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Abstract: Particles with masses much larger than the inflationary Hubble scale, HI , can

be pair-produced non-adiabatically during inflation. Due to their large masses, the produced

particles modify the curvature perturbation around their locations. These localized pertur-

bations eventually give rise to localized signatures on the Cosmic Microwave Background

(CMB), in particular, pairwise hotspots (PHS). In this work, we show that Convolutional

Neural Networks (CNN) provide a powerful tool for identifying PHS on the CMB. While

for a given hotspot profile a traditional Matched Filter Analysis is known to be optimal, a

Neural Network learns to e↵ectively detect the large variety of shapes that can arise in real-

istic models of particle production. Considering an idealized situation where the dominant

background to the PHS signal comes from the standard CMB fluctuations, we show that a

CNN can isolate the PHS with O(10)% e�ciency even if the hotspot temperature is O(10)

times smaller than the average CMB fluctuations. Overall, the CNN search is sensitive to

heavy particle masses M0/HI = O(200), and constitutes one of the unique probes of very

high energy particle physics.

ar
X

iv
:2

30
3.

08
86

9v
1 

 [h
ep

-p
h]

  1
5 

M
ar

 2
02

3

mailto:tkim12@nd.edu
mailto:jeonghan.kim@cbu.ac.kr
mailto:soubhik@berkeley.edu
mailto:amarti41@nd.edu
mailto:muenchmeyer@wisc.edu
mailto:ytsai3@nd.edu


Contents

1 Introduction 1

2 Pairwise Hotspot Signals 4

2.1 Inflationary Particle Production 4

2.2 E↵ect on the CMB 6

3 Simulation of the CMB and PHS Signals 9

4 Identifying Pairwise Hotspots with CNN 14

4.1 Network Training on Small Sky Patches 14

4.2 Application of the Trained Network to Larger Sky Maps 18

4.3 Obtaining Theoretical Bounds from Detection Statistics 19

4.4 Comparison with a Matched Filter Analysis 22

5 Discussion and Conclusion 25

A Sensitivity to the ⇤CDM Parameters 27

B PHS Corrections to the CMB Power Spectrum 27

C Shape Analysis for the ⌘⇤ = 50 Mpc Signal 29

1 Introduction

An era of cosmic inflation [1–3] in the primordial Universe remains an attractive paradigm

to explain the origin of (approximately) scale invariant, Gaussian, and adiabatic primordial

perturbations, inferred through cosmic microwave background (CMB) and large scale struc-

ture (LSS) observations. This inflationary era can be characterized by a rapid expansion of

spacetime, controlled by an approximately constant Hubble scale HI . Excitingly, based on

the current constraints, HI can be as large as 5 ⇥ 1013 GeV [4]. This fact, coupled with the

feature that particles with masses up to order HI can get quantum mechanically produced

during inflation, makes the inflationary era a natural and unique arena to directly probe very

high energy particle physics.

There are several classes of mechanisms through which heavy particles, which we label as

�, can be produced during inflation. When their mass m� . HI , quantum fluctuations of the

inflationary spacetime itself can e�ciently produce the � particles. However, for m� � HI ,
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this production gets suppressed exponentially as e
�⇡m�/HI [5], and other mechanisms are

necessary for e�cient particle production to occur.

To illustrate this, we consider the standard slow-roll inflationary paradigm containing

an inflaton field � whose homogeneous component we denote by �0(t). Normalization of the

primordial scalar power spectrum requires the ‘kinetic energy’ of this homogeneous component

to be |d�0/dt|
1/2

⇡ 60HI [4]. Therefore, heavy particles, if appropriately coupled to the

inflaton kinetic term, can be e�ciently produced for m� . 60HI . One class of examples

of this involve a coupling of the type @µ�J
µ where J

µ is a charged current made up of

the � field. For some recent work implementing this idea see, e.g, Refs. [6–14]. In these

constructions, heavy particle production happens continuously in time, in a scale-invariant

fashion. In other words, the coupling of the inflaton to � particles does not break the shift

symmetry, � ! �+ constant, of the inflaton.

A di↵erent class of mechanisms can lead to particle production at specific times during

the inflationary evolution. This can happen if the shift symmetry of the inflaton is broken

in a controlled manner, e.g. to a discrete shift symmetry. This breaking of shift symmetry

translates into a violation of scale invariance, and selects out specific time instant(s) when

particle production can occur. Examples of such mechanisms appear in Refs. [15–20], and see

Refs. [21, 22] for reviews.

A particularly interesting example of this latter mechanism arises in the context of ultra-

heavy particles with time-dependent masses. More specifically, suppose m� varies as a func-

tion of � in a way such that, as � passes through a specific point �⇤ on the inflaton potential

at time t⇤, m�(�) passes through a local minimum. In this case, non-adiabatic � particle

production can occur at time t⇤. Following their production, � particles can again become

heavy, m� � |d�0/dt|
1/2, and owing to this large mass they can backreact on the inflationary

spacetime, contributing to the curvature perturbation around their locations.

We can describe the e↵ects of these additional curvature perturbations qualitatively in

the following way, leaving the details for the next section. Following their production, the

perturbations exit the horizon when their wavelengths become larger than 1/HI and become

frozen in time. After the end of inflation, they eventually reenter the horizon and source

additional under- or over-densities in the thermal plasma in the radiation dominated Universe.

Overdense regions, for example, would trap more plasma, and therefore would emit more

photons at the time of CMB decoupling.1 Therefore, we would observe localized regions on

the sky where CMB would appear hotter than usual. As we will discuss below, the sizes of

these localized ‘spots’ are determined by the size of the comoving horizon, ⌘⇤, at the time

of particle production t⇤. While ⌘⇤ can take any value, for concreteness we will consider

⌘⇤ ⇠ 100 Mpc in this work. This implies that the localized spots would subtend ⇠ 1� on the

CMB sky.

The next question one may ask is what is an e�cient strategy to look for such signatures.

1To be more accurate, one also need to take into account the gravitational redshift of the photons as they

climb out of the gravitational potential wells. We will compute this e↵ect in the next section.
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Since this scenario is associated with a violation of scale invariance, characterized by ⌘⇤, one

would expect to see ‘features’ on the CMB power spectrum or even higher-point correlation

functions. However, in the regime we focus on, the total number of produced � particles is

still small to the extent that the CMB power spectrum is minimally a↵ected, as we explicitly

check later. On the other hand, the spots can still be individually bright enough such that we

can look for them directly in position space. Indeed, this class of signatures in the context of

heavy particle production were discussed in Refs. [23, 24], and in Ref. [25] the associated CMB

phenomenology was described and a simple ‘cut-and-count’ search strategy was developed.

Using the cut-and-count strategy, Ref. [25] constrained the parameter space of ultra-heavy

scalars and illustrated regions where a position space search is more powerful than power

spectrum-based searches.

In more detail, Ref. [25] considered a single instance of particle production during the

time when CMB-observable modes exit the horizon. Conservation of momentum implies that

such heavy particles are produced in pairs. However, owing to their large mass, the particles

do not drift significantly following their production, and it was argued that the separation

between the two particles forming a pair can be taken to be a uniformly random number

between 0 and ⌘⇤. Finally, it was shown that the coupling g of � to the inflaton determines

how hot/cold the associated spot on the CMB is with the heavy particle mass m� determining

the total number of such spots on the sky. To summarize, the three parameters determining

the hot/cold spot phenomenology are {g, m�, ⌘⇤}, as will be reviewed in more detail in the

next section. While both cold or hot spots can arise depending on the value of ⌘⇤, for the

choices of ⌘⇤ in this work, only hotspots will appear on the CMB. Therefore, we will often be

referring to these localized spots as hotspots, in particular as pairwise hotspots (PHS) since

the spots appear in pairs.

In the present work, we improve upon Ref. [25] in several important ways. First, in

Ref. [25] we only considered hotspots that lie within the last scattering surface, with a thick-

ness of �⌘ ⇡ 19 Mpc [26]. In this work we adopt a more realistic setup and include hotspots

that are distributed in a larger region around the last scattering surface. We take this region

to have a thickness of 2⌘⇤ and we show in Sec. 2 how hotspots lying outside the �⌘ shell can

still a↵ect the CMB. The overall signature of PHS then changes non-trivially. For instance,

with the improved treatment we can have one spot of a pair lying on the CMB surface, while

the other can lie o↵ the CMB surface, leading to an asymmetric signal.

Second, we develop a neural network (NN)-based search for the hotspot profiles. In

principle, a neural network is not necessary to search for a profile of known shape which is

linearly added to the Gaussian background. In this case, the standard method of constructing

a so-called matched filter can be shown to be the optimal statistic to detect the profile (see,

e.g., [27]). Matched filter-based searches for radially symmetric profiles in the CMB have

been previously reported for example in [28–30], with the physical motivation of searching

for inflationary bubble collisions. Various matched filters have also been used in the Planck

Anisotropy and Statistics Analysis [31, 32] without finding a significant excess. However, the

signal which we are looking for here is more complicated. Profiles come in pairs (breaking
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radial symmetry of the profile), they can be overlapping, and, depending on their production

time and orientation with respect to the surface of last scattering, their appearance on the

CMB changes. While it is in principle possible to cover the entire space of profiles with a very

large bank of matched filters, this would be a complicated and computationally challenging

approach. A neural network, on the other hand, can learn an e↵ective representation of these

filters which interpolates well between all profile shapes, including overlapping ones. We also

implement the matched filter method below, and show that in the simplified case with a single

profile type, our neural network performs similar to the optimal matched filter.

This work is organized as follows. We first describe a simple model of � particle pro-

duction in Sec. 2 and summarize how the total number of produced particles depends on the

model parameters along with various properties of the PHS. We improve the calculation of

the hotspot profiles by taking into account the line-of-sight distance to the location of the

hotspots which can be o↵ the CMB surface. In Sec. 3, we describe the simulation of the PHS

signals and the CMB maps in angular space, assuming that the dominant background to the

PHS signal comes from the standard CMB fluctuations. In Sec. 4, we describe the convolu-

tional neural network (CNN) analysis and estimate the sensitivity the CNN can achieve for

a PHS search. We then translate this sensitivity to the mass-coupling parameter space of

the heavy particles. We also compare the CNN analysis with a matched filter analysis for

simplified hotspot configurations. We conclude in Sec. 5.

2 Pairwise Hotspot Signals

To model heavy particle production, we consider a scenario where the mass of � is inflaton-

dependent, m�(�). Therefore as � moves along its potential, e�cient, non-adiabatic particle

production can occur if m�(�) varies with � rapidly. With a mass term m�(�)2�2, pairs of �

particles would be produced, as required by three-momenta conservation. The phenomenology

of such heavy particles depend on their mass, coupling to the inflaton, and the horizon size

at the time of their production. We now review these properties more qualitatively, referring

to Ref. [25] for a more complete discussion.

2.1 Inflationary Particle Production

We parametrize the inflationary spacetime metric as,

ds
2 = �dt

2 + a
2(t)d~x2

, (2.1)

with the scale factor a(t) = e
HI t and HI the Hubble scale during inflation that we take to be

(approximately) constant. To model particle production in a simple way, we assume m�(�)

passes through a minimum as � crosses a field value �⇤. Then we can expand m�(�) near �⇤
as,

m�(�) = m�(�⇤) +
1

2
m

00
�(�⇤)(�� �⇤)

2 + · · · , (2.2)
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where primes denote derivatives with respect to �. Thus the mass term would appear in the

potential as,

m�(�)2�2 = m�(�⇤)
2
�
2 + m�(�⇤)m

00
�(�⇤)(�� �⇤)

2
�
2 + · · · . (2.3)

While away from �⇤, m�(�) can vary in di↵erent ways, most of the important features of

particle production are determined by the behavior of m�(�) around �⇤. For example, the

number density of � particles is determined by m�(�⇤), as we will see below. Similarly, the

spatial profiles of the hotspots on the CMB is determined by the dependence (� � �⇤)2 ⇠

�̇
2

0
(t � t⇤)2 ⇠ (�̇0/HI)2 log(⌘/⌘⇤)2, where we have used the relation between t and conformal

time ⌘, ⌘ = (�1/HI)e�HI t (an overdot here denotes a derivative with respect to time). Given

the importance of the physics around �⇤, we will denote, m�(�⇤)2 ⌘ M
2

0
, m�(�⇤)m00

�(�⇤) ⌘ g
2,

and �⇤ ⌘ µ/g, to describe particle production. Thus we will write the Lagrangian for � as,

L� = �
1

2
(@µ�)2 �

1

2

�
(g�� µ)2 + M

2

0

�
�
2
. (2.4)

As � nears the field value �⇤, the mass of the � field changes non-adiabatically and particle

production can occur.

The e�ciency of particle production depends on the parameters g, M0, and ⌘⇤, the size

of the comoving horizon at the time of particle production. This can be computed using

the standard Bogoliubov approach, and resulting probability of particle production is given

by [20, 33],

|�|
2 = exp

✓
�
⇡(M2

0
� 2H

2

I
+ k

2
⌘
2
⇤H

2

I
)

g|�̇0|

◆
. (2.5)

The normalization of the scalar primordial power spectrum, in the context of single-field

slow-roll inflation, fixes As = H
4

I
/(4⇡2�̇2

0
) ⇡ 2.1 ⇥ 10�9 [4] which determines �̇0 ⇡ (58.9HI)2.

The above expression (2.5) characterizes the probability of particle production with phys-

ical momentum kp = k⌘⇤HI . The total number density of particles can then be computed by

integrating over all such k-modes,

n =
1

2⇡2

Z 1

0

dkpk
2

pe
�⇡k

2
p/(g|�̇0|)e�⇡(M

2

0
�2H

2

I
)/(g|�̇0|) =

1

8⇡3

⇣
g�̇0

⌘
3/2

e
�⇡(M

2

0
�2H

2

I
)/(g|�̇0|). (2.6)

From an observational perspective, it is more convenient to relate n to the total number of

spots that would be visible on the CMB sky. To that end, we need to specify the associated

spacetime volume. Considering a shell of thickness �⌘s around the CMB surface, the total

number of spots in that shell is given by [25],

Nspots = n ⇥

✓
a⇤
a0

◆
3

⇥ 4⇡�2

rec�⌘s ,

=
1

2⇡2

 
g�̇0

H
2

I

!
3/2

�⌘s
�rec

(k⇤�rec)
3
e
�⇡(M

2

0
�2H

2

I
)/(g|�̇0|) ,

⇡ 4 ⇥ 108 ⇥ g
3/2

✓
�⌘s

100 Mpc

◆✓
100 Mpc

⌘⇤

◆
3

e
�⇡(M

2

0
�2H

2

I
)/(g|�̇0|) .

(2.7)
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Here a⇤ and a0 = 1 are the scale factors at the time of particle production and today,

respectively. The quantity �rec is the distance of the CMB surface from us and approximately

equals 13871 Mpc, obtained from Planck’s best-fit ⇤CDM parameters, and k⇤ = a⇤HI = 1/⌘⇤
is the mode that exits the horizon at the time of particle production.

2.2 E↵ect on the CMB

We now discuss the detailed properties of the spots and how they modify the CMB.

Primordial Curvature Perturbation from Heavy Particles. Owing to their large

mass, the heavy particles can backreact on the spacetime metric around their locations,

and can give rise to non-trivial curvature perturbations. The profile of such a curvature

perturbation can be computed using the in-in formalism and the result is given by [24],

h⇣HS(r)i =
HI

8✏⇡M
2

pl

(
M(⌘ = �r), if r  ⌘⇤

0, if r > ⌘⇤
. (2.8)

Here ✏ = |ḢI |/H
2

I
is a slow-roll parameter, and we have anticipated that this curvature

perturbation would give rise to a hotspot (HS), rather than a coldspot. Importantly, the

variation of the mass as a function of conformal time ⌘ controls the spatial profile. This

variation can be computed from Eq. (2.4) by noting the slow-roll equation ���⇤ ⇡ �̇0(t� t⇤),

which gives

M(⌘)2 =
g
2
�̇
2

0

H
2

I

ln(⌘/⌘⇤)
2 + M

2

0 . (2.9)

Here we have used the relation between cosmic time t and the conformal time ⌘, that also

determines the size of the comoving horizon, t � t⇤ = �(1/HI) ln (⌘/⌘⇤).

Using the slow-roll relation �̇
2

0
= 2✏H2

I
M

2

pl
and the fact that M

2

0
⇠ g|�̇0| so that Nspots

is not significantly exponentially suppressed (see Eq. (2.7)), we can drop the contribution of

the second term in Eq. (2.9) away from ⌘⇤. The profile can then be simply written as,

h⇣HS(r)i =
gH

2

4⇡|�̇0|
ln(⌘⇤/r)✓(⌘⇤ � r). (2.10)

Given the typical size of a standard quantum mechanical fluctuation h⇣
2
q i

1/2
⇠ H

2
/(2⇡�̇0),

we see the curvature perturbation associated with a hotspot di↵ers primarily by g/2. In this

work we will choose g ⇠ O(1), so the two types of perturbations will be of the same order of

magnitude.

CMB Anisotropy. After these fluctuation modes reenter the horizon, they source temper-

ature anisotropies and give rise to localized spots on the CMB sky. To compute the resulting

anisotropies, we first write metric perturbations,

ds
2 = �(1 + 2 )dt

2 + a
2(t)(1 + 2�)�ijdx

i
dx

j
, (2.11)
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in the Newtonian gauge. The temperature fluctuations of the CMB corresponding to Fourier

mode ~k, pointing to direction n̂ in the sky is given by,

⇥(~k, n̂, ⌘0) =
X

l

i
l(2l + 1)Pl(k̂ · n̂)⇥l(k, ⌘0). (2.12)

Here the multipole ⇥l(k, ⌘0) depends on the primordial perturbation ⇣(~k) and a transfer

function Tl(k) as,

⇥l(k, ⌘0) = Tl(k)⇣(~k), (2.13)

with ⌘0 denoting the conformal age of the Universe today. Importantly, for our scenario Tl(k)

itself can be computed exactly as in the standard ⇤CDM cosmology. It can be computed

after taking into account the Sachs-Wolfe (SW), the Integrated Sachs-Wolfe (ISW), and the

Doppler (Dopp) e↵ect [34],

⇥l(k, ⌘0) ' (⇥0(k, ⌘rec) + (k, ⌘rec)) jl(k(⌘0 � ⌘rec))

+

Z
⌘0

0

d⌘e
�⌧
�
 0(k, ⌘) � �0(k, ⌘)

�
jl(k(⌘0 � ⌘))

+ 3⇥1(k, ⌘rec)

✓
jl�1(k(⌘0 � ⌘rec)) � (l + 1)

jl(k(⌘0 � ⌘rec))

k(⌘0 � ⌘rec)

◆

⌘ (fSW(k, l, ⌘0) + fISW(k, l, ⌘0) + fDopp(k, l, ⌘0)) ⇣(~k) ,

(2.14)

where ⌧ is the optical depth. The above expression relates a primordial perturbations ⇣ to a

temperature anisotropy ⇥l.

Temperature Anisotropy due to Heavy Particles. Regardless of the origin of ⇣(~k)

is, we can compute fSW(k, l, ⌘0), fISW(k, l, ⌘0), and fDopp(k, l, ⌘0) as in the standard ⇤CDM

cosmology. Thus converting the position space profile in Eq. (2.10) to momentum space and

using Eq. (2.14), we can get the observed profile of a hotspot on the CMB sky. This Fourier

transform of the profile (2.10) can be written as,

h⇣HS(~k)i = e
�i~k·~xHS

f(k⌘⇤)

k3
, (2.15)

with a profile function

f(x) =
gH

2

�̇0

(Si(x) � sin(x)), Si(x) =

Z
x

0

dt sin(t)/t. (2.16)

We parametrize the distance to the hotspot as,

~x0 � ~xHS = �(⌘0 � ⌘HS)n̂HS. (2.17)

Here ~x0 and ~xHS parametrize our and the hotspot locations, respectively, and n̂HS points

to the direction of the hotspot. The quantity ⌘HS denotes the location of the hotspot in
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n̂HS

Figure 1. Representation of a hotspot on the CMB sky. Our location and the location of a hotspot
are denoted as ~x0 and ~xHS, respectively, defined with respect to an arbitrary coordinate system. The
black circle denotes the surface of last scattering, located at ⌘rec ⇡ 280 Mpc in conformal coordinates.
Due to momentum conservation, heavy particles are produced in pairs, and the distance between the
two members of a pair can vary between 0 and ⌘⇤. Therefore, in our analysis we allow the two members
to be anywhere within the gray shaded region. We compute the temperature profile of a hotspot as a
function of direction of observation n̂, with the hotspot center in the direction of n̂HS.

conformal time with ⌘0 being the size of the present epoch. In the earlier paper, we took the

hotspot to be on the CMB surface and hence set ⌘HS = ⌘rec ⇡ 280 Mpc. In this work, we

allow the hotspots to be away from the last scattering surface with ⌘HS between ⌘rec � ⌘⇤ and

⌘rec + ⌘⇤, and study their signals on the CMB surface. This set up is summarized in Fig. 1.

As derived earlier, the temperature due to the hotspot is given by (dropping ⌘0 from the

argument),

⇥(~x0, n̂) =

Z
d
3~k

(2⇡)3
e
i~k·(~x0�~xHS)

X

l

i
l(2l + 1)Pl(k̂ · n̂) (fSW(k, l) + fISW(k, l) + fDopp(k, l))

f(k⌘⇤)

k3
.

(2.18)

Here n̂ denotes the direction of observation. The functions fSW(k, l) and fISW(k, l) are ex-

tracted from the transfer function using CLASS [35, 36] as in Ref. [25]. Using the plane wave

expansion,

e
�i~k·~r =

1X

`=0

(�i)l(2l + 1)jl(kr)Pl(k̂ · r̂), (2.19)

and the relation

Pl(k̂ · n̂) =
4⇡

(2l + 1)

lX

m=�l

Ylm(n̂)Y ⇤
lm

(k̂), (2.20)
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we get:

⇥(~x0, n̂, ⌘HS) =
1

2⇡2

Z 1

0

dk

k

X

l

jl(k(⌘0 � ⌘HS))(2l + 1)Pl(n̂ · n̂HS)Tsum(k, l)f(k⌘⇤),(2.21)

Tsum(k, l) ⌘ fSW(k, l) + fISW(k, l) + fDopp(k, l) . (2.22)

Note ⇥(~x0, n̂, ⌘HS) depends on ⌘HS, the location of the hotspot – which need not be on the

last scattering surface as mentioned above. Given the spherically symmetric profile of the

hotspot, the Doppler contribution to ⇥(~x0, n̂, ⌘HS) is small, from now on we only include the

SW and ISW corrections for our analysis.

Central Temperature. It is useful to compute the temperature anisotropy at the central

part of a hotspot. To that end, we set n̂ = n̂HS, implying Pl(n̂ · n̂HS) = 1, and

⇥central(~x0, ⌘HS) =
1

2⇡2

Z 1

0

dk

k

X

l

jl(k(⌘0 � ⌘HS))(2l + 1)Tsum(k, l)f(k⌘⇤). (2.23)

In Fig. 2 we show the SW and ISW contributions to the central temperature as a function

of ⌘HS after multiplying by the average CMB temperature T0 = 2.7 K for ⌘⇤ = 160 Mpc.

For completeness, we also show the central temperature in Fig. 3, as obtained in [25], as

a function of hotspot size ⌘⇤, assuming the the hotspot is located on the surface of last

scattering. As we can see, the pair-produced CMB spots are indeed hotspots when ⌘⇤ . Gpc.

For ⌘⇤ > 6600 Mpc coldspots as opposed to hotspots arise. This is because the negative SW

contribution dominates the positive ISW contribution, with the combination being negative.

3 Simulation of the CMB and PHS Signals

In order to design a PHS search, we simulate the PHS signal and CMB maps so that we can

estimate the signal capture rate (‘True Positive Rate’), and the background count for a CNN

analysis. We notice that there are three types of backgrounds to consider for a PHS search:

(i) the noise of the CMB detector, (ii) the astrophysical foreground, and (iii) the background

from the standard primordial fluctuations.

A realistic analysis needs to take into account detector noise and foregrounds. In our

analysis, we consider profiles on relatively large angular scales, ` < 1000. For these scales

current CMB temperature data, such as from Planck, is signal-dominated and we thus do

not need to add instrumental noise to our simulations. The astrophysical foreground comes

from compact objects such as galaxies, galaxy clusters, gas, and dust which can also produce

localized signals. Part of these astrophysical foregrounds can be cleaned out due to their

frequency dependence (for a review see, e.g., Ref. [37]). For the signal sizes that we con-

sider, corresponding to ` < 1000, we do not expect significant astrophysical contamination

after foreground cleaning and masking of the galactic plane, while for significantly smaller

scales a detailed study of residual foregrounds and point sources would be required (see, e.g.,
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Figure 2. Central temperature ⇥central ⇥ T0 of a hotspot as a function of the (radial) location of
the hotspot. We choose ⌘⇤ = 160 Mpc and g = 1. The dotted gray line indicates the location of the
recombination surface. Larger (smaller) ⌘HS implies the hotspots are closer to (further from) us. We
also show contribution of the Sachs-Wolfe term (orange) and the Integrated Sachs-Wolfe term (purple)
in determining the total temperature (olive). The left and right edges of the plot are at ⌘HS = ⌘rec �⌘⇤
and ⌘HS = ⌘rec + ⌘⇤, respectively.

Planck’s component separation analysis [38]). In the following, we therefore only consider

the background from the primordial, almost Gaussian, fluctuations when studying the PHS

signal. This last type of background is ‘irreducible’ in the sense that it will always be present,

originating from the fluctuations of the inflaton itself. We will assume the CMB maps are

masked to reduce the astrophysical foregrounds and badly-conditioned pixels and retain only

60% of the sky for the analysis. The number is similar to the sky fraction used in the Planck

analysis [39].

Unlike the analysis in [25] that was based on a HEALPix [40] simulation, in this work,

we use the QuickLens package2 to simulate the CMB maps. QuickLens allows us to work

in the ‘flat sky approximation’, neglecting sky curvature that is irrelevant to the size of the

PHS profile we consider, as well as to draw sample maps with periodic boundary conditions

to avoid complications due to masking. QuickLens can take a theoretical temperature power

spectrum to produce mock flat sky CMB maps. To provide an initial input, we use the

CLASS (v3.2) package [35, 36] to compute a temperature anisotropy spectrum C
TT

`
based on

the Planck 2018 [41] best fit ⇤CDM parameters,

{!cdm,!b, h, 109As, ns, ⌧reio} = {0.120, 0.022, 0.678, 2.10, 0.966, 0.0543} . (3.1)

We will comment on the sensitivity of the CNN analysis to the ⇤CDM parameters in Sec. 4.1

and Appendix A. We specify `max = 3500 in the code for the maximum number of `-modes

2https://github.com/dhanson/quicklens
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Figure 3. Central temperature (green) of a hotspot originating from a heavy particle for g = 1, based
on Eq. (2.23) with ⌘HS = ⌘rec. The green line illustrates the variation of the observed anisotropy
as a function of the “size” of the hotspot, determined by the comoving horizon ⌘⇤ at the time of
particle production. The horizontal gray line gives a rough benchmark of the magnitude of the large-
scale temperature anisotropy due to only the standard quantum fluctuations of the inflaton (1/5)h⇣2

q i,
without taking into account acoustic oscillations. The dashed vertical gray lines show the benchmark
choices for the hotspot size ⌘⇤ = 50 , 100 , 160 Mpc chosen in the subsequent discussion. We take the
plot from Ref. [25].

used for the image generation. As explained above, our signal profiles have support on length

scales corresponding to an ` < 1000, where instrumental noise is negligible compared to the

primary background from CMB and can thus be ignored. An application to significantly

smaller angular scales would need to take into account the noise properties of the experiment.

We choose the image resolution such that 1 pixel = 10�3 radians to match Planck’s angular

resolution down to ⇡ 5 arc minutes [42]. We also use the relation between the angle and

the comoving length on the last scattering surface �⌘/�rec.3 For instance, if the separation

between two hotspot centers is 160 Mpc on the last scattering surface, the two centers are 12

pixels away on the image, with �rec = 13871 Mpc for Planck’s best-fit ⇤CDM parameters.

For the CNN analysis, we begin by generating 3602 pixel images, corresponding to a

[�10.32�, 10.32�] region in longitude and latitude (nx = 360 in QuickLens ). We then cut

out a 902 patch from each of the 3602-sized maps. These non-periodic, smaller maps are

then used for further analysis. In particular, for our CNN analysis, we generate 160k training

images, 40k validation 902 pixel images, and an additional 5k test images to quantify the

3In Ref. [25], the angular size of one pixel was obtained by matching the pixel number to the total degrees

of freedom in the `-modes (`2max + `max = 4⇡/✓2pixel), together with the approximation `max ' ⌘0/⌘pixel.

Although the matching reproduces the same angular resolution, the relation between `max and ⌘pixel gives

�✓ =
p
4⇡�⌘/�rec. Since `max ' ⌘0/⌘pixel comes from the approximation of the k-mode integral with j`(k �rec)

and k = 2⇡/⌘, the relation between the angle and length is less robust than �✓ = �⌘/�rec.
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Figure 4. Radial profile of a single hotspot with the heavy particle position inside (olive), on (orange),
and outside (purple) of the last scattering surface. The locations of these hotspots in conformal time
are taken to be ⌘rec + ⌘⇤, ⌘rec, and ⌘rec � ⌘⇤, respectively, as denoted by the labels. From upper left
to bottom: horizon size for the hotspot production at ⌘⇤ = 50, 100, 160 Mpc. The plots assume the
inflaton-� coupling g = 1.

network performance. Training the neural network on smaller patches yields better training

convergence and does not lead to loss of information as long as the characteristic size of the

signal is smaller than the size of the patch.

The profile of each of the PHS is described by Eq. (2.21), where the function depends

on the distance to the hotspots (⌘0 � ⌘HS) and the angle cos�1(n̂ · n̂HS), as defined in Fig. 1.

The overall magnitude of the signal temperature is proportional to the coupling g. When

generating the signal, we require both the hotspots to be within a shell ±⌘⇤ around the last

scattering surface as shown in Fig. 1. For example, when studying the case with ⌘⇤ = 160 Mpc,

we first divide the ±160 Mpc region into 50 concentric annuli, each having equal thickness. We

then choose the first hotspot from a pair to lie on any of these 50 annuli with equal probability.

The second member is then chosen anywhere within a sphere of radius ⌘⇤ centered on the first
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Figure 5. Example plots of pure background from QuickLens simulation (left), pure signals (middle),
and signals with g = 4 on top of the simulated background (right). The scalar particles are produced
at comoving horizon sizes ⌘⇤ = 50 Mpc (top), 100 Mpc (middle), ⌘⇤ = 160 Mpc (bottom). The signals
at di↵erent benchmark ⌘⇤ have roughly the same size, as the ⌘⇤ dependence only enters logarithmically.
The two hot spots are clearly separated for ⌘⇤ = 160 Mpc and ⌘⇤ = 100 Mpc, while for ⌘⇤ = 50 Mpc
they overlap.

hotspot, again with a uniform random distribution.4 A pair is kept for further analysis only

if both the spots of the pair falls within the ±⌘⇤ shell of the last scattering surface. Since

4Our motivation for the uniform distribution is driven by Eq. (2.6). There, the integral is dominated by

kp ⇠ M0, as small kp are suppressed by the k2

p factor and large kp are exponentially squashed. Assuming that

� are produced semi-relativistically and can travel a horizon scale distance, we expect a uniform distribution

of hotspots within ±⌘⇤ of the last scattering surface.
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the distribution in a 3D volume allows hotspots to orient along the line-of-sight direction,

the average separation between the two hotspots projected on the last scattering surface

is smaller than the separation assumed in Ref. [25] that only considered PHS on the last

scattering surface.

Once we generate PHS images with random orientation and separation between two

hotspots, we pixelate them and add the PHS image to the simulated CMB maps to produce

the signal image. We follow this procedure for all the signal images in our study. In this

work, we study benchmark models with horizon sizes

⌘⇤ = 50, 100, 160 Mpc , (3.2)

and couplings from g = 1 to 4. Specifying g and ⌘⇤ sets the overall temperature and the

profile of the hotspot, a la Eq. (2.21). Within the approximations we’ve made in Sec. 2, the

remaining model parameter, M0, only a↵ects the overall number of hotspots NPHS (through

Eq. (2.7)). Going forward, we will compute the number of hotspots that can be hidden within

the background fluctuations for given benchmark coupling and ⌘⇤. Then, using Eq. (2.7), the

upper bounds on NPHS can be translated into lower bounds on M0. As an illustration of what

a benchmark PHS looks like, in Fig. 5 we show examples of the CMB background (left), PHS

signal (middle), and the signal plus background (right) for g = 4 with di↵erent choices of ⌘⇤.

Note that it is di�cult to identify the signals by eye in the plots on the right, even with such

a large coupling.

Compared to Ref. [25], the benchmark ⌘⇤ values are identical, but we choose smaller

values of the coupling g. This is because we find the CNN analysis is much more powerful

than the ‘cut and count’ method adopted in Ref. [25], and therefore capable of identifying

fainter hotspots. We chose the benchmark ⌘⇤ values to test out a variety of di↵erent PHS;

⌘⇤ = 160 Mpc hotspots have a very high central temperature (Fig. 3), while ⌘⇤ = 50 Mpc

hotspots are significantly cooler and have smaller inter-spot separation. The choice ⌘⇤ =

100 Mpc sits between these for comparison.

4 Identifying Pairwise Hotspots with CNN

In this section we describe the training process for the CNN using 902 pixel images, and

discuss some qualitative properties of the training result. We then apply the trained network

to a larger sky map and present results on the upper bound on the number of PHS for given

values of ⌘⇤ and g. We end the section with some comparisons between the CNN and a

matched filter analysis.

4.1 Network Training on Small Sky Patches

CNNs are one of the most commonly used deep neural networks specialized for image recog-

nition [44, 45]. In this study, we build the network using PyTorch [46] with the structure

shown in Fig. 6. The network takes a CMB or CMB+PHS image as an input and outputs a

single value between 0 and 1, which can be interpreted as the probability of the input image
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Figure 6. A schematic architecture of the CNN used in this work. We applied two convolutional
layers in series; first, 8 kernels with size of 16 ⇥ 16 and stride of 2 are applied, then, 8 independent
kernels size of 8 ⇥ 8 yields feature map of 40. Next, we apply a max-pooling using the kernel and
stride size of 2 ⇥ 2, which subsequently reduces the image dimension down to 20 ⇥ 20 ⇥ 8. Processed
images get further reduced by going through 2D convolution and max-pooling, further reducing the
size of the image to 5 ⇥ 5 ⇥ 8. After 4 sets of total convolution followed by average pooling, the final
feature maps are flattened to feed into fully connected network form, and the final network ends with
single output value which sits between 0 and 1. Throughout the network, we use the rectified linear
unit (ReLU) function [43] to introduce non-linearity, except for the output layer which has a sigmoid
activation function suitable for the binary classification.

CMB+PHS, 3rd convolutional layerCMB only, 3rd convolutional layer

PHS

CMB + PHS

�* = 160 Mpc, g = 4

Figure 7. Comparison between true and the CNN feature maps with and without implanted signals.
The left plots show the PHS signal and signal plus the CMB background. The middle and right plots
show feature maps after going through three convolutional layers. The enhanced signal locations on
the feature maps on the right align with the true location of the hotspots after rescaling the pixel
coordinates with respect to the relative size between the 3rd layer (202-pixels) and the original image
(902-pixels). Here we take ⌘⇤ = 160 Mpc, g = 4, and ⌘HS = ⌘rec for both the spots.
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containing the PHS. We train the network on 160k images (see Sec. 3), half of which con-

tain a single pairwise hotspot profile on top of the CMB and the rest are CMB-only images.

For optimization, we use a binary cross entropy loss function, commonly used for binary

classification, along with Adam optimizer [47] and 10�4 learning rate.

We train the network using PHS signals with g = 3 for all the three values of ⌘⇤ individ-

ually. One may wonder how well a network trained on one g value will generalize to di↵erent

values without retraining. As the CNN (unlike the matched filter discussed below) is nonlin-

ear, extrapolation to values of g other than what was used for training is not guaranteed to

be optimal. On the other hand, training a CNN for each possible benchmark input is time-

and resource-intense. Empirically, we find that the network trained at g = 3 works well over

a wide range of g values, perhaps because the network learns to analyze the shape rather

than the amplitude of the profile. In a fully optimal analysis one would want to retrain the

neural network over a grid of g values.

To get some idea for how the CNN discriminates between signal and background images,

we show the feature maps from the first three convolutions in Fig. 7 for ⌘⇤ = 160 Mpc and

g = 4. As we can see proceeding from left to right, the trained network does amplify the signal

region compared to the background-only image, and the convolutional layers can emphasize

the correct locations of each spot in the feature map.

To quantify the performance of the CNN, we generate a test sample of 5k CMB-only

maps and 5k CMB+PHS maps, each having 902 pixels. For a CMB+PHS map, we inject one

randomly oriented and located PHS in the CMB map. The PHS signal occupies O(502) pixels

in the examples that we study, and thus the 902-pixels image is only slightly larger than the

signal. When an image has network output > 0.5, we count it as an identified signal map. We

call the signal capture rate (True Positive Rate, ✏S,902) as the fraction of CMB+PHS images

being correctly identified as signal maps, and define the fake rate (False Positive Rate, ✏B,902)

as the fraction of CMB-only images being wrongly identified as signal maps,5

✏S,902 =
number of signal-injected images with CNN output > 0.5

total number of signal-injected images
,

✏B,902 =
number of background-only images with CNN output > 0.5

total number of background-only images
. (4.1)

In Fig. 8, we show the network output for the 5k images with and without injecting the

PHS signal. In the left column we show the result when the PHS are uniformly distributed

within a shell of ⌘rec ± ⌘⇤ around the surface of last scattering, while the right column shows

the result when ⌘HS = ⌘rec. The signal capture and background rejection rates in Fig. 8 refer

5In the actual search, there can be more than one PHS in a 902-pixels region, and the CNN would still

count the region to be one signal map. We verify that the signal capture rate would increase if there are more

PHS in the image. When we study the sensitivity of the CNN search, having additional PHS around the same

location will help the search, and this makes our analysis based on having one PHS in a 902-pixels image to

be conservative. Moreover, given that the CNN search can probe PHS with a small number of signals on the

CMB sky, the probability of having additional PHS around the same location is small. Therefore, counting

the number of 902-pixels regions should give a good approximation of the PHS in the analysis.
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Figure 8. Network output for 5k images without (blank histogram) and with (colored histograms)
PHS signals. We count the image as an identified signal map when the network output > 0.5. In
the plots we show the background rejection rate from the CMB-only analysis and the signal capture
rate from the CMB+PHS images, for di↵erent inflaton-� couplings g. The fake rate is defined as
(1�background rejection rate). The plots on the left have both the hotspots distributed uniformly
with separation  ⌘⇤ and within ⌘HS = ⌘rec ± ⌘⇤, which is how we simulate the signal for the rest of
the study. The signal capture rate therefore includes possible suppression due to hotspots moving o↵
the last scattering surface. For comparison, we show the training results in the right plots requiring
⌘HS = ⌘rec. Comparing results obtained from the same study but with di↵erent sets of 5k images, we
find the e�ciency numbers vary by ⇠ 0.1 � 1%.

to ✏S,902 and (1 � ✏B,902). Clearly, for g � 3, our CNN setup is highly e�cient at separating

CMB+PHS images from CMB images alone. For example, for g = 3 (the same coupling
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as in the training sample) and ⌘⇤ = 160 Mpc, ✏S,902 is over 73% with ✏B,902 less than 0.1%.

For ⌘⇤ = 160 Mpc and 100 Mpc, the signal capture rate falls if the hotspots are o↵ the last

scattering surface but in the ⌘rec ± ⌘⇤ window we consider. When applying the same trained

network on dimmer PHS signals (g < 3), ✏S,902 drops, but the background rejection rate

remains close to unity.

Both ✏S,902 and ✏B,902 vary with the horizon size. Comparing results for ⌘⇤ = 160 Mpc

to ⌘⇤ = 50 Mpc, the ✏S,902 values are similar for g � 3, but ⌘⇤ = 50 Mpc case performs

much better at weaker coupling (✏S,902 = 51.2% for ⌘⇤ = 50 Mpc compared to 1.8% for

⌘⇤ = 160Mpc, both for g = 1). The ⌘⇤ = 50Mpc case has a larger background fake rate,

compared to ⌘⇤ = 160 Mpc. However, even if we incorporate the background and compare

✏S,902/
p
✏B,902 – the e�ciency ratio is O(10) times larger for the dimmer, ⌘⇤ = 50 Mpc case.

The ability of catching dimmer signals indicates that the network uses additional information

than the overall temperature to identify the PHS.

Although it is di�cult to know exactly how the CNN identifies the PHS, the network

seems to more accurately identify PHS with a distinct rim structure compared to just utilizing

the fact that there are two hotspots (Fig. 5). One indication that the CNN utilizes the rim

structure of the ⌘⇤ = 50 Mpc signal is that the signal capture rate for that benchmark is

insensitive to whether or not the PHS lie on the last scattering surface. We perform the

same CNN analysis by having the signal hotspots centered on the last scattering surface

(⌘HS = ⌘rec in Eq. (2.21)) and summarize results in the right column of Fig. 8. For hotspots

with temperature profile peaked at center, as we show in the ⌘⇤ = 160 and 100 Mpc plots

in Fig. 4, the highest PHS temperature takes the maximum value when ⌘HS = ⌘rec (orange).

It then is reasonable to have a larger average signal capture rate when the hotspots center

on the last scattering surface. However, as we illustrate in the upper left plot in Fig. 4, the

“shell” of the ⌘⇤ = 50 Mpc signal in 3D always project into a rim with a fixed temperature

(at angle ⇡ 0.008 rad), regardless of the location of the hotspot, ⌘rec, ⌘rec + ⌘⇤, or ⌘rec � ⌘⇤.

Therefore, if the CNN identifies the ⌘⇤ = 50 Mpc signal based on the rim structure, ✏S,902

should remain the same even when the PHS are on the last scattering surface. This is indeed

what we see on the bottom plots in Fig. 8. Further study on what features the CNN uses to

identify the ⌘⇤ = 50Mpc case can be found in Appendix C.

4.2 Application of the Trained Network to Larger Sky Maps

After training the CNN to identify PHS in images with 902 pixels, we look for signals on a

larger sky map by applying the same network analysis repeatedly across the larger map. In

this way we can analyze, in principle, arbitrarily large maps. A benefit of such a larger map

search is that it avoids the loss of sensitivity to signals where a PHS is partially cut out by

the boundary of a 902-pixels region. Such a PHS would be lost had we simply partitioned

the sky into non-overlapping 902-pixels regions.

For a concrete application, we study maps with 7202 pixels6 using the following steps:

6Repeating this analysis on even larger maps would be ideal and lessen the assumptions made when ex-
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(i) we apply the trained network on the upper left corner of the map, obtaining the network

output, (ii) we shift the 902-pixels “window” to the right by 5 pixels and get the network

output again, (iii) repeat the process until we hit the right hand side of the large map. Then,

return to the upper left corner but slide the widow down by 5 pixels, (iv) continue with these

steps until the entire larger map is covered. The result of steps (i) - (iv) result in what we call

a “probability map”. Starting with an original 7202 image and scanning in steps of 5 pixels,

the probability map has 1262 entries, with each entry showing the probability of having a

signal in a 902-pixels region centered at each pixel. We have tried di↵erent step sizes and find

that a 5 pixel step size yields nearly identical results to a 1 pixel step size for the following

analysis, so we use the 5 pixel step size for improved computational speed.

In Fig. 9, we show an example of the probability map (right) obtained from the image

of CMB plus three PHS signals shown in the left plot. To make the signals more visible by

eye, we make the probability map by sliding the search window in 1 pixel step, thereby giving

a 6302-pixels map. The true signals in the right plot show up as three bright clusters, and

there are fake signals from the CMB fluctuations themselves. To reduce these fake signals,

we further apply cuts on the probability map by only keeping pixels satisfying a threshold

cut (network output) > 0.9.

To properly count the number of observed signals, we cluster nearby pixels in the prob-

ability map. Specifically, we employ the “scikit-image’s morphology label” technique [48] to

connect neighboring pixels with the same values and therefore group the connected pixels

into clusters. We further remove clusters with < 30 connected pixels, as these have a smaller

chance to be a true signal. The choices of cuts on network output threshold and number of

pixels in a cluster were made by trying several values and choosing the value that maximized

the signal capture rate while keeping the fake rate small.

To determine how well the method works, we study a set of 500 CMB-only images (i.e.,

pure background) and 500 images where Ninj = 3 randomly distributed PHS signals have

been injected. We then define ‘e�ciencies’:

✏S,7202 =
total number of clusters passing the threshold in CMB+PHS maps

3 ⇥ 500

✏B,7202 =
total number of clusters passing the threshold in CMB-only maps

500
. (4.2)

The results for the benchmark ⌘⇤ values and three di↵erent couplings are summarized in

Table 1 below. The 7202 search retains some of the key features from the 902 search, namely

the superior performance for ⌘⇤ = 50Mpc when g is small.

4.3 Obtaining Theoretical Bounds from Detection Statistics

Using Table 1 we can calculate the upper bound on NPHS, the number of hotspot pairs

produced where both members of a pair lie within a shell of ±⌘⇤ from the last scattering

trapolating to the whole sky. However, practically, we found that 7202 was the largest size we could make

without sacrificing statistics (number of maps).
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Figure 9. Left : PHS signals that are implanted on CMB map. Right : Probability map from scanning
the same 7202 image plus the CMB with the CNN search of 902-pixels region shifting in steps of 1
pixel. The true and fake signals show up as clusters in the processed image. We further suppress the
number of fake signals in the following analysis by applying cuts on the network output of each pixel
and the pixel number in each cluster. We find the analysis from shifting the search window in steps
of 5 pixels produce similar results to the steps of 1 pixel and therefore use 5 pixel steps for the rest of
the analysis.

⌘ = 50 Mpc ⌘ = 100 Mpc ⌘ = 160 Mpc

✏B,7202 1.4 % 11 % 6.6 %

✏S,7202 , g = 1 54.6 % 0.8 % 0.5 %

✏S,7202 , g = 2 84.0 % 34 % 34.6 %

✏S,7202 , g = 3 98.6 % 76.8 % 71.2 %

Table 1. CNN result from scanning 500 randomly generated CMB or CMB+PHS maps using the
network trained in Sec. 4.1. The image size is 7202 pixels, and we shift the search window having
902-pixels by 5 pixel steps. The fake rate is the average number of fake signals from a 7202-pixels
map with CMB-only. The signal capture rate is the chance of identifying each input PHS signal.
Comparing results obtained from the same study but with di↵erent sets of 500 images, we find the
e�ciency numbers vary by ⇠ 0.1 � 1%.

surface. As an example, let us take ⌘⇤ = 50 Mpc and g = 1. From Table 1, we see ✏S,7202 =

54.6% while ✏B,7202 = 1.4%. Assuming that only a fraction fsky = 60% is used for the search,

the total number of signals for this benchmark is Sig = ✏S,7202 NPHS fsky, while the number of

background events is Bg = 25 ✏B,7202 fsky, where the factor of 25 is the number of 7202 patches

needed to cover the full sky. From the number of signal and background events, we form the

log-likelihood ratio [49, 50] and then solve for NPHS for the desired signal significance. When
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calculating the 2� exclusion bound, we require

�exc ⌘

s

�2 ln

✓
L(Sig+Bg|Bg)

L(Bg|Bg)

◆
� 2, with L(x|n) =

x
n

n!
e
�x

. (4.3)

Note that this is the expected bound, as we are taking simulated CMB background to be the

number of observed events (n in Eq. (4.3)). The resulting values of NPHS are given in the

left panel of Table. 2. It is also interesting to determine how many PHS would be needed for

discovery at each benchmark point. We calculate the expected discovery reach using

�dis ⌘

s

�2 ln

✓
L(Bg|Sig+Bg)

L(Sig+Bg|Sig+Bg)

◆
� 5 . (4.4)

The results are collected in Table 3.

We can further obtain the minimum mass M0 of the heavy particle corresponding to

�exc and �dis using Eq. (2.7) and �⌘ = 2⌘⇤.7 In Table 2 and 3, we show the bounds (or

reach) on the number of PHS and M0/HI . Due to the energy injection from the dynamics

of the inflaton, we can probe scalar particles with masses up to ⇡ 260HI . In the bottom

right tables, we show that the mass bounds correspond up to ⇡ 2.6 times the mass-changing

rate caused by the inflaton rolling (
q

g�̇0 ), which dominates the exponential suppression in

Eq. (2.7). We also plot the 2� lower bound on M0/HI in Fig. 10. Since the NPHS depends

on M0 exponentially, a slightly lower scalar mass than the 2� bound leads to a 5� discovery

of the PHS.

These bounds are significantly improved compared to the previous analysis in Ref. [25];

this is not surprising given that the analysis in Ref. [25] was very simplistic, utilizing only

a single temperature cut to separate signal from background. Using the CNN, we can now

obtain meaningful bounds for g = 1, 2 – cases for which the PHS were rather invisible before.

For hotter signals, e.g. g = 3, the CNN analysis beats the past result by �M0 ⇡ 60HI . This

is a notable improvement given that the PHS density is exponentially sensitive to the scalar

mass (squared).

Finally, to show that the CNN search of localized objects gives a better probe of heavy

particle production than the measurement of CMB temperature power spectra, we plot the

corrections to the ⇤CDM D
TT

`
spectrum in Appendix B, including the same number of PHS

in Table. 2. For example, for g = 1, ⌘⇤ = 160 Mpc, we see from Table 2 that the 2� bound on

7One subtlety in solving the mass bound is that when simulating the PHS signals, we require both hot

spots to be within ±⌘⇤ around the last scattering surface. Hence, the simulation excludes PHS with one of

the hot spots outside of the shell region that would be harder to see by the CNN. However, when solving the

upper bound on the PHS density using Eq. (2.7), we take into account the signals that are partially outside of

the shell region, leading to an over-estimate of the signal e�ciency and a stronger upper bound on the number

density. From checking the hot spot distribution numerically, we find that ⇡ 17% of the PHS in our examples

can be partially outside of the ±⌘⇤ region. Fortunately, since the size of M0 only depends on the number

density bound logarithmically, the error only changes the M0 bound by up to 1%. This is acceptable for the

accuracy we want for the concept study.
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Number of PHS ⌘ = 50 ⌘ = 100 ⌘ = 160

g = 1 8 840 1162

g = 2 5 20 17

g = 3 4 9 8

M0/HI ⌘ = 50 ⌘ = 100 ⌘ = 160

g = 1 145 120 114

g = 2 213 199 194

g = 3 266 253 247

M0/(g�̇0)1/2 ⌘ = 50 ⌘ = 100 ⌘ = 160

g = 1 2.5 2.0 2.0

g = 2 2.6 2.4 2.4

g = 3 2.6 2.5 2.4

Table 2. Upper: 2� upper bound on the number of PHS in the whole CMB sky with both hotspot
centers located within ⌘rec ± ⌘⇤ window around the last scattering surface. In the calculation we
assume sky fraction fsky = 60%. Lower left : lower bounds on the bare mass of the heavy scalar field
in units of the Hubble scale during the inflation. Lower right : lower bounds on the bare mass in units
of the rate of the mass, (g�̇0)1/2, owing to the inflaton coupling.

Number of PHS ⌘ = 50 ⌘ = 100 ⌘ = 160

g = 1 16 2047 2757

g = 2 10 48 40

g = 3 9 21 19

M0/HI ⌘ = 50 ⌘ = 100 ⌘ = 160

g = 1 143 116 110

g = 2 210 194 189

g = 3 262 247 241

M0/(g�̇)1/2 ⌘ = 50 ⌘ = 100 ⌘ = 160

g = 1 2.4 2.0 1.9

g = 2 2.5 2.3 2.3

g = 3 2.6 2.4 2.4

Table 3. Same as Table 2 but for the 5� discovery reach.

NPHS from our CNN analysis is 1162 hotspot pairs. Injecting 1162 hotspots into the sky,8 we

find a correction to D
TT

`
of ��2 = 0.3 – well within the 1� band on Planck 2018 temperature

power spectrum. Repeating this exercise with the other benchmarks in Table 2, yields ��2

values that are even smaller.

4.4 Comparison with a Matched Filter Analysis

Matched filter analysis is a standard tool for identifying localized signals on a CMB map.

Given a 2D power spectrum of the CMB, P (k), we can obtain a filtered map  (~r) in position

space from a convolution between the original image (signal plus background) ⇣(~k) and a

8For simplicity, we restrict all hotspots to the last scattering surface. This somewhat overemphasizes the

PHS correction to the power spectrum, as scenarios with both particles fixed to the last scattering surface are,

on average, brighter than when ⌘HS varies.
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Figure 10. Bound on the heavy scalar mass for ⌘⇤ = 50 Mpc, ⌘⇤ = 100 Mpc, and ⌘⇤ = 160 Mpc.
In the region above the ‘% Backreaction’ line, the backreaction to the inflationary dynamics due to
particle production is smaller than a percent (see Ref. [25] for a more detailed discussion). The light
blue lines show various contours of NPHS. We notice that the projected CNN search is able to cover
most of the parameter space up to the target NPHS = 1 contour.

signal filter h(~k) (the Fourier transform of a profile h(~r) in position space),

 (~r) =

Z
d
2~k

(2⇡)2

 
⇣(~k)h(~k)

P (k)

!
e
i~k·~r

. (4.5)

If the signal is spherically symmetric, the filter simplifies to h(~k) = h(k). From the filtered

map  (~r) one can construct an optimal likelihood ratio test between the Gaussian null hy-

pothesis and the existence of the signal (see e.g. [27]), making the matched filter ideal for

picking out single (or more generally, non-overlapping) localized signals.

As we have seen, while the individual hotspots are spherically symmetric, they often

overlap (at least for the range of parameters we are interested in), leading to a net signal in

the sky that is no longer spherical. Additionally, the random separation between the initial

heavy particles means the resulting PHS are not uniform. The unusual shape and variability

among signals make the PHS less suitable for a vanilla matched filter analysis. While it may

be possible to design a complicated and large bank of matched filters to cover the space of

possible signal templates, the CNN analysis can e↵ectively learn a set of flexible filters to

enhance the signal over background even with varying and non-spherical signal shapes.

Even if the matched filter analysis defined in Eq. (4.5) is not optimal for the full pairwise

hotspot signal, it is still instructive to compare a few examples of the matched filter analysis

versus the CNN. For this comparison, we consider PHS that lie only on the last scattering

surface. The combined signal from the PHS will still be non-spherical, but restricting all PHS

to the last scattering surface does take away some of the variability among signals.9 While

each hotspot in a pair will “pollute” the other – meaning that it appears as a background

9We still allow a random separations (within ⌘⇤) between hotspots on the (2D) last scattering surface
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Figure 11. Example images from the matched filter analysis. Left: PHS with ⌘⇤ = 160 Mpc and
g = 2. Middle: Signal plus the background. Right: Filtered map from the convolution integral
Eq. (4.5).

that is di↵erent from the CMB fluctuations – each of the two hotspots can still be picked up

e↵ectively by the single spot template h(k).

We perform the comparison using 902 pixel images with one PHS injection. We use

QuickLens to generate the CMB maps, which follows periodic boundary condition and

thereby ensures the separation between k-modes in the 2D power spectrum P (k) of the

CMB image. The CNN results for this signal set have already been shown in Sec. 4.1 and

can be found in the right hand panels of Fig. 8; the background rejection is above 99% for all

benchmark points, while the signal capture rate varies from a few percent to 100% depending

on ⌘⇤ and g.

For the matched filter analysis, we obtain P (k) from the average of the discrete Fourier

transform of 500 simulated images. We also apply discrete Fourier transform on the profile of

a single hotspot in the PHS, and use it as h(k) in the convolution. Carrying out the integral

in Eq. (4.5), we obtain the processed maps  (~r). An example of the signal processing is shown

in Fig. 11, where the plot on the left is the PHS signal (⌘⇤ = 160 Mpc and g = 2), the middle

is the signal plus background, and the right plot is the output image  (~r). We see that the

filter can indeed pick up the signal hidden inside the background.

As one way to quantify the matched filter results, in Fig. 12 we show the distribution

of largest  (~r) values in each of the 500 maps generated with (blue) and without (red) PHS

signals with {⌘⇤, g} = {160 Mpc, 2} (left) and {100 Mpc, 2} (right). From this perspective, the

matched filter clearly separates the signal and background for the two cases. We also perform

the same analysis for the ⌘⇤ = 50 Mpc signals (which have much lower temperatures). In this

case, the overlap between signal and background in the  distribution is large, and a simple

 cut is not the optimal way to separate the signal and background. For this reason, we only

consider the ⌘⇤ = 100 and 160 Mpc examples in the following discussion.

To provide a rough numerical comparison between the matched filter and the CNN anal-

ysis, we apply a  max cut in each of the matched filter histograms in Fig. 12. We choose the

 max cut value to equal the background rejection rate in the CNN analysis, then compare
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Figure 12. Maximum pixel distribution in filtered maps, where the value  of the pixels on the
filtered map is defined in Eq. (4.5). We use 500 CMB-only and 500 CMB+PHS maps and plot the
distribution of the maximum  of each filtered map to show the separation between the CMB and
CMB+PHS results. We used feature scaling also known as min-max normalization for  max, so that
the smallest value is zero and the largest value is 1.

signal capture rates in the two analyses. For the ⌘⇤ = 160 Mpc example, the signal capture

rate is about 5% and 74% for g = 1 and 2, while the match filter analysis performs slightly

better, capture rates 8% and 98% respectively. For ⌘⇤ = 100 Mpc, the CNN signal capture

rates are ⇠ 10% and ⇠ 69% for g = 1 and 2, while the match filter analysis rates are slightly

lower, 4% and 50%.

In summary, we find that the CNN performs very close to the matched filter analysis,

suggesting that it is near optimal. The advantage of the CNN, as we have discussed, is that

it can learn to interpolate between all signal shapes that appear in our model.10

5 Discussion and Conclusion

In this work, we show that Convolutional Neural Networks (CNN) provide a powerful tool to

identify pairwise hotspots (PHS) on the CMB sky. These PHS can originate from superheavy

particle production during inflation. We improve the previous analysis of Ref. [25] by more

accurately modeling the distribution of PHS on the CMB sky and by developing a CNN-based

signal search strategy.

To accurately model the PHS distribution, we include the possibility that PHS are dis-

tributed along the line-of-sight direction, rather than fixed to the last scattering surface. As

a result, the average inter-spot separation within a PHS, when projected onto the CMB, is

smaller than in Ref. [25]. For PHS with small values of ⌘⇤, such as ⌘⇤ = 50 Mpc, the two

10We believe the small di↵erences between the CNN and matched filter signal rates are due to the simplicity

of the analysis – where  max is used as a proxy for the matched filter performance.
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hotspots in a PHS significantly overlap with each other, and the resulting PHS look like a

single object, but with a distinct angular profile (Fig. 5).

For the signal search, we construct a CNN to identify PHS from within the CMB, the

standard fluctuations of which act as backgrounds for the signal. The network is trained on

902 pixel images with and without PHS injected in them (both with hotspots distributed

in 3D, and with hotspots fixed on the last scattering surface). During training we choose

a coupling g = 3, but the trained CNN can still identify PHS for smaller values of g with

a significant signal capture rate and small background fake rate. We find that the CNN

actually performs better for the smaller ⌘⇤ benchmark, even though the hotspots are dimmer.

We believe this is due to the distinctive ring structure the PHS have when ⌘⇤ = 50 Mpc, as

evidenced by comparing PHS signals distributed in 2D versus in 3D, and by studies testing

the CNN on ‘dot’ and ‘ring’ test signals (Appendix C).

After developing the CNN for 902 pixel images, we apply it to larger 7202 pixel maps,

sliding 902 ‘templates’ in 5 pixel steps across the larger images to generate a probability map.

In the probability map, each pixel is evaluated by the network multiple times. As a final step,

we filter the probability map, only retaining clusters – groups of positive network outcomes

– of a certain size. The benefit of the sliding template search is that it less sensitive to the

exact position of the hotspot within the 902 pixel region. Applied in this manner, we find

that the CNN can e�ciently discern the presence of hotspots, even if the signal temperature

is much smaller than the CMB temperature fluctuations. In particular, the CNN can even

identify O(10) number of PHS on the CMB sky for g = 1 and ⌘⇤ = 50 Mpc, a signal

that has a temperature ⇡ 20 times colder than the average CMB temperature fluctuations.

Translated into model parameters, for the benchmark models we study using mock CMB

maps, we project that a CNN search can set a lower bound on the mass of heavy scalars

M0/HI & 110� 260, with the precise value depending on the time of particle production and

coupling to the inflaton. These numbers are a significant improvement over the simplistic

analysis in Ref. [25] that used single temperature cut to separate signal from the background.

Compared to the standard matched filter analysis, the CNN is more versatile in identify-

ing non-rotationally symmetric signals with varying shapes and temperatures that arise in the

context of PHS. We performed a simplified comparison between the CNN and matched filter

analysis by considering PHS with a fixed profile and located on the last scattering surface to

show that the match filter analysis can provide comparable signal capture and fake rates to

the CNN search for PHS with ⌘⇤ = 160 Mpc and 100 Mpc. For dimmer PHS (⌘⇤ = 50 Mpc),

more analysis is required to separate the signal and background in the filtered map. We leave

a more detailed comparison to the matched filter method with a bank of filters to cover the

signal space to future work.

Several future directions remain to be explored. It would be interesting to apply our

methodology to actual Planck CMB maps to search for PHS. In the absence of a detection,

we can still set a lower bound on the masses of ultra-heavy particles which are otherwise very

di�cult to discover or constrain. This, however, requires a subtraction of the astrophysical

foregrounds and knowing if the CNN can distinguish PHS from the compact objects in the
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foreground. Since the distortion of the curvature perturbation from particle production also

modifies structure formation at late times, it would also be interesting to see if the current

or future Large Scale Structure (LSS) surveys can identify the resulting signals localized in

position space. A neural network like the one used here can learn to incorporate the non-

linear physics of structure formation if trained on suitable simulations. Related to localized

PHS signatures, similar types of cosmological signals from topological defects [51] or bubble

collisions [28–30] can also arise and these may also be identified by a CNN search. From a

more theoretical perspective, it would also be useful to write down a complete inflationary

model that incorporates inflaton coupling to heavy fields and leads to particle production as

described here. We leave these directions for future work.
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A Sensitivity to the ⇤CDM Parameters

Our analysis uses ⇤CDM parameters in Eq. (3.1) to simulate the CMB. As the ⇤CDM

parameters come with uncertainties, we should check how sensitive the signal capture rate is

to the variation of the parameters. In Table 4, we show the background rejection and signal

capture rate using the same trained network for Fig 8 left with g = 3 and ⌘⇤ = 160 Mpc but

on CMB maps simulated with variations of ⇤CDM parameters. As we see, when changing

the {As,⌦b,⌦CMB, ns} one by one with twice the 1� uncertainty reported in [39], the signal

capture rate only changes by O(few %), comparable to the variations in our CNN analysis

due to finite sampling. The consistent search results show the robustness of the network’s

ability to identify PHS against the uncertainty of ⇤CDM parameters.

B PHS Corrections to the CMB Power Spectrum

Here we show the corrections on the CMB power spectrum when the number of PHS in

the full sky saturates the bounds in Table 2. We show examples with the coupling g = 1

and horizon sizes ⌘⇤ = 100 Mpc (NPHS = 840) and 160 Mpc (NPHS = 1162), assuming the

centers of all the hotspots are located on the last scattering surface. Notice that the latter
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!b !cdm 109As ns ⌧re Bg rejection Sig capture

Planck18 0.0224 0.120 2.10 0.966 0.0543 99.8% 74.0%

Case 1 +0.004 99.8% 72.3%

Case 2 +0.07 99.2% 74.1%

Case 3 +0.01 99.6% 69.9%

Case 4 +0.0003 99.8% 73.4%

Case 5 +0.014 99.2% 74.4%

Case 6 +0.0003 �0.004 +0.05 �0.01 �0.014 99.8% 72.4%

Table 4. The response of the signal capture and background rejection rates with varying ⇤CDM
parameters, labeled with the di↵erence to the ⇤CDM parameters. The variation of the rates is
comparable to the fluctuations in our CNN analysis due to finite sampling and therefore is insignificant.
For this test, we used g = 2 and ⌘⇤ = 160 Mpc for the PHS signal.
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Figure 13. CMB temperature power spectrum using best fit ⇤CDM input parameters in Eq. (3.1)
with (red lines) and without (blue lines) PHS signals implemented on the full sky using a resolution
parameter Nside = 2048. Here, we assume that all PHS signals are on the last scattering surface. The
di↵erences between the two distributions are shown in green lines, and the gray shaded regions denote
1� uncertainty, taken from the Planck 2018 data.

assumption of fixing ⌘HS = ⌘rec makes the average PHS temperature higher compared to the

main analysis that allows ⌘HS to vary. However, the assumption simplifies the power spectrum

calculation and gives a more conservative result by exaggerating the PHS correction to the

power spectrum. We also check results for di↵erent g and ⌘⇤, but, following Table 2, with

much smaller NPHS. The corrections to the power spectrum for the other benchmarks are

even smaller.

To see how the excesses appear on the power spectrum, we utilize Hierarchical Equal

Area isoLatitude Pixelization, HEALPix [40], based on the C
TT

`
spectrum computed from the

CLASS package using the same ⇤CDM parameters in Eq.(3.1). HEALPix pixelates a sphere
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in an equal area where the lowest resolution consists of 12 baseline pixels. The resolution is

increased by dividing each pixel into four partitions which can be parameterized as Npixels =

12N
2

side
where Nside is a power of 2. We choose the resolution parameter Nside = 2048. Since

the total number of pixels in a sphere characterizes the total number of independent ` modes

in C
TT

`
, which is given by

P
`max

`=0
(2`+ 1) = (`max + 1)2, our benchmark resolution parameter

Nside = 2048 corresponds to the maximum multipole number `max ' 3500.

Figure 13 shows D
TT

`
spectra for the ⇤CDM model (blue) and the ⇤CDM+PHS (red)

with ⌘⇤ = 100 Mpc and ⌘⇤ = 160 Mpc. The di↵erence between the red and blue spectra is

shown on the lower panel (green), with the 1� error bar (gray) taken from the Planck 2018

result [39]. For both scenarios, the excesses are well below the error bar indicating that the

power spectrum analysis will not be able to resolve them. We also show ��2 to quantify the

deviations with respect to the ⇤CDM spectrum using the same Planck 2018 binning intervals

in `. The total ��2 for both cases is negligible compared to the number of parameters we

have.

C Shape Analysis for the ⌘⇤ = 50 Mpc Signal

Figure 14. In the left panel we show the trimmed inner piece of a hotspot signal, while in the right
we show the output after 500 CMB + inner hotspot images are run through a network trained on full
(untrimmed) ⌘⇤ = 50Mpc, g = 3 hotspots.

In our earlier results, we found that the CNN’s performance for ⌘ = 50 Mpc PHS exceeds

the other benchmarks, despite the fact that the hotspots at ⌘ = 50 Mpc are much cooler.

We surmise that the result is due to the distinct shape of the profile – a rim structure with

central peak. As a simple test of this hypothesis, we formed a signal set of PHS decomposed

into two separate features, an inner peak and an outer rim. We then ran each piece through

a network trained on the complete shape of the ⌘ = 50 Mpc spots.
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Figure 15. In the left panel we show the trimmed outer piece of a hotspot signal, while in the right
we show the output after 500 CMB + outer hotspot images are run through the same network as in
Fig. 14. The capture rates for the ring are much higher than for the central spot, shown in Fig. 14.

We ran 500 CMB + deconstructed PHS test samples through the network, using a variety

of g values but always with both located on the last scattering surface. The results, along

with sample images of the deconstructed signals, are shown in Figs. 14 and 15. Comparing

the right hand panels in Figs. 14 and 15, we see that the network is much more e�cient at

capturing the ring portion, e.g. 88% capture for g = 3 compared to 27% for the central spot.

From this test we conclude that the ring shape is crucial to the CNN’s performance at low ⌘⇤
(note that the signal capture for the ring nearly matches the capture rate for the full signal

(Fig. 8)).
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