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ABSTRACT: Particles with masses much larger than the inflationary Hubble scale, Hy, can
be pair-produced non-adiabatically during inflation. Due to their large masses, the produced
particles modify the curvature perturbation around their locations. These localized pertur-
bations eventually give rise to localized signatures on the Cosmic Microwave Background
(CMB), in particular, pairwise hotspots (PHS). In this work, we show that Convolutional
Neural Networks (CNN) provide a powerful tool for identifying PHS on the CMB. While
for a given hotspot profile a traditional Matched Filter Analysis is known to be optimal, a
Neural Network learns to effectively detect the large variety of shapes that can arise in real-
istic models of particle production. Considering an idealized situation where the dominant
background to the PHS signal comes from the standard CMB fluctuations, we show that a
CNN can isolate the PHS with O(10)% efficiency even if the hotspot temperature is O(10)
times smaller than the average CMB fluctuations. Overall, the CNN search is sensitive to
heavy particle masses My/H; = O(200), and constitutes one of the unique probes of very
high energy particle physics.


mailto:tkim12@nd.edu
mailto:jeonghan.kim@cbu.ac.kr
mailto:soubhik@berkeley.edu
mailto:amarti41@nd.edu
mailto:muenchmeyer@wisc.edu
mailto:ytsai3@nd.edu

Contents

1 Introduction 1
2 Pairwise Hotspot Signals 4
2.1 Inflationary Particle Production 4
2.2 Effect on the CMB 6
3 Simulation of the CMB and PHS Signals 9
4 Identifying Pairwise Hotspots with CNIN 14
4.1 Network Training on Small Sky Patches 14
4.2 Application of the Trained Network to Larger Sky Maps 18
4.3 Obtaining Theoretical Bounds from Detection Statistics 19
4.4 Comparison with a Matched Filter Analysis 22
5 Discussion and Conclusion 25
A Sensitivity to the ACDM Parameters 27
B PHS Corrections to the CMB Power Spectrum 27
C Shape Analysis for the 7, = 50 Mpc Signal 29

1 Introduction

An era of cosmic inflation [1-3] in the primordial Universe remains an attractive paradigm
to explain the origin of (approximately) scale invariant, Gaussian, and adiabatic primordial
perturbations, inferred through cosmic microwave background (CMB) and large scale struc-
ture (LSS) observations. This inflationary era can be characterized by a rapid expansion of
spacetime, controlled by an approximately constant Hubble scale H;. Excitingly, based on
the current constraints, H; can be as large as 5 x 10'® GeV [4]. This fact, coupled with the
feature that particles with masses up to order H; can get quantum mechanically produced
during inflation, makes the inflationary era a natural and unique arena to directly probe very
high energy particle physics.

There are several classes of mechanisms through which heavy particles, which we label as
X, can be produced during inflation. When their mass m, < Hr, quantum fluctuations of the
inflationary spacetime itself can efficiently produce the x particles. However, for m, > H,



this production gets suppressed exponentially as e ™™x/Hr [5], and other mechanisms are
necessary for efficient particle production to occur.

To illustrate this, we consider the standard slow-roll inflationary paradigm containing
an inflaton field ¢ whose homogeneous component we denote by ¢¢(t). Normalization of the
primordial scalar power spectrum requires the ‘kinetic energy’ of this homogeneous component
to be |d¢30/dt]1/ 2 ~ 60H; [4]. Therefore, heavy particles, if appropriately coupled to the
inflaton kinetic term, can be efficiently produced for m, < 60H;. One class of examples
of this involve a coupling of the type d,¢J" where J# is a charged current made up of
the y field. For some recent work implementing this idea see, e.g, Refs. [6-14]. In these
constructions, heavy particle production happens continuously in time, in a scale-invariant
fashion. In other words, the coupling of the inflaton to x particles does not break the shift
symmetry, ¢ — ¢ + constant, of the inflaton.

A different class of mechanisms can lead to particle production at specific times during
the inflationary evolution. This can happen if the shift symmetry of the inflaton is broken
in a controlled manner, e.g. to a discrete shift symmetry. This breaking of shift symmetry
translates into a violation of scale invariance, and selects out specific time instant(s) when
particle production can occur. Examples of such mechanisms appear in Refs. [15-20], and see
Refs. [21, 22] for reviews.

A particularly interesting example of this latter mechanism arises in the context of ultra-
heavy particles with time-dependent masses. More specifically, suppose m, varies as a func-
tion of ¢ in a way such that, as ¢ passes through a specific point ¢, on the inflaton potential
at time t., m,(¢) passes through a local minimum. In this case, non-adiabatic x particle
production can occur at time t,. Following their production, x particles can again become
heavy, m, > |d¢o/ dt|'/?, and owing to this large mass they can backreact on the inflationary
spacetime, contributing to the curvature perturbation around their locations.

We can describe the effects of these additional curvature perturbations qualitatively in
the following way, leaving the details for the next section. Following their production, the
perturbations exit the horizon when their wavelengths become larger than 1/H; and become
frozen in time. After the end of inflation, they eventually reenter the horizon and source
additional under- or over-densities in the thermal plasma in the radiation dominated Universe.
Overdense regions, for example, would trap more plasma, and therefore would emit more
photons at the time of CMB decoupling.! Therefore, we would observe localized regions on
the sky where CMB would appear hotter than usual. As we will discuss below, the sizes of
these localized ‘spots’ are determined by the size of the comoving horizon, 7, at the time
of particle production t.. While 7, can take any value, for concreteness we will consider
7s ~ 100 Mpc in this work. This implies that the localized spots would subtend ~ 1° on the
CMB sky.

The next question one may ask is what is an efficient strategy to look for such signatures.

1To be more accurate, one also need to take into account the gravitational redshift of the photons as they
climb out of the gravitational potential wells. We will compute this effect in the next section.



Since this scenario is associated with a violation of scale invariance, characterized by 7., one
would expect to see ‘features’ on the CMB power spectrum or even higher-point correlation
functions. However, in the regime we focus on, the total number of produced x particles is
still small to the extent that the CMB power spectrum is minimally affected, as we explicitly
check later. On the other hand, the spots can still be individually bright enough such that we
can look for them directly in position space. Indeed, this class of signatures in the context of
heavy particle production were discussed in Refs. [23, 24], and in Ref. [25] the associated CMB
phenomenology was described and a simple ‘cut-and-count’ search strategy was developed.
Using the cut-and-count strategy, Ref. [25] constrained the parameter space of ultra-heavy
scalars and illustrated regions where a position space search is more powerful than power
spectrum-based searches.

In more detail, Ref. [25] considered a single instance of particle production during the
time when CMB-observable modes exit the horizon. Conservation of momentum implies that
such heavy particles are produced in pairs. However, owing to their large mass, the particles
do not drift significantly following their production, and it was argued that the separation
between the two particles forming a pair can be taken to be a uniformly random number
between 0 and 7,. Finally, it was shown that the coupling g of x to the inflaton determines
how hot/cold the associated spot on the CMB is with the heavy particle mass m, determining
the total number of such spots on the sky. To summarize, the three parameters determining
the hot/cold spot phenomenology are {g,my, s}, as will be reviewed in more detail in the
next section. While both cold or hot spots can arise depending on the value of 7y, for the
choices of n, in this work, only hotspots will appear on the CMB. Therefore, we will often be
referring to these localized spots as hotspots, in particular as pairwise hotspots (PHS) since
the spots appear in pairs.

In the present work, we improve upon Ref. [25] in several important ways. First, in
Ref. [25] we only considered hotspots that lie within the last scattering surface, with a thick-
ness of An =~ 19 Mpc [26]. In this work we adopt a more realistic setup and include hotspots
that are distributed in a larger region around the last scattering surface. We take this region
to have a thickness of 27, and we show in Sec. 2 how hotspots lying outside the An shell can
still affect the CMB. The overall signature of PHS then changes non-trivially. For instance,
with the improved treatment we can have one spot of a pair lying on the CMB surface, while
the other can lie off the CMB surface, leading to an asymmetric signal.

Second, we develop a neural network (NN)-based search for the hotspot profiles. In
principle, a neural network is not necessary to search for a profile of known shape which is
linearly added to the Gaussian background. In this case, the standard method of constructing
a so-called matched filter can be shown to be the optimal statistic to detect the profile (see,
e.g., [27]). Matched filter-based searches for radially symmetric profiles in the CMB have
been previously reported for example in [28-30], with the physical motivation of searching
for inflationary bubble collisions. Various matched filters have also been used in the Planck
Anisotropy and Statistics Analysis [31, 32] without finding a significant excess. However, the
signal which we are looking for here is more complicated. Profiles come in pairs (breaking



radial symmetry of the profile), they can be overlapping, and, depending on their production
time and orientation with respect to the surface of last scattering, their appearance on the
CMB changes. While it is in principle possible to cover the entire space of profiles with a very
large bank of matched filters, this would be a complicated and computationally challenging
approach. A neural network, on the other hand, can learn an effective representation of these
filters which interpolates well between all profile shapes, including overlapping ones. We also
implement the matched filter method below, and show that in the simplified case with a single
profile type, our neural network performs similar to the optimal matched filter.

This work is organized as follows. We first describe a simple model of x particle pro-
duction in Sec. 2 and summarize how the total number of produced particles depends on the
model parameters along with various properties of the PHS. We improve the calculation of
the hotspot profiles by taking into account the line-of-sight distance to the location of the
hotspots which can be off the CMB surface. In Sec. 3, we describe the simulation of the PHS
signals and the CMB maps in angular space, assuming that the dominant background to the
PHS signal comes from the standard CMB fluctuations. In Sec. 4, we describe the convolu-
tional neural network (CNN) analysis and estimate the sensitivity the CNN can achieve for
a PHS search. We then translate this sensitivity to the mass-coupling parameter space of
the heavy particles. We also compare the CNN analysis with a matched filter analysis for
simplified hotspot configurations. We conclude in Sec. 5.

2 Pairwise Hotspot Signals

To model heavy particle production, we consider a scenario where the mass of x is inflaton-
dependent, m, (¢). Therefore as ¢ moves along its potential, efficient, non-adiabatic particle
production can occur if m,(¢) varies with ¢ rapidly. With a mass term m, (¢)?x?, pairs of x
particles would be produced, as required by three-momenta conservation. The phenomenology
of such heavy particles depend on their mass, coupling to the inflaton, and the horizon size
at the time of their production. We now review these properties more qualitatively, referring
to Ref. [25] for a more complete discussion.

2.1 Inflationary Particle Production

We parametrize the inflationary spacetime metric as,
ds? = —dt* + a*(t)da?, (2.1)

with the scale factor a(t) = e/t and H; the Hubble scale during inflation that we take to be
(approximately) constant. To model particle production in a simple way, we assume m (¢)
passes through a minimum as ¢ crosses a field value ¢,. Then we can expand m, (¢) near ¢,

as,

ma(8) = my(60) + 5mL(02)(6 — 6)% + -+ (22)



where primes denote derivatives with respect to ¢. Thus the mass term would appear in the
potential as,

mx(¢)2X2 = mx(¢*)2X2 + mx(ﬁb*)m;(éb*)(ﬁb - ¢*)2X2 +ee (2.3)

While away from ¢, m,(¢) can vary in different ways, most of the important features of
particle production are determined by the behavior of m,(¢) around ¢,. For example, the
number density of x particles is determined by m, (¢ ), as we will see below. Similarly, the
spatial profiles of the hotspots on the CMB is determined by the dependence (¢ — ¢)% ~
G2t — )% ~ (do/Hy)? log(n/n.)?, where we have used the relation between ¢ and conformal
time n, n = (—1/Hp)e H1t (an overdot here denotes a derivative with respect to time). Given
the importance of the physics around ¢,, we will denote, m, (¢.)? = Mg, m,, (¢s)mi(9s) = g2,
and ¢, = u/g, to describe particle production. Thus we will write the Lagrangian for y as,

Ly= —%(%x)Q - % (990 — )* + Mg) x*. (24)

As ¢ nears the field value ¢,, the mass of the x field changes non-adiabatically and particle
production can occur.

The efficiency of particle production depends on the parameters g, My, and 7, the size

of the comoving horizon at the time of particle production. This can be computed using

the standard Bogoliubov approach, and resulting probability of particle production is given

by [20, 33],

(2.5)

(M2 — 2H? + k22 H?
\BI2=exp<— (M I I)>.

9ldol
The normalization of the scalar primordial power spectrum, in the context of single-field
slow-roll inflation, fixes Ay = H}/(4m2¢2) ~ 2.1 x 10~ [4] which determines ¢g ~ (58.9Hr)?.
The above expression (2.5) characterizes the probability of particle production with phys-
ical momentum k, = kn,H. The total number density of particles can then be computed by
integrating over all such k-modes,
_ [ 2 k2 gldol) p—m(ME—28R) [aldol) — L (0 VPP —m(E—2E2)/(dldo]) (o
n=g pkye e o3 (gd)o) e . (2.6)
From an observational perspective, it is more convenient to relate n to the total number of
spots that would be visible on the CMB sky. To that end, we need to specify the associated
spacetime volume. Considering a shell of thickness Ang around the CMB surface, the total
number of spots in that shell is given by [25],

3
a
Nspots =nX (CLZ) X 47TX12‘6CA775 s

.\ 3/2
1 (990 Ans 3 —m(M2—2H2)/(g|d
- ﬁ (ﬂ) Xrec (k*Xrec) € (Mo 1)/(glgol) ) (27)

3 .
~ 4 x 108 x g3/2 ( A ) (100 Mpc) e~ (M§—2H%)/(glol)

100 Mpc s



Here a, and ag = 1 are the scale factors at the time of particle production and today,
respectively. The quantity xrec is the distance of the CMB surface from us and approximately
equals 13871 Mpc, obtained from Planck’s best-fit ACDM parameters, and k, = a.Hy = 1/n.
is the mode that exits the horizon at the time of particle production.

2.2 Effect on the CMB

We now discuss the detailed properties of the spots and how they modify the CMB.

Primordial Curvature Perturbation from Heavy Particles. Owing to their large
mass, the heavy particles can backreact on the spacetime metric around their locations,
and can give rise to non-trivial curvature perturbations. The profile of such a curvature
perturbation can be computed using the in-in formalism and the result is given by [24],

Hp [M(n=—r), ifr<n
(Cus(r) = o ' . (2.8)
Here ¢ = |Hj|/H? is a slow-roll parameter, and we have anticipated that this curvature

perturbation would give rise to a hotspot (HS), rather than a coldspot. Importantly, the
variation of the mass as a function of conformal time 7 controls the spatial profile. This
variation can be computed from Eq. (2.4) by noting the slow-roll equation ¢ — ¢, = ¢o(t —t),
which gives

9’0

O in(r/m.)? + M3, (29)

1

Here we have used the relation between cosmic time ¢ and the conformal time 7, that also
determines the size of the comoving horizon, t — t, = —(1/Hj) In (n/n.).

Using the slow-roll relation d)g = 2€HI2M§1 and the fact that Mg ~ g]<130| so that Nepots
is not significantly exponentially suppressed (see Eq. (2.7)), we can drop the contribution of
the second term in Eq. (2.9) away from 7.. The profile can then be simply written as,

2

_ gH
{Cus(r)) = o In(n./7)0 (1. — 7). (2.10)

Given the typical size of a standard quantum mechanical fluctuation (Cg)l/ 2~ H?Y (27 o),
we see the curvature perturbation associated with a hotspot differs primarily by ¢g/2. In this
work we will choose g ~ O(1), so the two types of perturbations will be of the same order of
magnitude.

CMB Anisotropy. After these fluctuation modes reenter the horizon, they source temper-
ature anisotropies and give rise to localized spots on the CMB sky. To compute the resulting
anisotropies, we first write metric perturbations,

ds? = —(1+ 2\Il)dt2 + a2(t)(1 + 2@)5ijdxida:j, (2.11)



in the Newtonian gauge. The temperature fluctuations of the CMB corresponding to Fourier
mode k, pointing to direction 7 in the sky is given by,

O(k,i,mo) = > il (21 + 1)Py(k - 72) O, (k, o). (2.12)
l

Here the multipole ©;(k,n9) depends on the primordial perturbation ¢ (E) and a transfer
function T;(k) as,

Ok, m0) = Ti(k)¢(K), (2.13)

with 79 denoting the conformal age of the Universe today. Importantly, for our scenario 7;(k)
itself can be computed exactly as in the standard ACDM cosmology. It can be computed
after taking into account the Sachs-Wolfe (SW), the Integrated Sachs-Wolfe (ISW), and the
Doppler (Dopp) effect [34],

Gl(kv 770) = (@O(ka nrec) + \Il(ka nrec)) jl(k(nﬁ - nrec))

o [ e () 050 k)
0 (2.14)

+ 3@1(k, nrec) <jl—1(/€(170 — nrec)) — (l + 1)W)

= (fsw(k,1,m0) + fisw(k,1,70) + foopp (ks 1,m0)) C(K)

where 7 is the optical depth. The above expression relates a primordial perturbations ( to a
temperature anisotropy ©;.

Temperature Anisotropy due to Heavy Particles. Regardless of the origin of ( (E)
is, we can compute fow(k,l,m0), fisw(k,l,m0), and fpopp(k,{,7m0) as in the standard ACDM
cosmology. Thus converting the position space profile in Eq. (2.10) to momentum space and
using Eq. (2.14), we can get the observed profile of a hotspot on the CMB sky. This Fourier
transform of the profile (2.10) can be written as,

(Cus (F)) = e~ iF-ans f(:;]*), (2.15)
with a profile function
flz) = ‘(]::12(81(95) —sin(z)), Si(z) = /Ox dtsin(t)/t. (2.16)
0
We parametrize the distance to the hotspot as,
To — Tus = — (1o — nus)nus. (2.17)

Here Zy and ryg parametrize our and the hotspot locations, respectively, and figg points
to the direction of the hotspot. The quantity nps denotes the location of the hotspot in



Figure 1. Representation of a hotspot on the CMB sky. Our location and the location of a hotspot
are denoted as Zy and Z'ys, respectively, defined with respect to an arbitrary coordinate system. The
black circle denotes the surface of last scattering, located at 7o =~ 280 Mpc in conformal coordinates.
Due to momentum conservation, heavy particles are produced in pairs, and the distance between the
two members of a pair can vary between 0 and 7,. Therefore, in our analysis we allow the two members
to be anywhere within the gray shaded region. We compute the temperature profile of a hotspot as a
function of direction of observation 7, with the hotspot center in the direction of figs.

conformal time with 7y being the size of the present epoch. In the earlier paper, we took the
hotspot to be on the CMB surface and hence set ngs = 7rec &~ 280 Mpec. In this work, we
allow the hotspots to be away from the last scattering surface with ngg between 7.ec — 14 and
Nrec + M, and study their signals on the CMB surface. This set up is summarized in Fig. 1.
As derived earlier, the temperature due to the hotspot is given by (dropping 7o from the

argument),
37 BN — N
O(Zp,n) = / (;ZT‘-];S otk (Fo—Zus) Z il(2l + )Pk - n) (few(k, 1) + fisw(k, 1) + Jpopp (K, 1)) f(]]zg*)
l
(2.18)

Here 7. denotes the direction of observation. The functions fsw(k,l) and fisw(k,1) are ex-
tracted from the transfer function using CLASS [35, 36] as in Ref. [25]. Using the plane wave

expansion,

o0

Z L2l + 1) (kr)Py(k - 7), (2.19)

and the relation

Pk - 7) 2l 0 Z m(R)YE (K, (2.20)




we get:

O, mis) = 5z [ G S (Em = mis)) (21 + 1P s B, 1) 1) (2:21)
l

Tsum(k7 l) = fSW(ka l) + fISW(ka l) + fDopp(k> l) . (222)

Note ©(Zp, 7, nus) depends on 7ys, the location of the hotspot — which need not be on the
last scattering surface as mentioned above. Given the spherically symmetric profile of the
hotspot, the Doppler contribution to ©(Zy, 7, 7ys) is small, from now on we only include the
SW and ISW corrections for our analysis.

Central Temperature. It is useful to compute the temperature anisotropy at the central
part of a hotspot. To that end, we set n = npg, implying P;(7 - nps) = 1, and

1

@central(f& 77HS) - W

oo
% D (0 =~ )2+ D (kD En). (223)
In Fig. 2 we show the SW and ISW contributions to the central temperature as a function
of nug after multiplying by the average CMB temperature Ty = 2.7 K for n. = 160 Mpc.
For completeness, we also show the central temperature in Fig. 3, as obtained in [25], as
a function of hotspot size n,, assuming the the hotspot is located on the surface of last
scattering. As we can see, the pair-produced CMB spots are indeed hotspots when 7, < Gpe.
For n, > 6600 Mpc coldspots as opposed to hotspots arise. This is because the negative SW
contribution dominates the positive ISW contribution, with the combination being negative.

3 Simulation of the CMB and PHS Signals

In order to design a PHS search, we simulate the PHS signal and CMB maps so that we can
estimate the signal capture rate (‘True Positive Rate’), and the background count for a CNN
analysis. We notice that there are three types of backgrounds to consider for a PHS search:
(i) the noise of the CMB detector, (ii) the astrophysical foreground, and (iii) the background
from the standard primordial fluctuations.

A realistic analysis needs to take into account detector noise and foregrounds. In our
analysis, we consider profiles on relatively large angular scales, £ < 1000. For these scales
current CMB temperature data, such as from Planck, is signal-dominated and we thus do
not need to add instrumental noise to our simulations. The astrophysical foreground comes
from compact objects such as galaxies, galaxy clusters, gas, and dust which can also produce
localized signals. Part of these astrophysical foregrounds can be cleaned out due to their
frequency dependence (for a review see, e.g., Ref. [37]). For the signal sizes that we con-
sider, corresponding to £ < 1000, we do not expect significant astrophysical contamination
after foreground cleaning and masking of the galactic plane, while for significantly smaller
scales a detailed study of residual foregrounds and point sources would be required (see, e.g.,
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Figure 2. Central temperature Ocentral X To of a hotspot as a function of the (radial) location of
the hotspot. We choose 1, = 160 Mpc and g = 1. The dotted gray line indicates the location of the
recombination surface. Larger (smaller) nps implies the hotspots are closer to (further from) us. We
also show contribution of the Sachs-Wolfe term (orange) and the Integrated Sachs-Wolfe term (purple)
in determining the total temperature (olive). The left and right edges of the plot are at ngs = Mrec — 7«
and 1ngs = NMrec + N«, respectively.

Planck’s component separation analysis [38]). In the following, we therefore only consider
the background from the primordial, almost Gaussian, fluctuations when studying the PHS
signal. This last type of background is ‘irreducible’ in the sense that it will always be present,
originating from the fluctuations of the inflaton itself. We will assume the CMB maps are
masked to reduce the astrophysical foregrounds and badly-conditioned pixels and retain only
60% of the sky for the analysis. The number is similar to the sky fraction used in the Planck
analysis [39].

Unlike the analysis in [25] that was based on a HEALPix [40] simulation, in this work,
we use the QuickLens package® to simulate the CMB maps. QuickLens allows us to work
in the ‘flat sky approximation’, neglecting sky curvature that is irrelevant to the size of the
PHS profile we consider, as well as to draw sample maps with periodic boundary conditions
to avoid complications due to masking. QuickLens can take a theoretical temperature power
spectrum to produce mock flat sky CMB maps. To provide an initial input, we use the
CLASS (v3.2) package [35, 36] to compute a temperature anisotropy spectrum C'T based on
the Planck 2018 [41] best fit ACDM parameters,

{Wedm, W, I, 102 Ay, ng, Treio = {0.120,0.022, 0.678, 2.10, 0.966, 0.0543} . (3.1)

We will comment on the sensitivity of the CNN analysis to the ACDM parameters in Sec. 4.1
and Appendix A. We specify fpax = 3500 in the code for the maximum number of /-modes

https://github.com/dhanson/quicklens
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Figure 3. Central temperature (green) of a hotspot originating from a heavy particle for g = 1, based
on Eq. (2.23) with ngs = 7. The green line illustrates the variation of the observed anisotropy
as a function of the “size” of the hotspot, determined by the comoving horizon 7. at the time of
particle production. The horizontal gray line gives a rough benchmark of the magnitude of the large-
scale temperature anisotropy due to only the standard quantum fluctuations of the inflaton (1/ 5)<C§>,
without taking into account acoustic oscillations. The dashed vertical gray lines show the benchmark
choices for the hotspot size 1, = 50,100,160 Mpc chosen in the subsequent discussion. We take the
plot from Ref. [25].

used for the image generation. As explained above, our signal profiles have support on length
scales corresponding to an ¢ < 1000, where instrumental noise is negligible compared to the
primary background from CMB and can thus be ignored. An application to significantly
smaller angular scales would need to take into account the noise properties of the experiment.
We choose the image resolution such that 1 pixel = 1073 radians to match Planck’s angular
resolution down to ~ 5 arc minutes [42]. We also use the relation between the angle and
the comoving length on the last scattering surface An/xrec.® For instance, if the separation
between two hotspot centers is 160 Mpc on the last scattering surface, the two centers are 12
pixels away on the image, with yyec = 13871 Mpc for Planck’s best-fit ACDM parameters.
For the CNN analysis, we begin by generating 360° pixel images, corresponding to a
[—10.32°,10.32°] region in longitude and latitude (n, = 360 in QuickLens ). We then cut
out a 902 patch from each of the 3602-sized maps. These non-periodic, smaller maps are
then used for further analysis. In particular, for our CNN analysis, we generate 160k training
images, 40k validation 90% pixel images, and an additional 5k test images to quantify the

3In Ref. [25], the angular size of one pixel was obtained by matching the pixel number to the total degrees
of freedom in the ¢-modes (éfﬂax + lax = 47r/t9§ixel), together with the approximation fmax =~ 70/7pixel-
Although the matching reproduces the same angular resolution, the relation between fmax and 7pixel gives
Af = \/ZEAn/XreC. Since fmax ™ Mo /Mpixel comes from the approximation of the k-mode integral with j¢(k Xrec)
and k = 27 /n, the relation between the angle and length is less robust than A0 = An/xXrec-

— 11 —
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Figure 4. Radial profile of a single hotspot with the heavy particle position inside (olive), on (orange),
and outside (purple) of the last scattering surface. The locations of these hotspots in conformal time
are taken to be Mec + Mx, Mrec, and Mree — M, respectively, as denoted by the labels. From upper left
to bottom: horizon size for the hotspot production at 7, = 50,100,160 Mpc. The plots assume the
inflaton-x coupling g = 1.

network performance. Training the neural network on smaller patches yields better training
convergence and does not lead to loss of information as long as the characteristic size of the
signal is smaller than the size of the patch.

The profile of each of the PHS is described by Eq. (2.21), where the function depends
on the distance to the hotspots (9 — 7us) and the angle cos™!(f - figs), as defined in Fig. 1.
The overall magnitude of the signal temperature is proportional to the coupling g. When
generating the signal, we require both the hotspots to be within a shell £7, around the last
scattering surface as shown in Fig. 1. For example, when studying the case with n, = 160 Mpc,
we first divide the 160 Mpc region into 50 concentric annuli, each having equal thickness. We
then choose the first hotspot from a pair to lie on any of these 50 annuli with equal probability.
The second member is then chosen anywhere within a sphere of radius 7, centered on the first
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Figure 5. Example plots of pure background from QuickLens simulation (left), pure signals (middle),
and signals with g = 4 on top of the simulated background (right). The scalar particles are produced
at comoving horizon sizes 7, = 50 Mpc (top), 100 Mpc (middle), n. = 160 Mpc (bottom). The signals
at different benchmark 7, have roughly the same size, as the 7, dependence only enters logarithmically.
The two hot spots are clearly separated for 7, = 160 Mpc and n, = 100 Mpc, while for n, = 50 Mpc
they overlap.

hotspot, again with a uniform random distribution.* A pair is kept for further analysis only
if both the spots of the pair falls within the +n, shell of the last scattering surface. Since

*Our motivation for the uniform distribution is driven by Eq. (2.6). There, the integral is dominated by
kp ~ My, as small k;, are suppressed by the kf, factor and large k, are exponentially squashed. Assuming that
x are produced semi-relativistically and can travel a horizon scale distance, we expect a uniform distribution
of hotspots within +7, of the last scattering surface.
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the distribution in a 3D volume allows hotspots to orient along the line-of-sight direction,
the average separation between the two hotspots projected on the last scattering surface
is smaller than the separation assumed in Ref. [25] that only considered PHS on the last
scattering surface.

Once we generate PHS images with random orientation and separation between two
hotspots, we pixelate them and add the PHS image to the simulated CMB maps to produce
the signal image. We follow this procedure for all the signal images in our study. In this
work, we study benchmark models with horizon sizes

ne = 50, 100, 160 Mpc, (3.2)

and couplings from g = 1 to 4. Specifying g and 7, sets the overall temperature and the
profile of the hotspot, a la Eq. (2.21). Within the approximations we’ve made in Sec. 2, the
remaining model parameter, My, only affects the overall number of hotspots Npyg (through
Eq. (2.7)). Going forward, we will compute the number of hotspots that can be hidden within
the background fluctuations for given benchmark coupling and 7,. Then, using Eq. (2.7), the
upper bounds on Npys can be translated into lower bounds on My. As an illustration of what
a benchmark PHS looks like, in Fig. 5 we show examples of the CMB background (left), PHS
signal (middle), and the signal plus background (right) for ¢ = 4 with different choices of 7.
Note that it is difficult to identify the signals by eye in the plots on the right, even with such
a large coupling.

Compared to Ref. [25], the benchmark 7, values are identical, but we choose smaller
values of the coupling g. This is because we find the CNN analysis is much more powerful
than the ‘cut and count’ method adopted in Ref. [25], and therefore capable of identifying
fainter hotspots. We chose the benchmark 7, values to test out a variety of different PHS;
7. = 160 Mpc hotspots have a very high central temperature (Fig. 3), while n, = 50 Mpc
hotspots are significantly cooler and have smaller inter-spot separation. The choice 7, =
100 Mpc sits between these for comparison.

4 Identifying Pairwise Hotspots with CNIN

In this section we describe the training process for the CNN using 90? pixel images, and
discuss some qualitative properties of the training result. We then apply the trained network
to a larger sky map and present results on the upper bound on the number of PHS for given
values of 7, and g. We end the section with some comparisons between the CNN and a
matched filter analysis.

4.1 Network Training on Small Sky Patches

CNNs are one of the most commonly used deep neural networks specialized for image recog-
nition [44, 45]. In this study, we build the network using PyTorch [46] with the structure
shown in Fig. 6. The network takes a CMB or CMB+PHS image as an input and outputs a
single value between 0 and 1, which can be interpreted as the probability of the input image
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Figure 6. A schematic architecture of the CNN used in this work. We applied two convolutional
layers in series; first, 8 kernels with size of 16 x 16 and stride of 2 are applied, then, 8 independent
kernels size of 8 x 8 yields feature map of 40. Next, we apply a max-pooling using the kernel and
stride size of 2 x 2, which subsequently reduces the image dimension down to 20 x 20 x 8. Processed
images get further reduced by going through 2D convolution and max-pooling, further reducing the
size of the image to 5 x 5 x 8. After 4 sets of total convolution followed by average pooling, the final
feature maps are flattened to feed into fully connected network form, and the final network ends with
single output value which sits between 0 and 1. Throughout the network, we use the rectified linear
unit (ReLU) function [43] to introduce non-linearity, except for the output layer which has a sigmoid
activation function suitable for the binary classification.
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Figure 7. Comparison between true and the CNN feature maps with and without implanted signals.
The left plots show the PHS signal and signal plus the CMB background. The middle and right plots
show feature maps after going through three convolutional layers. The enhanced signal locations on
the feature maps on the right align with the true location of the hotspots after rescaling the pixel
coordinates with respect to the relative size between the 3rd layer (202-pixels) and the original image
(90%-pixels). Here we take 7, = 160 Mpc, g = 4, and 7gs = Nrec for both the spots.
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containing the PHS. We train the network on 160k images (see Sec. 3), half of which con-
tain a single pairwise hotspot profile on top of the CMB and the rest are CMB-only images.
For optimization, we use a binary cross entropy loss function, commonly used for binary
classification, along with Adam optimizer [47] and 10~* learning rate.

We train the network using PHS signals with g = 3 for all the three values of 7, individ-
ually. One may wonder how well a network trained on one g value will generalize to different
values without retraining. As the CNN (unlike the matched filter discussed below) is nonlin-
ear, extrapolation to values of g other than what was used for training is not guaranteed to
be optimal. On the other hand, training a CNN for each possible benchmark input is time-
and resource-intense. Empirically, we find that the network trained at g = 3 works well over
a wide range of g values, perhaps because the network learns to analyze the shape rather
than the amplitude of the profile. In a fully optimal analysis one would want to retrain the
neural network over a grid of g values.

To get some idea for how the CNN discriminates between signal and background images,
we show the feature maps from the first three convolutions in Fig. 7 for n, = 160 Mpc and
g = 4. As we can see proceeding from left to right, the trained network does amplify the signal
region compared to the background-only image, and the convolutional layers can emphasize
the correct locations of each spot in the feature map.

To quantify the performance of the CNN, we generate a test sample of 5k CMB-only
maps and 5k CMB+PHS maps, each having 902 pixels. For a CMB+PHS map, we inject one
randomly oriented and located PHS in the CMB map. The PHS signal occupies O(502) pixels
in the examples that we study, and thus the 90%-pixels image is only slightly larger than the
signal. When an image has network output > 0.5, we count it as an identified signal map. We
call the signal capture rate (True Positive Rate, €ggg2) as the fraction of CMB+PHS images
being correctly identified as signal maps, and define the fake rate (False Positive Rate, €5 g¢2)
as the fraction of CMB-only images being wrongly identified as signal maps,’

number of signal-injected images with CNN output > 0.5
€5,902 = total number of signal-injected images ’
number of background-only images with CNN output > 0.5

_ 4.1
€B,90? total number of background-only images (4.1)

In Fig. 8, we show the network output for the 5k images with and without injecting the
PHS signal. In the left column we show the result when the PHS are uniformly distributed
within a shell of 1. = 7 around the surface of last scattering, while the right column shows
the result when 7pg = 7rec. The signal capture and background rejection rates in Fig. 8 refer

°In the actual search, there can be more than one PHS in a 90%-pixels region, and the CNN would still
count the region to be one signal map. We verify that the signal capture rate would increase if there are more
PHS in the image. When we study the sensitivity of the CNN search, having additional PHS around the same
location will help the search, and this makes our analysis based on having one PHS in a 90%-pixels image to
be conservative. Moreover, given that the CNN search can probe PHS with a small number of signals on the
CMB sky, the probability of having additional PHS around the same location is small. Therefore, counting
the number of 902-pixels regions should give a good approximation of the PHS in the analysis.
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Figure 8. Network output for 5k images without (blank histogram) and with (colored histograms)
PHS signals. We count the image as an identified signal map when the network output > 0.5. In
the plots we show the background rejection rate from the CMB-only analysis and the signal capture
rate from the CMB+PHS images, for different inflaton-x couplings g. The fake rate is defined as
(1—background rejection rate). The plots on the left have both the hotspots distributed uniformly
with separation < 7, and within ngs = 7yec & 7%, Which is how we simulate the signal for the rest of
the study. The signal capture rate therefore includes possible suppression due to hotspots moving off
the last scattering surface. For comparison, we show the training results in the right plots requiring
NHs = Mrec- Comparing results obtained from the same study but with different sets of 5k images, we
find the efficiency numbers vary by ~ 0.1 — 1%.

to €g g2 and (1 — ep gp2). Clearly, for g > 3, our CNN setup is highly efficient at separating
CMB+PHS images from CMB images alone. For example, for ¢ = 3 (the same coupling
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as in the training sample) and 7. = 160 Mpc, €g g2 is over 73% with ep gp2 less than 0.1%.
For n, = 160 Mpc and 100 Mpc, the signal capture rate falls if the hotspots are off the last
scattering surface but in the 7. £ 1 window we consider. When applying the same trained
network on dimmer PHS signals (g < 3), €ggg2 drops, but the background rejection rate
remains close to unity.

Both €ggp2 and €p gp2 vary with the horizon size. Comparing results for 1. = 160 Mpc
to 7« = 50 Mpc, the €ggp2 values are similar for g > 3, but 7, = 50 Mpc case performs
much better at weaker coupling (eggp2 = 51.2% for 1. = 50 Mpc compared to 1.8% for
7. = 160 Mpc, both for g = 1). The n. = 50Mpc case has a larger background fake rate,
compared to n, = 160 Mpc. However, even if we incorporate the background and compare
€5902//€B 902 — the efficiency ratio is O(10) times larger for the dimmer, 7, = 50 Mpc case.
The ability of catching dimmer signals indicates that the network uses additional information
than the overall temperature to identify the PHS.

Although it is difficult to know exactly how the CNN identifies the PHS, the network
seems to more accurately identify PHS with a distinct rim structure compared to just utilizing
the fact that there are two hotspots (Fig. 5). One indication that the CNN utilizes the rim
structure of the n, = 50 Mpc signal is that the signal capture rate for that benchmark is
insensitive to whether or not the PHS lie on the last scattering surface. We perform the
same CNN analysis by having the signal hotspots centered on the last scattering surface
(MHS = Mrec in Eq. (2.21)) and summarize results in the right column of Fig. 8. For hotspots
with temperature profile peaked at center, as we show in the 7, = 160 and 100 Mpc plots
in Fig. 4, the highest PHS temperature takes the maximum value when 7ys = nyec (Orange).
It then is reasonable to have a larger average signal capture rate when the hotspots center
on the last scattering surface. However, as we illustrate in the upper left plot in Fig. 4, the
“shell” of the n, = 50 Mpc signal in 3D always project into a rim with a fixed temperature
(at angle ~ 0.008 rad), regardless of the location of the hotspot, Mrec, Mrec + M, OF Mrec — M-
Therefore, if the CNN identifies the 7, = 50 Mpc signal based on the rim structure, €ggg2
should remain the same even when the PHS are on the last scattering surface. This is indeed
what we see on the bottom plots in Fig. 8. Further study on what features the CNN uses to
identify the n, = 50 Mpc case can be found in Appendix C.

4.2 Application of the Trained Network to Larger Sky Maps

After training the CNN to identify PHS in images with 902 pixels, we look for signals on a
larger sky map by applying the same network analysis repeatedly across the larger map. In
this way we can analyze, in principle, arbitrarily large maps. A benefit of such a larger map
search is that it avoids the loss of sensitivity to signals where a PHS is partially cut out by
the boundary of a 902-pixels region. Such a PHS would be lost had we simply partitioned
the sky into non-overlapping 90-pixels regions.

For a concrete application, we study maps with 720% pixels® using the following steps:

SRepeating this analysis on even larger maps would be ideal and lessen the assumptions made when ex-
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(i) we apply the trained network on the upper left corner of the map, obtaining the network
output, (i) we shift the 90%-pixels “window” to the right by 5 pixels and get the network
output again, (iii) repeat the process until we hit the right hand side of the large map. Then,
return to the upper left corner but slide the widow down by 5 pixels, (iv) continue with these
steps until the entire larger map is covered. The result of steps (i) - (iv) result in what we call
a “probability map”. Starting with an original 720? image and scanning in steps of 5 pixels,
the probability map has 1262 entries, with each entry showing the probability of having a
signal in a 90%-pixels region centered at each pixel. We have tried different step sizes and find
that a 5 pixel step size yields nearly identical results to a 1 pixel step size for the following
analysis, so we use the 5 pixel step size for improved computational speed.

In Fig. 9, we show an example of the probability map (right) obtained from the image
of CMB plus three PHS signals shown in the left plot. To make the signals more visible by
eye, we make the probability map by sliding the search window in 1 pixel step, thereby giving
a 630%-pixels map. The true signals in the right plot show up as three bright clusters, and
there are fake signals from the CMB fluctuations themselves. To reduce these fake signals,
we further apply cuts on the probability map by only keeping pixels satisfying a threshold
cut (network output) > 0.9.

To properly count the number of observed signals, we cluster nearby pixels in the prob-
ability map. Specifically, we employ the “scikit-image’s morphology label” technique [48] to
connect neighboring pixels with the same values and therefore group the connected pixels
into clusters. We further remove clusters with < 30 connected pixels, as these have a smaller
chance to be a true signal. The choices of cuts on network output threshold and number of
pixels in a cluster were made by trying several values and choosing the value that maximized
the signal capture rate while keeping the fake rate small.

To determine how well the method works, we study a set of 500 CMB-only images (i.e.,
pure background) and 500 images where Nj,; = 3 randomly distributed PHS signals have
been injected. We then define ‘efficiencies’:

total number of clusters passing the threshold in CMB+PHS maps

£57200 = 3 % 500
total number of clusters passing the threshold in CMB-only maps
€B,7202 = : (4.2)
’ 500

The results for the benchmark 7, values and three different couplings are summarized in
Table 1 below. The 7202 search retains some of the key features from the 90? search, namely
the superior performance for n, = 50 Mpc when g is small.

4.3 Obtaining Theoretical Bounds from Detection Statistics

Using Table 1 we can calculate the upper bound on Npgg, the number of hotspot pairs
produced where both members of a pair lie within a shell of £7, from the last scattering

trapolating to the whole sky. However, practically, we found that 720% was the largest size we could make
without sacrificing statistics (number of maps).
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Figure 9. Left: PHS signals that are implanted on CMB map. Right: Probability map from scanning
the same 7202 image plus the CMB with the CNN search of 902-pixels region shifting in steps of 1
pixel. The true and fake signals show up as clusters in the processed image. We further suppress the
number of fake signals in the following analysis by applying cuts on the network output of each pixel
and the pixel number in each cluster. We find the analysis from shifting the search window in steps
of 5 pixels produce similar results to the steps of 1 pixel and therefore use 5 pixel steps for the rest of
the analysis.

n =50 Mpc | n =100 Mpc | n =160 Mpc
€B,7202 1.4 % 11 % 6.6 %
€5,7202, § = 1 54.6 % 0.8 % 0.5 %
€5,7202, § = 2 84.0 % 34 % 34.6 %
€57202, 9 = 3 98.6 % 76.8 % 71.2 %

Table 1. CNN result from scanning 500 randomly generated CMB or CMB+PHS maps using the
network trained in Sec. 4.1. The image size is 720% pixels, and we shift the search window having
90%-pixels by 5 pixel steps. The fake rate is the average number of fake signals from a 7202-pixels
map with CMB-only. The signal capture rate is the chance of identifying each input PHS signal.
Comparing results obtained from the same study but with different sets of 500 images, we find the
efficiency numbers vary by ~ 0.1 — 1%.

surface. As an example, let us take 7. = 50 Mpc and g = 1. From Table 1, we see €g 7902 =
54.6% while ep 7902 = 1.4%. Assuming that only a fraction fq, = 60% is used for the search,
the total number of signals for this benchmark is Sig = €g 7202 Npus fsky, While the number of
background events is Bg = 25 €p 7902 fsky, Where the factor of 25 is the number of 720% patches
needed to cover the full sky. From the number of signal and background events, we form the
log-likelihood ratio [49, 50] and then solve for Nppg for the desired signal significance. When
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calculating the 20 exclusion bound, we require

L(Sig+Bg|B "
Oexe = \/—2 In < (Sig-+Bo| g)) >2,  with L(z|n) = w—'e_z. (4.3)
n!

L(Byg|Bg)

Note that this is the expected bound, as we are taking simulated CMB background to be the
number of observed events (n in Eq. (4.3)). The resulting values of Npys are given in the
left panel of Table. 2. It is also interesting to determine how many PHS would be needed for
discovery at each benchmark point. We calculate the expected discovery reach using

Ogis = \/—2 In (L(L(Bg\Sig—FBg) > >5. (4.4)

Sig+Bg|Sig+ Bg)

The results are collected in Table 3.

We can further obtain the minimum mass My of the heavy particle corresponding to
Oeze and og4;s using Eq. (2.7) and An = 2n,.” In Table 2 and 3, we show the bounds (or
reach) on the number of PHS and My/H;. Due to the energy injection from the dynamics
of the inflaton, we can probe scalar particles with masses up to ~ 260H;. In the bottom
right tables, we show that the mass bounds correspond up to ~ 2.6 times the mass-changing

rate caused by the inflaton rolling (M ), which dominates the exponential suppression in
Eq. (2.7). We also plot the 20 lower bound on My/H; in Fig. 10. Since the Npgs depends
on My exponentially, a slightly lower scalar mass than the 20 bound leads to a 50 discovery
of the PHS.

These bounds are significantly improved compared to the previous analysis in Ref. [25];
this is not surprising given that the analysis in Ref. [25] was very simplistic, utilizing only
a single temperature cut to separate signal from background. Using the CNN, we can now
obtain meaningful bounds for g = 1, 2 — cases for which the PHS were rather invisible before.
For hotter signals, e.g. ¢ = 3, the CNN analysis beats the past result by AMy = 60H;. This
is a notable improvement given that the PHS density is exponentially sensitive to the scalar
mass (squared).

Finally, to show that the CNN search of localized objects gives a better probe of heavy
particle production than the measurement of CMB temperature power spectra, we plot the
corrections to the ACDM DZTT spectrum in Appendix B, including the same number of PHS
in Table. 2. For example, for g = 1, 1, = 160 Mpc, we see from Table 2 that the 20 bound on

"One subtlety in solving the mass bound is that when simulating the PHS signals, we require both hot
spots to be within +7. around the last scattering surface. Hence, the simulation excludes PHS with one of
the hot spots outside of the shell region that would be harder to see by the CNN. However, when solving the
upper bound on the PHS density using Eq. (2.7), we take into account the signals that are partially outside of
the shell region, leading to an over-estimate of the signal efficiency and a stronger upper bound on the number
density. From checking the hot spot distribution numerically, we find that ~ 17% of the PHS in our examples
can be partially outside of the £7. region. Fortunately, since the size of My only depends on the number
density bound logarithmically, the error only changes the My bound by up to 1%. This is acceptable for the
accuracy we want for the concept study.
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Number of PHS | n =50 | n =100 | n = 160

g=1 8 840 1162

g=2 5 20 17

g=3 4 9 8
Mo/Hy | n=>50 | n=100 | n =160 Mo /(gdo)'? | =150 | n =100 | n =160
g=1 145 120 114 g=1 2.5 2.0 2.0
g=2 213 199 194 g=2 2.6 2.4 2.4
g=3 266 253 247 g=3 2.6 2.5 2.4

Table 2. Upper: 20 upper bound on the number of PHS in the whole CMB sky with both hotspot
centers located within 7., + 7. window around the last scattering surface. In the calculation we
assume sky fraction fo, = 60%. Lower left: lower bounds on the bare mass of the heavy scalar field
in units of the Hubble scale during the inflation. Lower right: lower bounds on the bare mass in units
of the rate of the mass, (g¢0)1/2, owing to the inflaton coupling.

Number of PHS | n =50 | n =100 | n = 160

g=1 16 2047 2757

g=2 10 48 40

g=3 9 21 19
Mo/H; | =50 | n =100 | n =160 My/(gp)/? | 7 =50 | =100 | n =160
g= 143 116 110 g=1 2.4 2.0 1.9
g= 210 194 189 g=2 2.5 2.3 2.3
g=3 262 247 241 g=3 2.6 2.4 2.4

Table 3. Same as Table 2 but for the 50 discovery reach.

Npns from our CNN analysis is 1162 hotspot pairs. Injecting 1162 hotspots into the sky,® we
find a correction to DeTT of Ax? = 0.3 — well within the 1o band on Planck 2018 temperature
power spectrum. Repeating this exercise with the other benchmarks in Table 2, yields Ax?
values that are even smaller.

4.4 Comparison with a Matched Filter Analysis

Matched filter analysis is a standard tool for identifying localized signals on a CMB map.
Given a 2D power spectrum of the CMB, P(k), we can obtain a filtered map v (7) in position
space from a convolution between the original image (signal plus background) ¢(k) and a

8For simplicity, we restrict all hotspots to the last scattering surface. This somewhat overemphasizes the
PHS correction to the power spectrum, as scenarios with both particles fixed to the last scattering surface are,
on average, brighter than when nggs varies.
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Figure 10. Bound on the heavy scalar mass for 7, = 50 Mpc, 1. = 100 Mpc, and n, = 160 Mpc.
In the region above the ‘% Backreaction’ line, the backreaction to the inflationary dynamics due to
particle production is smaller than a percent (see Ref. [25] for a more detailed discussion). The light
blue lines show various contours of Npygs. We notice that the projected CNN search is able to cover
most of the parameter space up to the target Npgs = 1 contour.

signal filter h(k) (the Fourier transform of a profile h() in position space),

42k Rh(k)\ -
o) :/(%)2 (C(P)(k() )) R (4.5)

-,

If the signal is spherically symmetric, the filter simplifies to h(k) = h(k). From the filtered

map 1 (7) one can construct an optimal likelihood ratio test between the Gaussian null hy-
pothesis and the existence of the signal (see e.g. [27]), making the matched filter ideal for
picking out single (or more generally, non-overlapping) localized signals.

As we have seen, while the individual hotspots are spherically symmetric, they often
overlap (at least for the range of parameters we are interested in), leading to a net signal in
the sky that is no longer spherical. Additionally, the random separation between the initial
heavy particles means the resulting PHS are not uniform. The unusual shape and variability
among signals make the PHS less suitable for a vanilla matched filter analysis. While it may
be possible to design a complicated and large bank of matched filters to cover the space of
possible signal templates, the CNN analysis can effectively learn a set of flexible filters to
enhance the signal over background even with varying and non-spherical signal shapes.

Even if the matched filter analysis defined in Eq. (4.5) is not optimal for the full pairwise
hotspot signal, it is still instructive to compare a few examples of the matched filter analysis
versus the CNN. For this comparison, we consider PHS that lie only on the last scattering
surface. The combined signal from the PHS will still be non-spherical, but restricting all PHS
to the last scattering surface does take away some of the variability among signals.” While
each hotspot in a pair will “pollute” the other — meaning that it appears as a background

9We still allow a random separations (within 7.) between hotspots on the (2D) last scattering surface
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Figure 11. Example images from the matched filter analysis. Left: PHS with n, = 160 Mpc and
g = 2. Middle: Signal plus the background. Right: Filtered map from the convolution integral
Eq. (4.5).

that is different from the CMB fluctuations — each of the two hotspots can still be picked up
effectively by the single spot template h(k).

We perform the comparison using 90? pixel images with one PHS injection. We use
QuickLens to generate the CMB maps, which follows periodic boundary condition and
thereby ensures the separation between k-modes in the 2D power spectrum P(k) of the
CMB image. The CNN results for this signal set have already been shown in Sec. 4.1 and
can be found in the right hand panels of Fig. 8; the background rejection is above 99% for all
benchmark points, while the signal capture rate varies from a few percent to 100% depending
on 7, and g.

For the matched filter analysis, we obtain P(k) from the average of the discrete Fourier
transform of 500 simulated images. We also apply discrete Fourier transform on the profile of
a single hotspot in the PHS, and use it as h(k) in the convolution. Carrying out the integral
in Eq. (4.5), we obtain the processed maps 1 (7). An example of the signal processing is shown
in Fig. 11, where the plot on the left is the PHS signal (. = 160 Mpc and g = 2), the middle
is the signal plus background, and the right plot is the output image ¢ (7). We see that the
filter can indeed pick up the signal hidden inside the background.

As one way to quantify the matched filter results, in Fig. 12 we show the distribution
of largest 1(7) values in each of the 500 maps generated with (blue) and without (red) PHS
signals with {n., g} = {160 Mpc, 2} (left) and {100 Mpc, 2} (right). From this perspective, the
matched filter clearly separates the signal and background for the two cases. We also perform
the same analysis for the 7, = 50 Mpc signals (which have much lower temperatures). In this
case, the overlap between signal and background in the ¢ distribution is large, and a simple
1 cut is not the optimal way to separate the signal and background. For this reason, we only
consider the n, = 100 and 160 Mpc examples in the following discussion.

To provide a rough numerical comparison between the matched filter and the CNN anal-
ysis, we apply a ¥max cut in each of the matched filter histograms in Fig. 12. We choose the
max cut value to equal the background rejection rate in the CNN analysis, then compare
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Figure 12. Maximum pixel distribution in filtered maps, where the value ¥ of the pixels on the
filtered map is defined in Eq. (4.5). We use 500 CMB-only and 500 CMB+PHS maps and plot the
distribution of the maximum v of each filtered map to show the separation between the CMB and
CMB+PHS results. We used feature scaling also known as min-max normalization for 4., so that
the smallest value is zero and the largest value is 1.

signal capture rates in the two analyses. For the n, = 160 Mpc example, the signal capture
rate is about 5% and 74% for ¢ = 1 and 2, while the match filter analysis performs slightly
better, capture rates 8% and 98% respectively. For 7, = 100 Mpc, the CNN signal capture
rates are ~ 10% and ~ 69% for g = 1 and 2, while the match filter analysis rates are slightly
lower, 4% and 50%.

In summary, we find that the CNN performs very close to the matched filter analysis,
suggesting that it is near optimal. The advantage of the CNN, as we have discussed, is that
it can learn to interpolate between all signal shapes that appear in our model.!?

5 Discussion and Conclusion

In this work, we show that Convolutional Neural Networks (CNN) provide a powerful tool to
identify pairwise hotspots (PHS) on the CMB sky. These PHS can originate from superheavy
particle production during inflation. We improve the previous analysis of Ref. [25] by more
accurately modeling the distribution of PHS on the CMB sky and by developing a CNN-based
signal search strategy.

To accurately model the PHS distribution, we include the possibility that PHS are dis-
tributed along the line-of-sight direction, rather than fixed to the last scattering surface. As
a result, the average inter-spot separation within a PHS, when projected onto the CMB, is
smaller than in Ref. [25]. For PHS with small values of 7, such as n, = 50 Mpc, the two

10We believe the small differences between the CNN and matched filter signal rates are due to the simplicity
of the analysis — where ¥max is used as a proxy for the matched filter performance.
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hotspots in a PHS significantly overlap with each other, and the resulting PHS look like a
single object, but with a distinct angular profile (Fig. 5).

For the signal search, we construct a CNN to identify PHS from within the CMB, the
standard fluctuations of which act as backgrounds for the signal. The network is trained on
902 pixel images with and without PHS injected in them (both with hotspots distributed
in 3D, and with hotspots fixed on the last scattering surface). During training we choose
a coupling ¢ = 3, but the trained CNN can still identify PHS for smaller values of g with
a significant signal capture rate and small background fake rate. We find that the CNN
actually performs better for the smaller 7, benchmark, even though the hotspots are dimmer.
We believe this is due to the distinctive ring structure the PHS have when n, = 50 Mpc, as
evidenced by comparing PHS signals distributed in 2D versus in 3D, and by studies testing
the CNN on ‘dot’ and ‘ring’ test signals (Appendix C).

After developing the CNN for 902 pixel images, we apply it to larger 720? pixel maps,
sliding 902 ‘templates’ in 5 pixel steps across the larger images to generate a probability map.
In the probability map, each pixel is evaluated by the network multiple times. As a final step,
we filter the probability map, only retaining clusters — groups of positive network outcomes
— of a certain size. The benefit of the sliding template search is that it less sensitive to the
exact position of the hotspot within the 902 pixel region. Applied in this manner, we find
that the CNN can efficiently discern the presence of hotspots, even if the signal temperature
is much smaller than the CMB temperature fluctuations. In particular, the CNN can even
identify O(10) number of PHS on the CMB sky for ¢ = 1 and 7. = 50 Mpc, a signal
that has a temperature ~ 20 times colder than the average CMB temperature fluctuations.
Translated into model parameters, for the benchmark models we study using mock CMB
maps, we project that a CNN search can set a lower bound on the mass of heavy scalars
My/Hy 2 110 — 260, with the precise value depending on the time of particle production and
coupling to the inflaton. These numbers are a significant improvement over the simplistic
analysis in Ref. [25] that used single temperature cut to separate signal from the background.

Compared to the standard matched filter analysis, the CNN is more versatile in identify-
ing non-rotationally symmetric signals with varying shapes and temperatures that arise in the
context of PHS. We performed a simplified comparison between the CNN and matched filter
analysis by considering PHS with a fixed profile and located on the last scattering surface to
show that the match filter analysis can provide comparable signal capture and fake rates to
the CNN search for PHS with n, = 160 Mpc and 100 Mpc. For dimmer PHS (7, = 50 Mpc),
more analysis is required to separate the signal and background in the filtered map. We leave
a more detailed comparison to the matched filter method with a bank of filters to cover the
signal space to future work.

Several future directions remain to be explored. It would be interesting to apply our
methodology to actual Planck CMB maps to search for PHS. In the absence of a detection,
we can still set a lower bound on the masses of ultra-heavy particles which are otherwise very
difficult to discover or constrain. This, however, requires a subtraction of the astrophysical
foregrounds and knowing if the CNN can distinguish PHS from the compact objects in the
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foreground. Since the distortion of the curvature perturbation from particle production also
modifies structure formation at late times, it would also be interesting to see if the current
or future Large Scale Structure (LSS) surveys can identify the resulting signals localized in
position space. A neural network like the one used here can learn to incorporate the non-
linear physics of structure formation if trained on suitable simulations. Related to localized
PHS signatures, similar types of cosmological signals from topological defects [51] or bubble
collisions [28-30] can also arise and these may also be identified by a CNN search. From a
more theoretical perspective, it would also be useful to write down a complete inflationary
model that incorporates inflaton coupling to heavy fields and leads to particle production as
described here. We leave these directions for future work.
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A Sensitivity to the ACDM Parameters

Our analysis uses ACDM parameters in Eq. (3.1) to simulate the CMB. As the ACDM
parameters come with uncertainties, we should check how sensitive the signal capture rate is
to the variation of the parameters. In Table 4, we show the background rejection and signal
capture rate using the same trained network for Fig 8 left with ¢ = 3 and 7, = 160 Mpc but
on CMB maps simulated with variations of ACDM parameters. As we see, when changing
the {As, Qp, QcmB, s} one by one with twice the 1o uncertainty reported in [39], the signal
capture rate only changes by O(few %), comparable to the variations in our CNN analysis
due to finite sampling. The consistent search results show the robustness of the network’s
ability to identify PHS against the uncertainty of ACDM parameters.

B PHS Corrections to the CMB Power Spectrum

Here we show the corrections on the CMB power spectrum when the number of PHS in
the full sky saturates the bounds in Table 2. We show examples with the coupling g = 1
and horizon sizes 1, = 100 Mpc (Npps = 840) and 160 Mpc (Npps = 1162), assuming the
centers of all the hotspots are located on the last scattering surface. Notice that the latter
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wp ‘ Wedm ‘ 1094, ‘ Ng ‘ Tre ‘ Bg rejection ‘ Sig capture ‘
Planck18 | 0.0224 | 0.120 2.10 | 0.966 | 0.0543 99.8% 74.0%
Case 1 +0.004 99.8% 72.3%
Case 2 +0.07 99.2% 74.1%
Case 3 +0.01 99.6% 69.9%
Case 4 | +0.0003 99.8% 73.4%
Case 5 +0.014 99.2% 74.4%
Case 6 | +0.0003 | —0.004 | +0.05 | —0.01 | —0.014 99.8% 72.4%

Table 4. The response of the signal capture and background rejection rates with varying ACDM
parameters, labeled with the difference to the ACDM parameters.
comparable to the fluctuations in our CNN analysis due to finite sampling and therefore is insignificant.
For this test, we used g = 2 and 1, = 160 Mpc for the PHS signal.

The variation of the rates is
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Figure 13. CMB temperature power spectrum using best fit ACDM input parameters in Eq. (3.1)
with (red lines) and without (blue lines) PHS signals implemented on the full sky using a resolution
parameter Ngqge = 2048. Here, we assume that all PHS signals are on the last scattering surface. The
differences between the two distributions are shown in green lines, and the gray shaded regions denote
1o uncertainty, taken from the Planck 2018 data.

assumption of fixing s = 7rec makes the average PHS temperature higher compared to the
main analysis that allows npg to vary. However, the assumption simplifies the power spectrum
calculation and gives a more conservative result by exaggerating the PHS correction to the
power spectrum. We also check results for different g and 7y, but, following Table 2, with
much smaller Npyg. The corrections to the power spectrum for the other benchmarks are
even smaller.

To see how the excesses appear on the power spectrum, we utilize Hierarchical Equal
Area isoLatitude Pixelization, HEALPix [40], based on the C’ET spectrum computed from the
CLASS package using the same ACDM parameters in Eq.(3.1). HEALPix pixelates a sphere
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in an equal area where the lowest resolution consists of 12 baseline pixels. The resolution is
increased by dividing each pixel into four partitions which can be parameterized as Npixels =
12N2

Sde Where Niqe is a power of 2. We choose the resolution parameter Ngjq. = 2048. Since

the total number of pixels in a sphere characterizes the total number of independent £ modes
in C}'T, which is given by Zﬁi‘g‘(% +1) = (fmax + 1)?, our benchmark resolution parameter
Ngige = 2048 corresponds to the maximum multipole number £y, ~ 3500.

Figure 13 shows D}T spectra for the ACDM model (blue) and the ACDM+PHS (red)
with 7, = 100 Mpc and 7, = 160 Mpc. The difference between the red and blue spectra is
shown on the lower panel (green), with the 1o error bar (gray) taken from the Planck 2018
result [39]. For both scenarios, the excesses are well below the error bar indicating that the
power spectrum analysis will not be able to resolve them. We also show Ax? to quantify the
deviations with respect to the ACDM spectrum using the same Planck 2018 binning intervals
in ¢. The total Ax? for both cases is negligible compared to the number of parameters we
have.

C Shape Analysis for the 7, = 50 Mpc Signal

Inner peak n = 50 Mpc signals

[ Background
g=1.0
g=2.0
g=25
g=3.0
g=4.0

400 +

300 A

Counts

Signal Capture
200 1 9(1.0) = 1.6 %
g(2.0) = 8.4 %
9(2.5) =18.0 %
9(3.0) =27.4 %
100 A g(4.0) =39.2 %

1

0.0 0.2 0.4 0.6 0.8 1.0
Network Output

Figure 14. In the left panel we show the trimmed inner piece of a hotspot signal, while in the right
we show the output after 500 CMB + inner hotspot images are run through a network trained on full
(untrimmed) 7, = 50 Mpc, g = 3 hotspots.

In our earlier results, we found that the CNN’s performance for n = 50 Mpc PHS exceeds
the other benchmarks, despite the fact that the hotspots at n = 50 Mpc are much cooler.
We surmise that the result is due to the distinct shape of the profile — a rim structure with
central peak. As a simple test of this hypothesis, we formed a signal set of PHS decomposed
into two separate features, an inner peak and an outer rim. We then ran each piece through
a network trained on the complete shape of the n = 50 Mpc spots.
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Outer rim n = 50 Mpc signals
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Figure 15. In the left panel we show the trimmed outer piece of a hotspot signal, while in the right
we show the output after 500 CMB + outer hotspot images are run through the same network as in
Fig. 14. The capture rates for the ring are much higher than for the central spot, shown in Fig. 14.

We ran 500 CMB + deconstructed PHS test samples through the network, using a variety
of g values but always with both located on the last scattering surface. The results, along
with sample images of the deconstructed signals, are shown in Figs. 14 and 15. Comparing
the right hand panels in Figs. 14 and 15, we see that the network is much more efficient at
capturing the ring portion, e.g. 88% capture for ¢ = 3 compared to 27% for the central spot.
From this test we conclude that the ring shape is crucial to the CNN’s performance at low 7,
(note that the signal capture for the ring nearly matches the capture rate for the full signal

(Fig. 8)).
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