrections of the order

hFF|hi
2
SM hFF|hi

1
O(v2/⇤2) / �

3
�. (2.6)

If this choice is made to improve numerical accuracy for some Wilson coe�cient dependence,

then a consistent calculation at the amplitude squared level should also retain the finite and

scheme dependent interference terms following from ✏/✏ cancelations that are also generated

by

hFF|hi
1
O(v2/⇤2)hFF|hi

2
SM / �3

�. (2.7)
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We report a series of results below retaining di↵erent classes of terms to make the numerical

impact of the di↵erent sets of corrections clear (see Eqn. 3.17 and Eqn. 3.50). Also note that

this class of terms is the same order as

hFF|hi
0
O(v2/⇤2)hFF|hi

3
SM (2.8)

corrections which are also neglected. This class of corrections is particularly sensitive to the

combination of the SMEFT counterterms and the SM counterterms in a consistent calculation

scheme. See further discussion in Appendix A.2.

3 Analytic results

To define the perturbative corrections to next to leading order (NLO), the infrared/ultraviolet

(IR/UV) divergences present in the perturbative expansions have to be canceled/subtracted

in some calculational scheme. Combining these results with SMEFT perturbations requires

some care. We reiterate and incorporate these results to fix notational conventions.

3.1 �(GG ! h)

We define the full amplitude for G G ! h as [12]

AGGh = hGG|hi
1
SM + hGG|hi

2
SM + hGG|hi

0
O(v2/⇤2) + hGG|hi

1
O(v2/⇤2) + hGG|hi

0
O(v4/⇤4) + · · ·

(3.1)

The two loop SM contributions to this amplitude are hGG|hi
2
SM . The relevant results for

hGG|hi
2
SM are known and reported in Refs. [14–20].

The first careful study of interference with hGG|hi
0
O(v2/⇤2) e↵ects was reported in Ref. [2].

Results for hGG|hi
1
O(v2/⇤2) are reported in many works, including Refs. [21, 22], in di↵erent

calculation schemes than used here. Renormalization results to dimension eight have started

to appear in Refs. [23–25] enabling O(� �2) results to be developed, and recently results of

this order were reported in Ref. [26], also in a di↵erent scheme than used here.

One of the central points of this paper, is the need to combine input parameter extrac-

tions, and observables in a consistent calculational scheme up to O(�2) and O(�2
�). We

provide significant calculational details for our results to be reproducible including these

corrections.

3.1.1 hGG|hi
1
SM and hGG|hi

2
SM results for �(G G ! h)

The top quark leading contribution to the SM amplitude is expanded in perturbation theory

as [14, 17, 18, 20, 27–30]

hGG|hi
1
SM = i �abKab

1

v̄
(0)
T

✓
�

s

µ̂2

◆�✏✓
↵
0
s S

✏
µ̂
�2✏

4⇡
M

(0)
t,SM

◆
. (3.2)
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Here, a, b are the gluon colors with ✏ polarization vectors, �E is the Euler-Mascheroni constant,

and we have shifted to a MS renormalization introducing µ
2
! µ̂

2
/S = µ̂

2
e
�E/(4⇡) where

S
✏ = (4⇡)✏e�✏ �E to simplify finite terms. The factor Kab is

Kab ⌘ ✏a(p1) · ✏b(p2) s/2� p1 · ✏b(p2) p2 · ✏a(p1), (3.3)

= �hh|hG
µ⌫
Gµ⌫ |✏a✏bi

0
/4. (3.4)

where p1,2 are the incoming gluon momenta with s = (p1 + p2)2 ⌘ m
2
h and Gµ⌫ is the field

strength tensor of the canonically normalized gluon field.

The normalized, leading order partonic cross section in the SM then depends on (z =

m̂
2
h/s) as

�
SM
LO (GG ! h; z) ⌘

�̂
SM
LO (GG ! h)

1� ✏
z �(1� z) (3.5)

where hGG|hi
0
SM starts at one loop, so �SMLO (GG ! h; z) scales as �2 and will be denoted

�2
�
SM
LO (GG ! h; z) to emphasize this fact. Stated another way,

�2
�̂
SM
LO (GG ! h; z) ⌘

⇡

4
lim
✏!0

��CSM
hGG

��2 , (3.6)

where C
SM
hGG is the Wilson coe�cient of the operator hGa

µ⌫G
a
µ⌫ with normalization

�C
SM
hGG = �

↵
(r)
s

v̄
0
T 16⇡

✓
�

s

µ̂2

◆�✏

M
(0)
t,SM . (3.7)

The corresponding cross section in the SMEFT has a modified Wilson coe�cient, given by

C
SMEFT
hGG = �C

SM
hGG +

C̃
(6)
HG

v̄
0
T

+ · · · . (3.8)

An expression for M (0)
t is given in Ref. [20] and is numerically3 in the mt ! 1 limit [30]

�C
SM,mt!1

hGG = �
↵
(r)
s

v̄
0
T 16⇡

✓
m̂

2
t

µ̂2

◆�✏

M
(0),mt!1

t,SM ,

= �
↵
(r)
s

v̄
0
T 16⇡


�
4

3

✓
1 +

⇡
2

12
✏
2
� ✏Lm̂t +

1

2
L
2
m̂t
✏
2 +O(✏3)

◆�
, (3.9)

where Lm = log
�
m

2
/µ̂

2
�
. The numerical term in this expression in the square brackets is

related to the function commonly defined and used in the literature A1/2(⌧t) = �1.37664 in

the exact top mass limit, where ⌧t = 4m̂2
t /m̂

2
h = 7.59871. Similarly, Ref. [30] gives the exact

higher order expressions to build up

hGG|hi
2
SM = i �abKab

"✓
�

s

µ̂2

◆�✏
↵
0
s S

✏
µ̂
�2✏

4⇡

#2
1

v̄
0
T

M
(1)
t,SM , (3.10)

3
A factor of four has been absorbed into this expression comparing to M0

LO in Ref. [20].
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where hGG|hi
2
SM scales as a �2 perturbation and

M
(1)
t,SM = MUV +MUV,m +MIR +Mfin +Mfin,s log

✓
�

s

µ̂2

◆
. (3.11)

Each of the terms in the decomposition in Eqn. (3.10) given in Eqn. (3.11) is defined in

Ref. [30] and previous literature using a variety of calculation schemes; MUV,m corresponds

to UV poles and related finite terms canceled by UV mass renormalization, MUV corresponds

to the remaining UV renormalization of the NLO result, and Mfin and Mfin,s correspond

to finite NLO terms, with the later multiplying the complete scale dependence in M
(1)
t,SM .

Finally, MIR corresponds to finite terms related to IR driven cancelations between these NLO

contributions to �(G G ! h) and �(G G ! hG). Results in the literature must be modified

into the background field method (BFM) to combine consistently with a BFM based SMEFT

calculation and counterterms (i.e. when using the geoSMEFT to define 1/⇤n corrections).

We report the required modifications in the following sections.

3.1.2 NLO finite terms

We organise the NLO contributions by defining

hGG|hi
2,F
SM ⌘ i �ab

Kab

v̄
0
T

"✓
�

s

µ̂2

◆�✏
↵
0
s S

✏
µ̂
�2✏

4⇡

#2 ⇣
M

(1)
t,SM �MUV �MUV,m �MIR

⌘
(3.12)

so that the UV and IR subtractions and cancelations, which have an intricate interplay in

these results are separately considered. The hGG|hi
1,F
SM renormalized and IR subtracted finite

terms (so defined) are related to matching and running in the EFT. In the mt ! 1 limit,

the corresponding subset of terms is

hGG|hi
2,F
SM =

↵
(r)
s

4⇡


11 + c1 ✏+ (��0 + c2 ✏) log

✓
�
m̂

2
h

µ̂2

◆�
hGG|hi

1
SM,✏!0, (3.13)

where �0 = 11Nc/3� 2nF /3, Nc = 3 and [30]

c1 =


�
⇡
2
�0

12
+ 28 log(z) + 12 ⇣3 �

40

3

�
, (3.14)

c2 =


�
1

2
�0 log

✓
�s

µ2

◆
� 2�0 log(z) + 8

�
. (3.15)

Here log(z) = log(�s/m
2
t )/2. The 11↵s/4⇡ factor in Eqn. (3.13) is recognised as the two

loop matching contribution to the mt ! 1 e↵ective operator [14]. This non-log term was

included in Ref. [13]. The log term is an additional contribution present that is not captured

in the two loop matching contribution.4 This log dependence also is consistent with naive

expectations as the direct matching contribution at two loops needs to be augmented with

4
We thank Babis Anastasiou for confirming some typos in the literature result of Ref. [30] that are corrected

for here.
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log terms due to running in the EFT. To further consistently improve these results beyond

Ref. [13] we must also improve the finite terms resulting from the UV and IR subtracted

cancelation between M
(1)
t,SM and the IR contributions from the process �(G G ! hG).5

Interference of hGG|hi0
O(v2/⇤2) with hGG|hi

2,F
SM leads to the contributions

�2
��(G G ! h)F

�2�̂SMLO (G G ! h; z)
=
↵s

2⇡
(11� �0 Lm̂h

)
C̃

(6)
HG

v̄
0
T �C

SM
hGG

,

= 6 (11� �0 Lm̂h
) C̃(6)

HG. (3.16)

The ✏ terms in c1, c2 interfere and generate constant finite terms in the hGG|hi2SM hGG|hi
1
O(v2/⇤2)

interference with the renormalization of the leading order cross section. These contributions

are

�3
��(G G ! h)F

�2 �̂SMLO (G G ! h; z)
= �

3�0 ↵s

2⇡

✓
Re[c1] + Re[c2]Lm̂h

+
3⇡2 �0

2

◆
C̃

(6)
HG. (3.17)

3.1.3 UV divergences

The renormaliation of the SM result has the remaining contributions

MUV +MUV,m =

✓
�

s

µ̂2

◆�✏
 
Z

2
mt

Zm2
h

⌧t
@

@⌧t

!
Z

2
g ZĜ

Z
1/2

ĥ

Z
1/2
v

i �abKab
1

v̄
(r)
T

↵
(r)
s

4⇡
M

(0)
t,SM . (3.18)

The result in Eqn. (3.18) has one overall power of
�
�s/µ̂

2
��✏

due to the conventional

choice in Refs. [20, 30], followed here, to organize the calculation in such a way that we

factorize the complete µ dependence in M
(1)
t,SM into the terms with ”fin” superscripts.

Here we have modified the notation of Ref. [20] to make the mass dimensions of the

corrections clearer.6 In the SM, the non-vanishing counter terms (proportional to the QCD

coupling) are Zg, ZĜ
, Zmt – Zm2

h
does not have QCD corrections in the SM. The neglect of

Z
1/2

ĥ
, Z1/2

v is trivial when only considering their lack of one loop QCD corrections, but when

considering EW corrections the use of the background field method introduces important

di↵erences compared to alternate schemes. In the background field method, EW corrections

from Z
1/2

ĥ
, Z1/2

v exactly cancel, including finite terms – a helpful simplification.

In Ref. [20, 21, 30] a MS renormalization scheme is chosen so that the mass counter term

is e↵ectively given by

�Zmt = �
↵
(r)
s

4⇡
CF

3

✏
, (3.19)

5
The hat superscripts have a dual meaning, indicating a input parameter for the higgs mass and the use of

MS renormalization for the renormalization scale.
6hGG|hi1SM is a function of a dimensionless ratio in the bare masses (with 0 superscripts) ⌧0

t =

4(m(0)
t )

2/(m(0)
h )

2
. To make the mass dimensions of the corrections clearer and extend to the SMEFT more

easily, we choose to take a derivative with respect to ⌧t more explicit. The correction comes about due to

Taylor expanding the perturbative corrections within Z2
mt in the SM, which reduces to past results for the

SM, once correcting for a typo in Ref. [20] in Equation 7.6, which is missing a factor of mt in the numerator.

The notation agrees in the mass dimensions with Ref. [30].
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with CF = (N2
c � 1)/2Nc. We adopt this MS renormalization for the top quark mass in this

work. Note that in the BFM, the fermion fields are not modified and the counterterm is the

same and gauge independent. To use the results in Ref. [30] we need to account for the finite

terms in the renormalization of the leading order result. The explicit form of the finite terms

due to mass renormalization is given by

MUV,m =
6

✏
CF

✓
�

s

µ̂2

◆✏
(m0

t )
2 @

@(m0
t )

2

 ✓
(m0

t )
2

�s

◆�✏

hGG|hi
1
SM

!
(3.20)

which leads to a pure finite term, even in the mt ! 1 limit, that is e↵ectively a matching

contribution to the leading order operator C(6)
HG. The resulting correction is given by

�2
��(G G ! h)ren,m

�2 �̂SMLO (G ! h; z)
= 36⇥ CF C̃

(6)
HG. (3.21)

The form of Zg and Z
Ĝ
depend on the scheme and gauge chosen. In Ref. [20, 21, 30], the

combination of Z2
gZĜ

leads to the e↵ective renormalization to cancel the poles in the matrix

element

Z
2
g ZĜ

✓
�

s

µ̂2

◆�✏

i �abKab
1

v̄
(r)
T

↵
(r)
s

4⇡
M

(0)
t,SM = �

"
↵
(r)
s

4⇡

#2
�0

✏
(�

s

µ̂2
)�✏i �abKab

1

v̄
(r)
T

M
(0)
t,SM .

(3.22)

When considering the calculation in the mt ! 1 limit, a composite operator is present.

In the unbroken phase of the theory, the operator is H
†
HG

µ⌫
Gµ⌫ . The composite operator

renormalization is performed after the gluon wavefunction renormalization is subtracted. In

Ref. [21], and related works, both the gluon field and the composite operator are not further

renormalized due to the calculational scheme chosen, so this subtlety is rather irrelevant. The

full cancelation of the UV pole comes from the renormalization of the strong coupling as a

result.

In the BFM, the relationship between the QCD coupling and wavefunction renormaliza-

tion is µ
2✏
Z

2
gZĜ

⌘ 1, including finite terms. On the other hand, the composite operator, in

this case, gets its own renormalization counter term [1]

ZHG = 1�
�0 ↵s

4⇡ ✏
+ · · · . (3.23)

which leads to the same net subtraction of UV poles. In the BFM, this renormalization occurs

with the SM matching contribution to the composite operator interfering with hGG|hi
0
O(v2/⇤2)

and the CHG Wilson coe�cient itself. This renormalization is given by

hGG|hi
0
O(v2/⇤2) ! ZHG

C̃
(6)
HG

v̄T
hG

µ⌫
Gµ⌫hi0. (3.24)

If the choice is also made, as in Ref. [21], to normalize the operator C̃(6)
HG by factors of (g0s)

2

explicitly, then the renormalization of the composite operator can again vanish, and a further

– 8 –



renormalization due to the extra factor of the strong coupling is introduced, again leading

to the same net counter term being introduced. This subtlety potentially introduces some

confusion when comparing results in the literature if di↵erent normalizations, and calculation

schemes are not carefully defined.

The UV pole canceled by these counter terms also (accidentally) cancels against an IR

contribution with opposite sign. This renormalization introduces a contribution to the cross

section

�2
��(G G ! h)ren

�2 �̂SMLO (G ! h; z)
= �6�0


1

✏
+ 1� Lm̂t

�
C̃

(6)
HG. (3.25)

The finite term as ✏! 0 comes from the ✏ dependence in the SM amplitude interfered with.

3.1.4 IR divergences

For the IR divergences, it is well known that a universal form is present in the pole structure

for a renormalized one loop amplitude for the production of a Higgs boson from two massless

gauge bosons in the SM. The [31–33] dipole subtraction scheme allows one to write M
(1)
t,IR

with a universal (scheme dependent) set of IR poles as [20, 30]

M
(1)
t,IR =

�e
✏ �E

�(1� ✏)


2Nc

✏2
+
�0

✏

�
M

(0)
t,SM . (3.26)

in MS. The number of active flavors is Nf = 5. By definition, the IR physics before heavy

states are integrated out is the same as that in the SMEFT with a fixed set of matched Wilson

coe�cients. The SMEFT contains additional local contact operator corrections to the SM

interaction terms that modify the UV. In principle, the presence of higher order local contact

operators can modify the IR radiation field present compared to the SM with a point like higgs

particle, leading to further modifications of this result at higher orders. This is the SMEFT

multipole expansion, reflecting possible Higgs substructure, see discussion in Ref. [34, 35].

In practice, this does not occur in the SMEFT to the level of precision we are interested in

calculating in this paper.

The interference of the remaining NLO contributions to G G ! h

i �ab
Kab

v̄
0
T

"✓
�

s

µ̂2

◆�✏
↵
0
s S

✏
µ̂
�2✏

4⇡

#2
MIR, (3.27)

with the tree level insertion of C̃(6)
HG

7 gives the subtraction scheme dependent terms

�2
��(G G ! h)sch.

�2 �̂SMLO,✏!0(G G ! h; z)
= 6


�

6

✏2
+ 6

L+

✏
�

6

✏
� 14 + 3⇡2 � 3L2

+ + 6L+ + �0Lm̂h

�
C̃

(6)
HG.

(3.28)

7
Here we introduced the notation L+ = Lm̂h + Lm̂t .
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Note that the IR poles are the same in the renormalization scheme used in Ref. [20, 21, 30]

and in the BFM. The corresponding SMEFT expression di↵ers from the SM in finite terms as

the ✏ expansion of M (0),mt!1

t,SM is not squared. The log structure and constant terms di↵er in

the SMEFT and the SM, even though the IR pole structure is the same, as the higher order

terms in ✏ coming from the SM top sub-loop function are di↵erent.

Figure 1. QCD one loop contribution to G G ! h.

Adding up all terms gives the NLO results from Fig. 1 of order �2
��(G G ! h)

�2
��(G G ! h)

�2 �̂SMLO,✏!0(G G ! h; z)
= 6


�

6

✏2
�
�0

✏
+ 6

L+

✏
�

6

✏
+ �0 Lm̂t + 3⇡2 + 5� �0 � 3L2

+ + 6L+

�
C̃

(6)
HG,

(3.29)

Here we have suppressed common factors of �(1� z) in the numerator and denominator.

The ✏ poles Eqn. (3.29) are all of IR origin. These poles cancel against poles in G G ! hG in

the limit that the final state gluon is soft/colinear for any local contact operator of the form

hG
a
µ⌫G

a
µ⌫ . There are finite term di↵erences between the SMEFT and the SM involved in this

IR cancelation.

The G G ! hG amplitude squared is shown in Fig. 2 and is a modification of results in

Ref. [14]

|A(G G ! hG)|2 = (4⇡) 384↵(0)
s |C

SMEFT
hGG |

2 (m̂
8
h + s

4 + t
4 + u

4)(1� 2✏) + 1
2✏ (m̂

4
h + s

2 + t
2 + u

2)2

s t u
,

(3.30)

where ChGG is the coe�cient of hh |G Gi
0 and s, t, u here are the usual Mandelstam variables

for this 2 ! 2 process. Expanding out to the linear in C̃HG interference term

��|A(G G ! hG)|2 =
768⇡↵(0)

s

v̄
0
T

2Re

 
�C

SM
hGG

µ2✏
C̃HG

!
(m̂8

h + s
4 + t

4 + u
4)(1� 2✏) + 1

2✏ (m̂
4
h + s

2 + t
2 + u

2)2

s t u
.

(3.31)

In the mt ! 1 limit, this becomes (after renormalizing)8

��|A(G G ! hG)|2 =

 
Z

2
mt

Zm2
h

@

@⌧t

!
Z

2
g ZĜ

Z
1/2

ĥ

Z
1/2
v

ZHG
128(↵(r)

s )2 µ2✏

(v̄(r)T )2

✓
1� ✏Lm̂t + ✏

2

✓
⇡
2

12
+

1

2
L
2
m̂t

◆◆

⇥
(m̂8

h + s
4 + t

4 + u
4)(1� 2✏) + 1

2✏ (m̂
4
h + s

2 + t
2 + u

2)2

s t u
C̃HG. (3.32)

8
Here we are dividing by a 1/2 that we explain below.

– 10 –



Figure 2. G G ! hG Required to cancel IR divergences in the two loop matrix element for G G ! h.

Dropping higher order terms and using the BFM cancelation µ
2✏
Z

2
gZĜ

⌘ 1 simplifies the

result. Multiplying by d dimensional phase space,

d�2 ⌘
1

8⇡
S
✏
e
✏�E 1

�(1� ✏)

✓
1

s

◆✏ 
1�

m̂
2
h

s

�1�2✏ Z 1

0
!
�✏(1� !)�✏d! (3.33)

and performing the color averaging and polarization sums yields

�(G G ! hG) =
1

512 s (1� ✏)2
|A(G G ! hG)|2d�2. (3.34)

Explicitly, while using the definitions in Appendix C for the plus distributions we find

�2
��(G G ! hG)IR/�̂SMLO,✏!0(G G ! h) is given by

6


6

✏2
� 6

L+

✏
+

6

✏
+ 3L2

+ � 6L+ � ⇡
2 + 6

�
�(1� z)C̃HG

+6
⇥
(12 f1(z) (Lm̂h

� log(z))� 11f1(z) + 11z) f1(z) + 11 (1� z)2 z
⇤✓ 1

1� z

◆

+

C̃HG

+ 144 f2
1 (z)

✓
log(1� z)

1� z

◆

+

C̃HG � 72 f2
1 (z)


1

✏
+ 1� Lm̂t

�✓
1

1� z

◆

+

C̃HG. (3.35)

Here the distributions of the numerator have been included again that were suppressed

in Eqn. (3.29). Replacing the 1/(1 � z)+ distribution in favor of the Altarelli-Parisi (AP)

splitting function via Eqn. (C.4) results in

6


6

✏2
+
�0

✏
� 6

L+

✏
+

6

✏
+ 3L2

+ � 6L+ � ⇡
2 + 6

�
�(1� z)C̃HG � 72 f2

1 (z) [1� Lm̂t ]

✓
1

1� z

◆

+

C̃HG

+ 6
⇥
(12 f1(z) (Lm̂h

� log(z))� 11f1(z) + 11z) f1(z) + 11 (1� z)2 z
⇤✓ 1

1� z

◆

+

C̃HG

+ 144 f2
1 (z)

✓
log(1� z)

1� z

◆

+

C̃HG � 36 z pGG(z)


1

✏

�
C̃HG. (3.36)
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We follow the splitting functions conventions of Ellis-Stirling-Webber [36] and introduce a

counter term to remove the residual 1/✏

�2
��

AP
DRc.t ⌘ 36�2

�̂
SMEFT
LO,✏!0 (G G ! h)

✓
µ
2

µ
2
F

◆✏�
(4⇡)✏

�(1 + ✏)�(1� ✏)2

�(1� 2✏)


1

✏

�
z pGG(z)C̃HG

(3.37)

where µF is a low renormalization scale for the Altarelli-Parisi splitting function, while µ

is the higher renormalization scale introduced for renormalizing the SMEFT perturbations.

Comparing to the literature, the Altarelli-Parisi function and counter term conventions di↵er

between references, in particular Ref. [14, 21, 36, 37]. At times, conventions/schemes are

unspecified.

The counter term is introduced proportional to the leading order SMEFT⇥SM inter-

ference, as it must be proportional to C̃HG. Formally, the resulting splitting function is a

SMEFT correction to the SM splitting function, since it depends on the Wilson coe�cient

C̃HG. The introduction of the splitting function represents the factorization of the long and

short distance physics proportional to C̃HG. It is possible to modify the counterterm in-

troduced via the replacement 1/✏ ! 1/✏ + 1 � Lm̂t . This choice simplifies the final answer

obtained, removing all Lm̂t dependence. As the evaluation of the resulting perturbation of

the cross section is done in fixed order perturbation theory with µ ⇠ mh, the scale µ in the

SMEFT AP counterterm is in the end set to a large renormalization scale. Here we forgo this

simplification of the final results, and retain an explicit factor of 1� Lm̂t .

We also note that an alternate calculational scheme convention for dipole subtraction

to address Lm̂t dependence is used in Ref. [38], based on Ref. [39]. Essentially, this is a

rearrangement of Lm̂t in intermediate steps of the calculation Our use of results from Refs. [20,

30] to define the SMEFT corrections to the cross section is similar to (but distinct from)

Ref. [38, 39] in intermediate steps, in that the Catani one loop IR operator multiplies the

full ✏ series with Lm̂t dependence for the SM leading order cross section. The net real

emission result is consistent with some past literature, including Refs. [38, 40] once schemes

and calculational conventions are appropriately accounted for.

The final result with L+ is

6


6

✏2
+
�0

✏
� 6

L+

✏
+

6

✏
+ 3L2

+ + �0(1� Lm̂t)� 6L+ � ⇡
2 + 6

�
�(1� z)C̃HG

+ 6
⇥
(12 f1(z) (Lm̂h

� log(z))� 11f1(z) + 11z) f1(z) + 11 (1� z)2 z
⇤✓ 1

1� z

◆

+

C̃HG

+ 144 f2
1 (z)

✓
log(1� z)

1� z

◆

+

C̃HG + 36 z log

✓
µ̂
2

µ
2
F

◆
pGG(z) C̃HG()

� 72 f2
1 (z) [1� Lm̂t ]

✓
1

1� z

◆

+

C̃HG +O(✏). (3.38)
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3.1.5 Combined NLO C̃
(6)
HG result

Combining the virtual and real emission, the poles in ✏ and the log squared terms exactly

cancel out. The final result is quite compact

�2
��

SMEFT

�2 �̂SMLO,✏!0

1

2 C̃(6)
HG

= 12


⇡
2 +

11

2

�
�(1� z)� 66(1� z)3 + 144 f2

1 (z)

✓
log(1� z)

1� z

◆

+

+ 72 f2
1 (z) [L+ � log (z)� 1]

✓
1

1� z

◆

+

+ 36 z pGG(z) log

✓
µ̂
2

µ
2
F

◆
.

(3.39)

This expression is understood to define the numerical rescaling required to generate the NLO

result from the numerical value of the SM cross section. The limit ✏ ! 0 is thus already

taken in determining the SM result, and the distribution in z is averaged over the parton

distribution functions in the SM result.

The full NLO results are di↵erent than those reported in Ref. [12] and should be under-

stood to supersede those results. The improvements of the calculation are multifold. The full

✏ dependence results reported in Ref. [30] leads to modification of finite terms due to cross

terms in the 1/✏ series and the top sub-loop used in the mt ! 1 limit. The calculation in

Ref. [12] used the two loop matching calculation onto the heavy top quark e↵ective operator,

but this approximation to the full NLO matrix element in the mt ! 1 limit cannot capture

a full set of log terms (and descendent finite terms) that are numerically relevant. In addi-

tion, the calculation in Ref. [12] neglected the full two loop matrix element interference with

the tree level SMEFT operator insertion, only retaining a (poor) approximation of the one

loop SM amplitude for interfering with the one loop contribution to the QCD matrix element

proportional to the operator CHG. Further, the cross section result

�2
��

SMEFT (G G ! h) /
⇣
↵s

4⇡2

⌘2
C̃HG, (3.40)

has two contributions. The interference of

hGG|hi
2
SM ⇥ hGG|hi

0
C̃HG

, (3.41)

and the interference of

hGG|hi
1
SM ⇥ hGG|hi

1
C̃HG

. (3.42)

In the mt ! 1 limit, the leading order result for G G ! h in the SM follows from the

same local contact operator that receives an additive SMEFT contribution from C̃HG. Each

contribution to the cross section can be built up with the full NLO virtual amplitude results

in Ref. [30]. As the same local contact operator is present in the virtual NLO result, and

the ✏ expansion of the SM leading order sub-diagram is properly accounted for, the two loop

result “descends one loop order” in the mt ! 1 limit so that

lim
mt!1

hGG|hi
2
SM

C̃HG

v̄
0
T �C

SM
hGG

= hGG|hi
1
C̃HG

. (3.43)
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Similarly,

lim
mt!1

hGG|hi
1
SM ⌘ hGG|hi

0
C̃HG

⇥
v̄
0
T �C

SM
hGG

C̃HG
. (3.44)

The rescaling di↵erences in each of these individual expressions cancel in the interference of

the virtual terms. The real emission result is determined at the amplitude squared level in

Eqn. (3.31), where the same rescaling relationship is present in the mt ! 1 limit. Combining

the two sets of interference terms with their corresponding real emission results leads to the

overall factor of 2 on the left hand side of Eqn. (3.39).9. Such relationships between results

is an example of the utility of the EFT approach. Equation. (3.39) needs to be added to the

terms in Appendix E taken (unchanged) from Ref. [12] and reiterated here for completeness

to build up the full NLO result.

The results of Ref. [12], like most SMEFT literature, report results in a mixed MS

like scheme with on-shell renormalization of ↵s combined with BFM calculational scheme

results. Here we calculate in a consistent fashion in the BFM, and report the first complete

calculation of this form in the literature in the SMEFT for this process (to our knowledge) in

the MS scheme. The factorization of the results into a AP splitting function still requires the

introduction of a counterterm explicitly introducing dependence on the lower µF scale in the

process. The �0 dependent log proportional to �(1� z) is absent as the counterterms of the

background field gluon wavefunction renormalization cancels against the renormalization of

the strong coupling. This scheme dependence, and the ability to rewrite distribution terms

using Eqn. (C.5) should be noted when comparing results in di↵ering schemes.

3.2 �(h ! GG)

The matrix elements for h ! G G and G G ! h are related by crossing symmetry. As in the

case of Higgs production, the O(↵2
s) interference contributions for this decay are

hh|GGi
2
SM ⇥ hh|GGi

0
C̃HG

, (3.45)

and

hh|GGi
1
SM ⇥ hh|GGi

1
C̃HG

. (3.46)

Also analogously to G G ! h, there are IR divergences cancelled by h ! G G G – determined

from the same matrix elements reported in previous sections via crossing symmetry – with

additional contributions from h ! Gq̄q in the soft-collinear limit.

Some contributions to this decay are unchanged from the results in Ref. [12] and are

reiterated in Appendix F. Here, we focus on presenting the di↵erences compared to past

results due to the full two loop SM matrix elements now incorporated. We uniform calculation

9
Note that the real emission result cancels the IR divergences in both of the interference terms leading to

the 1/2 in Eqn. (3.32).
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conventions in our �(h ! G G) results with those in Section 3. The two loop amplitudes

explicitly presented in Ref. [30] are the key SM input, as in Section 3.

The leading order results for the decay �(h ! G G) follows from C
SMEFT
hG G

, with the decay

width depending on this Wilson coe�cient as

�SMEFT (h ! G G) ⌘
2 m̂3

h

⇡
|C

SMEFT
hG G |

2
, (3.47)

leading to [28, 41]:

�2 �SMmt!1(h ! G G) ⌘
(↵(r)

s )2 m̂3
h

72⇡3v̂2T
, �� �(h ! G G) ⌘

↵
(r)
s m̂

3
h C̃HG

3⇡2v̂2T
.

3.2.1 �(h ! G G) Virtual terms

We organize the NLO contributions as in the case of GG ! h, defining

hh|GGi
2,F
SM =

↵
(r)
s

4⇡


11 + c1 ✏+ (��0 + c2 ✏) log

✓
�
m̂

2
h

µ̂2

◆�
hh|GGi

1
SM,✏!0, (3.48)

leading to the contribution

�2
��(h ! G G)F

�2�̂SMLO (h ! G G)
=
↵
(r)
s

2⇡
(11� �0 Lm̂h

)
C̃

(6)
HG

v̄
0
T �C

SM
hGG

,

= 6 (11� �0 Lm̂h
) C̃(6)

HG. (3.49)

The ✏ terms in c1, c2 again interfere and generate constant finite terms

�3
��(h ! G G)F

�2 �̂SMLO (h ! G G)
= �

3�0 ↵
(r)
s

2⇡

✓
Re[c1] + Re[c2]Lm̂h

+
3⇡2 �0

2

◆
C̃

(6)
HG. (3.50)

The net renormalization (using MS for the top mass dependence) again introduces a contri-

bution to the cross section

�2
��(h ! G G)ren

�2 �̂SMLO (h ! GG)
= �6�0


1

✏
+ 1� Lm̂t � Lm̂h

�
C̃

(6)
HG + 36CF C̃

(6)
HG, (3.51)

with an additional factor of Lm̂h
(compared to Eqn. (3.25)) due to the d-dimensional two

body phase space d�2.

3.2.2 �(h ! G G) Real emission terms

The interference of the two loop, scheme dependent terms with the tree level insertion of C̃HG

gives

�2
��(h ! G G)sch

�2 �̂SMLO (h ! GG)
= 6 C̃HG


�

6

✏2
+

6(L+ + Lm̂h
� 1)

✏
� 6L2

m̂h
� 6L2

+ + 3L2
m̂t

�

+ 6 C̃HG


6Lm̂h

+ 6L+ + �0Lm̂h
+

9⇡2

2
� 20

�
(3.52)
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Leading to a net virtual interference result

�2
��(h ! G G)

�2 �̂SMLO (h ! GG)
= 12 C̃HG


�

6

✏2
+

6(L+ + Lm̂h
� 1)� �0

✏
� 6L2

m̂h
� 6L2

+ + 3L2
m̂t

�

+ 12 C̃HG


��0 + 6Lm̂h

+ (6 + �0)L+ +
9⇡2

2
� 1

�
. (3.53)

The real emission contributions are a combination of h ! G G G in the soft limit and

h ! G q̄ q in the collinear limit. The former contribution is

�2
��(h ! G G G)soft

�2 �̂SMLO (h ! GG)
= 12 C̃HG


6

✏2
+

6(Lm̂t � 2L+ + 1) + 11

✏
�

9⇡2

2
+

119

2

�

+ 12 C̃HG
⇥
3L2

m̂t
+ 17Lm̂t � 12Lm̂tL+ + 12L2

+ � 34L+
⇤
, (3.54)

while the later is

�2
��(h ! G q̄ q)col.

�2 �̂SMLO (h ! GG)
= 12 C̃HG


�
2NF

3✏
+

NF

3
(4L+ � 2Lm̂t � 9)

�
. (3.55)

Combining all terms we find

�2
��(h ! G G)

�2 �̂SMLO (h ! GG)
= 12 C̃HG


95

2
�

7Nf

3
� �0Lm̂h

�
. (3.56)

This result is consistent with the SM NLO result reported in Refs. [40, 42, 43]. See also

Refs. [38, 44].

3.3 �(h ! AA) two loop QCD corrections

The decay width is given by

�(h ! AA) '
m̂

3
h

4⇡
|hh|AAi

1
SM + hh|AAi

2
SM + hh|AAi

0
O(v̄2T /⇤2) + hh|AAi

0
O(v̄4T /⇤4) + hh|AAi

1
O(v̄2T /⇤2)|

2

(3.57)

All of the contributing terms except hh|AAi
2
SM were defined in Ref. [12]. We reiterate these

results in Appendix G to make the paper self contained. For example, the leading order result

[27, 29, 45] is defined with the notation (⌧p = 4m2
p/m̄

2
h)

hh|AAi
1
SM =

�ĝ2 ê
2

64⇡2 m̂W

 
A1(⌧W ) +

X

i

N
i
c Q

2
i A1/2(⌧ i)

!
hhA

µ⌫
Aµ⌫i

0
, (3.58)

The two loop QCD corrections we add in this work are reported in Refs. [16, 17, 46, 47]. The

QCD corrections are given by

hh|AAi
2
SM =

�ĝ2 ↵̂
(r)

ê
2

64⇡3 m̂W

X

i

N
i
c Q

2
i A1/2(⌧p)


C

H
1 (⌧p) + C

H
2 (⌧p) log

✓
4 µ̂2

⌧pm̂
2
h

◆�
hhA

µ⌫
Aµ⌫i

0
,

(3.59)
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where

A1/2(⌧p)C
H
2 (⌧p) ⌘ 4⌧p [1 + (1� 2⌧p)f(⌧p) + ⌧p (1� ⌧p) d f(⌧p)/d⌧p] , (3.60)

and A1/2(⌧p)C
H
1 (⌧p) is lengthy and directly given in Ref. [17]. Note that our definition of

⌧p is the inverse of the definition used in Ref. [17]. Numerically, we update the SM result

including these corrections, thereby retaining the corresponding / �2
� interference terms

hh|AAi
2
SM ⇥ hh|AAi

0
O(v̄2T /⇤2) (3.61)

in the expression for �SMEFT (h ! AA)/�2�SM (h ! AA).

3.4 �(h !  ̄ )

Defining the coupling of the Higgs to fermions with flavors p, r as

Lh,eff = �gh 
pr

h  ̄R
p
 L
r
+ h.c. (3.62)

the decays to  = {u, c, d, s, b, e, µ, ⌧} are modified in the �, � expansions as

�̄
�
h !  ̄p p

�
=

����g
SM
h 
pp

+ �gh 
pp

+�gh 
pp

+ �
2
gh 
ppr

+ ��gh 
pp

+ · · ·

����
2

8⇡ |gSMh 
pp

|2
N
 
C M̄h

p
2ĜF M̂

2
 �

3
,

(3.63)

where � ⌘

⇣
1� 4M̄2

 /M̄
2
h

⌘1/2
. The pole masses of quarks and leptons inferred from experi-

mental results define input parameters M̂ and determine the SM Yukawa couplings through

the definition

Ŷ = 23/4M̂ 

q
ĜF . (3.64)

When all SM parameters are defined via a particular input parameter scheme, we denote

�̄! �̂. Known results are

g
SM
h 
pr

= �prŶ 
pr
/

p
2, (3.65)

�gh 
pr

=
Ŷ 
pr

p
2

"
C

(6)
H,kin �

�G
(6)
F

p
2

#
�

1
p
2
C̃

⇤,(6)
 H
pr

. (3.66)

The geoSMEFT results in Ref. [10, 11] lead directly to

�
2
gh 
pr

=
Ŷ 
pr

p
2

"
C

(8)
H,kin � C

(6)
H,kin

�G
(6)
F

p
2

+ (
�G

(6)
F

p
2

)2 �
�G

(8)
F

p
2

#
�

1
p
2
C̃

⇤,(8)
 H
pr

�
1
p
2

"
C

(6)
H,kin �

�G
(6)
F

p
2

#
C̃

⇤,(6)
 H
pr

. (3.67)
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Note that, in the U(3)5 limit, C̃⇤,(6),(8)
 H
pr

are proportional to Y 
pr
. The appearance of the shift

in the measured value of the vev in muon decay, compared to the Lagrangian parameter

is �G(6)
F ,�G(8)

F . The appearance of this shift at tree level is consistent in the dependence

introduced due to the vev shift in the loop level SM decays via Eqn. (E.7).

For the SM decay at one loop (in QCD corrections), the results are given in Ref. [48] in

the limit � ! 1 (and neglecting subleading e↵ects further suppressed by m ). Specifically,

[48, 49]

�gh 
pp

� g
SM
h 
pp

↵
(r)
s CF

8⇡

✓
17 + 6 log

✓
µ̂
2

m
2
h

◆◆
, (3.68)

��gh 
pp

� �gh 
pp
�gh 

pp
. (3.69)

The universal EW corrections to the vev extraction are also given by �gh 
pp

� �g
SM
h 
pp
�GF .

�GF is defined in Eqn. (D.3). This leads to the simple expression for p = r

��h! ̄ 

�̂SM
h! ̄ 

= 1 + 2Re

✓
�gh 

pp

◆
+

2Re

✓
�
2
gh 
pp

◆

�gh 
pp

+ · · · (3.70)

for the decays to  = {u, c, d, s, b, e, µ, ⌧}. Non-factorizable corrections are present in the last

term and also introduce �� e↵ects through operator mixing. These corrections are relatively

suppressed by powers of m .

4 Scheme choice and Numerics

We report numerical results for �(GG ! h), �(h ! AA), and �(h ! GG). As SMEFT

corrections are determined to higher orders in the operator and perturbative expansions,

scheme dependence becomes a more relevant issue of concern for numerical accuracy. Scheme

dependence comes in three forms in the SMEFT: operator basis dependence, perturba-

tive/renormalization scheme dependence, and input parameter dependence. There is operator

basis dependence at each order in the O(1/⇤) expansion, and higher orders in O(1/⇤) also

depend on the scheme choice made at lower orders in O(1/⇤) [60]. We address this scheme

dependence by using the Warsaw basis [61], and the geoSMEFT formalism [9–11] for higher

order corrections in O(1/⇤).

For perturbative/renormalization scheme dependence, we renormalize in a mixed on shell-

MS scheme, use the BFM for gauge fixing, and a FJ tadpole scheme [62]. This approach is

consistent with the background field independence of the geoSMEFT formalism. For numer-

ical evaluations we use the on shell masses given in Table 1.
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Input parameters Value onshell mass Ref.

m̂Z [GeV] 91.1876± 0.0021 [50]

m̂W [GeV] 80.387± 0.016 [51]

m̂h [GeV] 125.15± 0.15 [50]

m̂t (MC/onshell) [GeV] 172.69± 0.3 [50]

m̂b (msbar) [GeV] 4.18± 0.03 4.92 [50, 52, 53]

m̂c (msbar)[GeV] 1.27± 0.02 1.51 [50, 52, 53]

m̂d (curr.-msbar)[MeV] 4.67± 0.48 [50]

m̂s (curr.-msbar)[MeV] 93.4± 8.6 100 [50, 53]

m̂u (curr.-msbar)[MeV] 2.16± 0.49 [50]

m̂⌧ (pole) [GeV] 1.77686± 0.00012 [50]

m̂µ (pole) [MeV] 105.6583755± 0.0000023 [50]

m̂e (pole) [MeV] 0.510�±1.5⇥ 10�10 [50]

ĜF [GeV�2] 1.166 ·10�5 [54, 55]

↵̂EW 1/137.03599084(21) [50]

r↵ 0.0590± 0.0005 [56]

↵̂s 0.1179± 0.0010 [50]

m
↵̂
W 80.36± 0.01 –

r↵
m̂W 0.0576± 0.0008 –

Table 1. Input parameter values used. m
↵̂
W is the value of mW inferred in the {↵̂, m̂Z , ĜF } scheme

using the interpolation formula of Refs. [56–59], while �↵m̂W is the shift in the value of alpha due to
hadronic e↵ects for the {m̂W , m̂Z , ĜF } scheme. The on-shell masses used for the numerical evaluations
to be consistent with past literature conventions are also listed.

�R
m̂W
A

0.12 �R
↵̂ew
A

0.12 �R
↵̂ew(0)
A

0.13

�G
m̂W
F 0.024 �G

↵̂ew
F 0.024 �G

↵̂ew(0)
F 0.024

�R
m̂W

M2
W

-0.041 �R
↵̂ew

M2
W

-0.041 �R
↵̂ew(0)
M2

W
-0.041

�R
m̂W

M2
Z

-0.055 �R
↵̂ew

M2
Z

-0.055 �R
↵̂ew(0)
M2

Z
-0.055

�R
m̂W
�4
2 + �v

v -0.003
�R↵̂ew

�4
2 + �v

v -0.003
�R

↵̂ew(0)
�4
2 + �v

v -0.003

�M
m̂W
1 -0.010 �M

↵̂ew
1 -0.0096 �M

↵̂ew(0)
1 -0.0098

�g
m̂W
1 -0.014 �g

↵̂ew
1 -0.096 �g

↵̂ew(0)
1 -0.097

�g
m̂W
2 -0.0054 �g

↵̂ew
2 0.039 �g

↵̂ew(0)
2 0.033

Table 2. Numerical values of the one loop corrections to various Lagrangian parameters and matrix
element corrections in both input schemes, updated to new input parameter values in Table 1. We only
report gauge independent combinations of parameters. We have chosen µ = m̂h in these evaluations
for the scale dependence associated with the one loop improvement of input parameters and finite on
shell renormalization conditions in the LSZ formula. For operator mixing e↵ects, we set µ = ⇤.
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4.1 ↵ew and the Hadronic resonance region

A significant numerical e↵ect, larger than some of the two loop QCD corrections added in this

work, is the treatment of the hadronic resonance region for the running of ↵EW (0) measured

in the p
2
! 0 Thompson limit. As discussed in Ref. [12, 63–66] this e↵ect is numerically

significant in the SM and in the numerical coe�cients of SMEFT perturbations. Including

this e↵ect leads to the numerical di↵erence [50]

1/↵ew(p
2
⇠ m̂

2
Z) = 128.951± 0.009, while 1/↵ew(p

2
! 0) = 137.035999139(31).

(4.1)

In Hdecay [67, 68], a modified MS subtraction scheme is used, motivated by this large numer-

ical e↵ect, consistent with results developed in Ref. [69, 70]. As this scheme choice is more

numerically significant compared to the size of the two loop corrections we incorporate here

to �(h ! AA), we adjust our numerical results to this convention.

Essentially, the scheme choice used in [67–70] is to use a ↵ew(0) input, instead of ↵ew(m̂Z).

This choice is made to exploit that the hadronic resonance region from bound states in QCD,

preserves QED, and hence naive QED Ward identities relate the wavefunction and charge

renormalization. This is the case if a suitable renormalization scheme and gauge fixing term

is used. As a result, the nonperturbative corrections from the hadronic resonance region are

not present in the SM prediction of �(h ! AA), but are shifted to other observables.

To uniform the SMEFT perturbations to this scheme choice [67–70], we modify our finite

terms as follows. As verified in Ref. [12], the finite terms of the charge and wavefunction

renormalization are related by the preserved QED Ward identity to be

�Ze = �
1
2�Z

Â
,

�Re = �
1
2�R

Â
. (4.2)

We extend �Re and �R
Â

by finite terms to cancel the e↵ect of the running through the

hadronic resonance region. Explicitly, �Re is defined at one loop to be [12, 71, 72]

�Re =
ḡ
2
1 ḡ

2
2

(ḡ21 + ḡ
2
2)

"
7

32⇡2
log

✓
µ
2

m
2
W

◆
�

N
f
c Q

2
f

24⇡2
log

 
µ
2

m̄
2
f

!
+

1

48⇡2

#
, (4.3)

and the charge renormalization is related to the Thompson limit measured value by

�i


4⇡ ↵̂(q2)

q2

�

q2!0

⌘
�i (e0 +�Re)2

q2


1 + Re

⌃AA(m2
Z)

m
2
Z

+r↵

�
. (4.4)

Here r↵ includes corrections form QCD bound states (see Table. 1) [64, 73–75] and ⌃AA(m̄2
Z)

is given explicitly in Ref. [12]. Now, redefining

�Re ! �Re + e0

✓
Re
⌃AA(m2

Z)

m
2
Z

+r↵

◆
+ · · · (4.5)
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numerically absorbs the e↵ect of running through the Hadronic resonance region into the

finite renormalization of the electric charge. So long as the Ward identity derived relation

for finite terms �Re = �
1
2�R

Â
is imposed, this leads to the cancelation of the numerical

e↵ects of running through the hadronic resonance region in �(h ! AA) in the (so-defined)n
↵(0), M̂W , ĜF

o
input scheme. For further discussion see Refs. [76, 77].

The SM predictions from Hdecay are produced in the e↵ective
n
↵(0), M̂W , ĜF

o
scheme.

While the
n
M̂Z , M̂W , ĜF

o
scheme is used in in global studies [5–8] for SMEFT perturbations.

This leads to an important numerical shift in the central value of the SM prediction

compared to a
n
↵(M̂Z), M̂W , ĜF

o
input scheme. This numerical di↵erence should be noted

given that, at leading order, �(h ! AA) / ↵
2
ew, and

(↵↵(0)ew )2 = 5.33⇥ 10�5
, (↵↵(m̂Z)

ew )2 = 6.01⇥ 10�5
, (↵m̂W

ew )2 = 5.72⇥ 10�5
. (4.6)

As the perturbations (or lack of perturbations) in �(h ! AA) numerically is quite dom-

inant in global SMEFT fits, numerical consistency on this issue is critical for precise con-

straints. In what follows we present results in the
n
↵(0), M̂W , ĜF

o
,
n
↵(M̂Z), M̂W , ĜF

o
and

n
M̂Z , M̂W , ĜF

o
schemes for �(h ! AA). Scheme dependence is minimal in the observables

�(GG ! h) and �(h ! GG).

4.2 Uniforming Quark Masses

We uniform the fermion mass inputs to a common MS convention, consistent with Refs. [53,

67, 68, 78]. The top mass is taken as an on shell mass, related to the MS at one loop via

M
i
os,t = m

i(µ)

 
1 +

↵s(M i
os,t)

⇡

✓
log

µ
2

(mi)2
+

4

3

◆!
. (4.7)

For the on-shell charm quark mass used for numerical evaluations, we determine this value

from the relationship [52] free of renormalons at leading order in the 1S scheme

mb �mc = 3.41GeV. (4.8)

Numerical dependence on the light quark masses is negligible. The masses used are listed in

Table 1.

In the case of results reported in Ref. [17] we note that, the running masses are related

to the pole mass via the convention in Ref. [16]

M
i
os,AA = m

i(µ)

✓
1 +

↵s(mi)

⇡
log

µ
2

(mi)2

◆
. (4.9)

Finally, for the lepton pole masses the relationship to the MS masses is [79]

M
i
os,lep = m

i(µ)

✓
1 +

↵ew(mi)

⇡

✓
1 +

3

4
log

µ
2

(mi)2

◆◆
. (4.10)
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4.3 �(GG ! h)

To numerically evaluate �(GG ! h), we use NNPDF3.0 NLO parton distribution func-

tions [80, 81] and ↵s = 0.118. We set all µ scales to m̂h, with the exception of scales associated

with operator mixing, following Ref. [12]. For these choices, and taking the mt ! 1 limit,

the NLO SM cross section for �(GG ! h),
p
s = 13TeV is (for all EW input schemes):

�̂SM,mt!1(GG ! h) = �2
�
SM
mt!1(GG ! h) +�3

�
SM
mt!1(GG ! h) = 31.6 pb, (4.11)

where the analytic expressions for the LO (�2) and NLO (�3) pieces are given in Eqn. (E.1)

and Eqn. (E.4) respectively.

Adding up the full set of SMEFT contributions to the inclusive �(GG ! h) cross section

and dividing by the SM result, we find:

�
↵̂
SMEFT(GG ! h)

�̂SM,mt!1(GG ! h)
' 1 + 289 C̃(6)

HG

+ 289 C̃(6)
HG

⇣
C̃

(6)
H⇤ �

1

4
C̃

(6)
HD

⌘
+ 4.68⇥ 104 (C̃(6)

HG)
2 + 289 C̃(8)

HG

+ 0.85
⇣
C̃

(6)
H⇤ �

1

4
C̃

(6)
HD

⌘
+ 369 C̃(6)

HG � 0.91 C̃(6)
uH � 7.26Re C̃(6)

uG

� 0.60 �G(6)
F � 4.42Re C̃(6)

uG log
⇣
m̂

2
h

⇤2

⌘
� 0.126Re C̃(6)

dG log
⇣
m̂

2
h

⇤2

⌘

� 0.057Re C̃(6)
dG + 2.06 C̃(6)

dH , (4.12)

where coe�cient �G(6)
F stands for the combination

�G
(6)
F =

1
p
2

 
C̃

(3)
Hl
ee

+ C̃
(3)
Hl
µµ

�
1

2
(C̃ 0

ll
µeeµ

+ C̃
0

ll
eµµe

)

!
,

The superscript ↵̂ on the left hand side of the result indicates we used the ↵̂(mZ) scheme,

though we find the result is identical for the other two schemes, at least to the order of accuracy

presented. The right hand side of Eqn. (4.12) is grouped according to the v̄T /⇤ and loop order

of the terms. Specifically, the first line is the O(v̄2T /⇤
2) interference, the second line is the

O(v̄4T /⇤
4) contribution coming from dimension six operators squared and the interference of

dimension eight e↵ects with the SM, and the last three lines are the one loop times O(v2T /⇤
2)

contributions. Not surprisingly, the largest loop contribution is the O(C̃HG ↵
2
s) correction,

which is split roughly evenly between the �(1� z) term and the z > 1 contribution.

These results are di↵erent than what was presented in Ref. [12]. One cause for the

di↵erence is that we are dividing by full NLO SM result in Eqn. (4.12), while in Ref. [12]

we retained only a part of the O(↵3
s) SM in the denominator. The di↵erence, 31.6 pb here

versus 18.15 pb in Ref. [12], explains the approximate halving of all the numbers multiplying

the Wilson coe�cients. The other main di↵erences is that Eqn. (4.12) has the complete

O(C̃HG↵
2
s)mt!1 dependence, consistently calculated in the BFM with the MS scheme, while

the result in Ref. [12] was incomplete and used an ad hoc combination of di↵erent schemes.
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To compare our result, the obvious candidate is SMEFT@NLO [82], a recently advanced

(NLO) SMEFT Monte Carlo operating within the MadGraph [83] framework. However, a di-

rect comparison of our full, analytic result with SMEFT@NLO is complicated by several subtleties.

First, the internal MadGraph classification of processes into tree versus loop-level complicates

scenarios like GG ! h, where the SM and SMEFT contributions fall into di↵erent categories.

Second, the counterterm for operator C̃HG is not part of the current SMEFT@NLO suite, so

terms such as the interference between the lowest order (loop level) SM amplitude and the

NLO C̃HG amplitude (Eqn. (3.42)) cannot be generated.

A further comparison is potentially possible between a subset of terms in this result and

Ref. [21], Table 2. However, the operators in Ref. [21] are, in fact, distinct from ours due

to the choice to subtract v̄2T in the operator definition. Further, the results in Ref. [21] have

rescaled Wilson coe�cient with factors of ↵s being introduced. These di↵erences complicate

compensating for di↵erent scale and PDF choices between this work and Ref. [21]. As no

result equivalent to Eqn. (3.39) is given in Ref. [21], an analytic parton-level comparison is

not possible, so only proton level results can be compared. With these caveats in mind, the

central values do di↵er, though the order of magnitude of the subset of numerical coe�cients

is consistent within errors and after rescaling of the coe�cients to uniform conventions. A

more thorough error analysis on the PDF and scale uncertainty is beyond this work.

4.4 �(h ! GG)

Using inputs in Table 1 and the SM result for �(h ! GG) in the mt ! 1 limit at two loop

order we have

�SMmt!1(h ! G G) = �2 �SMmt!1(h ! G G) +�3 �SMmt!1(h ! G G), (4.13)

where [28, 40–43]

�2 �SMmt!1(h ! G G) ⌘
(↵(r)

s )2 m̂3
h

72⇡3v̂2T
,

�3 �SMmt!1(h ! G G) ⌘
(↵(r)

s )2 m̂3
h

72⇡3v̂2T

 
↵
(r)
s

⇡

!✓
95

4
�

7nF

6
�
�0

2
log

m̂
2
h

µ̂2

◆
.

Numerically, this evaluates to 2.01 + 1.35 = 3.37⇥ 10�4GeV.

Including SMEFT contributions, we have the result

�SMEFT (h ! GG)

�̂SM,mt!1(h ! GG)
' 1 +

24⇡

↵
(r)
s

C̃
(6)
HG +

4⇡

↵
(r)
s hG G

 
12 +

36⇡

↵
(r)
s

!
(C̃(6)

HG)
2 (4.14)

+
24⇡

↵
(r)
s hG G

⇥

 
[�GF +�M1 +�RG ] C̃

(6)
HG +

X

i

Re C̃(6)
i �f

(6)
i

16⇡2

!

+
24⇡

↵
(r)
s

h
h

p

h
44
iO(v2/⇤2)C̃

(6)
HG + C̃

(8)
HG

i
,

– 23 –



where we have defined

hG G ⌘ 1 +�3 �SMmt!1(h ! G G)/�2 �SMmt!1(h ! G G) ⌘ 1.67. (4.15)

In the mt ! 1 limit, the SM QCD correction cancels against the same overall correction for

the C̃
(6)
HG linear term. The rescaling of the local contact operator forms present in the last

term is also the same, leading to another cancelation of hG G . The remaining terms have non-

factorizable corrections that are not included here, so only the SM two loop normalization is

present. See Ref. [26] for recent work on these e↵ects.

Only the second line is input parameter scheme dependent, so scheme e↵ects on the

SMEFT perturbations are quite small. Numerically (using the same inputs and scales as

Eq. (4.12)), the SMEFT result is

�SMEFT

�̂SM,mt!1

' 1 + 640


C̃

(6)
HG

✓
1 +

⇣
C̃

(6)
H⇤ �

1

4
C̃

(6)
HD

⌘◆
+ C̃

(8)
HG

�
+ S1 C̃

(6)
HG + 6.20⇥ 104 (C̃(6)

HG)
2

+ 1.24
⇣
C̃

(6)
H⇤ �

1

4
C̃

(6)
HD

⌘
� 0.87 �G(6)

F � 1.24 C̃(6)
tH + 2.73 C̃(6)

bH (4.16)

� 7.86Re C̃(6)
uG � 4.85Re C̃(6)

uG log
⇣
m̂

2
h

⇤2

⌘
� 0.14Re C̃(6)

dG log
⇣
m̂

2
h

⇤2

⌘
� 0.06Re C̃(6)

dG .

The input parameter scheme dependence of the numerical coe�cients is negligible, with the

largest dependence being
⇣
S
m̂W
1 , S

↵̂ew(m̂Z)
1 , S

↵̂ew(0)
1

⌘
= (�26.8,�26.6,�26.7) . (4.17)

4.5 �(h ! AA)

For these numeric, we again use the input parameters in Table 1 and the related results

in Table 2. Including the two loop QCD SM results at the amplitude level in this manner

gives the following SM h ! AA partial widths for the SM with out chosen numerical input

parameters:

�m̂W
SM (h ! AA) = 1.10⇥ 10�5GeV, (4.18)

�↵̂ew(m̂Z)
SM (h ! AA) = 1.16⇥ 10�5GeV, (4.19)

�↵̂ew(0)
SM (h ! AA) = 1.01⇥ 10�5GeV. (4.20)

where here we retain the two loop squared contribution to the decay width. Interference

corrections of three loop order interfering with the SM one loop amplitude are the same order,

but numerically neglected in the normalization. We include the two loop QCD interference

e↵ects with the tree level operator (leading) interference results in the SMEFT. We neglect
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

M̂W �753 1.41⇥ 105 �321 2041 586 �1093 897 721 �914 1880

↵̂
(M̂Z)
ew �724 1.31⇥ 105 �320 1402 �126 �269 149 �149 95.0 297

↵̂
(0)
ew �794 1.56⇥ 105 �317 1447 �105 �274 138 �138 97.0 227

S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

M̂W 1587 �1843 �91 �26.1 52.3 1.87 �0.51 3.28 24.4 �25.6 13.1

↵̂
(M̂Z)
ew �297 320 �198 31.4 �15.3 1.80 �0.55 3.25 23.9 �25.0 43.6

↵̂
(0)
ew �227 317 �203 26.5 �16.9 1.95 �0.42 3.10 23.5 �24.6 45.2

S22 S23 S24 S25 S26 S27 S28

M̂W �13.7 0.51 �0.28 2 �3.49 �7.5 �3
p
2

↵̂
(M̂Z)
ew �45.7 0.51 �0.28 2 0 0 �

p
2

↵̂
(0)
ew �47.3 4.71 �1.14 2 0 0 �

p
2

Table 3. Numerical coe�cients for SMEFT perturbations to �(h ! AA) in three input parameter
schemes, including two loop QCD interference e↵ects.

these two loop SM interference e↵ects in the other interference terms. The result is

�SMEFT

�̂SM
' 1 + S1

"
f1 +

 
C̃

(6)
H⇤ �

C̃
(6)
HD

4

!
f1 + f2

#
+ S2 f

2
1 + S3 (C̃

(6)
HW � C̃

(6)
HB)

2 + S4 �G
(6)
F C̃

(6)
HB

+ S5 �G
(6)
F C̃

(6)
HW + S6 �G

(6)
F C̃

(6)
HWB + S7 C̃

(6)
HD C̃

(6)
HB + S8 C̃

(6)
HD C̃

(6)
HW + S9 C̃

(6)
HD C̃

(6)
HWB

+ S10 C̃
(6)
HWB C̃

(6)
HB + S11 C̃

(6)
HWB C̃

(6)
HW + S12 (C̃

(6)
HWB)

2 + S13 C̃
(6)
HB + S14 C̃

(6)
HW

+


S15 + S16 log

✓
m̂

2
h

⇤2

◆�
C̃

(6)
HWB +


S17 + S18 log

✓
m̂

2
h

⇤2

◆�
C̃

(6)
W

+


S19 + S20 log

✓
m̂

2
h

⇤2

◆�
Re C̃(6)

uB
33

+


S21 + S22 log

✓
m̂

2
h

⇤2

◆�
Re C̃(6)

uW
33

+ S23Re C̃
(6)
uH
33

+ S24Re C̃
(6)
dH
33

+ S25 (C̃
(6)
H⇤ �

C̃
(6)
HD

4
) + S26 C̃

(6)
HD + S27 C̃

(6)
HWB + S28 �G

(6)
F .

The input scheme dependent numerical results are given in Table 3. Several numerically small

corrections compared to the retained terms are neglected here. These neglected corrections are

generally further suppressed by small (SM) Yukawa couplings. Here the short hand functions

f
m̂W
i ' f

↵̂ew
i for i = 1, 2 are approximately scheme independent,

f
m̂W
1 =

h
C̃

(6)
HB + 0.29 C̃

(6)
HW � 0.54 C̃(6)

HWB

i
, (4.21)

f
m̂W
2 =

h
C̃

(8)
HB + 0.29 (C̃(8)

HW + C̃
(8)
HW,2)� 0.54 C̃(8)

HWB

i
. (4.22)

The above result can be compared to Eq. (5.6) and (5.11) of Ref. [12]. The new result

fixes minor mistakes in the old result and should be taken to supersede it. In addition, a few
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inputs have shifted slightly, leading to small changes in a few of the �M,�R in Table 2. More

significantly, we have included the two-loop squared contribution to �̂SM, which increases it

by O(10%).

4.6 ��SMEFT
h,full

The total width of the SMEFT was calculated systematically in Ref. [84] including all cor-

rections O(1/⇤2) interfering with SM amplitudes in the U(3)5 limit for C̃(6)
i . In this section

we discuss how this result is surprisingly robust against the leading QCD corrections. The

dependence of the total inclusive width on the L
(6) Wilson coe�cients of the SMEFT was

found to be [84]

��SMEFT
h,full

�SMh
' 1� 1.50 C̃(6)

HB � 1.21 C̃(6)
HW + 1.21 C̃(6)

HWB + 50.6 C̃(6)
HG

+ 1.83 C̃(6)
H⇤ � 0.43 C̃(6)

HD + 1.17 C̃ 0(6)
ll

� 7.85 Ŷu
cc

Re C̃(6)
uH � 48.5 Ŷ d

bb
Re C̃(6)

dH � 12.3 Ŷ `
⌧⌧

Re C̃(6)
eH

+ 0.002 C̃(6)
Hq,(1) + 0.06 C̃(6)

Hq,(3) + 0.001 C̃(6)
Hu � 0.0007 C̃(6)

Hd

� 0.0009 C̃(6)
Hl,(1) � 2.32 C̃(6)

Hl,(3) � 0.0006 C̃(6)
He,

(4.23)

using the {M̂W , M̂Z , ĜF , M̂h} input scheme. Here, we have pulled out the explicit Yukawa

factor from the Wilson coe�cient. Using the {↵̂ew, M̂Z , ĜF , M̂h} input scheme, the result is

��SMEFT
h,full

�SMh
' 1� 1.40 C̃(6)

HB � 1.22 C̃(6)
HW + 2.89 C̃(6)

HWB + 50.6 C̃(6)
HG

+ 1.83 C̃(6)
H⇤ + 0.34 C̃(6)

HD + 0.70 C̃ 0(6)
ll

� 7.85 Ŷu
cc

Re C̃(6)
uH � 48.5 Ŷ d

bb
Re C̃(6)

dH � 12.3 Ŷ `
⌧⌧

Re C̃(6)
eH

+ 0.002 C̃(6)
Hq,(1) + 0.06 C̃(6)

Hq,(3) + 0.001 C̃(6)
Hu � 0.0008 C̃(6)

Hd

� 0.0008 C̃(6)
Hl,(1) � 1.38 C̃(6)

Hl,(3) � 0.0007 C̃(6)
He.

(4.24)

In Ref. [84], loop e↵ects (outside the SM loop suppressed decays to G G, AA, Z A) were

neglected. As such, the {↵̂ew(M̂Z), M̂Z , ĜF , M̂h} and {↵̂ew(0), M̂Z , ĜF , M̂h} scheme are iden-

tified. We have used the {↵̂ew(M̂Z), M̂Z , ĜF , M̂h} scheme.10

Numerically important loop contributions to ��SMEFT
h,full /�SMh come about from decays to

b̄ b, G G and AA. QCD corrections to AA decay are small. The leading �(h ! b̄ b) QCD

corrections factorize and are the same as in the SM in the EFT (neglecting m the small

known IR mass parameters), thus they cancel in the SMEFT width expression. Therefore,

10
The use of the results of the Higgs cross section working group for branching ratios e↵ectively shifts some

the numerical results to that of the {↵̂ew(0), M̂Z , ĜF , M̂h} scheme. This correction to the presentation of

Ref. [84] should be noted.
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the � corrections to the decay �(h ! GG) dominate the dependence of the total width on

C̃
(6)
HG. This correction can be incorporated by adding the term

�
0.33

�SMh
⇥ 619 C̃(6)

HG +
0.337

�SMh
(640 + S1) C̃

(6)
HG, (4.25)

to
��SMEFT

h,full

�SM
h

, where S1 refers to the quantity in Eq. (4.17). Using �SMh = 4.100MeV, this

leads to the partial QCD-improved result of the SMEFT width reported in Ref. [84]

��SMEFT
h,full

�SMh
+ (0.58, 0.59) C̃(6)

HG, (4.26)

in the {M̂W , M̂Z , ĜF , M̂h},{↵̂ew(0), M̂Z , ĜF , M̂h} schemes respectively. This correction is

only partial, it neglects many other QCD correction in the partial decay width. Nevertheless

it is the leading correction for the operator C
(6)
HG dependence in the total width. Due to

the numerical dominance of the decay to G G for the operator C(6)
HG in the SMEFT, this is a

relevant numerical improvement.

5 Conclusions

In this paper we have advanced the results in the geoSMEFT formulation of the SMEFT

for �(G G ! h), �(h ! G G), �(h ! AA), �(h !  ̄  ), and the total Higgs width. Pre-

vious literature [1, 10, 12, 84–87] has provided terms in the SMEFT ⇥ loop expansion

of orders O(v̄2T /⇤
2),O(v̄2T /⇤

2(16⇡2)) and O(v̄4T /⇤
4). This work extends the expansion to

O(v̄2T /⇤
2(16⇡2)2) by consistently including the interference of two-loop (NLO in QCD) SM

amplitudes with O(v̄2T /⇤
2) SMEFT terms. Additionally, we have incorporated a set of QCD

loop corrections determined previously in [48, 49] into the characterization of �(h !  ̄  ).

Combining these updated results, we determine the leading loop correction to the Higgs total

width. We have also characterized a more consistent numerical treatment of input parameter

choices and e↵ects, updating past numerical results.
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A SMEFT/geoSMEFT notation and conventions

The SM Lagrangian [88–90] notation is fixed to be

LSM = �
1

4
G

A
µ⌫G

Aµ⌫
�

1

4
W

I
µ⌫W

Iµ⌫
�

1

4
Bµ⌫B

µ⌫ +
X

 

 i /D (A.1)

+(DµH)†(Dµ
H)� �

✓
H

†
H �

1

2
v
2

◆2

�

h
H

†j
d Yd qj + eH†j

uYu qj +H
†j
e Ye `j + h.c.

i
.

The chiral projectors have the convention  L/R = PL/R  where PR = (1 + �5) /2, and the

gauge covariant derivative is defined with a positive sign convention

Dµ = @µ + ig3T
A
A

A
µ + ig2�

I
W

I
µ/2 + ig1yiBµ, (A.2)

with I = {1, 2, 3}, A = {1 . . . 8} , �I denotes the Pauli matrices and yi the UY(1) hy-

percharge generator with charge normalization yi = {1/6, 2/3,�1/3,�1/2,�1, 1/2} for i =

{q, u, d, `, e,H}. The SMEFT Lagrangian is

LSMEFT = LSM + L
(d)

, L
(d) =

X

i

C
(d)
i

⇤d�4
Q

(d)
i for d > 4. (A.3)

The SM Lagrangian notation and conventions are consistent with Refs. [1, 10, 12, 61, 85–

87] with some slight variations. The operators Q
(d)
i are labelled with a mass dimension d

superscript and multiply unknown Wilson coe�cients C(d)
i ; while v̄T ⌘

p
h2H†Hi and C̃

(d)
i ⌘

C
(d)
i v̄

d�4
T /⇤d�4. Due to strong constraints from low energy CP violating observables [91], we

restrict our study to CP even operators.

A.1 geoSMEFT

The geoSMEFT [9–11] is a organization of the physics of the SMEFT in terms of field-space

connections Gi depend on the group indices I, A of the (non-spacetime) symmetry groups and

multiplying composite operator forms fi (which include powers of Dµ
H). The re-organization

is represented schematically by

LSMEFT =
X

i

Gi(I, A,� . . . ) fi,

=
1

2
hIJ(�)(Dµ�)

I(Dµ
�)J �

1

4
gAB(�)W

A
µ⌫W

Bµ⌫
�

1

4
kAB(�)G

A,µ⌫
GB,µ⌫ + · · · .(A.4)

Our notation is such that the covariant derivative acting on the bosonic fields of the SM in

the doublet, using real scalar field coordinates, is given by [92]

(Dµ
�)I = (@µ�IJ �

1

2
W

A,µ
�̃
I
A,J)�

J
, (A.5)
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with symmetry generators/structure constants (✏̃ABC , �̃
I
A,J). See Refs. [10, 92] for the genera-

tors/structure constants for the real scalar representation. The real scalar field co-ordinates

(�I) of the Higgs scalar doublet are introduced as

Ĥ(�̂I) =
1
p
2

"
�̂2 + i�̂1

�̂4 + v̄T � i�̂3

#
, H(�I) =

1
p
2

"
�2 + i�1

�4 � i�3

#
. (A.6)

The field-space connections (or metrics) hIJ , gAB, kAB are functions of �I and depend on

I, the indicies of the generalized canonically normalised Yang Mills (WA) or the gluon fields

(GA). The mass eigenstate fields are �L
,A

A and the mass eigenstate ghost field is defined as

c
A. Explicitly, the field sets are

�I = {�1,�2,�3,�4}, W
A = {W

1
,W

2
,W

3
, B},

�L = {�+
,��

,�, H}, A
A = {W

+
,W

�
,Z,A},

c
A = {cW+ , cW� , cZ , cA}.

Here A = {1 · · · 8}, A,L, I = {1 · · · 4} and the EW couplings are ↵A = {g2, g2, g2, g1}.

The weak/mass eigenstate field and coupling transformations at all orders in the v̄T /⇤

expansion are given by

�
J =

p

h
JK

VKL�
L
, W

A,⌫ =
p
g
AB

UBCA
C,⌫

,

u
A =

p
g
AB

UBC c
C
, ↵

A =
p
g
AB

UBC�
C
,

G
A,⌫ =

p
G

A,⌫
, ḡ3 = g3

p
.

kAB(�) ! (�) �AB and �C is obtained directly from ↵
A and UBC . Note that ↵AW

A,⌫

and g
A,⌫
3 linear terms in the covariant derivative are unchanged by these transformations at

all orders in the v̄T /⇤ expansion.11

The matrices U, V are unitary rotations; i.e. orthogonal matrices whose transpose is

equal to the matrix inverse, and given by

UBC =

2

6664

1
p
2

1
p
2

0 0
i

p
2

�i
p
2

0 0

0 0 c✓ s✓

0 0 �s✓ c✓

3

7775
, VJK =

2

6664

�i
p
2

i
p
2

0 0
1
p
2

1
p
2

0 0

0 0 �1 0

0 0 0 1

3

7775
.

Here the angle is defined via the generalized Yang Mills field space metric

s
2
✓̄ =

(g1
p
g
44

� g2
p
g
34)2

g
2
1[(

p
g
34)2 + (

p
g
44)2] + g

2
2[(

p
g
33)2 + (

p
g
34)2]� 2g1g2

p
g
34(

p
g
33 +

p
g
44)

. (A.7)

11
The matrix square roots of these field space connections are

p
g
AB

= hgABi1/2. hi indicates a background

field expectation value. The inverses are defined via
p
gABpg

BC
⌘ �AC . The field-space connections are

positive semi-definite matrices, with unique positive semi-definite square roots. We also use the hat notation

for the background field expectation values at times. These conventions apply to hIJ , kAB .
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The geoSMEFT masses and couplings are consistent with Ref. [1] and used (at lead-

ing order) in SMEFTsim, see Refs. [84, 86]. For completeness, the canonically normalised

(geometric) masses at O(v̄2T /⇤
2) are

M̄
2
W =

ḡ
2
2 v̄

2
T

4
, (A.8)

M̄
2
Z =

v̄
2
T

4
(ḡ21 + ḡ

2
2) +

1

8
v̄
2
T (ḡ21 + ḡ

2
2) C̃HD +

1

2
v̄
2
T g1 g2 C̃HWB, (A.9)

m̄
2
h = 2�v̄2T

"
1� 3

C̃H

2�
+ 2

 
C̃H⇤ �

C̃HD

4

!#
. (A.10)

The geometric SMEFT couplings with L
(6) corrections are

ē =
g1 g2p
ḡ
2
1 + ḡ

2
2


1�

g1 g2

ḡ
2
1 + ḡ

2
2

C̃HWB

�
, ḡZ =

q
ḡ
2
1 + ḡ

2
2 +

g1 g2p
ḡ
2
1 + ḡ

2
2

C̃HWB, (A.11)

g1 = g1(1 + C̃HB), g2 = g2(1 + C̃HW ) (A.12)

ḡ3 = gs(1 + C̃HG). (A.13)

Bowing to past notational conventions we define �4 = h and use the later symbol in the bulk

of this work.

Our gauge fixing is given by Ref. [92] in the BFM for the SMEFT. For the EW sector it

is

L
EW
GF = �

ĝAB

2 ⇠
G
A
G
B
, G

X
⌘ @µW

X,µ
� ✏̃

X
CDŴ

C
µ W

D,µ +
⇠

2
ĝ
XC

�
I
ĥIK �̃

K
C,J �̂

J
, (A.14)

for the QCD coupling we have analogously the BFM gauge fixing term [93]

L
QCD
GF = �

̂

2 ⇠G
G

A
GA , G

A
⌘ @µG

A,µ
�

ḡ3
p

f

ABC
Ĝµ,B Gµ,C . (A.15)

A.2 Combining SMEFT and SM on shell renormalizations

The manner in which the ultraviolet (UV) divergences of the SMEFT combine with those

of the SM is subtle. The counterterm induced modifications in results depend on the renor-

malization scheme used. The di↵erent schemes at use in the literature mean that results

cannot be casually combined without introducing inconsistent scheme dependence, that can

rise to level of the deviations being searched for and interpreted. We specify our scheme for

combining SMEFT and SM counterterms in some detail here, along with modifications of SM

results.

For UV divergences, one has to define a subtraction scheme for the SM and the SMEFT

e↵ects. The SM is renormalized in a combined on shell/MS subtraction scheme in (d = 4�2✏)

dimensional regularization, following [13, 71, 94, 95]. Renormalization constants

Zĥ, ZÂ
, Z

Ĝ
, Ze, Zg, Zv, Zm2

W
, Zm2

Z
, Zm2

f
, Zm2

h
, (A.16)
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are introduced for the background fields and the couplings (here a 0/r superscript means a

bare/renormalized parameter) via

ĥ
0 = Z

1/2

ĥ
ĥ
(r)

, (A.17)

Â
0
µ = Z

1/2

Â
Â

(r)
µ , (A.18)

Ĝ
0
µ = Z

1/2

Ĝ
Ĝ
(r)
µ , (A.19)

ē
0 = Ze ē

(r)
µ
✏
, (A.20)

ḡ
0
3 = Zg ḡ

(r)
3 µ

✏
, (A.21)

v̄
0
T = Z

1/2
v v̄

(r)
T , (A.22)

and the masses

(m̄(0)
W )2 = Zm2

W
(m̄(r)

W )2, (m̄(0)
Z )2 = Zm2

Z
(m̄(r)

Z )2, (A.23)

(m̄(0)
f )2 = Zm2

f
(m̄(r)

f )2, (m̄(0)
h )2 = Zm2

h
(m̄(r)

h )2, (A.24)

with mf is a mass of fermion field f . Here we restrict our results to renormalization factors

relevant to two loop improving �(G G ! h), �(h ! G G) and �(h ! AA).12 In addition a

tadpole scheme must be defined. We use an FJ tadpole scheme [62]. The one loop correction

(�v) to the vacuum expectation value is fixed by the condition that the one point function

of the Higgs field vanishes, including the factor of �v. As in Ref. [12], each of the renor-

malization constants is expanded as Zi = 1 + �Zi + · · · . Our notation is to use �Zi for

the divergence chosen to cancel in a MS subtraction. The notation �Ri is reserved for the

finite renormalization factors. Again, we generally use � to indicate a loop correction to a

Lagrangian parameter while � is used to indicate a SMEFT perturbation / 1/⇤n.

The full one loop renormalization of L(6) is only systematically defined and known for the

Warsaw basis [61], and is given in Refs. [1, 96–99]. These renormalization results are reported

in the unbroken phase of the theory with manifest SU(2) ⇥ U(1)Y symmetry. The counter

terms map consistently to the broken phase of the theory [100–102]. This is well known in the

SM and also the case in the SMEFT. There are some di↵ering results due to renormalization

scheme dependence in the literature.13

Mass terms in the SMEFT can compensate for powers of 1/⇤ in the numerator of di-

vergent terms, even when dimensional regularization is used. This means that SMEFT UV

counter terms can redefine the running of the SM parameters at the one loop level. In the case

of SMEFT L
(6) running, the only dimensionful parameter in the SM in the unbroken phase

that can appear in the numerator is the Higgs vacuum expectation value v̄T , or equivalently,

the Higgs mass. These “mixing down” results are given completely in Ref. [97] for the full

12
The CKM entries and massive gauge fields are also renormalized, see Ref. [95] for details.

13
In addition, there is some confusion in the literature on how the SMEFT counter terms combine with the

SM counter terms due to the e↵ects of dimension six operators mixing down. It is instructive to compare our

discussion with Refs. [21, 82, 103].
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set of i SM parameters and L
(6). We denote the full set of these renormalization factors for

the i SM parameters by ��ZSM,i.

We defined the set of SM parameters as Pi, and these parameters are renormalized in an

on shell scheme as in Eqns. A.17-A.24. This renormalization is denoted as

P̂
(0)
i = Z

SM
ij P̂

(r)
j , (A.25)

and in the SM at one loop Z
SM
ij / �ij for the parameters of interest in this calculation.

The leading tree level mapping of the ��ZSM
ij renormalization factors to the on shell i SM

parameters is given at one loop by

P̂
(0)
i = Z

SM
ij L

SMEFT
jk P̂

(r)
k , (A.26)

where LSMEFT
jk = �ij+��ZSM

ij +· · · is a function of the ��ZSM
ij and follows from a simple set

of linear algebra based transformations between the unbroken/broken phase SM parameters

at tree level. For example, in the simple case of the Higgs mass, from Ref. [97] one has

L
SMEFT
m2

hm
2
h

=

✓
1 +

1

16⇡2✏

m
2
h

⇤2
[CHD � 2CH⇤] · · ·

◆
(A.27)

so that in the BFM with SMEFT ⇠ gauge fixing [92] one has (to one loop order)

(m̄(0)
h )2 = Z

SM
m2

h
L
SMEFT
m2

hm
2
h

(m̄(r)
h )2, (A.28)

= (m̄(r)
h )2

 
1 +

(3 + ⇠)(ḡ21 + 3 ḡ22)

64⇡2✏
�

Y

16⇡2✏
+

[CHD � 2CH⇤]
16⇡2✏

(m̄(r)
h )2

⇤2

!
,(A.29)

with

Y = Tr
h
NcY

†

uYu +NcY
†

d Yd + Y
†

e Ye

i
. (A.30)

Our notation for Yukawa matricies is defined in Appendix A.

A more involved example is the top quark. Combining an on-shell renormalization with

the SMEFT corrections

(m̄(0)
t )2 = Z

SM
m2

t
L
SMEFT
m2

tm
2
t

(m̄(r)
t )2, (A.31)

= Z
SM
m2

t
(ZSMEFT

[Yu]tt[Yu]tt)
2 (m̄(r)

t )2. (A.32)

The contributions from the SMEFT only follow from the renormalized top Yukawa and are

given in Eqn. 4.3 of Ref. [97]. SMEFT running e↵ects on SM parameters could exist in

principal for Zv, but these corrections are related to Zĥ in the BFM. The latter does not have

��Zĥ corrections in the SMEFT [97], in the unbroken phase of the theory. In fact, a stronger

statement can be made about the lack of such mixing down e↵ects for ��nZĥ based on the

geoSMEFT. See Appendix A.3 for a short proof to this e↵ect.
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In a similar manner as to the m̄t, m̄h examples, all SMEFT corrections to the running of

the SM parameters relevant for renormalizing the one loop SM amplitudes for �(G G ! h),

�(h ! G G) and �(h ! AA) descend from the results in Ref. [97]. The SMEFT corrections

to the SM amplitude in the background field method, and MS, of interest here are to the

gluon coupling and the top quark mass (via the top Yukawa).

The corrections in the SMEFT to these counter terms due to L
(6)

/ ḡ3 are

��Zg = �
m̄

2
h

16⇡2 ✏
(4⇡)✏e�✏ �E

C̃
(6)
HG

⇤2
, (A.33)

Combining SMEFT and SM corrections in a consistent fashion strongly depends on the nor-

malization choice for the parameters introduced in L
(6). If the choice is made that C̃(6)

HG / g3

then the corrections in ��Zg shown scale as g3 and should be retained when considering a

NLO calculation restricted to QCD couplings. Alternatively if C̃(6)
HG is defined with a normal-

ization not / g3, then including these corrections means improving a calculation to include

mixed terms in the SM couplings and SMEFT Wilson coe�cients. Any reasonable choice

can be made in terms of what terms to include and what normalization to choose, so long

as consistency is maintained in the calculation. In the case of the BFM, the corrections

in �Zg in the SM and the SMEFT cancel against the corrections introduced to the gluon

field strength renormalization as the identity ZG Z
2
g = 1 is maintained for the counter terms,

including finite corrections.

�Zmt can be extended with a further correction in the SMEFT that is not due to the gluon

correction to the mass renormalization. SMEFT corrections are also present in ��ZSMEFT
m2

h
.

if one retains terms that are expected to be sizable due to known SM couplings (i.e. known

IR physics of the SM). It is reasonable to choose to retain all of these sets of terms via a

correction Z
2
mt

/Zm2
h
= 1 + 2��Zmt ���Zm2

h
+ · · · . In this case, we note

��Zmt =
1

32⇡2 ✏

m̄
2
H

⇤2


3C⇤

uH
tt

� CH⇤[Yu]tt +
1

2
CHD[Yu]tt � [Yu]tt

✓
C

(1)
Hq
tt

+ 3C(3)
Hq
tt

◆

+CHu
tt
[Yu]tt � 2

✓
C

(1)⇤
qu
tttt

+ cF,3C
(8)⇤
qu
tttt

◆
[Yu]tt + · · ·

�
, (A.34)

��Zm2
h
=

1

16⇡2 ✏

m̄
2
H

⇤2
(CHD � 2CH⇤) , (A.35)

here cF,3 = 4/3 and [Yu]tt is the SM top Yukawa. There are more ��ZSMEFT
mt

terms that we

have suppressed here, as these terms multiply the known small Yukawa couplings of the SM.

A.3 Higgs Wavefunction Renormalization ��n e↵ects in geoSMEFT

Using heat kernel techniques, at one loop order, the Higgs wavefunction renormalization and

mass renormalization can be defined to subtract the divergences present in the theory. The

corresponding divergent terms can be written in this approach at one loop order geometrically

as [104, 105]

Ldiv =
1

64⇡2✏

⇥
�2(rI

r
J
I)RIKJL(D�)

K(D�)L � (rI
rJI)(r

J
rII)

⇤
+ · · · (A.36)
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Here the dimensional regularization is given by d = 4� 2✏, RIKJL is the Riemann curvature

tensor for the scalar metric hIJ and I is an invariant scalar density on the scalar manifold.

Note that

RIKJL = hIMR
M
KJL, (A.37)

= hIM
⇥
@J�

M
LK � @L�

M
JK + �MJN�

N
LK � �MLN�

N
JK

⇤
, (A.38)

and

�IJK =
1

2
h
IL (hLJ,K + hLK,J � hJK,L) , (A.39)

rIrJI =
@
2
I

@�I@�J
� �KIJ

@I

@�K
. (A.40)

The first term in Eqn. (A.36) with indices I = J = K = L = 4 corresponds to Higgs wave-

function renormalization in the geoSMEFT, and in particular possible e↵ects of dimension

d higher dimensional operators mixing down modifying the Higgs wavefunction renormal-

ization proportional to (v2/⇤2)d�4. It is easy to verify that R4444 ⌘ 0. As a result, this

tower of higher dimensional operator mixing down e↵ects exactly vanish at one loop. In the

background field method, this has an important consequence. As a result of the identity

✓p
Zv +

�n
�
m
v

v̄
0
T

◆

div

⌘ �n
�
m
Zĥ, (A.41)

such corrections to the tadpole corrected vev also vanish for all n,m � 1. This argument is

an example of the utility of the geoSMEFT and thinking in terms of field space geometries.

Using an operator approach, at each order, two point functions and four point functions would

have to be laboriously and explicitly evaluated for divergences for each operator, at each mass

dimension in the SMEFT to draw the same conclusion.

The geoSMEFT also makes clear how the mass renormalization of the Higgs is modified

by mixing down e↵ects, introduced to cancel the second term in Eqn. (A.36). All of these

e↵ects are proportional to the Higgs mass, as this is only dimensionful scale in the unbroken

phase of the theory where the renormalization of the SM and SMEFT corrections can be

carried out [100–102].

B One Loop Functions

We define the standard function (⌧p = 4m2
p/m̄

2
h)

A1/2(⌧p) = �2⌧p [1 + (1� ⌧p)f(⌧p)] , (B.1)

taking mt ! 1, A1/2(⌧f � 1) ! �
4
3 +O(1/⌧f ). Similarly, we also define

A1(⌧p) = 2 + 3⌧p [1 + (2� ⌧p)f(⌧p)] , (B.2)
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We also note

f(⌧p) =

8
><

>:

arcsin2
p

1/⌧p, ⌧p � 1

�
1
4


ln

1+
p

1�⌧p
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p

1�⌧p
� i⇡

�2
, ⌧p < 1.

(B.3)

Also used are

I[m2] ⌘
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0
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✓
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◆
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(B.4)

Iy[m
2] ⌘

Z 1�x

0
dy

Z 1

0
dx

m
2

m2 �m
2
h x (1� x� y)

. (B.5)

I, Iy, Ixx for ⌧ � 1 (while restricting our results to top loops) are

I[mp] ⌘ log(
⌧p

4
) + 2

p
⌧p � 1 arctan

 
1p
⌧p � 1

!
� 2, (B.6)

Iy[mp] ⌘
⌧p

2
arcsin2(1/

p
⌧p), (B.7)

Ixx[mp] ⌘
⌧pp
⌧p � 1

arctan

 
1p
⌧p � 1

!
. (B.8)

C Endpoint regulation

Regulation of the z = 1 singularity is done with

(1� z)�1�2✏ =

✓
1

1� z

◆

+

� 2✏

✓
log(1� z)

1� z

◆

+

�
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�(1� z), (C.1)

with plus function definitions
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0
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(x)+
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x
, (C.2)
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◆
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x
. (C.3)

The Altarelli-Parisi [106] splitting function is defined as

pGG(z) = 2 z

✓✓
1

1� z

◆

+

� z +
f1(z)

z2

◆
+
�0

6
�(1� z). (C.4)

A common function of z is f1(z) = z
2
� z + 1. A useful distribution identity is

2

✓
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1� z

◆

+

f1(z)
2
⌘ z pGG(z)�

�0

6
�(1� z). (C.5)
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D Common One loop results

v̂
2
T corresponds to an experimentally measured extraction of the vacuum expectation value

v̄T = v̂T

 
1 +�GF +
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(6)
F
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2

!
, (D.1)

Here
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. (D.2)

The one loop corrections to the vev are [12]

�GF = �
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2
T

4
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2
, (D.3)

with [107, 108] giving
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↵ew

4⇡
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◆
, (D.4)

and the remaining term has been determined in Ref. [72] to be14
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The one loop function �M1 is given by [109]
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. (D.6)

This expression is formally dependent in individual terms on a gauge fixing parameter which

cancels in the common sum of terms present in �M1. See Refs. [109, 109] for details. We

14
Here we have set the evanescent scheme parameter in this result (bEvan= 1) to be consistent with naive

tree level Fierz identities used in the matching. Note the correction posted in the erratta to Ref. [72] dealing

with this issue.
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have set ⇠ = 1 in this expression for brevity of presentation. �v is defined by the condition

T = 0 on [109] (with ⇠ = 1)

T = m̄
2
h h v̄T
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The finite results for the Higgs wavefunction renormalization in the BFM are [109]
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We also use
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This result was successfully verified comparing to the explicit calculation reported in in

Ref. [72]. The Ward identities in the SMEFT in the BFM [9] have been validated at one

loop [13, 93]. These identities also give

�Ze = �
1
2�Z

Â
,

�Re = �
1
2�R

Â
. (D.10)

In the {m̂W , m̂Z , ĜF } scheme one has [12]
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while the {↵̂ew, m̂Z , ĜF } scheme defines [12]
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where

�s✓

s✓̂

=
1� s

2
✓̂

2 (1� 2s2
✓̂
)


�↵

↵
��GF � 2�RMZ

�
. (D.15)

The BFM expressions for �RmW ,mZ are somewhat lengthy and given in the Appendix

Ref. [12].

E ���(GG ! h) and quadratic �2�(GG ! h) results

Explicitly, in the mt ! 1 limit, the leading results for the interference with the SM one loop

amplitude are [2, 28, 110]
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⇡
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and a contribution at �2 order (in the mt ! 1 limit) is
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The results for these ratios reported in in Ref. [12] were further scaled by a correction factor

of (1 + 11↵(r)
s /2⇡)�1

' 1.21, using ↵s ' 0.118 due to the inclusion of the partial NLO result

easily retaining by the two loop matching correction to the SM result. Using Ref. [30] we can

improve this rough approximation (while still in the mt ! 1 limit) using
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Here we used the AP counterterm that accounts for Lm̂t dependence
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E.1 ���(GG ! h)

The contributions to hGG|hi
1
O(v2/⇤2) that need to be added to Eqn. (3.39) follow from the

following perturbations. We express these various terms as [12]

hGG|hi
1
O(v2T /⇤2) = �4[�GF +�M1]

C̃
(6)
HG

v̂T
Kab � 4
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16⇡2 v̂2T

!
v̂T Kab. (E.6)

where C̃i�fi contains all corrections – from operator mixing and O(v̄2T /⇤
2) corrections to

the SM – that are not proportional to C̃
(6)
HG. The �fi are [21, 111, 112] (using ⌧p = 4m2

p/m̄
2
h)
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In practice, contributions from light fermions to the �fi are suppressed since A1/2(⌧f ⌧ 1) ⇠

⌧ ⇠

h
Y 0

ff

i2
, so we will only include e↵ects from the top and bottom quarks. The dipole

operators enter at one loop [21, 111, 112], the only term which enter at O(v2T /16⇡
2⇤2) (again

retaining only the Yt,b terms) are the L
(6) operators C̃uG

tt
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This set of �2
� corrections in the mt ! 1 limit are [12]
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E.2 �
2
�(GG ! h) geoSMEFT terms

The O(v4T /⇤
4) terms are denoted as �2 terms. There are two sets of terms of this order. One

that follows from the “self-square” or “quadratic” term of the tree level C̃HG dependence, and
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a further set of terms that are obtained consistently expanding to �2 order. In this subsection

we report the later set of terms.

For the G G ! h amplitude these corrections are [12]

hGG|�4i
0
O(v4/⇤4) = h

p

h
44
iO(v2/⇤2)hGG|�4i

0
O(v2/⇤2) (E.14)

+ 2
vT [hGG|�4i0O(v2/⇤2)]

2

hG G|�4i
0

+ (hGG|�4i
0
O(v2/⇤2))

���
C̃

(6)
HG!C̃

(8)
HG

where h
p
h
44
iO(v2/⇤2) = C̃

(6)
H⇤ �

1
4 C̃

(6)
HD. A term from the redefinition of v̄T in its relation to

input observables is formally present but suppressed as it cancels when the SM amplitude

is interfered with, which is / 1/v̄T . These dimension eight interference corrections in the

mt ! 1 limit are [12]

��2�(G G ! h)

�2 �̂SMLO,✏!0(G G ! h)
=

24⇡

↵
(r)
s

h⇣
h

p

h
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iO(v2/⇤2) + 2C̃(6)
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⌘
C̃

(6)
HG + C̃

(8)
HG

i
�(1� z). (E.15)

Note that taking the “quadratic” dependence on C̃
2
HG (the square of the � correction

due to this operator) does not generate all terms dependent on C̃
2
HG in the observable. See

Ref. [11] for more discussion.

F ���(h ! GG) and quadratic �2�(h ! GG) results

The results unchanged from Ref. [12] are as follows. The leading order result in the mt ! 1

limit is

�2�(h ! G G)SM ⌘
2

⇡
m̂

3
h lim
✏!1

|�C
SM,mt!1

hGG |
2
, (F.1)

leading to

���(h ! G G)

�2�(h ! G G)SM
⌘
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↵
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HG, (F.2)

and
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⌘ 9
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(C̃(6)
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. (F.3)

F.1 � ��(h ! G G)

As previously reported in Ref. [12], the EW correction is identical to the case of �(GG ! h),

���(h ! G G)mt!1

EW

�2�(h ! G G)SM
=

24⇡

↵s
⇥

 
[�GF +�M1 +�RG ] C̃

(6)
HG +

X

i

Re C̃(6)
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(6)
i
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!
. (F.4)
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In this expression we also include the BFM wavefunction renormalization finite factor of the

final state gluons

�RG =
1

24⇡2

X

f

log

 
m

2
f

µ̂2

!
, (F.5)

as the C̃
(6)
HG operator was not redefined to rescale it by g

2
3. Note that in the BFM this has

the result of the �RG contribution not canceling against a corresponding finite term for g23,

but contributing.

F.2 �
2�(h ! G G) geoSMEFT terms

The ��2 terms for this decay that follow from the geoSMEFT and added to the naive

Quadratic terms are

��2�(h ! G G)

�2�(h ! G G)SM
=

24⇡

↵
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s
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. (F.6)

G ���(h ! AA) and quadratic �2�(h ! AA) results

We define [12]

hh|AAi
1
SM =

�ĝ2 ê
2

64⇡2 m̂W

 
A1(⌧W ) +

X

i

N
i
c Q
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, (G.1)

with  
i a mass eigenstate fermion and the loop functions are reported in Appendix B. For

notational convenience we define a short hand notation

AAA ⌘

 
A1(⌧W ) +

X

i

N
i
c Q

2
i A1/2(⌧ i)

!
. (G.2)

For later convenience we define

A
L
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Directly one has
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leading to the �� contribution
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and a �2 contribution

�
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G.1 �2
��(h ! AA)
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Here we have redefined notation slightly from Ref. [12] and explicitly
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The remaining �fi’s are in Refs. [109, 111] in terms of the one loop functions are
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ĝ
3
2

ê2
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ĝ1

ê2
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Note ĝ2�feW
ss

! �ĝ1�feB
ss
. In the case of up quarks ĝ2�fuW

ss
! ĝ1�fuB

ss
, while in the case

of down quarks ĝ2�fdW
ss

! �ĝ1�fdB
ss
. Here, s = {1, 2, 3} sums over the flavors. The Wilson
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coe�cients are summed with their Hermitian conjugates, and the normalization is such that

�feB
ss

multiplies ReCeB
ss
. The remaining contributions proportional to the SM loop functions

are
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(G.15)

and �fHD = ��fH⇤/4. Here p, r, s run over 1, 2, 3 as flavor indices. Several of these results

have been cross checked against Ref. [113].

These input parameter scheme dependent corrections perturb �(h ! AA) as
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G.2 �
2�(h ! AA) geoSMEFT terms

The O(v4/⇤4) terms in the full three-point function are [11]
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+ 2 hh|AAi
0
O(v̄2/⇤2)|C

(6)
i !C

(8)
i

.

Leading to the ��2 interference term
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Here we have used the short-hand notation

h

p

h
44
iO(v2/⇤2) = C̃

(6)
H⇤ �

1

4
C̃

(6)
HD, C

(6)
HB !

1

2
C

(8)
HB, (G.19)
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H Past literature results

We have included a significant set of numerical and analytic detail in this work to aid repro-

ducibility. However, a complete reproduction of the numerical results requires the following

additional literature expressions:
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• The two loop QCD corrections for C
H
1 (⌧p) is lengthy and directly given in Ref. [17].

Specifically Eqn. 2.8 in this work.

• The explicit expression for �G(8)
F can be derived from Appendix C, Eqn. C.12 in Ref. [11].

• The explicit expression for C(8)
H,kin can be derived from Eqn. 3.10 in Ref. [10].

• The one loop corrections to the W,Z masses in the BFM reported in Appendix A,

Eqns. A.1, A.2 in Ref. [12].
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