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ABSTRACT: We develop Standard Model Effective Field Theory (SMEFT) predictions of
0(GG—h), T'(h—GG), '(h — AA) to incorporate full two loop Standard Model results at
the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultane-
ously report consistent I'(h — W) results including leading QCD corrections and dimension
eight SMEFT corrections. This extends the predictions of the former processes I',o to a
full set of corrections at O(v%/A%(167%)2) and O(v3./A*), where vy is the electroweak scale
vacuum expectation value and A is the cut off scale of the SMEFT. Throughout, cross con-
sistency between the operator and loop expansions is maintained by the use of the geometric
SMEFT formalism. For I'(h — UW), we include results at O(v2./A?(1672)) in the limit where
subleading my — 0 corrections are neglected. We clarify how gauge invariant SMEFT renor-
malization counterterms combine with the Standard Model counter terms in higher order
SMEFT calculations when the Background Field Method is used. We also update the pre-
diction of the total Higgs width in the SMEFT to consistently include some of these higher
order perturbative effects.
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1 Introduction

In this paper we calculate production and decay results of the Higgs boson in the Standard
Model Effective Field Theory (SMEFT) to O(v2/A%(167%)?) and O(v3./A%).! SMEFT per-
turbations to the SM predictions of 0(GG — h), I'(h — AA) need to be characterized to
higher orders in the effective field theory (EFT) due to the relative sensitivity that these
(SM loop induced) processes carry to SMEFT corrections, compared to other (typically SM
tree level) processes [2—4]. This introduces a relevant numerical sensitivity to the treatment
of higher order corrections and interference effects in these processes in future (and current
[5-8]) global SMEFT fits. In addition, we report results in the mg — 0 limit for subleading
corrections up to dimension eight, and including one loop QCD corrections, for I'(h — UW).

To develop such SMEFT results in a reproducible manner, a clear calculation scheme
needs to be adopted for perturbative (h/1672), and SMEFT operator (1/A) corrections. To
systematically calculate in the SMEFT, with fully defined O(v3./A%) corrections for the mass
eigenstate fields requires a characterisation of the low n-point interactions that define key
experimental quantities (mass, mixing angles, coupling and canonically normalized fields).
The geoSMEFT was defined in Ref. [9-12] and is a compact formalism that accomplishes
this task using field space geometry. These geometries are reflective of the underlying field
redefinition invariance present in the SMEFT. We use the geoSMEFT (see Appendix A) to
define O(v3./A*) corrections in this work.

In Ref. [12], it was emphasised that the geoSMEFT — as it is a background field indepen-
dent formulation of the SMEFT expansion — encourages a class of perturbative corrections

Here o7 is the electroweak scale vacuum expectation value, including higher dimensional operator correc-
tions [1], and A is the cut off scale of the SMEFT. G is the canonically normalised gluon in the SMEFT. A is
the canonically normalized photon field in the SMEFT.



to be calculated in a specific background field independent manner using the Background
Field Method (BFM) approach to gauge fixing. The operator and loop expansions are not
formally independent in SMEFT calculations — due to scheme dependence introduced by defin-
ing conventions in leading order results. The geoSMEFT and the BFM are, in this sense,
fundamentally linked when theoretical self consistency is demanded to subleading order(s).
The scheme dependence is unsurprising in principle, as higher order perturbative corrections
always carry a significant scheme dependence. However in the case of the SMEFT, scheme
dependence is not simply numerical. Formulated at the Lagrangian level, the SMEFT is based
on the freedom to redefine the theoretical description with operators being removed or intro-
duced by field redefinitions (or appropriate use of the Equations of Motion). As such, scheme
dependence in the SMEFT is also associated with operator basis dependence, and the specific
parameter dependence present in a calculation. This scheme dependence is also present in
the geoSMEFT, despite its background field independence, when the field space connections,
metrics, etc are expanded out to a particular order in 1/A in a particular operator basis.

In this paper, we extend/replace and update results in Ref. [12] by adding a class of
O(v2./A?(1672)%) corrections to 0(GG — h), I'(h — AA) and I'(h — GG).? This upgrades
these results to include a full set of self-consistent and cross-consistent O(v2./A?(167%)?) and
O(v4/A*) corrections at the observable level. We also report corrections to T'(h — W)
up to dimension eight and including the leading QCD corrections in the mg — 0 limit for
subleading corrections. Finally, we also update the calculation of the total Higgs width in the
SMEFT to include a full set of these corrections.

2 Framework of the calculation

Consider the perturbation due to a SMEFT operator to a dimensionless SM amplitude in an
on shell process (such as 0(GG — h) or I'(h — AA)):

A= (s + 3O g a4 (2.1)

For three-particle on shell processes, such as 1 — 2 decays or 2 — 1 production, derivative
terms O(0?/A?) are trivial within the SMEFT expansion so all corrections scale with o2,/A2.
Thus, each amplitude has a series of SMEFT corrections

Sl Jazn pzn (2.2)

associated with operators in £(4121),

2y is sometimes used to denote the vacuum expectation value in the SM, and the bare version of this pa-

rameter is vg. The inferred vacuum expectation value will necessarily be v when higher dimensional operators
are present, or v when such operator corrections are not present experimentally perturbing measurements. As
such, our use of U7 and v is interchangeable in most results below.



2.1 Terms retained in the calculation(s)

Due to a proliferation of superscripts and subscripts indicating the various expansions present
in these calculations, we introduce a more schematic notation. Amplitudes are expanded as

A= 1 igany (23)
i,
We generally use A to indicate a loop correction while a power of § is used to indicate a
SMEFT perturbation o 1/A? for more condensed notation, and to track the scaling of cross
terms in the expansions. In this work, we focus on improving the treatment of (FF|h)%12, and
(h|FF)O12 where F = {G, A} compared to Ref. [12]. Each of the terms for the amplitudes
in this work scale as

(FFIh) sar ~ A, (FFIh)Ga ~ A%,
<]'7:’h>2)(v2//\2) ~ 9, <}"]-"|h)?9(v4//\4) ~ 52,
(FFIB) oz a2y ~ I A (FFIR) B2 a2y ~ A6,

and so on. Cross terms when the amplitude is squared scale as
(FFIR) sar (FFIR) oz a2y o A%, (2.4)

In this work, we include the corrections (FF|h)%,, and (FF ]h>}9(v2 /A2y as defined above. The
first term leads to corrections of the order

(FFIR A TFFIR) By pazy < A%, (2.5)

which should be retained for consistency at the amplitude squared level when (FF|h)L,,
X<‘7:f|h>}9(v2/A2) terms are retained, as in Ref. [13]. We retain the terms that scale as 0, A,
62, A2, § A in the amplitude expansion in this work. Note that A, A% terms are pure SM
terms. We retain the SM cross terms of order A%, A3 in the amplitude squared. As well as
terms of order § A, § A2, 62, 62 A for the SMEFT corrections in the amplitude squared. All
other higher order terms are consistently dropped.

Note that when constructing the interference term, one could choose to numerically retain
the corrections of the order

(FFIR)Enr (FFIR) o2 a2y o< A6, (2.6)

If this choice is made to improve numerical accuracy for some Wilson coefficient dependence,
then a consistent calculation at the amplitude squared level should also retain the finite and

scheme dependent interference terms following from €/e cancelations that are also generated
by



We report a series of results below retaining different classes of terms to make the numerical
impact of the different sets of corrections clear (see Eqn. 3.17 and Eqn. 3.50). Also note that
this class of terms is the same order as

(FFIM) D2 nz) (FFIR) sar (2.8)

corrections which are also neglected. This class of corrections is particularly sensitive to the
combination of the SMEFT counterterms and the SM counterterms in a consistent calculation
scheme. See further discussion in Appendix A.2.

3 Analytic results

To define the perturbative corrections to next to leading order (NLO), the infrared /ultraviolet
(IR/UV) divergences present in the perturbative expansions have to be canceled/subtracted
in some calculational scheme. Combining these results with SMEFT perturbations requires
some care. We reiterate and incorporate these results to fix notational conventions.

3.1 o(GG—h)
We define the full amplitude for GG — h as [12]

Aggn = (GG sar + (GGIM) & + (GGIR) B a2y + (GGIR) bz a2y + (GGG ary + -
(3.1)

The two loop SM contributions to this amplitude are (GG|h)%,,;. The relevant results for
(GG|h)%,, are known and reported in Refs. [14-20].

The first careful study of interference with (gg\h)%(vz /a2y effects was reported in Ref. [2].
Results for (GG |h>}9(v2 /A2y Are reported in many works, including Refs. [21, 22], in different
calculation schemes than used here. Renormalization results to dimension eight have started
to appear in Refs. [23-25] enabling O(A §2) results to be developed, and recently results of
this order were reported in Ref. [26], also in a different scheme than used here.

One of the central points of this paper, is the need to combine input parameter extrac-
tions, and observables in a consistent calculational scheme up to O(§?) and O(A2%5). We
provide significant calculational details for our results to be reproducible including these
corrections.

3.1.1 (GG|n)L,,; and (GG|h)%,, results for o(GG — h)

The top quark leading contribution to the SM amplitude is expanded in perturbation theory
as [14, 17, 18, 20, 27-30]

. 1 S —€ Oég ge ﬂ—Qe
(GG|h)snr = i 0ab Kab ) (—2) <MMt(f)S)M>. (3.2)
T



Here, a, b are the gluon colors with e polarization vectors, vg is the Euler-Mascheroni constant,
and we have shifted to a MS renormalization introducing p? — fi?/S = ji2e7# /(47) where
S€ = (4m)°e”“7E to simplify finite terms. The factor Ky is

Kap = €a(p1) - 0(p2) 8/2 — p1 - €(p2) p2 - €a(p1), (3.3)
= —(h|hG" Gy leaes)’ /4.

where p; o are the incoming gluon momenta with s = (p; + p2)? = m% and G, is the field
strength tensor of the canonically normalized gluon field.

The normalized, leading order partonic cross section in the SM then depends on (z =
m?/s) as

57 M(GG — h)

oSM(GG — h;z) = ZLO LT 251 2) (3.5)

where (gg|h>%M starts at one loop, so 07 (GG — h;z) scales as A? and will be denoted
A3 2M (GG — h; 2) to emphasize this fact. Stated another way,

O'LO (gg — h; Z) = — hm ‘Chgg s (36)

where C GG 18 the Wilson coefficient of the operator hg Ql‘jy with normalization

(r) —e
Qg S (0)
ACM — M . 3.7
hGG — 7% 167 ( Ia2> t,SM ( )
The corresponding cross section in the SMEFT has a modified Wilson coeflicient, given by
o)
CPMEFT — NCAL + =5+ (3.8)
T

(0)

An expression for M, is given in Ref. [20] and is numerically® in the m; — oo limit [30]

(r) ~2\ "€
SM,mi—oco Qg my (0),m¢—o00
AChgg " " = - 09 167 <ﬂ2> Mgt
(r) 2
Qg 4 ™ 9 1 2 2 3
T [‘3<1+126 — Ly + 5L+ O@)) | (39)

where L,, = log (m2 / [P). The numerical term in this expression in the square brackets is
related to the function commonly defined and used in the literature A;/5(7) = —1.37664 in
the exact top mass limit, where 7, = 47/m7 /2 = 7.59871. Similarly, Ref. [30] gives the exact
higher order expressions to build up

2
] s —€ ag Seﬂ_QE 1
<gg’h>%M = 1045 Kap [<—/Aﬂ> o TMt(SEM, (3.10)

3A factor of four has been absorbed into this expression comparing to MY in Ref. [20].



where (GG|h)%,, scales as a A? perturbation and
s
Mt(jS‘)M = Myv + Myvm + Mg + Myin + My s log (_,&2) . (3.11)

Each of the terms in the decomposition in Eqn. (3.10) given in Eqn. (3.11) is defined in
Ref. [30] and previous literature using a variety of calculation schemes; My, corresponds
to UV poles and related finite terms canceled by UV mass renormalization, My corresponds
to the remaining UV renormalization of the NLO result, and My, and My, s correspond
to finite NLO terms, with the later multiplying the complete scale dependence in Mt(,ls)M‘
Finally, Mp corresponds to finite terms related to IR driven cancelations between these NLO
contributions to 0(GG — h) and 0(GG — hG). Results in the literature must be modified
into the background field method (BFM) to combine consistently with a BFM based SMEFT
calculation and counterterms (i.e. when using the geoSMEFT to define 1/A™ corrections).
We report the required modifications in the following sections.

3.1.2 NLO finite terms

We organise the NLO contributions by defining

—€ 0 qeq—2e]?

(GGI) 2 = 06 [(—2) ‘“54“] (M1~ Moy — My — M) (3.12)
T H 4

so that the UV and IR subtractions and cancelations, which have an intricate interplay in

these results are separately considered. The <gg|h>;’ﬁ renormalized and IR subtracted finite

terms (so defined) are related to matching and running in the EFT. In the m; — oo limit,

the corresponding subset of terms is

(r) -2
90135 = 5 [+ e+ (ot eotos (<2 )] @00 (13)

where Sy = 11N./3 — 2np/3, N. = 3 and [30]

2 40
€ = [_7?1250 + 28 log(z) + 12 (3 — 3} , (3.14)
co = [—;BO log <;;> — 20 log(z) + 8] . (3.15)

Here log(z) = log(—s/m?)/2. The 1la,/4m factor in Eqn. (3.13) is recognised as the two
loop matching contribution to the m; — oo effective operator [14]. This non-log term was
included in Ref. [13]. The log term is an additional contribution present that is not captured
in the two loop matching contribution.® This log dependence also is consistent with naive
expectations as the direct matching contribution at two loops needs to be augmented with

“We thank Babis Anastasiou for confirming some typos in the literature result of Ref. [30] that are corrected
for here.



log terms due to running in the EFT. To further consistently improve these results beyond
Ref. [13] we must also improve the finite terms resulting from the UV and IR subtracted
cancelation between M. ( S) s and the IR contributions from the process o(G G — hg)

Interference of <gg|h>o(v2//\2) with <gg|h>5M leads to the contributions

A%0(GG— h)p & (41 _ g ) co),
A269M(GG — h;z) 2w 07 50 Ac,fgﬂg,’
=6 (11— fo Ly,) Ol (3.16)

The € terms in ¢1, c2 interfere and generate constant finite terms in the (gg|h>§M<gg\h>}9(v2/A2)
interference with the renormalization of the leading order cross section. These contributions
are

A?’(Sa(gg — h) . 3,30 Qg ) 37T2 60 ~(6)
A25 ULO (gg — h Z) - 2 (Re[cl] + RG[CQ] Lmh + 2) CHG‘ (3.17)

3.1.3 UV divergences

The renormaliation of the SM result has the remaining contributions

s\ (24 O 9 1/2 1 ol 0)
Myyv + Myvm = (—/}2> an ZyZg 1/2 i 6ap Kap ;) —— M 5p- (3.18)

The result in Eqn. (3.18) has one overall power of (—8/ ﬂQ)_E due to the conventional
choice in Refs. [20, 30], followed here, to organize the calculation in such a way that we
factorize the complete 1 dependence in M. ( S) s into the terms with "fin” superscripts.

Here we have modified the notation of Ref. [20] to make the mass dimensions of the
corrections clearer.® In the SM, the non-vanishing counter terms (proportional to the QCD
coupling) are Z,, Ly Ly — Zm% does not have QCD corrections in the SM. The neglect of

Z}}l/ 2, Zi/ ? is trivial when only considering their lack of one loop QCD corrections, but when
considering EW corrections the use of the background field method introduces important
differences compared to alternate schemes. In the background field method, EW corrections
from Z 1/2 Zi/ 2 exactly cancel, including finite terms — a helpful simplification.
In Ref. [20, 21, 30] a MS renormalization scheme is chosen so that the mass counter term
is effectively given by
agT) 3

— Nl
A7 CFG’ (3.19)

5The hat superscripts have a dual meaning, indicating a input parameter for the higgs mass and the use of

AZp, = —

MS renormalization for the renormalization scale.

5(GG|h)sa is a function of a dimensionless ratio in the bare masses (with 0 superscripts) 70 =
4(m§0))2/(m§lo>)2. To make the mass dimensions of the corrections clearer and extend to the SMEFT more
easily, we choose to take a derivative with respect to 7 more explicit. The correction comes about due to
Taylor expanding the perturbative corrections within Z2, in the SM, which reduces to past results for the
SM, once correcting for a typo in Ref. [20] in Equation 7.6, which is missing a factor of m; in the numerator.
The notation agrees in the mass dimensions with Ref. [30].



with Cp = (N2 — 1)/2N.. We adopt this MS renormalization for the top quark mass in this
work. Note that in the BFM, the fermion fields are not modified and the counterterm is the
same and gauge independent. To use the results in Ref. [30] we need to account for the finite
terms in the renormalization of the leading order result. The explicit form of the finite terms
due to mass renormalization is given by

s\¢ m)2\ "
Mo =S (= 5) ity o, ((( = <gg\h>}>~M) (3.20)

which leads to a pure finite term, even in the m; — oo limit, that is effectively a matching

(6)

contribution to the leading order operator C';r. The resulting correction is given by

A250(g g— h)ren m
A26 O’LO M(G — h;2)

— 36 x CpC\%),. (3.21)

The form of Z; and Z; depend on the scheme and gauge chosen. In Ref. [20, 21, 30], the
combination of ZQQZG leads to the effective renormalization to cancel the poles in the matrix
element

of?

—e (r)
) s 1 © _ |as'| Bo, S _. (0)
Zg 2 (‘,ﬂ) #0ab Kap o0 Am Mgy = = [44 ?(_[ﬂ) #0ab Kab =55 (Tr) My snr

(3.22)

When considering the calculation in the m; — oo limit, a composite operator is present.
In the unbroken phase of the theory, the operator is HTH GG, The composite operator
renormalization is performed after the gluon wavefunction renormalization is subtracted. In
Ref. [21], and related works, both the gluon field and the composite operator are not further
renormalized due to the calculational scheme chosen, so this subtlety is rather irrelevant. The
full cancelation of the UV pole comes from the renormalization of the strong coupling as a
result.

In the BFM, the relationship between the QCD coupling and wavefunction renormaliza-
tion is p2€ ZgQZg = 1, including finite terms. On the other hand, the composite operator, in
this case, gets its own renormalization counter term [1]

(3.23)

which leads to the same net subtraction of UV poles. In the BFM, this renormalization occurs
with the SM matching contribution to the composite operator interfering with <gg|h)00(v2 JA2)
and the Cig Wilson coefficient itself. This renormalization is given by

o)
(GGIh)e (v2/A2) — ZHG HG(QWQ vh)o- (3.24)

If the choice is also made, as in Ref. [21], to normalize the operator C’ ) ¢ by factors of (g%)?
explicitly, then the renormalization of the composite operator can again vamsh, and a further



renormalization due to the extra factor of the strong coupling is introduced, again leading
to the same net counter term being introduced. This subtlety potentially introduces some
confusion when comparing results in the literature if different normalizations, and calculation
schemes are not carefully defined.

The UV pole canceled by these counter terms also (accidentally) cancels against an IR
contribution with opposite sign. This renormalization introduces a contribution to the cross
section

A25a(gg — h)ren
A269M(G — by 2)

= —68 [ +1- ] e, (3.25)

The finite term as ¢ — 0 comes from the € dependence in the SM amplitude interfered with.

3.1.4 IR divergences

For the IR divergences, it is well known that a universal form is present in the pole structure
for a renormalized one loop amplitude for the production of a Higgs boson from two massless
gauge bosons in the SM. The [31-33] dipole subtraction scheme allows one to write M,EII)R

with a universal (scheme dependent) set of IR poles as [20, 30]

W _ —e7® 2N | fo
M“R_F(l—e) [ 2 T

} My (3.26)
in MS. The number of active flavors is N t = 5. By definition, the IR physics before heavy
states are integrated out is the same as that in the SMEFT with a fixed set of matched Wilson
coefficients. The SMEFT contains additional local contact operator corrections to the SM
interaction terms that modify the UV. In principle, the presence of higher order local contact
operators can modify the IR radiation field present compared to the SM with a point like higgs
particle, leading to further modifications of this result at higher orders. This is the SMEFT
multipole expansion, reflecting possible Higgs substructure, see discussion in Ref. [34, 35].
In practice, this does not occur in the SMEFT to the level of precision we are interested in
calculating in this paper.
The interference of the remaining NLO contributions to GG — h

Kab s\ € aO Seﬂ_Qe 2
0 —— - M 3.27
1 ab U% < /jt2> A IR, ( )

with the tree level insertion of Cé,) 7 gives the subtraction scheme dependent terms

€

A%60(GG — h)sen [ 6 L+ 6 2 40
A26PY 0(GG — hi2) ! o e

(3.28)

"Here we introduced the notation Ly = Ly, + Ly,



Note that the IR poles are the same in the renormalization scheme used in Ref. [20, 21, 30]
and in the BFM. The corresponding SMEFT expression differs from the SM in finite terms as
the € expansion of t( S) ]\? 7% is not squared. The log structure and constant terms differ in
the SMEFT and the SM, even though the IR pole structure is the same, as the higher order

terms in € coming from the SM top sub-loop function are different.

Figure 1. QCD one loop contribution to GG — h.

Adding up all terms gives the NLO results from Fig. 1 of order A250(GG — h)

AQ(SU(QQ — h) 6  Bo 6 o
=0l—a-7 6*—* Ly, +3 5—Bo—3L% + 6Ly | Chl
A6 0(GG = hiz) 2 e + Bo Lin, + 37 45— o + 6Ly | Oyl

(3.29)

Here we have suppressed common factors of (1 — z) in the numerator and denominator.
The € poles Eqn. (3.29) are all of IR origin. These poles cancel against poles in GG — hG in
the limit that the final state gluon is soft/colinear for any local contact operator of the form
hggyggy. There are finite term differences between the SMEFT and the SM involved in this
IR cancelation.

The GG — hG amplitude squared is shown in Fig. 2 and is a modification of results in
Ref. [14]

o (8 + s+ 4 +ut)(1 = 2€) + Fe (1} + 5% + 12 + u?)?
stu

A(GG — hG)|* = (47) 384 o0 |CRILEET |2

)

(3.30)

where Cj,gq is the coefficient of (k|G G)? and s, t, u here are the usual Mandelstam variables
for this 2 — 2 process. Expanding out to the linear in C'ry¢ interference term

76810 (Acf(%é G) (1§ + st + 11+ ut) (1 — 2¢) + e (hf + 5% + 2 + u?)?
stu ’

AS|AGG — hG)|* = —;"2Re e

(3.31)

In the m; — oo limit, this becomes (after renormalizing)®

/2
Z2 o Zl 128 L(:") 2 ,,2¢ 2
AS|AGG — hG)|? = ( >Z2Z ZWZHG (s )" (1—6Lmt+62< Ll >)

L2 ot (Tlg))Q 2 M
md 4 st +t* +ut)(1 — 2€) + e (i + 52+ 12 +u?)? -
« i St)u z€ (7, ) Che- (3.32)

8Here we are dividing by a 1 /2 that we explain below.

,10,



Figure 2. GG — h G Required to cancel IR divergences in the two loop matrix element for GG — h.

Dropping higher order terms and using the BFM cancelation p2¢ Zng. = 1 simplifies the

result. Multiplying by d dimensional phase space,

1 1 1\ m2]' 7% 1
APy = —S5 P ———— | = ——h “1-w)d .
)= oS m€)<s> [ S] /Ow (1 - w)“dw (3.33)
and performing the color averaging and polarization sums yields
1
hG)= ——— hG)|>d®,. .34

Explicitly, while using the definitions in Appendix C for the plus distributions we find
A25o—(gg — hg);R/&ff‘O{Ho(gg — h) is given by

L
6[6—6++6+3L1—6L+—w2+6] 6(1—2)Crq
€ €

€2

+6 [(12 f1(2) (L, — log(2)) — 11f1(2) + 112) fi(z) + 11 (1 — 2)* 2] <1 1 Z) Cua
+
log(1 —2)

+ 144 f3(2) < >+ Cra — 72 f3(2) ﬁ +1— Lmt] <1iz> +C*Hg. (3.35)

Here the distributions of the numerator have been included again that were suppressed
in Eqn. (3.29). Replacing the 1/(1 — z)4 distribution in favor of the Altarelli-Parisi (AP)
splitting function via Eqn. (C.4) results in

L - 1
6[62 + o _ gL+ 48 +3L2 —6Ly — 7 +6] 6(1—2)Crua — 72 f2(2)[1 = Ly, () Cua
€ € € € 1—2z n

+ 6 [(12 f1(2) (L, —log(2)) — 11f1(2) + 112) fi(z) + 11 (1 — 2)* 2] (1 i z> Cue
n

k’g“—@)+ Corcs — 36 2 paa(#) H Crc. (3.36)

1—2

+ 144 f3(2) (
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We follow the splitting functions conventions of Ellis-Stirling-Webber [36] and introduce a
counter term to remove the residual 1/e

€

2 €
A%sopb . = 36 A2%5MEFT(GG s h) [(“) } ()L

. 1+ el(1—¢)? H ~

(1= 20) 2pg6(2)Cra
(3.37)

where pp is a low renormalization scale for the Altarelli-Parisi splitting function, while p
is the higher renormalization scale introduced for renormalizing the SMEFT perturbations.
Comparing to the literature, the Altarelli-Parisi function and counter term conventions differ
between references, in particular Ref. [14, 21, 36, 37]. At times, conventions/schemes are
unspecified.

The counter term is introduced proportional to the leading order SMEFT xSM inter-
ference, as it must be proportional to Cr. Formally, the resulting splitting function is a
SMEFT correction to the SM splitting function, since it depends on the Wilson coefficient
Cre. The introduction of the splitting function represents the factorization of the long and
short distance physics proportional to Cre. Tt is possible to modify the counterterm in-
troduced via the replacement 1/e — 1/e + 1 — L;;,,. This choice simplifies the final answer
obtained, removing all L,;, dependence. As the evaluation of the resulting perturbation of
the cross section is done in fixed order perturbation theory with u ~ myp, the scale p in the
SMEFT AP counterterm is in the end set to a large renormalization scale. Here we forgo this
simplification of the final results, and retain an explicit factor of 1 — L;,,.

We also note that an alternate calculational scheme convention for dipole subtraction
to address L, dependence is used in Ref. [38], based on Ref. [39]. Essentially, this is a
rearrangement of L, in intermediate steps of the calculation Our use of results from Refs. [20,
30] to define the SMEFT corrections to the cross section is similar to (but distinct from)
Ref. [38, 39] in intermediate steps, in that the Catani one loop IR operator multiplies the
full € series with Ly, dependence for the SM leading order cross section. The net real
emission result is consistent with some past literature, including Refs. [38, 40] once schemes
and calculational conventions are appropriately accounted for.

The final result with L is

6[662+i° —6%+%+3Li+ﬁo(1 — Ly,) —6 Ly —w2+6} 5(1 —2)Cra
+ 6 [(12 f1(2) (Lin,, — log(2)) — 11f1(2) + 112) fi(2) + 11 (1 — 2)* ] <1 1 Z) Cra
+
_ . 12 .
+ 144 f2(2) (bgl(l)> Crc + 36 2 log (’2) pgg(2) Cra()
A K
+
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3.1.5 Combined NLO C’;% result

Combining the virtual and real emission, the poles in ¢ and the log squared terms exactly
cancel out. The final result is quite compact
AQ 5USMEFT 1

=12 {WQ + 121} 5(1—z) — 66(1 — 2)> 4 144 f2(2) (1(*‘1(1__22)>+

NTaTY 20
1 ~n2
+ 72 f2(2) [Ly —log (2) — 1] () + 36 2 pgg(2) log (,uz) .
=2/, My
(3.39)

This expression is understood to define the numerical rescaling required to generate the NLO
result from the numerical value of the SM cross section. The limit ¢ — 0 is thus already
taken in determining the SM result, and the distribution in z is averaged over the parton
distribution functions in the SM result.

The full NLO results are different than those reported in Ref. [12] and should be under-
stood to supersede those results. The improvements of the calculation are multifold. The full
e dependence results reported in Ref. [30] leads to modification of finite terms due to cross
terms in the 1/e series and the top sub-loop used in the m; — oo limit. The calculation in
Ref. [12] used the two loop matching calculation onto the heavy top quark effective operator,
but this approximation to the full NLO matrix element in the m; — oo limit cannot capture
a full set of log terms (and descendent finite terms) that are numerically relevant. In addi-
tion, the calculation in Ref. [12] neglected the full two loop matrix element interference with
the tree level SMEFT operator insertion, only retaining a (poor) approximation of the one
loop SM amplitude for interfering with the one loop contribution to the QCD matrix element
proportional to the operator Cirg. Further, the cross section result

2¢ SMEFT as \?
A260 (GG — h) x (H) Cre, (3.40)
has two contributions. The interference of
2 0
(GG|h)snr x (GGIM)e, s (3.41)
and the interference of
(GGIhYysar < (GGIM)g,, - (3.42)

In the m; — oo limit, the leading order result for GG — h in the SM follows from the
same local contact operator that receives an additive SMEFT contribution from Cq. Each
contribution to the cross section can be built up with the full NLO virtual amplitude results
in Ref. [30]. As the same local contact operator is present in the virtual NLO result, and
the € expansion of the SM leading order sub-diagram is properly accounted for, the two loop
result “descends one loop order” in the m; — oo limit so that

. Cna
1 )2, —— T ML . 3.43
mtlgnoo@g\ >5M6%AC}% (G4| >CHG (3.43)
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Similarly,

-0 SM
lim (GGIML,, = (G0, x T2Chee

me—00 Cuc CHG

(3.44)

The rescaling differences in each of these individual expressions cancel in the interference of
the virtual terms. The real emission result is determined at the amplitude squared level in
Eqn. (3.31), where the same rescaling relationship is present in the m; — oo limit. Combining
the two sets of interference terms with their corresponding real emission results leads to the
overall factor of 2 on the left hand side of Eqn. (3.39).%. Such relationships between results
is an example of the utility of the EFT approach. Equation. (3.39) needs to be added to the
terms in Appendix E taken (unchanged) from Ref. [12] and reiterated here for completeness
to build up the full NLO result.

The results of Ref. [12], like most SMEFT literature, report results in a mixed MS
like scheme with on-shell renormalization of ag combined with BFM calculational scheme
results. Here we calculate in a consistent fashion in the BFM, and report the first complete
calculation of this form in the literature in the SMEFT for this process (to our knowledge) in
the MS scheme. The factorization of the results into a AP splitting function still requires the
introduction of a counterterm explicitly introducing dependence on the lower pp scale in the
process. The 3y dependent log proportional to (1 — z) is absent as the counterterms of the
background field gluon wavefunction renormalization cancels against the renormalization of
the strong coupling. This scheme dependence, and the ability to rewrite distribution terms
using Eqn. (C.5) should be noted when comparing results in differing schemes.

3.2 T'(h— Gg)

The matrix elements for h — GG and GG — h are related by crossing symmetry. As in the
case of Higgs production, the O(a?) interference contributions for this decay are

(h1GG)2ns x (hIGG)S, | (3.45)
and
(hGG)su x (hIGG)¢, - (3.46)

Also analogously to GG — h, there are IR divergences cancelled by h — G GG — determined
from the same matrix elements reported in previous sections via crossing symmetry — with
additional contributions from h — G@q in the soft-collinear limit.

Some contributions to this decay are unchanged from the results in Ref. [12] and are
reiterated in Appendix F. Here, we focus on presenting the differences compared to past
results due to the full two loop SM matrix elements now incorporated. We uniform calculation

9Note that the real emission result cancels the IR divergences in both of the interference terms leading to
the 1/2 in Eqn. (3.32).
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conventions in our I'(h — G G) results with those in Section 3. The two loop amplitudes
explicitly presented in Ref. [30] are the key SM input, as in Section 3.

The leading order results for the decay I'(h — G G) follows from C’fé\/[gEF T with the decay
width depending on this Wilson coefficient as

27 3
FSMEFT(h 5 GQ) = my |C}§é\/[gEFT|2’ (3.47)
T
leading to [28, 41]:
ATISM,_(h > gg) = 2 23T - Gg) = 2 Cre
meTree T T2m02 T 3m2e2
3.2.1 TI'(h— G@G) Virtual terms
We organize the NLO contributions as in the case of GG — h, defining
2.F agr) Th}% 1
(hlGGYsn = - — |11+ et (=fo+eze)log| — 2 (h1GG) snt,e—0: (3.48)
leading to the contribution
A2T(h = GG)r  a Choe
275N = 5 (11 =Bo L) 5 ~anr
A7 (h— G Q) Q ur ACgg
=6 (11— By Ly, ) CWS).. (3.49)

The € terms in ¢, co again interfere and generate constant finite terms

AT(h—GG)r  3Bpal’ 37 B0\ A(6)
~ f‘“z](\)/[(h 60 o (Re[cl] + Relca| Ly, + 5 ) Che- (3.50)

The net renormalization (using MS for the top mass dependence) again introduces a contri-

bution to the cross section
A%25T(h — G G)ren
A2TFY (h — GG)

1 ~ ~
= —68 L +1— Ly, — Lmh} ) 136, C0 (3.51)
with an additional factor of Ly, (compared to Eqn. (3.25)) due to the d-dimensional two

body phase space d®s.

3.2.2 TI'(h — GG) Real emission terms

The interference of the two loop, scheme dependent terms with the tree level insertion of Cp¢

gives
A%5T(h se ~ 6 6(Ly+ Ly, —1
A( G G)sen _ 6Cng |—= + (Lt + Lin, = 1) —6L,2hh—6L3r+3L72ﬁt]
A2T3M(h — GG) € €
- 972
+6Cue [GLmh + 6Ly + BoLm, + % — 20} (3.52)
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Leading to a net virtual interference result

ANI(h=GG) _ 1y [_6 LG T Rt Y S Y }
A2TSM (5 = GG) e

€2 €

~ 972
+ 12 Cgqa |:—50 + 6Ly, + (6 + Bo)Ly + % — 1:| . (3.53)

The real emission contributions are a combination of h — GGG in the soft limit and
h — G ¢ q in the collinear limit. The former contribution is

A%T(h = GG G)soft ~ 6 6(Lj, —2Ly+1)+11 972 119
. =12Cghg |- + -+ —
A2T9M(h — GG)

€2 € 2 T3
+12Cu¢ [3LE, + 1Ly, — 1205, Ly + 1212 — 341, ], (3.54)

while the later is

AQ&F(h — g QQ)COZ.
A2T9M(h — GG)

ONp N
3€F + ?F (4L4 — 2Ly, — 9)] . (3.55)

=12Cxq {—

Combining all terms we find

A%L(h—=GG) _ |y 6 [95 Ny sir ] , (3.56)

A2T$M (h — GG)
This result is consistent with the SM NLO result reported in Refs. [40, 42, 43]. See also
Refs. [38, 44].

3.3 TI'(h— AA) two loop QCD corrections
The decay width is given by

&3
~ "

I'(h— AA) p

All of the contributing terms except (h|AA)%,,; were defined in Ref. [12]. We reiterate these
results in Appendix G to make the paper self contained. For example, the leading order result
27, 29, 45] is defined with the notation (7, = 4m2/mj})

—ga &2

1 _
(AN = G

<A1(TW) + Z N!Q? A1/2(Twi)> (RAM A\, (3.58)
The two loop QCD corrections we add in this work are reported in Refs. [16, 17, 46, 47]. The
QCD corrections are given by

n2

S N QP Ay a(ny) [c{f (7,) + C () log (4“2)] AP 4,0,

TpMyp,

gpal) @
2 _ THare

(3.59)
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where

Ay o(7p) C3 (1) = 4y [L+ (1= 27,) (1) + 7 (1 — 1) d f (1) /)] (3.60)

and Aj /(1) CH (1) is lengthy and directly given in Ref. [17]. Note that our definition of
Tp is the inverse of the definition used in Ref. [17]. Numerically, we update the SM result
including these corrections, thereby retaining the corresponding o< A2 interference terms

<h|AA>2SM X <h|~A~A>?9(17%/A2) (3.61)
in the expression for TSMEFT(p — AA)/A2TSM (b — AA).

3.4 T(h—VUVD)

Defining the coupling of the Higgs to fermions with flavors p,r as
Eh,eff = —Gghy hQERQ/)L + h.c. (3.62)
pr P T
the decays to ¥ = {u,c,d, s,b, e, u, 7} are modified in the A, expansions as

2
G+ 0gny + Aghp + 6% gny + 6AGhy + - -

= — _ PP PP ppr PP . A 22 03
T (h = Ppipy) = —2 S |9}5;£4 2 N¢ Mp, \[2GFM¢/B ;
PP

(3.63)

L N1/2
where 8 = (1 — 4M3} /M ,%) . The pole masses of quarks and leptons inferred from experi-

mental results define input parameters Mw and determine the SM Yukawa couplings through
the definition

Yy = 28400/ Gr. (3.64)

When all SM parameters are defined via a particular input parameter scheme, we denote
[ — I'. Known results are

Ghp! = 0prYy V2, (3.65)
pr pr
Yy, (6)
Sgny = 2= |9 — Gp |1 SN (3.66)
oo V2T Ve Ve

The geoSMEFT results in Ref. [10, 11] lead directly to

Y. 6 6 8
529’“11 _ ;ﬁ C(S)_ _ (6)_ 5G%‘) + <5G§5‘))2 _ 5G§7) . 1 6*7(8)
o \/i H kin H kin \/i \/i \@ \/5 u};}i]
(6)
Lo~ 0GR | A+
— Criin — Coy. (3.67)
v2 | V2 | o
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Note that, in the U(3)® limit, C’;gj 6) are proportional to Y. The appearance of the shift
pr pr
in the measured value of the vev in muon decay, compared to the Lagrangian parameter

is 5G§),5G;§). The appearance of this shift at tree level is consistent in the dependence
introduced due to the vev shift in the loop level SM decays via Eqn. (E.7).

For the SM decay at one loop (in QCD corrections), the results are given in Ref. [48] in
the limit § — 1 (and neglecting subleading effects further suppressed by m.). Specifically,
[48, 49]

Agns O syrai”) Cp (17—1—61 <ﬂ2>> (3.68)
9h g og | — , .
p;f };]/,’ 8 m%
5Agh¢ D Aghw (5ghw. (3.69)
PP pp PP
The universal EW corrections to the vev extraction are also given by Agpy D —g;i]pw AGp.
pp pp
AGF is defined in Eqn. (D.3). This leads to the simple expression for p = r
2Re (629h )
or, .z Y
W:1+2Re(6ghw>+pp+~- (3.70)
FEM > PP Aghy

for the decays to ¢ = {u,c,d, s,b, e, u, 7}. Non-factorizable corrections are present in the last
term and also introduce 0A effects through operator mixing. These corrections are relatively
suppressed by powers of m.

4 Scheme choice and Numerics

We report numerical results for (GG — h), I'(h — AA), and I'(h — GG). As SMEFT
corrections are determined to higher orders in the operator and perturbative expansions,
scheme dependence becomes a more relevant issue of concern for numerical accuracy. Scheme
dependence comes in three forms in the SMEFT: operator basis dependence, perturba-
tive /renormalization scheme dependence, and input parameter dependence. There is operator
basis dependence at each order in the O(1/A) expansion, and higher orders in O(1/A) also
depend on the scheme choice made at lower orders in O(1/A) [60]. We address this scheme
dependence by using the Warsaw basis [61], and the geoSMEFT formalism [9-11] for higher
order corrections in O(1/A).

For perturbative /renormalization scheme dependence, we renormalize in a mixed on shell-
MS scheme, use the BFM for gauge fixing, and a FJ tadpole scheme [62]. This approach is
consistent with the background field independence of the geoSMEFT formalism. For numer-
ical evaluations we use the on shell masses given in Table 1.
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Input parameters Value onshell mass Ref.
mz [GeV] 91.1876 £ 0.0021 [50]
mw [GeV] 80.387 £ 0.016 [51]
my, [GeV] 125.15£0.15 [50]
my (MC/onshell) [GeV] 172.69 £ 0.3 [50]
myp (msbar) [GeV] 4.18 £0.03 4.92 [50, 52, 53]
m. (msbar)[GeV] 1.27 £ 0.02 1.51 [50, 52, 53]
mq (curr.-msbar)[MeV] 4.67 +£0.48 [50]
ms (curr.-msbar)[MeV] 93.4+ 8.6 100 [50, 53]
My, (curr.-msbar)MeV] 2.16 £0.49 [50]
mr (pole) [GeV] 1.77686 + 0.00012 [50]
my, (pole) [MeV] 105.6583755 £ 0.0000023 [50]
M. (pole) [MeV] 0.510 — £1.5 x 10710 [50]
Gr [GeV—2 1.166 -10~° 54, 55]
apw 1/137.03599084(21) [50]
Va 0.0590 £ 0.0005 [56]
Qs 0.1179 + 0.0010 [50]
mé, 80.36 & 0.01 -
Va™w 0.0576 = 0.0008 -

Table 1. Input parameter values used. m&W is the value of my, inferred in the {&,rmz, G F} scheme
using the interpolation formula of Refs. [56-59], while Aa™W is the shift in the value of alpha due to
hadronic effects for the {1, Mz, G r} scheme. The on-shell masses used for the numerical evaluations
to be consistent with past literature conventions are also listed.

AR 0.12 ARG 0.12 ARG 0.13
AGTW 0.024 | AGGw 0.024 | AGY© 0024
ARZ}%Z -0.041 AR% -0.041 AR?‘:\;é”V Ez; -0.041
ARAmng -0.055 Mif@w -0.055 Aﬁ&f%% -0.055
—- 44 0003 | ——+ 4% -0.003 | ——+ 22 -0.003
AM™ 0010 | AMX 00096 | AMI©  _0.0098
Agiw 0014 | Agier w0096 | Ag©  0.097
Agiw 00054 | AgSen 0.039 Agger© 0.033

Table 2. Numerical values of the one loop corrections to various Lagrangian parameters and matrix
element corrections in both input schemes, updated to new input parameter values in Table 1. We only
report gauge independent combinations of parameters. We have chosen p = my, in these evaluations
for the scale dependence associated with the one loop improvement of input parameters and finite on
shell renormalization conditions in the LSZ formula. For operator mixing effects, we set pu = A.
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4.1 «., and the Hadronic resonance region

A significant numerical effect, larger than some of the two loop QCD corrections added in this
work, is the treatment of the hadronic resonance region for the running of a gy (0) measured
in the p> — 0 Thompson limit. As discussed in Ref. [12, 63-66] this effect is numerically
significant in the SM and in the numerical coefficients of SMEFT perturbations. Including
this effect leads to the numerical difference [50]

1/ e (p? ~ 1h%) = 128.951 +0.009, while 1/ae,(p* — 0) = 137.035999139(31).
(4.1)

In Hdecay [67, 68], a modified MS subtraction scheme is used, motivated by this large numer-
ical effect, consistent with results developed in Ref. [69, 70]. As this scheme choice is more
numerically significant compared to the size of the two loop corrections we incorporate here
to I'(h — AA), we adjust our numerical results to this convention.

Essentially, the scheme choice used in [67-70] is to use a e,y (0) input, instead of qeyw (7).
This choice is made to exploit that the hadronic resonance region from bound states in QCD,
preserves QED, and hence naive QED Ward identities relate the wavefunction and charge
renormalization. This is the case if a suitable renormalization scheme and gauge fixing term
is used. As a result, the nonperturbative corrections from the hadronic resonance region are
not present in the SM prediction of I'(h — A A), but are shifted to other observables.

To uniform the SMEFT perturbations to this scheme choice [67-70], we modify our finite
terms as follows. As verified in Ref. [12], the finite terms of the charge and wavefunction
renormalization are related by the preserved QED Ward identity to be

AZ, = —§AZy,
AR, = —3AR ;. (4.2)

We extend AR, and AR ; by finite terms to cancel the effect of the running through the
hadronic resonance region. Explicitly, AR, is defined at one loop to be [12, 71, 72]

fH2
! log v — NeQy log M—Q + ! (4.3)
3272 m%/V 2472 mfc 4872 |’

—2-2

9193

AR, = —J192
(G243

and the charge renormalization is related to the Thompson limit measured value by

) o 2 ZAA 2
—q [47T 2(q )] = ileo —ZARe) [1 —i—Rei(QmZ) + Va] . (4.4)
q 2—0 q my

Here Va includes corrections form QCD bound states (see Table. 1) [64, 73-75] and %44(m%)
is given explicitly in Ref. [12]. Now, redefining

EAA 2
AR, — AR, + ¢eg (Re(;nz) + Va> + .- (4.5)
my
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numerically absorbs the effect of running through the Hadronic resonance region into the
finite renormalization of the electric charge. So long as the Ward identity derived relation
for finite terms AR, = —%AR i is imposed, this leads to the cancelation of the numerical
effects of running through the hadronic resonance region in I'(h — AA) in the (so-defined)
{oz(O), My, G F} input scheme. For further discussion see Refs. [76, 77].

The SM predictions from Hdecay are produced in the effective {oz(O), My, G F} scheme.

While the {M 7. My, G F} scheme is used in in global studies [5-8] for SMEFT perturbations.
This leads to an important numerical shift in the central value of the SM prediction
compared to a {a(M 7), My, G F} input scheme. This numerical difference should be noted

given that, at leading order, I'(h — AA) o o2

‘w, and

(202 =533 % 1075, (o222 =601 x 107°,  (a/™W)2 =572 x 1075,  (4.6)

ew

As the perturbations (or lack of perturbations) in I'(h — AA) numerically is quite dom-
inant in global SMEFT fits, numerical consistency on this issue is critical for precise con-
straints. In what follows we present results in the {a(O), My, C’F}, {a(MZ), My, GF} and

{M 7, MW, G F} schemes for I'(h — AA). Scheme dependence is minimal in the observables
0(GG — h) and I'(h — GG).
4.2 Uniforming Quark Masses

We uniform the fermion mass inputs to a common MS convention, consistent with Refs. [53,
67, 68, 78]. The top mass is taken as an on shell mass, related to the MS at one loop via

( 2

Mgy, =m' () (1 + QS(Af"S’t) <log ( L+ ;l)) . (4.7)

mb)

For the on-shell charm quark mass used for numerical evaluations, we determine this value
from the relationship [52] free of renormalons at leading order in the 1S scheme

mp — me = 3.41 GeV. (4.8)

Numerical dependence on the light quark masses is negligible. The masses used are listed in
Table 1.

In the case of results reported in Ref. [17] we note that, the running masses are related
to the pole mass via the convention in Ref. [16]

: : as(m’) >
Mg qq =m' (1) <1 + SW log i) (4.9)
Finally, for the lepton pole masses the relationship to the MS masses is [79]

Loty = M (1) (1 + W (1 + zlog (77’1‘?)2» . (4.10)
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4.3 o(GG — h)

To numerically evaluate 0(GG — h), we use NNPDF3.0 NLO parton distribution func-
tions [80, 81] and a; = 0.118. We set all i scales to 7y, with the exception of scales associated
with operator mixing, following Ref. [12]. For these choices, and taking the m; — oo limit,
the NLO SM cross section for 0(GG — h), /s = 13 TeV is (for all EW input schemes):

GSMmy—00(GG — h) = A200M . (GG — h) + Ao (GG — h) = 31.6 ph, (4.11)

where the analytic expressions for the LO (A?) and NLO (A3?) pieces are given in Eqn. (E.1)
and Eqn. (E.4) respectively.

Adding up the full set of SMEFT contributions to the inclusive (GG — h) cross section
and dividing by the SM result, we find:

UgMEFT(gg — h)
a-SM,m,gﬁoo(gg — h)

~1+289CY),
_ _ 1 - _ _
+280 Cig (Cl5 ~ 1 o) +4.68 x 104 (C{L)? + 289 Cl7)

- 1 - _ - -
+0.85 (Ol - 1 i0h) + 369 Clyl, — 0.91CL) — 726 Re C)

) 2
(6) ~(6) m ~(6) m
— 0.600GY) — 442 Re C(F) log (5 ) — 0126 Re C¢) log (57 )
—0.057Re C¥) +2.06 CF). (4.12)
where coefficient 5G§,§) stands for the combination
569 = L (e@e® Lo, ey
\/§ ee i 2 peept eppe

The superscript & on the left hand side of the result indicates we used the &(myz) scheme,
though we find the result is identical for the other two schemes, at least to the order of accuracy
presented. The right hand side of Eqn. (4.12) is grouped according to the o /A and loop order
of the terms. Specifically, the first line is the O(v%/A?) interference, the second line is the
O(v%/A*) contribution coming from dimension six operators squared and the interference of
dimension eight effects with the SM, and the last three lines are the one loop times O(v2,/A?)
contributions. Not surprisingly, the largest loop contribution is the O(C’HG a?) correction,
which is split roughly evenly between the §(1 — z) term and the z > 1 contribution.

These results are different than what was presented in Ref. [12]. One cause for the
difference is that we are dividing by full NLO SM result in Eqn. (4.12), while in Ref. [12]
we retained only a part of the O(a?) SM in the denominator. The difference, 31.6 pb here
versus 18.15pb in Ref. [12], explains the approximate halving of all the numbers multiplying
the Wilson coefficients. The other main differences is that Eqn. (4.12) has the complete
O(C'Hgag)mt_)oo dependence, consistently calculated in the BEM with the MS scheme, while
the result in Ref. [12] was incomplete and used an ad hoc combination of different schemes.
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To compare our result, the obvious candidate is SMEFT@NLO [82], a recently advanced
(NLO) SMEFT Monte Carlo operating within the MadGraph [83] framework. However, a di-
rect comparison of our full, analytic result with SMEFT@NLO is complicated by several subtleties.
First, the internal MadGraph classification of processes into tree versus loop-level complicates
scenarios like GG — h, where the SM and SMEFT contributions fall into different categories.
Second, the counterterm for operator C’HG is not part of the current SMEFT@NLO suite, so
terms such as the interference between the lowest order (loop level) SM amplitude and the
NLO Cp¢ amplitude (Eqn. (3.42)) cannot be generated.

A further comparison is potentially possible between a subset of terms in this result and
Ref. [21], Table 2. However, the operators in Ref. [21] are, in fact, distinct from ours due
to the choice to subtract 9% in the operator definition. Further, the results in Ref. [21] have
rescaled Wilson coeflicient with factors of o being introduced. These differences complicate
compensating for different scale and PDF choices between this work and Ref. [21]. As no
result equivalent to Eqn. (3.39) is given in Ref. [21], an analytic parton-level comparison is
not possible, so only proton level results can be compared. With these caveats in mind, the
central values do differ, though the order of magnitude of the subset of numerical coefficients
is consistent within errors and after rescaling of the coefficients to uniform conventions. A
more thorough error analysis on the PDF and scale uncertainty is beyond this work.

4.4 T(h— GG)

Using inputs in Table 1 and the SM result for I'(h — GG) in the m; — oo limit at two loop
order we have

M, (h—=GG) =AM, (h—=GG)+ATSM, (h— GG), (4.13)

m¢—00 m¢—00 m¢— 00

where [28, 40-43]

(M2 43
2 "SM _ (as’)*my,
A Fmt—wo(h - gg) - 79 7r3ﬁ% )
(r)\2 .~ 3 () A9
3SM _ (as) iy, [ as 95  Tnp  Po,

Numerically, this evaluates to 2.01 + 1.35 = 3.37 x 10~* GeV.
Including SMEFT contributions, we have the result

T h 241 ~ 4 N
Lsuprr(h>69) | (7;(7}% + T 12 + —3?7; (€102 (4.14)
FSM,mﬁ\oo(h — GG) as as KhG G Qg
(6)
27 (aGr+ AM, + ARg) € O 4 Z ReCVALY
(r) 1672
Qs " KhGg
247 44 ~ ~
Ol {<\/ﬁ >O(v2/A2)Cl('?)G + C}%} :
Qg
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where we have defined

kngg =14+ A3TM . (b= GG)/A TSM, (h— GG) = 1.67. (4.15)

me—r0Q me—r0Q0

In the my — oo limit, the SM QCD correction cancels against the same overall correction for
the C’gg; linear term. The rescaling of the local contact operator forms present in the last
term is also the same, leading to another cancelation of kg g. The remaining terms have non-
factorizable corrections that are not included here, so only the SM two loop normalization is
present. See Ref. [26] for recent work on these effects.

Only the second line is input parameter scheme dependent, so scheme effects on the
SMEFT perturbations are quite small. Numerically (using the same inputs and scales as
Eq. (4.12)), the SMEFT result is
Lsmprr 4 g4 [aggg (1 + (- 10;[6;)) i c;;g] 81 G0 4 6.20 x 104 (G102
FSM,mt—mo 4

_ 1. _ _
+1.24 (CRL - 7C10)) —0870GY — 124Cf3) +2.73C) (4.16)

~9
my

)
~ 7.86Re C\Q) — 485Re C7) log (1) ~ 0.14Re CfY) log (F

~(6
e )~ 0.06Re C{¢).

The input parameter scheme dependence of the numerical coefficients is negligible, with the
largest dependence being

4.5 T(h— AA)

For these numeric, we again use the input parameters in Table 1 and the related results
in Table 2. Including the two loop QCD SM results at the amplitude level in this manner
gives the following SM h — AA partial widths for the SM with out chosen numerical input

parameters:
o (h — AA) = 1.10 x 107° GeV, (4.18)
T3 tm2) (- AA) = 1.16 x 1075 GeV, (4.19)
15 @ (h — AA) = 1.01 x 107° GeV. (4.20)

where here we retain the two loop squared contribution to the decay width. Interference
corrections of three loop order interfering with the SM one loop amplitude are the same order,
but numerically neglected in the normalization. We include the two loop QCD interference
effects with the tree level operator (leading) interference results in the SMEFT. We neglect
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S1 Sa S3 Sy S5 Se S7 Sy Sy S1o0
My | —753 | 1.41 x 10> | —321 | 2041 | 586 | —1093 | 897 | 721 | —914 | 1880
aM2) | 794 | 1.31 x 105 | —320 | 1402 | —126 | —269 | 149 | —149 | 95.0 | 297
al9) | =794 | 1.56 x 105 | —317 | 1447 | —105 | —274 | 138 | —138 | 97.0 | 227

S11 S12 Si3 S14 Sis Sie Si7 S1g | St Sa0 Sa1
My 1587 | —1843 | —91 | —26.1 52.3 1.87 | —0.51 | 3.28 | 244 | —25.6 | 13.1
4 (Mz) —297 320 —198 314 —15.3 ] 1.80 | —0.55 | 3.25 | 23.9 | —25.0 | 43.6

ew

a0 | —9227 | 317 | =203 | 265 | —16.9 | 1.95 | —0.42 | 3.10 | 23.5 | —24.6 | 45.2

ew

S22 Sa3 Soa | Sa5 | So Sar Sag
My | —1371051 | —028 | 2 | —3.49 | —7.5 | —3v2

aM2) | 4571051 | —0.28 | 2 0 0 | —v2
a9 | 473 a7 | —114 | 2 0 0 | —v2

Table 3. Numerical coefficients for SMEFT perturbations to I'(h — AA) in three input parameter
schemes, including two loop QCD interference effects.

these two loop SM interference effects in the other interference terms. The result is
~ o)
f1+<0§16) ZD fit fo

1 550G O, + 550G C0 s + 57 O, C8) + 5Ol C0 + 50 O8O0
+ 810 Ciiys ity +Su ity ity + 812 (Cily ) + S1 Cigly + S Gy

2 A2\ -
+ [515+S1610g <A2 )] Cﬁ?{)/VB + [5174‘51810% <A2>} CI(/S)

A 2 5 2
{519 + Sao log ( e )] Re Cféé [521 + S99 log < e )} Re cffV)V + Sh3 Re cl(gé[

oI
+ Sa4Re Oy + a5 (Clyly = —12) + a6 Oy + Sor Cly s + 2 0G .
33

The input scheme dependent numerical results are given in Table 3. Several numerically small
corrections compared to the retained terms are neglected here. These neglected corrections are
generally further suppressed by small (SM) Yukawa couplings. Here the short hand functions
fimW ~ ff‘ew for ¢ = 1,2 are approximately scheme independent,

T
SSMEFT 14 ) + o f2 4+ S5 (Clpy — Cip)? + 840G CY),

Y

=[Gl +0.20 O, — 05403 ] (4.21)
g [C‘S) +0.29 (Ciphy + Ciphya) — 054 OSI)/VB] : (4.22)

The above result can be compared to Eq. (5.6) and (5.11) of Ref. [12]. The new result
fixes minor mistakes in the old result and should be taken to supersede it. In addition, a few
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inputs have shifted slightly, leading to small changes in a few of the AM, AR in Table 2. More
significantly, we have included the two-loop squared contribution to I'sum, which increases it
by O(10%).

4.6 oryEET

The total width of the SMEFT was calculated systematically in Ref. [84] including all cor-
rections O(1/A?) interfering with SM amplitudes in the U(3)® limit for 6’56) . In this section
we discuss how this result is surprisingly robust against the leading QCD corrections. The

dependence of the total inclusive width on the £®) Wilson coefficients of the SMEFT was
found to be [84]

5FSME'FT N _ _ N
il = 1150 o —121¢%) +1.21C8) , +50.6C10,
h

+1.83C%) — 04360 41176/

—7.85Vu ReClY) — 4857V, ReCS) —12.37, ReCY) (4.23)
ce bb T
5(6)
a.) T 006 Chg 3)

5(6) +(6)
—0.0009Cyp) () —2.32C) o

+0.001C® —0.0007C)

u

+0.002C¢)
—0.0006 CY),

using the {MW, My, G Jak Mh} input scheme. Here, we have pulled out the explicit Yukawa
factor from the Wilson coefficient. Using the {&ew, Mz, Gp, M}, } input scheme, the result is

SMEFT
oLy, i

(6 ~(6 ~(6 (6
—pgr— = 1140 ClO —1.22¢8) +2.89C) L +50.6C1

+1.83C%) 40340 4070/

—7.85Vu ReClY) — 4857V, ReCf) —123V, ReCY) (4.24)
ce bb T

+0.002C5) (| +0.06C5) o +0.001 ) — 0.0008C1p)

—0.0008Cy) () — 1.38Cy) ) — 0.0007 Cfp).

In Ref. [84], loop effects (outside the SM loop suppressed decays to GG, AA, Z.A) were
neglected. As such, the {dew(MZ), My, Gr, Mh} and {Gew(0), My, Gr, Mh} scheme are iden-
tified. We have used the {&ew(MZ),MZ, Gr, Mh} scheme.!?

Numerically important loop contributions to 5Ff%£f T/ I‘SM come about from decays to
bb, GG and AA. QCD corrections to A.A decay are small. The leading I'(h — bb) QCD
corrections factorize and are the same as in the SM in the EFT (neglecting m,; the small

known IR mass parameters), thus they cancel in the SMEFT width expression. Therefore,

10The use of the results of the Higgs cross section working group for branching ratios effectively shifts some
the numerical results to that of the {Gew (0),MZ,GF, Mh} scheme. This correction to the presentation of
Ref. [84] should be noted.
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the A corrections to the decay I'(h — GG) dominate the dependence of the total width on
C’g% This correction can be incorporated by adding the term

033
M

0.337
M

619 C%), + (640 + 5,) C9) (4.25)

6FSMEFT

to —p&ir—, where Sy refers to the quantity in Eq. (4.17). Using PM = 4.100 MeV, this
h
leads to the partial QCD-improved result of the SMEFT width reported in Ref. [84]

SMEFT
ory fall

~(6
e +(0.58,0.59) C'%).. (4.26)
in the {MW,MZ,GF,Mh},{dew(O),MZ,@F,Mh} schemes respectively. This correction is
only partial, it neglects many other QCD correction in the partial decay width. Nevertheless

it is the leading correction for the operator CS)G dependence in the total width. Due to

the numerical dominance of the decay to GG for the operator Cg% in the SMEFT, this is a

relevant numerical improvement.

5 Conclusions

In this paper we have advanced the results in the geoSMEFT formulation of the SMEFT
for 0(GG — h), T'(h — GG), T'(h — AA), T'(h — 1), and the total Higgs width. Pre-
vious literature [1, 10, 12, 84-87] has provided terms in the SMEFT x loop expansion
of orders O(v2/A?), O(v%/A%(167%)) and O(v4/A?). This work extends the expansion to
O(v2./A?(1672)%) by consistently including the interference of two-loop (NLO in QCD) SM
amplitudes with O(v2,/A?) SMEFT terms. Additionally, we have incorporated a set of QCD
loop corrections determined previously in [48, 49] into the characterization of T'(h — ¥ ).
Combining these updated results, we determine the leading loop correction to the Higgs total
width. We have also characterized a more consistent numerical treatment of input parameter
choices and effects, updating past numerical results.
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A SMEFT/geoSMEFT notation and conventions

The SM Lagrangian [88-90] notation is fixed to be

1 1 1 —
Lom = = GG = W W — 1B BY + ) iy (A1)
Y

1 .\2 o .y ‘
+(D,H)'(D"H) — A (HTH - 21)2) - [HTJ dYyqj + H9uY, q; + HVEY, 0; + h.c} :

The chiral projectors have the convention vy /r = P gt where Pr = (1 + 75) /2, and the
gauge covariant derivative is defined with a positive sign convention

Dy = 0y, +igsTH ALl +igac’ W /2 + igryi By, (A.2)

with I = {1,2,3}, A = {1...8} , ¢! denotes the Pauli matrices and y; the Uy(1) hy-
percharge generator with charge normalization y; = {1/6,2/3,—1/3,—1/2,—1,1/2} for i =
{q,u,d,l,e, H}. The SMEFT Lagrangian is

d
ol
Ad—14

Lsmerr = Lsv + L9, £ = Z di) for d > 4. (A.3)

The SM Lagrangian notation and conventions are consistent with Refs. [1, 10, 12, 61, 85—
87] with some slight variations. The operators di) are labelled with a mass dimension d
superscript and multiply unknown Wilson coefficients Ci(d); while v = /(2HTH) and C’i(d) =
C -(d)z_}é'ﬁ*4 /A%, Due to strong constraints from low energy CP violating observables [91], we

(2
restrict our study to CP even operators.

A.1 geoSMEFT

The geoSMEFT [9-11] is a organization of the physics of the SMEFT in terms of field-space
connections G; depend on the group indices I, A of the (non-spacetime) symmetry groups and
multiplying composite operator forms f; (which include powers of D*H). The re-organization
is represented schematically by

LSMEFT

= Sh1s (@) (D) (D"0) = J9an(@O)WAWH — Lhas(6) G Gy + -+ (A.4)

Our notation is such that the covariant derivative acting on the bosonic fields of the SM in
the doublet, using real scalar field coordinates, is given by [92]

(D') = (08— WAL ), (A.5)
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with symmetry generators/structure constants (€4, &I{L 7)- See Refs. [10, 92] for the genera-
tors/structure constants for the real scalar representation. The real scalar field co-ordinates
(¢1) of the Higgs scalar doublet are introduced as

o n 1 2 +ip1

. A.
¢g — i3 (A4.6)

1| ge+id 1
H(¢I)—\/§ $4+UT—iq33]’ H(¢I)—\/§

The field-space connections (or metrics) hry, gap, kas are functions of ¢; and depend on

I, the indicies of the generalized canonically normalised Yang Mills (WA) or the gluon fields
(G?). The mass eigenstate fields are ®~, A4 and the mass eigenstate ghost field is defined as
¢, Explicitly, the field sets are

¢1 = {61, b2, b3, $a}, wh = (W w2 w? B},
of = {®", &, x, H}, AA = (W W, 2, A,
= {ew+, ew-,cz,cat.

Here 2 ={1---8}, A,L,I ={1---4} and the EW couplings are as = {g2, 92, 92,91 }-

The weak/mass eigenstate field and coupling transformations at all orders in the vp/A
expansion are given by

JK
o7 =Vh' Vg ok, WA = g P U AC,
WA = /G BUse . ot = S BUReBC,
GY = kG, g3 = g3 VK-

kas(¢) — K(¢)dap and BC is obtained directly from o and Upc. Note that ay WA
and g? " linear terms in the covariant derivative are unchanged by these transformations at
all orders in the v7/A expansion.!!
The matrices U,V are unitary rotations; i.e. orthogonal matrices whose transpose is

equal to the matrix inverse, and given by

o n
Lk 00 G 00
I — = L

Upo = |vave O O Vi = |v2 vz 00
0 0 ¢ s5 0 0 —10
0 0 —s5¢5 00 01

Here the angle is defined via the generalized Yang Mills field space metric

_ (91 \/§44 - 92\/§34)2 (A7)
AT+ (VI + BI(v3*)? + (VI = 201909 (VT + )

" The matrix square roots of these field space connections are VOig = (gaB)Y/?. () indicates a background

S

N

field expectation value. The inverses are defined via \/EAB Viso = 54 . The field-space connections are
positive semi-definite matrices, with unique positive semi-definite square roots. We also use the hat notation
for the background field expectation values at times. These conventions apply to h’7, kas.
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The geoSMEFT masses and couplings are consistent with Ref. [1] and used (at lead-
ing order) in SMEFTsim, see Refs. [84, 86]. For completeness, the canonically normalised
(geometric) masses at O(v%/A?) are

~2-92
My = 2L (A8)
2 U% L 9, 9 o A 1 o_ _ =
Mz =~ (@ +335) + = g0 o7 (91 +95) Cup + 519192 Cnws, (A.9)
C - C
mi = 205 |1 — 3% +2 (cHD - T)] : (A.10)

The geometric SMEFT couplings with £ corrections are

_ 9192 9192 A~ /o 9192

e 1—— = CHWB:| , g +g —|- CHWB; A1l
NGEY [ 9 + 93 ' NGE (A1)

g1 = g1(1 + Cug), g2 = g2(1 + Crw) (A.12)

33 = gs(1+ Cra). (A.13)

Bowing to past notational conventions we define ¢4 = h and use the later symbol in the bulk
of this work.
Our gauge fixing is given by Ref. [92] in the BFM for the SMEFT. For the EW sector it
is
£

L&Y = g;f GAGP,  GX = oW — L WEWPH 4+ 2556 b 3407, (A14)

for the QCD coupling we have analogously the BFM gauge fixing term [93]

ﬁggD - 5 gﬂl gﬂa gﬂ = 8ﬂgﬂ“u - \g/SE fﬂgc gANﬂ; gf'L7C' (A15)

A.2 Combining SMEFT and SM on shell renormalizations

The manner in which the ultraviolet (UV) divergences of the SMEFT combine with those
of the SM is subtle. The counterterm induced modifications in results depend on the renor-
malization scheme used. The different schemes at use in the literature mean that results
cannot be casually combined without introducing inconsistent scheme dependence, that can
rise to level of the deviations being searched for and interpreted. We specify our scheme for
combining SMEFT and SM counterterms in some detail here, along with modifications of SM
results.

For UV divergences, one has to define a subtraction scheme for the SM and the SMEFT
effects. The SM is renormalized in a combined on shell/MS subtraction scheme in (d = 4 — 2¢)
dimensional regularization, following [13, 71, 94, 95]. Renormalization constants

23y 24 2, Zey Zgs Zo, Do Doy Zon2s Zot (A.16)
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are introduced for the background fields and the couplings (here a 0/r superscript means a
bare/renormalized parameter) via

B = 2, h), (A.17)
0 _ ~1/2 a(r

A = 77 A, (A.18)
Gl = Zé/ 26, (A.19)
e = Z, e pe, (A.20)
B = 2,35 1, (A.21)
o = z1/2 5\, (A.22)

and the masses

_( _(r (0 o
(M) = Zye (M2, (D)2 = 2, (MG, (A.23)
() = Z,p ()2, ()2 = 2, (1)), (A.24)

with m; is a mass of fermion field f. Here we restrict our results to renormalization factors
relevant to two loop improving o(GG — h), I'(h — GG) and I'(h — AA).'? In addition a
tadpole scheme must be defined. We use an FJ tadpole scheme [62]. The one loop correction
(Av) to the vacuum expectation value is fixed by the condition that the one point function
of the Higgs field vanishes, including the factor of Av. As in Ref. [12], each of the renor-
malization constants is expanded as Z; = 1 + AZ; + ---. Our notation is to use AZ; for
the divergence chosen to cancel in a MS subtraction. The notation AR; is reserved for the
finite renormalization factors. Again, we generally use A to indicate a loop correction to a
Lagrangian parameter while ¢ is used to indicate a SMEFT perturbation o 1/A".

The full one loop renormalization of £(%) is only systematically defined and known for the
Warsaw basis [61], and is given in Refs. [1, 96-99]. These renormalization results are reported
in the unbroken phase of the theory with manifest SU(2) x U(1)y symmetry. The counter
terms map consistently to the broken phase of the theory [100-102]. This is well known in the
SM and also the case in the SMEFT. There are some differing results due to renormalization
scheme dependence in the literature.'

Mass terms in the SMEFT can compensate for powers of 1/A in the numerator of di-
vergent terms, even when dimensional regularization is used. This means that SMEFT UV
counter terms can redefine the running of the SM parameters at the one loop level. In the case
of SMEFT £ running, the only dimensionful parameter in the SM in the unbroken phase
that can appear in the numerator is the Higgs vacuum expectation value vp, or equivalently,
the Higgs mass. These “mixing down” results are given completely in Ref. [97] for the full

12The CKM entries and massive gauge fields are also renormalized, see Ref. [95] for details.

1311 addition, there is some confusion in the literature on how the SMEFT counter terms combine with the
SM counter terms due to the effects of dimension six operators mixing down. It is instructive to compare our
discussion with Refs. [21, 82, 103].
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set of ¢ SM parameters and £®). We denote the full set of these renormalization factors for
the i SM parameters by A§Z5M:,

We defined the set of SM parameters as P;, and these parameters are renormalized in an
on shell scheme as in Eqns. A.17-A.24. This renormalization is denoted as

(2

50) _ SM pr)
P =7 Pj , (A.25)

and in the SM at one loop ZZ-*?M o 0;; for the parameters of interest in this calculation.
The leading tree level mapping of the AéZ{?M renormalization factors to the on shell ¢ SM
parameters is given at one loop by

P = Z3M [SMEFT P, (A.26)

7

where Lfé\/l EFT — 0ij —I—A(SZ;EM +- - is a function of the Ad ZZ%M and follows from a simple set
of linear algebra based transformations between the unbroken/broken phase SM parameters
at tree level. For example, in the simple case of the Higgs mass, from Ref. [97] one has

1 m?
LS]X[E%LFT N <1 * 1672 Tg (Crip = 2Cpal - ) (420

so that in the BFM with SMEFT ¢ gauge fixing [92] one has (to one loop order)

7 = 23 LT ) e
_ _ — (1)\2
(M2 B+&(@ +395) Y [Cup —2Cho] (My,”)
= (my,”) <1+ 647m2e 1672¢ 1672¢ A2 (A-29)
with
stmﬁn+mﬁm+wﬂ. (A.30)

Our notation for Yukawa matricies is defined in Appendix A.
A more involved example is the top quark. Combining an on-shell renormalization with
the SMEFT corrections

(m")? = 2o} LR (i), (A.31)
= Z3M (2B )P ()2, (A.32)

The contributions from the SMEFT only follow from the renormalized top Yukawa and are
given in Eqn. 4.3 of Ref. [97]. SMEFT running effects on SM parameters could exist in
principal for Z,, but these corrections are related to Z; in the BFM. The latter does not have
A6Z; corrections in the SMEFT [97], in the unbroken phase of the theory. In fact, a stronger
statement can be made about the lack of such mixing down effects for A" Z; based on the
geoSMEFT. See Appendix A.3 for a short proof to this effect.
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In a similar manner as to the m¢, my examples, all SMEFT corrections to the running of
the SM parameters relevant for renormalizing the one loop SM amplitudes for (GG — h),
I'(h - GG) and I'(h — AA) descend from the results in Ref. [97]. The SMEFT corrections
to the SM amplitude in the background field method, and MS, of interest here are to the
gluon coupling and the top quark mass (via the top Yukawa).

The corrections in the SMEFT to these counter terms due to £ g3 are

=2 ~(6)
ASZ, = —lg:i’;e(mr)ﬁe*wckf, (A.33)

Combining SMEFT and SM corrections in a consistent fashion strongly depends on the nor-
malization choice for the parameters introduced in £(%). If the choice is made that CN'S%; X g3
then the corrections in AdZ, shown scale as g3 and should be retained when considering a
NLO calculation restricted to QCD couplings. Alternatively if C’g% is defined with a normal-
ization not o g3, then including these corrections means improving a calculation to include
mixed terms in the SM couplings and SMEFT Wilson coefficients. Any reasonable choice
can be made in terms of what terms to include and what normalization to choose, so long
as consistency is maintained in the calculation. In the case of the BFM, the corrections
in AZ, in the SM and the SMEFT cancel against the corrections introduced to the gluon
field strength renormalization as the identity Zg Zg = 1 is maintained for the counter terms,
including finite corrections.

AZ,,, can be extended with a further correction in the SMEFT that is not due to the gluon

correction to the mass renormalization. SMEFT corrections are also present in AdZ 5112‘4 BET
h

if one retains terms that are expected to be sizable due to known SM couplings (i.e. known
IR physics of the SM). It is reasonable to choose to retain all of these sets of terms via a
correction ant/Zmi =1+4+2A07Z,,, — AéZm}z + ---. In this case, we note

1wy, . 1 (1) 3)
A(Sth - wﬁ 3011%{;] - OHD[Yu]tt + §CHD[Yu]tt - [Yu]tt <CI;Itq + 301;{;1
+Cru[Yulu — 2 <0511u)* + CF,3CE]8U)*> Yauler + - } , (A.34)
t titt tttt
1 m%
A2z = fgpze p2 (G0 = 2CH0). (4.35)

here cp3 = 4/3 and [Y, ]y is the SM top Yukawa. There are more A(SZ%%EFT terms that we
have suppressed here, as these terms multiply the known small Yukawa couplings of the SM.

A.3 Higgs Wavefunction Renormalization Aé" effects in geoSMEFT

Using heat kernel techniques, at one loop order, the Higgs wavefunction renormalization and
mass renormalization can be defined to subtract the divergences present in the theory. The
corresponding divergent terms can be written in this approach at one loop order geometrically
as [104, 105]

1

Laiw = 6472e

[—2(V!'V'T)Rix (D)X (D)E — (VIV,I)(VIVIT)] +---  (A.36)
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Here the dimensional regularization is given by d = 4 — 2¢, Ryxjr, is the Riemann curvature
tensor for the scalar metric h;y and Z is an invariant scalar density on the scalar manifold.
Note that

Rixsr = hiuRY, ., (A.37)
= hiv [0 — O e + TONT Ik — TINT D] (A.38)
and
Iy = %hm (hrsx +hoxg —hikL), (A.39)
ViV,T = i K 0L (A.40)

857057 " o

The first term in Eqn. (A.36) with indices I = J = K = L = 4 corresponds to Higgs wave-
function renormalization in the geoSMEFT, and in particular possible effects of dimension
d higher dimensional operators mixing down modifying the Higgs wavefunction renormal-

ization proportional to (v2/A%)4~4.

It is easy to verify that Rqq44 = 0. As a result, this
tower of higher dimensional operator mixing down effects exactly vanish at one loop. In the

background field method, this has an important consequence. As a result of the identity

An m
<\/Z1, Lo ”) = A" 7, (A1)
b/ div

such corrections to the tadpole corrected vev also vanish for all n,m > 1. This argument is
an example of the utility of the geoSMEFT and thinking in terms of field space geometries.
Using an operator approach, at each order, two point functions and four point functions would
have to be laboriously and explicitly evaluated for divergences for each operator, at each mass
dimension in the SMEFT to draw the same conclusion.

The geoSMEFT also makes clear how the mass renormalization of the Higgs is modified
by mixing down effects, introduced to cancel the second term in Eqn. (A.36). All of these
effects are proportional to the Higgs mass, as this is only dimensionful scale in the unbroken
phase of the theory where the renormalization of the SM and SMEFT corrections can be
carried out [100-102].

B One Loop Functions
We define the standard function (7, = 4m2/m3)

Al/z(Tp) = =27, [14+ (1 = 7,) f(7p)] (B.1)
taking m; — oo, A1/2(Tf >1) — —% + O(1/7¢). Similarly, we also define

Ai(rp) =243 [1+ (2 — 1) f(1)] (B.2)
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We also note

arcsin® \/1/7,, Tp > 1

f(mp) = 1o, 17 (B.3)
1
-3 ln1—ﬁ_m , Tp <L
Also used are
1 2 _ 520 (1 — 1 2
I[mZ] = / dx log m m}ﬁf( ?) jx[m2] = / dz _3:2m ,
0 my 0 m? —mi x (1 —x)
(B.4)
1—z 1 2
7,[m?] = dy | d mn . B.5

Z,Zy,Zys for 7 > 1 (while restricting our results to top loops) are

Zimy| = log(%) +2,/7, — 1 arctan ( ! > -2, (B.6)

Tp— 1
I,[m,) = 121’ arcsin®(1/\/7), (B.7)
1
Loyzlmy] = ~ " arctan . (B.8)
P T —1 =1

C Endpoint regulation

Regulation of the z = 1 singularity is done with

1-9¢ 1 log(1 — 2) 1
- =(——) —2e(—=>"2) - —5(1— 1
(1-2) <1—z n ‘ 1—-=2 n 266( 2), (C.1)
with plus function definitions
1 1 _
[[aal) [ 1010, )
0 ()4 0 x
1 1 _
e <zog(x>> - (@) — F(0))logla) s
0 X + 0 X
The Altarelli-Parisi [106] splitting function is defined as
1 fi(2)\ | Bo
= —) - —(1 —2). A4
poot) =25 ((75) =+ 250 ) + oo ()
A common function of z is fi(z) = 22 — z + 1. A useful distribution identity is
1
2 <1 > f1(2)? = z2pgg(2) — @5(1 —2). (C.5)
-z, 6
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D Common One loop results

@% corresponds to an experimentally measured extraction of the vacuum expectation value
5G9
U =70 , D.1
T T < NG (D.1)
Here
1 ~ ~ 1/~ ~
06 = -8 v oy - <C’ w +Cy > : (D.2)
\/Q ee B 2 peep eppe

The one loop corrections to the vev are [12]

52 ALVEE
AGp = —LALVEL | S2ew (D.3)
4 2
with [107, 108] giving
25
ALVGLL — CZ;:’ <w2 - 4) : (D.4)

and the remaining term has been determined in Ref. [72] to be!?

(77”71% +T7L%l (2771% N.—5 (27?112/‘/ —|—m2Z)) +4 (_4mélNc+2m%V +m%))

2 A TVLL
ALV =
o 1672 m3 2
3(mj — 2m3 m? 2 mi N (i3 — 4m 2
4 (M, 2h ‘;V)log</f2>+ t (1 h . t)log<'u2>
872 UT(mh miy) my 472 mh v
3((mj, (m7y — 2miym3) + 2m (miy, — m%)) i
+ 2,22 2 mZ (D-5)
8m2m2 v (mi, — mZ) my
3y (my, (M, — 2m%) +mj, (Tmgymy — Gmw) +4 7 m%)) log ( fi
8m2mi vg(mi — mi, ) (mi, — 2Z) m,
The one loop function AMj is given by [109]
AR, Av (V37 —6)) 1 91 393 mi
AM; = — —£ 4+6A )1
1<2+v+ 1672 " lem2 \4 T g TOA)Ios e
L (Bt + (& + N (@) +22) ) 0.
1672 \ 4 4

This expression is formally dependent in individual terms on a gauge fixing parameter which
cancels in the common sum of terms present in AM;. See Refs. [109, 109] for details. We

“Here we have set the evanescent scheme parameter in this result (bEvan= 1) to be consistent with naive
tree level Fierz identities used in the matching. Note the correction posted in the erratta to Ref. [72] dealing
with this issue.
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have set £ = 1 in this expression for brevity of presentation. Awv is defined by the condition
T =0on [109] (with £ =1)

1 5 Av 12 1 12
T = m} hor —; [ 1672 v+3)\<1+log [“D+g§ <1+log MQD (D.7)

167 m,?l 4 W

L2 o2 1 2 1+1 L

exat+a) (1o 5] ) -2 M (10 | £
my

=2 —2 ~2 2

gsm I 1 Z

22 W (1431 1+31 )

(1 og[mw})ugﬁgz ot (1+see 7))

mp,
The finite results for the Higgs wavefunction renormalization in the BEFM are [109]

167 ARy, =2 (6~ V3 — T[] — 2 T.lm ])+292<(jm[m%v]_1) (1—3m§V> _T[m?,

9 an m; o, - _ 1 3’ _
> i, Ne—gi — 375 | log < g) + (g% + 33) (jx[mQZ] - 5) (1 -=£ 2Z> — I[m
m o my

22 2m2 m2
+) 0 Nc<1 + (1 + m;”) Tlm3] — m;" log (_;") ) (D.8)
" h h h
We also use
—2_2 -2 NYQ? ~2 1
9195 7 p c &y f
AR ; = — 1 1 — | - —=. D.9
AT (G +gd) | 16m2 " <m%v) +z¢: 1272 % (mi) 2472 (D-9)

This result was successfully verified comparing to the explicit calculation reported in in
Ref. [72]. The Ward identities in the SMEFT in the BFM [9] have been validated at one
loop [13, 93]. These identities also give

AZ, = —%AZ A

AR, = —3AR;. (D.10)

In the {ruy, Mz, Gr} scheme one has [12]

Agl . AGF + ARmW mW ARmz

- — , D.11
a1 2 m‘z/v mQZ ( )
A A
92 _ Gr + ARy, , (D.12)
g2 2
while the {é&ew, Mz, G r} scheme defines [12]
A A A
gL _CC_ 2% (D.13)
a1 é ¢
Ao _Le B3 (D.14)
g2 € 8§
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where

As 1—s? A«
SA” —2(1_22) — ~AGP —2ARu, |- (D.15)
6

The BFM expressions for AR, m, are somewhat lengthy and given in the Appendix
Ref. [12].

E Ado(GG — h) and quadratic §°0(GG — h) results

Explicitly, in the m; — oo limit, the leading results for the interference with the SM one loop
amplitude are [2, 28, 110]

2
AQASM,mtA)OO N h = 1 ‘AOSMthOO
L0 (44 ) 1 hGG )

(a2

=~/ E.1
5767717%’ (E.1)

while

ASG(GG — R)[CIL] 24
AS]\(dm —00 )[ HG] (:; CHG’ (E2)
A267MmD0 GG s hy ol

and a contribution at 62 order (in the m; — oo limit) is

25 ~(6) \2 \2
P o (5] el -

The results for these ratios reported in in Ref. [12] were further scaled by a correction factor
of (1+11 agr)/27r)_1 ~ 1.21, using as ~ 0.118 due to the inclusion of the partial NLO result
easily retaining by the two loop matching correction to the SM result. Using Ref. [30] we can
improve this rough approximation (while still in the m; — oo limit) using

3, _SM (r) (r) £2 (r)
A — O [47’1’2 + 22] 6(1 . Z) + Mlog <8) ( 1 ) _ 110(5 (1 - 2)3
+

A2G9M 50 47 T 12 1—2z 27
30 2 120 log(1 — z
# 20 po(e) tog (£ ) + 25 202 (=) (.1
s i 1-2 n

Here we used the AP counterterm that accounts for L,,, dependence

(r) 2\ €
3o 7
A250131%75 = A2ULO e—)O(gg — h) oy KN%) ]

L(1+e)l(1—e¢)?
I'(1 — 2¢)

X

(47)° [1 +1- 2Lmt] 2 pgg(2). (E.5)
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E.l1  Ad0(GG — h)

The contributions to (GG |h>%9(v2 /a2y that need to be added to Eqn. (3.39) follow from the
following perturbations. We express these various terms as [12]

c©) Cinfi \ .
(GG1M) bz azy = —AAGE + AM] 1L Ky — 4 (1 e (E.6)

where C; Af; contains all corrections — from operator mixing and O(72/A?) corrections to
the SM — that are not proportional to C’}?g The Af; are [21, 111, 112] (using 7, = 4m2/mj)

Afun = =Y asm Ayp(ry), (E.7)
f
Afup = 1 3 aum A(ry), ()
f
1
Afsar = —= Y aum Ay p(ry), (E.9)
V2 5

In practice, contributions from light fermions to the A f; are suppressed since A, j5(7p < 1) ~

2
T ~ {YW- } , so we will only include effects from the top and bottom quarks. The dipole
i

operators enter at one loop [21, 111, 112], the only term which enter at O(v3./1672A?) (again

retaining only the Y} terms) are the £6) operators Cug and édgz
t bb

VE g3

82 vp

(GGIM) b2 a2y O <Aqu CucVit + Afac CaaVm + h.c.> Ka, (B

where

fi? 4
Afuc = [—1 + 2 log (mQ) + log ()} — 27, [m?] — I[m?),

h Tt

Afga = [—1 + 2 log (:;22) + 2 log (4>] — 1 f(p) —4i/1 —bel/z(ﬁ,). (E.12)

h Tb
This set of A%§ corrections in the m; — oo limit are [12]

A255(GG — h) 24n

AZGEI (GG ) ol

16 72

[AGE + AM;] CP) 4 Re (Ci Af@')] 5(1—2). (E.13)

E.2 4%0(GG — h) geoSMEFT terms

The O(v}/A*) terms are denoted as 62 terms. There are two sets of terms of this order. One
that follows from the “self-square” or “quadratic” term of the tree level Crre; dependence, and
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a further set of terms that are obtained consistently expanding to 62 order. In this subsection
we report the later set of terms.
For the GG — h amplitude these corrections are [12]

(GG160) St any = (VR Yoz a2 (GG160) bz a2, (E.14)
UT[<gg’¢4>O@(v2/A2)]2
(G G|pa)0

0
+ (<gg‘¢4>o(v2//\2)) é}?gﬂégg
where <\/E44>O(v2 JAZ) = CN'I(L?)D — ié’ﬁ?;j. A term from the redefinition of v in its relation to
input observables is formally present but suppressed as it cancels when the SM amplitude
is interfered with, which is o 1/07. These dimension eight interference corrections in the
m¢ — oo limit are [12]

ARG —h)  24n
A2G7Y (GG —h) Q)

44 ~ ~ ~
(VA Youe nny + 20505 ) Cltl + Cigb] 61— 2). (B.15)

Note that taking the “quadratic” dependence on C’?{G (the square of the 0 correction
due to this operator) does not generate all terms dependent on CN'?_IG in the observable. See
Ref. [11] for more discussion.

F AT(h — GG) and quadratic §°T'(h — GG) results

The results unchanged from Ref. [12] are as follows. The leading order result in the m; — oo

limit is
2 Nz oo
A’L(h = G G)sy = — i, lim |ACG56" P, (F.1)
leading to
ASL(h = GG)  _ 247 ~(6)
AT(h—GG)su o Chc (F.2)
and
2
2F(h -GG 4 ~(6) \2
AT(h = GG)sm =9 agr) (CHG) . (F.3)

F.1 A'(h—Gg)
As previously reported in Ref. [12], the EW correction is identical to the case of 0(GG — h),

AST(h — GG) "™ 247
A2D(h—=GG)sm  as

Re YA
x([AGF+AM1+ARg +Z ° s s ) (F.4)
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In this expression we also include the BFM wavefunction renormalization finite factor of the
final state gluons

2
my

1
ARg = 512 zf:log (,&2 > , (F.5)

as the C’gé operator was not redefined to rescale it by gg. Note that in the BFM this has

the result of the ARg contribution not canceling against a corresponding finite term for g% ,

but contributing.

F.2 52F(h — GG) geoSMEFT terms
The A% terms for this decay that follow from the geoSMEFT and added to the naive

Quadratic terms are
AS’T(h — G G) _ 24m
AD(h — GG)sm ag)

44 ~ ~ ~
(VB Youe ney + 20555 ) Gl + ] (F.6)

G AT(h — AA) and quadratic 6°T'(h — AA) results

We define [12]
64 72 my

e p2 )
(h|AAY Yy = —2° (Amw) +Y NQ? A1/2<w>) (RA AL, (Gl)

with 1* a mass eigenstate fermion and the loop functions are reported in Appendix B. For
notational convenience we define a short hand notation

Apan = (Al(TW) + Z N Q} A1/2(T¢i)>- (G.2)

For later convenience we define

~o ~(6 o ~(6 A . ~(6
s _ [0+ RO 510 o
S (93" | |
Directly one has
A[,(6)
(A o2 a2y = =5 2 (A Ay)", (G.4)
leading to the Ad contribution
~(6 ~(6 ~(6
AST(h > AN o Redaa [Cyp | City  Chilvp ©5)
A?Dgp(h — AA) [Aaal® | 9% 93 g1ge |’
and a 62 contribution
. - - 2
O°T(h — AA)  1024n* [C) Ty Clws 6
A2Tgp(h — AA)  [Aaal? | §F 33 91 92 '
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G.1 A%I(h— AA)

(A b2 02y = (RICTIAA) 2 Mt g

A Ao (Af&? Ci Afi
(7

) ip (hAM A0
(G.7)

Here we have redefined notation slightly from Ref. [12] and explicitly

(6) 1 _
lcAan? = =

é? [6GF 504} 2.1¢% 6M32,

V2 oo U167 ap2,

. . LN a2 A(6)
201(Agag1 — Ag1g2)> 9 Cyp
+ (| AR4 + AGp + — -
< g2 (QEM)Q (QEM)Q
25(Agi o — Ag2g1>> #C
a1 (GM)? (g3M)?
A N A N A ~(6)
(91 — 93)(Agag1 — A9192)> 9192 Chv i
— | ARA+ AGF + = -
( 0192(g5M)? (95M)?

+ <ARA + AGFp +

The remaining A f;’s are in Refs. [109, 111] in terms of the one loop functions are

A A . mQ . R . T
%AfHWB = (=393 +4)) log<ﬂ£> + (4N — 33) I[miy) — 4G5 T, [m3y] — 243 [1—1—108; (TW)]

+ & (24 3mw) + 682 — w) Z,[miy], (G.9)
9 5 16 o
éigAfHW = —05 3w + | 16 — % — 6T Zy[mw] , (GlO)

~3 =2
g ) n o e . _ .
é%Afw =—9g; log <u2h> — 943 Z[miy] — 6 93 Z,[miy] + 6 45 Tou[miy) (1 — 1/7w) — 1243,

(G.11)
~ ~n2
By =20l | -1+ 2108 (5 )+ tox ()] ~ 200 i [2 )+ Tl
(G.12)

~ n2
T30 up = 2Ne Qu [Vl [—1 +2 log ) + log <4>] = 2Qu Yalss [27,[m?] + Z(m?]]

(
(G.13)
g;Ang = 2N, Qq [Yalss {1 +2 log (“2) + log <f)} —2Qa [Yalss [ﬂy[mi] +I[m§]]
(G.14)

Note §goAfew — —Gg1 Afep. In the case of up quarks oA fuw — 1A fup, while in the case

S8 88 88 SS
of down quarks goA faw — —g1Afap. Here, s = {1,2,3} sums over the flavors. The Wilson
S8 S8
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coefficients are summed with their Hermitian conjugates, and the normalization is such that
A f.p multiplies Re C.p. The remaining contributions proportional to the SM loop functions
SS SSs

are
Q2
[Yé]ss Afern = & %A1/2(TS)7
0 Q:
[Yu]ss Aqu = -Z\[c6 7“141/2(7'3),
SS
2 QF
[Yalss Afag = Neé 7141/2(73),
2 2 2
. 2 QF . 1,
Ao = L Ayg(r) ~ Ned® D Ayo(r) — Ne&? B, () — 1 & Ar(w),
(G.15)
and Afgp = —Afgn/4. Here p,r, s run over 1,2, 3 as flavor indices. Several of these results
have been cross checked against Ref. [113].
These input parameter scheme dependent corrections perturb I'(h — AA) as
A25F(h — AA) —1672 (6) () C; Af;
~ Aua | (R][C] L AG L AM + =220 (G
A gr(h > AA) ™ G [ A2 A2 [VIICTIAA+ Ay MM+ =] (GH16)
G.2 §T(h— AA) geoSMEFT terms
The O(v*/A*) terms in the full three-point function are [11]
44 ur [(h!AA>?9 52 /A
(RLAA a0y = (VB Doz (hAAD 2 2 + 2 @ /A7) (G.17)

(hAr A,,,,)0
+ 2 <h‘AA>%(@2/A2) ’C§6)_>C§8).

Leading to the Ad? interference term

A*T'(h — AA) —1677
AQFSM(h — .A.A) - @ew |A.A.A|2

44 ©) ©) (©)
ReA a4 [<\/ﬁ Yoweazy AGa +2(A54) + 245, \C_<6>_,c_<8>] :

(G.18)
Here we have used the short-hand notation
(VR )oue /s = Cigh - iéﬁ%a Cip — %Cﬁ?g, (G-19)
Cith = 5 (B + i) Citvn = 38 (G-20)

H Past literature results

We have included a significant set of numerical and analytic detail in this work to aid repro-
ducibility. However, a complete reproduction of the numerical results requires the following
additional literature expressions:
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The two loop QCD corrections for C¥(7,) is lengthy and directly given in Ref. [17].
Specifically Eqn. 2.8 in this work.

The explicit expression for (5G;§) can be derived from Appendix C, Eqn. C.12 in Ref. [11].
The explicit expression for Cg;)km can be derived from Eqn. 3.10 in Ref. [10].

The one loop corrections to the W, Z masses in the BFM reported in Appendix A,
Eqgns. A.1, A.2 in Ref. [12].
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