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1. Introduction

Lattice QCD calculations of meson-decay form factors are crucial inputs for high-precision tests
of the Standard Model (SM) of particle physics. Combined with the corresponding experimentally
measured decay rates, the lattice determinations of hadronic flavor-changing matrix elements allow
for independent determinations of CKM matrix elements, enabling precision tests of the SM.
Lattice form-factor data also give shape information, and pure SM predictions for quantities such
as '-ratios.

Thanks to ongoing experimental programs for heavy flavor physics including Belle II, BES
III, and those at the LHC, we expect new measurements for many different observables and decay
channels with increasing precision in the coming years. Improvements on the SM theory side
are therefore well motivated and timely, and will enable sharper tests of the SM, provided the-
ory uncertainties are quantified at a commensurate level as experiment. Some current few-sigma
discrepancies (collectively referred to as ⌫-anomalies) may be hints for new physics, (For recent
discussions from a lattice perspective, see, e.g., Refs. [1–5].) There are also long-standing differ-
ences in inclusive and exclusive extractions of the CKM elements |+D1 | and |+21 |, which should
be resolved. Improved theoretical calculations of ⌫-semileptonic decays will bear directly both on
exclusive/inclusive discrepancies, and interpreting ⌫-anomalies. Here we provide a status update of
the FNAL-MILC collaboration’s calculations of semileptonic ⌫ (B) -meson decay form factors using
the highly improved staggered quark (HISQ) action.

2. Calculation overview

Some of the details of our calculation have been reported previously in Refs. [6, 7]. Here we
review the basics and highlight updates from previous reports. Our calculation uses ensembles
generated by the MILC Collaboration using # 5 = 2 + 1 + 1 flavors of dynamical sea quarks with
the HISQ action [8–10]. We report preliminary results from ensembles with lattice spacings of
0 = 0.09, 0.06, 0.042, and 0.03 fm. At 0 = 0.09 and 0.06 fm we have generated correlator data
on ensembles with light sea-quarks at their physical values as well as at <;/<B = 0.1 and 0.2. At
0 = 0.042 and 0.03 fm we have analyzed ensembles with <; ⇡ 0.2<B in the sea, and are currently
generating 0.042 fm data with physical light quarks in the sea. The strange and charm sea-quark
masses are tuned to be close to their physical values, and the valence light- and strange-quark masses
are taken to be equal to the corresponding sea-quark masses. The heavy valence quarks range in
mass from roughly 0.9<2 to near the lattice cutoff, 0<⌘ ⇡ 1. At the finest lattice spacings, this
setup allows simulation close to, or in the case of 0 = 0.03 fm directly at, the physical mass of the
bottom quark.

To determine the required form factors, we first extract matrix elements from joint correlated
fits to two-point and three-point correlation functions. More details of our correlators and fit forms
are given in Ref. [6]. A schematic of a generic three point function used in our fits is shown in Fig. 1.
As usual for staggered fermions, the correlation functions include smoothly decaying contributions
with the desired parity as well as oscillating contributions from states of opposite parity. We fit
these correlators varying the number of even and odd states (=, <), checking stability in our final
results to these variations.
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Figure 1: A schematic of the 3pt functions used to determine matrix elements entering Eqs. (1)–(3) The
light final state hadron is created with momentum p at the origin. An external current � is inserted at time C.
The heavy hadron is destroyed at rest at time ) .

All of our results are blinded by a random factor that is common for all three-point functions
of a given analysis/decay channel. We will carry the analysis of the blinded form factors all the way
through the chiral interpolation and continuum extrapolation, unblinding only when the analysis of
systematic errors is complete.

3. Form factors

Having extracted scalar and vector three-point matrix elements from simultaneous fits, we can
relate these to decay form factors via

5k = /+0
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In these expressions, "� , "! , ?`� , and ?`! refer to the mass and four-momentum of the heavy
initial (H) and light final state (L) mesons; <⌘ and <✓ refer to the heavy and light input quark
masses of the transition current. The final equality relating 50 to the scalar matrix element follows
from partial conservation of the vector current.

In Fig. 2, we show results for the �B ! ⇡B scalar form factor 50 at zero recoil, as a function
of the heavy proxy meson mass " (�B). For this decay involving no light quarks and at zero-recoil,
the data itself are very precise. On our finest ensembles 0 = 0.042 fm and 0 = 0.03 fm, we have
data points near to (and for 0 = 0.03 fm beyond) the physical ⌫B mass, indicated by a vertical dotted
line in the figure. For the 0 = 0.09 fm and 0 = 0.06 fm data, we have results with two different
light-quark masses in the sea. The extremely weak sea-quark mass dependence is evident here. We
can perform a simple fit to the data, modeling the physical dependence as a polynomial in 1/"�B

and discretization artifacts as a polynomial in (0<⌘)2,

50(@2
max) ["�B , 0<⌘] =

’
8 9

28 9
⇣ 1
"�B

⌘ 8 ⇣
0<⌘

⌘2 9
(4)

to determine the physical result for the 50(@2
max) form factor. The continuum result for the form

factor as a function of " (�B) is given by the black dashed line.
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Figure 2: An example continuum fit for the ⌫B ! ⇡B decay 50 form factor, at the zero-recoil (@2
max) point.

Here the G axis gives the mass of a proxy �B meson, the results at the physical ⌫B mass are marked by the
vertical dotted line. The symbols give the results from lattice data, while the dotted lines give the results of
the fit evaluated for the given ensemble parameters. The black dashed line and gray band give the results of
the fit evaluated in the 0 ! 0 limit. Note the data are blinded.

At Lattice 2022, we showed raw data for the ⌫B ! ⇡B decay 50, 5k , and 5? form factors [6].
Here, we focus on the analogous data relevant for the decay ⌫B !  , obtained by using ⌘ ! ;

currents instead of the ⌘ ! 2 currents for the former decay. Raw data for these decays are given
by the colored symbols in Fig. 4. For this figure, we are displaying only data <⌘ . 3.0<2, and
we discuss a preliminary chiral and continuum fit to the data in the next section. We observe good
precision in the data, especially at lower recoil, though overall the data is noisier than for ⌫B ! ⇡B
on account of the light quark propagator.

4. Vector current normalization

We renormalize our vector currents based on partial conservation of the vector current (PCVC).
Applied to our lattice matrix elements, PCVC implies the relation

/+4 ("� � ⇢!)h! |+4 |�i + /+ 8q · h! |V|�i = (<⌘ � <;)h! |( |�i . (5)

In the proceeding [6], we applied this relation in a two-step process to determine the /-factors
/+4 and /+ 8 for the local-temporal and one-link spatial vector currents, respectively. First zero-
momentum correlators were used to determine /+4 , and then this was used with correlators with a
chosen non-zero momentum to extract /+ 8 . Although this is straightforward, it requires a specific
choice of momentum, and does not leverage information from correlators with other momenta.
Here, we instead follow the strategy of Ref. [11], and fit Eq. (5) using all momenta values to find
best-fit values for the /-factors. Sample results of this exercise are shown in Fig. 3 where we display
/+4 values for the heavy-to-light current relevant for ⌫B !  . We observe decent precision, in
most cases well below 1%, for the /-factors. We note that the precision of the determination tends
to decrease for heavier physical mass values.
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Figure 3: /+4 values for the heavy-light local temporal current, obtained by fitting Eq. (5), as described in
the text. Results are shown for several heavy quark mass values on each ensemble. The points within each
ensemble, corresponding to different heavy mass values, are offset slightly, with mass values increasing from
left to right. We observe decent precision in the data, which decreases somewhat as the �B meson mass
increases.

5. Combined chiral-continuum fits

We can perform a chiral and continuum fit to the data, shown in Fig. 4. We base our preliminary
fits on hard (* (2) jPT , used in the FNAL-MILC analysis of⇡-decays [11]. Note that the dataset we
consider here can be considered as an extension of that dataset, including quark masses approaching
the physical bottom mass. In order to simultaneously fit data across a range of <⌘ values, we will
extend the chiral forms used in Ref. [11] to include additional terms in an HQET-inspired expansion.

The chiral expressions from [11] take the schematic form

50,k ,?(⇢) =
20

⇢ + �
(1 + · · · + 2� j�B + · · · ) (6)

� =
"2
⇡⇤ � "2

⇡B
� "2

 

2"⇡B

, j�B =
⇤HQET

"�B

� ⇤HQET

"PDG
⇡B

(7)

where we have broken out explicitly pieces of the expression that are modified. We model the
physical dependence of the coefficient 20, similar to Ref. [10], and the splitting term (treating the
⇡⇤ �⇡B splitting to a first approximation as independent of heavy quark mass), while the mistuning
term j�B is shifted to be around the physical target final state, which we take to be at <⌘ = 3<2.
As we refine the fits we will include the complete datasets at finer lattice spacings and shift this to
<⌘ = <1. The modifications to the fit function are thus given by

20 ! 20 + 21
⇤HQET

"�B

+ · · · , � !
"2
⇡⇤ � "2

⇡B
� "2

 

2"�B

(1st order) , (8)

j�B =
⇤HQET

"�B

� ⇤HQET

"3<2
�B

. (9)

The fit results evaluated at the ensemble parameters are given as colored lines matching the symbol
colors in Fig. 4. The continuum results, evaluated at <⌘ = 3<2, are shown as a black curve, and
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Figure 4: Example, preliminary chiral fits for the �B !  semileptonic decay, including form factors 50,
5k , and 5?. The data shown here include heavy proxy masses of <⌘ ⇡ 2<2 for 0.09 fm data (with different
symbols denoting two different sets of sea masses, <; = 0.1<B , phys), <⌘ ⇡ 2.2, 3.3<2 for 0.06 fm data, and
<⌘ ⇡ 2, 3<2 for 0.042 fm data. For this preliminary fit, we took the physical heavy mass to be <⌘ = 3<2,
and the continuum curve is given as a black line, nearly overlapping with 3<2 data computed at our finest
lattice spacing of 0.042 fm.

track fairly closely the 3 <2 data at 0 = 0.042 fm, indicating that discretization and chiral effects
are fairly mild. The fits return j2/dof = 0.92, 1.79, 0.75 for 50, 5k , 5?.

6. Summary

In this proceeding we provided a status update on the FNAL-MILC ⌫-meson semileptonic
decay calculations using HISQ quarks. We have extended our datasets to the 0 = 0.03 fm ensemble
with <; = 0.2<B light quarks in the sea. This lattice spacing can comfortably accommodate the
1 quark, and our heaviest simulation masses straddle the 1 mass input parameter. Calculations on
an ensemble with physical quarks and 0 = 0.042 fm are underway, and preliminary results on this
ensemble should be expected in the next year. Combined with results from varying sea masses on
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0 = 0.09 and 0 = 0.06 fm ensembles, this should ensure good control over chiral effects in our final
results.

We presented new, blinded results relevant for the ⌫B !  decay, which may be used to extract
|+D1 |. We presented our strategy to build on the chiral-continuum strategy used in ⇡-decays,
discussing preliminary chiral-continuum fits of this data. We also presented first results for the
vector-current renormalizations relevant for this decay, using a fitting strategy that leverages the
complete data set. We found values for /+4 that are close to 1, and generally have sub-percent
precision, although the precision decreases as heavier masses are considered.
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