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ABSTRACT

To quantify wildfire ignition risks on power delivery networks, the current practice predominantly relies
on the empirically calculated fire danger indices, which may not well capture the effects of dynamically
changing environmental factors. This article proposes a spatio-temporal point processmodel, known as the
Convolutional Non-homogeneous Poisson Process (cNHPP), and applies themodel to quantify wildfire igni-
tion risks for power delivery networks. The proposed model captures both the current (i.e., instantaneous)
andcumulative (i.e., historical) effectsof keyenvironmental processes (i.e., covariates) onwildfire risks, aswell
as the spatio-temporal dependency among different segments of the power delivery network. The com-
putation and interpretation of the intensity function are thoroughly investigated. We apply the proposed
approach to estimatewildfire ignition risks onmajor transmission lines in California, using historical fire data,
meteorological and vegetation data obtained from the National Oceanic and Atmospheric Administration
and National Aeronautics and Space Administration. A comprehensive comparison study is performed to
show the applicability and predictive capability of the proposed approach.
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1. Introduction

Wildfires, ignited from power delivery systems, have become a
major threat to energy infrastructure and public safety. In 2018,
theCampFire, that is, the deadliest wildfire inCalifornia history,
was ignited by a faulty electric transmission line. The Camp Fire
killed 85 people, destroyed over 15,000 structures, and caused
a total insured loss of $12.5 billion (Schulze et al. 2020). Other
examples of wildfires ignited by power lines include the Grass
Valley Fire, Malibu Canyon Fire, Rice Fire, Sedgwick Fire, and
Witch Fire, and these power-line fires burned a total area ofmore
than 334 square miles (CPUC 2014). Recently, the Department
of Energy (DOE) announced up to $3.46 billion across 44 states
to strengthen electric grid resilience and reliability across the
United States, all while improving climate resilience (U.S. DOE
2023). The current projection shows that much of the conti-
nental U.S. will have significantly hotter and drier days due to
climate change (Brown, Wang, and Feng 2021), leading to more
wildfire hazards.

To estimate the wildfire ignition risk on electric grid, utilities
rely on fire indices calculated from a set of environmental vari-
ables using some empirical equations (NFDRS 2002; SDG&E
2021). These indices may well capture the trend of fire ignition
risks on a large spatio-temporal scale, but become less adequate
in capturing the dynamic real-time relationship between fire
risks and key environmental processes, such as the dynamically
changing meteorological conditions like temperature and wind.
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However, the capability to dynamically update the predicted
fire ignition risks for power delivery infrastructures, given the
latest information on meteorological and vegetation conditions
is critical for utilities to facilitate real-time operational decisions.
For example, in response to the devastation of power-line fires,
the California Public Utilities Commission (CPUC) launched
the Public Safety Power Shutoff (PSPS) activity in 2018 which
authorizes electric utilities to shut off electric power for public
safety. Pacific Gas and Electric (PG&E), one of the major util-
ities in California, also took a series of PSPS activities in 2019.
Although these PSPS activities decreased the ignition of power-
line fires, about 1,848,000 customers were impacted by a series
of power outages, and 44% of respondents reported power loss
for three or more days (Mildenberger et al. 2022).

To better plan for PSPS against wildfires and prioritize power
grid protection measures given limited resources, this article
proposes a spatio-temporal point process model, known as the
Convolutional Non-homogeneous Poisson Process (cNHPP),
and applies this model to quantify daily fire risks at different
segments/locations of a subset of power grids in California.
Ideally, themodel needs to be capable of capturing the (i) current
effects (i.e., short-term) of environmental covariates on fire risks,
(ii) cumulative effects (i.e., long-term) of historical covariates
information on current fire risks, and (iii) spatio-temporal inter-
actions among neighboring power transmission lines. Building
such a model is made possible as data become readily available.

© 2024 American Statistical Association and the American Society for Quality
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Figure 1. Fires ignited frommajor power delivery networks in California in 2019.

For example, the CPUC requires electric companies to report
fire incident data from their power facilities. Figure 1 shows
the reported power-line fires in 2019 and the network of power
transmission lines in California from the U.S. Energy Informa-
tion Administration (EIA). It is seen that most of the fire inci-
dences are on or in close proximity to the major power delivery
lines and are related to power delivery infrastructures. Com-
bined with the meteorological and vegetation variables from the
National Oceanic and Atmospheric Administration (NOAA)
and National Aeronautics and Space Administration (NASA),
we have the datasets needed for constructing and validating the
statistical model to be described in this article, which estimates
and predicts wildfire event intensities on segments of a network
of power transmission lines.

1.1. Literature Review

Assessment of wildfire hazards has a long history since theCana-
dian Forest Fire Danger Rating System (CFFDRS) was devel-
oped in 1968 and the U.S. National Fire Danger Rating System
(NFDRS) was created in 1972. These rating systems generate
fire indices that reflect the potential wildfire hazards based on
weather, fuels, and topography information (NFDRS 2002); for
example, the Canadian Fire Weather Index (CFWI) and Fire
Potential Index (FPI). As discussed above, these fire indices are
often used to capture the overall long-term trend of wildfire risks
on a large spatio-temporal scale. Given the observed wildfire
incident data, point process models have also been investigated
(Taylor et al. 2013; Holbrook Ji). For example, Peng, Schoenberg,
and Woods (2005) developed a spatio-temporal point process
for modeling wildfire risks in Los Angeles County. The authors
incorporated both the burning index (one of the indices gener-
ated from the NFDRS) and the spatio-temporal trend obtained
from the historical wildfire data into the intensity function of
the proposed point process. Xu and Schoenberg (2011) later

showed that the incorporation of weather and fuel information
into the intensity function, proposed in Peng, Schoenberg, and
Woods (2005), enhances the performance of the spatio-temporal
point process. Serra et al. (2014) adopted a spatio-temporal log-
Gaussian Cox process for modeling Catalonia wildfire occur-
rences. Opitz, Bonneu, and Gabriel (2020) leveraged a log-
Gaussian Cox process model for forest fires in Mediterranean
France, which incorporates covariates such as land use and
weather conditions through a linear model with random effects.

Although various spatio-temporal point processes have been
investigated for modeling wildfire risks, most of them consider
a continuous two-dimensional space. Because power delivery
infrastructures are distributed on a linear network that consists
of segments of power lines, the support of the process is con-
strained by a linear network, and the spatio-temporal covariance
can depend on the topology of the network such as the distances
between transmission lines. Hence, there is a need to construct
spatio-temporal point processes on a linear network of power
transmission lines. Uppala and Handcock (2020) adopted a sep-
arable temporal linear point process to model wildfire ignition
on a road network, in which the Papangelou conditional inten-
sity function is assumed to be a log-linear function of covariates.
Zhu et al. (2022) used the Hawkes process to model power
outages on power grids under extreme weather conditions. The
authors developed the background intensity by employing a
deep neural network that incorporates the cumulative weather
effects in time, while the triggering effects were introduced by
considering power grid connectivity and power outage history.
Note that, point process models on linear networks have also
been found in themodeling of street crimes and traffic accidents
(Baddeley et al. 2021; D’Angelo et al. 2024), visitors’ stops at
tourist attractions (D’Angelo et al. 2022), ambulance interven-
tions on a road network (Gilardi, Borgoni, and Mateu 2024).

1.2. Overview and Contributions

The contributions of this work are summarized as follows:
We propose a spatio-temporal point process model, known

as the Convolutional Non-homogeneous Poisson Process
(cNHPP), on a linear network. Based on the proposed model,
the event process on each segment of the linear network is
modeled as an NHPP with its log-intensity being given by the
sum of an infinite series. For each segment i of the network,
the model captures (i) how current covariates, associated
with segment i, affect the event intensity of segment i (i.e.,
the short-term instantaneous effect), and (ii) how historical
covariates, associated with segment i and its neighboring
segments, together affect the event intensity of segment i (i.e.,
the long-term cumulative effects) given network topology
and the spatio-temporal dependency among segments. In
particular, the current covariates affect the event intensity
through a log-linear model, while the historical covariates affect
the current event intensity through a convolution approach.
This extends the conventional log-linear NHPP model with its
intensity function only depending on the current covariates; see
Section 2.1.

In Sections 2.2 and 2.3, we provide additional insights and
discussions on the proposed cNHPP. In particular, we present
detailed investigations on the computation of the proposed
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intensity function, the graphical representation of the proposed
model, and the continuous-time representation of the model. In
supplement B, we provide additional discussions on an interest-
ing connection between the proposed cNHPP and the architec-
ture of a simple Recurrent Neural Network (RNN).

In Section 3, using the environmental data obtained from
NOAA and NASA, we apply the proposed approach to model
and predict the wildfire ignition risks on major transmission
lines in part of California. By investigating the estimated effects
of different covariates on the ignition of fires on transmis-
sion lines, we obtain useful insights and recommendations that
potentially enhance power grid resilience against fires. This
section also includes a comprehensive comparison study among
different approaches. Section 4 concludes the article.

2. Convolutional NHPP

2.1. Basic Model Formulation

Consider a linear network L with N segments; for example,
power transmission lines. Let li be the ith segment, and the
network is represented by L = ∪N

i=1li. In this article, we consider
events that occur on segments of a network, and the event
process on the ith segment is modeled as a point process with
a conditional intensity function:

λ(i, t|Ht) = lim
�→0

E[Ni([t, t + �))|Ht]

�
, (1)

where Ni([t, t + �)) is a counting measure on the ith segment
over the time interval [t, t + �t), and Ht represents the event
history on the entire network L (which is omitted thereafter). In
particular, we assume that the event process on each segment i is
an NHPP with the intensity function λ(i, t). Hence, for any L̃ ⊆

L, the total number of events on the sub-network L̃ over a time
interval [t, t+�) follows a Poisson distributionwith a parameter
∫ t+�

t

∑

i∈L̃ λ(i, u)du. Because segments li, i = 1, . . .,N, in a
network are disjoint, we have

Pr(Ni[t, t + �) = ni, i = 1, 2, . . .,N) =

N
∏

i

�ni

ni!
e−�, (2)

where ni is a nonnegative integer and � =
∫ t+�

t λ(i, u)du. For
power line fire risk quantification, for example, the equation
above allows us to evaluate the probabilities of different fire
scenarios over a network.

Hence, the construction of the intensity function λ(i, t)
becomes critical. The goal of this article is to construct a statisti-
cal model that adequately explains the intensity function λ(i, t)
by taking into account both the short-term (i.e., instantaneous)
and long-term (i.e., cumulative) effects of covariates, as well as
the spatio-temporal dependency amongmultiple segments. The
following model is proposed,

log λ(i, t) = c(i, t)
︸ ︷︷ ︸

current effects

+ h(i, t)
︸ ︷︷ ︸

cumulative historical
and spatial effects

(3)

which decomposes the log-intensity into two additive compo-
nents. The first component c(i, t) captures the current effects of
covariates at time t, while the second component h(i, t) captures

the cumulative effects of historical covariate information (before
time t) through the spatio-temporal interactions among neigh-
boring network segments. To elaborate,

• c(i, t) incorporates the current effects of covariates at time
t for segment i through a linear model c(i, t) = x

T(i, t)β , where
x(i, t) = (1, x1(i, t), x2(i, t), . . ., xq(i, t))T denote the covariates
associated with segment i at time t, β = (β0,β1, . . .,βq)

T is a
vector of coefficients, and q is the number of covariates. In the
application presented in Section 3, potential covariates for fire
events include vegetation and meteorological variables.

• h(i, t) captures the long-term cumulative effects as well
as the spatio-temporal interactions among segments. In other
words, it explains how historical covariates (before time t) asso-
ciated with the neighboring segments of segment i influence the
intensity of segment i at time t. Wemodel h(i, t) in the following
way:

h(i, t) = ξ
∑

i′∈�i

wii′ log λ(i′, t − �), (4)

where �i is the set that contains pre-defined neighboring seg-
ments of the ith segment, wii′ is the contribution (i.e., weight) to
h(i, t) from the i′th segment from time t − �, and ξ ∈ [0, 1) is
the decay factor that controls the rate of decay of the cumulative
effects. A smaller ξ indicates that the spatial cumulative effect
quickly decays, while a larger ξ makes the current intensity to
be dependent more on historical intensities. A larger ξ makes
λ(i, t) smoother in time. This is similar to the weighted moving
average that controls the smoothness by distributing weights to
current and historical observations (Perry 2010).

Note that, the model (4) implies that the intensity at time
t depends not only on the intensity at time t − �, but also
on the intensities at times t − 2�, t − 3�, . . ., −∞. One may
see this by replacing log λ(i′, t − �) in (4) by c(i′, t − �) +

h(i′, t − �). By iterating this process, the intensity of each
segment depends on that of neighboring segments over the
entire history. To show how the spatio-temporal dependency
structure among {λ(i, t)}Ni=1 is established by (4), for a function
f (i, t) : {1, 2, . . .,N} × [0,T] �→ R

+, we introduce a Network
Convolution operatorNC as follows:

NC{f }(i, t) =
∑

i′∈�i

wii′ f (i
′, t), (5)

where NC{f }(i, t) : {1, 2, . . .,N} × [0,T] �→ R
+ is a new func-

tion generated by the operatorNC. Note that,NC is not strictly
a mathematical convolution operation, but rather a weighted
sum of the outputs from a set of functions (i.e., h(i, t) in (3)
is given by a weighted sum of the log intensities from a set
of segments at time t − �). Recall a Convolutional Neural
Network (CNN) where the input to a node is the weighted
sum of the outputs from a set of nodes in the previous layer.
Although this is not strictly a mathematical convolution neither,
the term convolution is used. For this reason, we still callNC a
network convolution operator, given the network structure that
determines the set�i. Because the operatorNC is linear, wemay
also defineNC(n){f }(i, t) as the n-fold network convolution for
a function f (i, t). For example, applyingNC to f (i, t) twice (i.e.,
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a 2-fold operation) yields:

NC
(2){f }(i, t) = NC{NC{f }}(i, t) = NC

⎧

⎨

⎩

∑

i′∈�i

wii′ f (i
′, t)

⎫

⎬

⎭

=
∑

i′∈�i

wii′NC{f }(i′, t)

=
∑

i′∈�i

wii′
∑

i′′∈�i′

wi′i′′ f (i
′′, t).

(6)
Then, it follows from (5), h(i, t) in (4) can be written as

∑∞
n=1 ξnNC(n){c}(i, t − n�). The derivation of h(i, t) involves

a long equation that is provided in the supplement A. Finally,
by substituting the expression of h(i, t) into (3), we obtain the
proposed statistical model as follows:

Convolutional NHPP. Consider a linear network L = ∪N
i=1li

with N disjoint segments. The event process on each segment i is
modeled as a non-homogeneous Poisson process (NHPP) with its
log intensity being given by the sum of an infinite series:

log λ(i, t) = c(i, t) + h(i, t)

= NC
(0){c}(i, t) +

∞
∑

n=1

ξnNC
(n){c}(i, t − n�)

=

∞
∑

n=0

ξnNC
(n){c}(i, t − n�),

(7)

whereNC(0){c}(i, t) � c(i, t).
It is seen that, (i) the intensity of segment i at time t depends

on not only the covariates associated with segment i at time t
(i.e., the current effect), but also the historical covariates associ-
ated with the neighboring segments that are involved through a
sequence of network convolution operations {NC(n)}∞n=1 prior
to time t (i.e., the cumulative historical and spatio-temporal
dependency). (ii) log λ(i, t) is represented by the sum of an
infinite series. Each term ξnNC(n){c}(i, t − n�) corresponds to
the contribution to log λ(i, t) from c(·, t − n�) at the current
or a historical time t − n�, n = 0, 1, 2, . . .,∞. Because the
contribution from t − n� decays to zero as n increases for ξ ∈

[0, 1), it is possible to approximate the series by only retaining
the first K terms. In the next section, we present a graphical

representation of the model and illustrate the computation of
log λ(i, t) leveraging such a graphical representation.

2.2. Computation, Graphical Representation and

Likelihood

In this section, we show how the computation of log λ(i, t) can
leverage a natural graphical representation of (7), and present
the likelihood function needed for parameter estimation. Some
notation and network operations are first introduced.

For any segment i, let�(m)
i be a set that contains the indices of

the mth generation neighbors of segment i (m = 0, 1, 2, . . .,K).

As illustrated in Figure 2, �(0)
i = {i} contains segment i itself,

�
(1)
i contains the immediate neighbors of segment i, �(2)

i con-
tains the neighbors of the neighbors of segment i, and so on.

In addition, for any segment j in the set �
(m)
i , we define

the ancestor operator A(1)(j) that returns the parent segment
of j. Similarly, we may introduce the 2-fold ancestor operation
A(2)(j) that returns the grand parent of j. By extending this
idea, we let A(n)(j) denote the n-fold ancestor operation, and
let A(0)(j) return j itself; see Figure 2. It is easy to see that, for
any line segment j that belongs to the mh generation neighbor

set �(m)
i of segment i, them-fold ancestor operation of j returns

i, that is,A(m)(j) = i for j ∈ �
(m)
i .

Based on the notation and operation defined above, we show
that the computation of log λ(i, t) takes a natural graphical rep-
resentation.

• (contribution from time t) The contribution to log λ(i, t) at
time t directly comes from c(i, t), which is the first term of
the series (7).

• (contribution from time t−�) The contribution to log λ(i, t)
from c(·, t−�) at time t−� is associatedwith all neighboring

segments in�
(1)
i , that is, the second term of the series (7) can

be computed by
ξNC

(1){c}(i, t − �)

= ξ
∑

j∈�
(1)
i

wA(1)(j)A(0)(j)c(j, t − �). (8)

Figure 2. Agraphical illustration of the neighbor set and ancestor operationwith each node representing a segment: (i)�
(0)
i is segment i itself,�

(1)
i contains the neighbors

of segment i, �
(2)
i contains the neighbors of the neighbors of i, and so on; (ii)A(0)(j) returns j itself,A(1)(j) returns the parent of j,A(2)(j) returns the grandparent of j,

and so on.
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• (contribution from time t − 2�) The contribution to
log λ(i, t) from c(·, t − 2�) at time t − 2� is associated with

all neighboring segments in�
(2)
i , that is, the third term of the

series (7) can be computed by

ξ 2NC
(2){c}(i, t − 2�)

= ξ 2
∑

j∈�
(2)
i

wA(2)(j)A(1)(j)wA(1)(j)A(0)(j)c(j, t − 2�). (9)

• (contribution from time t − n�) For any given n ∈ N
+,

it is seen that the generic expression of the contribution to
log λ(i, t) from c(·, t− n�) is associated with all neighboring

segments in �
(n)
i and can be written as

ξ kNC
(n){c}(i, t − n�)

= ξn
∑

j∈�
(n)
i

⎧

⎨

⎩

n
∏

p=1

wA(p)(j)A(p−1)(j)

⎫

⎬

⎭
c(j, t − n�). (10)

The generic expression (10) above provides a way to compute
each term in the series (7). When the series (7) is approximated
by only retaining the first K terms, we have

log λ(i, t) =
∑∞

n=0 ξnNC(n){c}(i, t − n�)

≈ c(i, t) +
∑K

n=1 ξn
∑

j∈�
(n)
i

×
{
∏n

p=1 wA(p)(j)A(p−1)(j)

}

c(j, t − n�).

(11)

Figure 3 provides a graphical illustration of (11) that depicts
the discussions above.

Let logλ(t) = (log λ(1, t), log λ(2, t), . . ., log λ(N, t))T be a
vector that contains the log intensity functions on allN segments
of a network L. For k = 0, 1, . . .,K, let c(t − k�) = (c(1, t −

k�), c(2, t − k�), . . ., c(N, t − k�))T . Then, the approximated
log intensity logλ(t) (by retaining the first K terms in the series
(7)) admits the following matrix form:

logλ(t) ≈ c(t) + ξWc(t − �) + · · · + ξKWK
c(t −K�), (12)

where W is an N × N weight matrix with its (i, j)th entry, wij,
being the contribution weight to h(i, t) from log λ(j, t− �), and
W

K is the Kth power ofW. Note that,

(i) because the intensity on a segment i is only affected by its
neighboring segments,W is sparse with wij = 0 for j that is not
a neighbor of segment i. Hence, the sizes of the neighboring sets
� control the sparsity of the problem;

(ii) the proposed model provides some flexibility about how
the weights are chosen. For example, wii′ = |�i|

−1, that is, all
neighboring segments of segment i equally contribute to the ith

segment. The parametric form such as wii′ =
exp(−dii′/l)∑

i′∈�i
exp(−dii′/l)

,

where di,i′ is the Euclidean distance between the centers of
segments i and i′ and l is the distance scale parameter;

(iii) the matrix form (12) can be understood from the per-

spective of graph theory. Note that, a nonzero weightw(k)
ij inWk

implies that segment j can reach segment i with a k-step walk in

the network. In addition, the value of w(k)
ij in W

k is the sum of
the contributionweights that are themultiplications ofw·,· of the
linked segments along all possible k-step walks from segment
j to segment i. Thus, the contribution of c(t − k�) to logλ(t)
naturally admits the expression of ξ kWk

c(t−k�). For example,

w
(2)
ij 
= 0 in W

2 indicates that segment j can walk to segment

i with two steps, and the value of w(2)
ij is the total contribution

from all possible two-step walks from segment j to segment i in
the network. Then, the corresponding contribution of c(t−2�)

to logλ(t) is ξ 2Wk
c(t − 2�).

Finally, when c(i, t) is modeled by a linear function of covari-
ates, we obtain a linear model for logλ(t) that incorporates
covariate information:

logλ(t) ≈ X(t)β + ξWX(t − �)β + · · · + ξKWK
X(t − K�)β

=

(
K

∑

k=0

ξ kWk
X(t − k�)

)

β � X̃(t)β ,

(13)
where X(t) = (x(1, t), . . ., x(N, t))T is the covariate matrix at
time t, and X̃(t) = (x̃(1, t), . . ., x̃(N, t))T is the transformed
covariate matrix after the convolution operation, and we call it
the Convolutional Covariate Matrix (CCM) in this article.

Note that, (i) ifW is an identity matrix, the intensity of each
line segment only depends on its own historical information,

Figure 3. A graphical illustration of how the intensity c(i, t) is contributed from the neighbor sets of i at times t, t − �, t − 2�, . . ..
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and there is no spatial dependency among line segments; (ii)
if all elements in W are zeros, there exist no historical effects
nor spatial dependency among the intensity functions. In this
case, the intensity functions can be completely explained by
current covariates, and the proposed model (3) degenerates to
log λ(i, t) = x

T(i, t)β , which is widely used in existing NHPP
models; (iii) the spatio-temporal dependency is embedded in
W, and such a dependency spans over all segments given the
NC operator defined in (5). In particular, {Wm}Km=1 in (13) are
induced by NC on the linear network considering the past K
time steps.

Based on (13), we obtain the log-likelihood function for the
unknown parameters, including the decay factor ξ and coeffi-
cients β0,β1, . . .,βq. Let θ = (ξ ,β0,β1, . . .,βq)

T , we have (Peng,
Schoenberg, and Woods 2005):

�(θ) =

N
∑

i=1

bi∑

j=1

log λ(i, tj) −

N
∑

i=1

∫ T

0
λ(i, t)dt

=

N
∑

i=1

bi∑

j=1

x̃
T(i, tj)β −

N
∑

i=1

∫ T

0
exp

[

x̃
T(i, t)β

]

dt,

(14)

where bi is the number of events on segment i, andT is the length
of the observation period.

Finally, the linear form in (13) suggests that the intensity at
time t depends on the historical and current covariates, and this
structural characteristic enables us to draw an interesting con-
nection between the proposed cNHPP and a simple Recurrent
Neural Networks (RNN). Details are provided in supplement B.

2.3. Two Additional Remarks

In the section, wemake two important remarks on the proposed
cNHPP model.

2.3.1. The Continuous-Time Form of the Intensity

Function (7)

For the proposed cNHPP model, it is extremely important to
note that ξ , c(i, t), and NC all implicitly depend on the choice
of � (i.e., scale-dependent). For example, if � is defined as
a day, then ξ and c(i, t) are, respectively, the daily decay and
daily generation, and the operator NC operates over a one-
day interval. Hence, to obtain the continuous-time form of the
intensity function (7), we first need to make such a dependency
explicit by letting ξδ and cδ(i, t), respectively, be the total amount
of decay and generation over a δ-interval, and letting NCδ =
∑

i′∈�i,δ
wδ
i,i′ f (i

′, t) be the network convolution operator that
operates over a δ-interval. Note that, the neighbor set �i,δ also
depends on the length of the interval as we naturally expect
the size of this set to be nondecreasing in δ. In fact, a stronger
condition needs to be imposed on �i,δ as to be discussed below.
When the neighbor set depends on δ, theweightwδ

ii′ is also scale-
dependent.

Next, let � = nδ, two assumptions are needed: (i) ξ� =

ξnδ = exp(−bnδ) for some b > 0, and (ii) NC�{f }(i, t) =

NCnδ{f }(i, t) = NC
(n)
δ {f }(i, t). The second assumption imme-

diately imposes two consistency conditions on how neighbor
sets are defined over the network, as well as how the weights

associated with the operator NC are determined for different
scales of the time intervals.

Condition 1. the nth generation neighbor set corresponding to a
time interval δ needs to the same as the first generation neighbor

set corresponding to a time interval �, that is, �(n)
i,δ = �i,�.

Condition 2. for any segment i, the weight w�
ij between i and

its first generation neighbor j ∈ �i,� (given a time interval
�) needs to be the same as the weight between i and its nth

generation neighbor j ∈ �
(n)
i,δ (given a time interval δ), that is,

w�
ij =

∏n
p=1 w

δ
A(p)(j)A(p−1)(j)

.

Having made the two assumptions above, the intensity func-
tion (7) can be written as

log λ(i, t) = ξ�

∑

i′∈�i,�
w�
ii′ log λ(i′, t − �) + c�(i, t)

= ξnδ NC
(n)
δ {log λ}(i, t − nδ)

+
∑n−1

k=1 ξ kδ NC
(k)
δ {cδ}(i, t − kδ) + cδ(i, t).

(15)
Following an approach described in Brown et al. (2000), we
let n → ∞, and the first term on the right hand side,

ξnδ NC
(n)
δ {log λ}(i, t − �), goes to zero, that is,

log λ(i, t) ≈

∞
∑

k=1

ξ kδ NC
(k)
δ {cδ}(i, t − kδ) + cδ(i, t). (16)

Then, by letting δ → 0, we obtain the continuous-time repre-
sentation of the intensity function (7)

log λ(i, t) =

∫ ∞

v=0
exp(−bv)NCv{c̃}(i, t − v)dv

where c̃(i, t) = limδ→0 δ−1cδ(i, t) is the rate.

2.3.2. The Difference between cNHPP andOtherModels

The proposed cNHPP model not only distinguishes itself from
the linear and nonlinear Hawkes processes (defined in (17)), but
also extends the conventional NHPP model with a log-linear
intensity function (18):

λ(i, t) = φi(μi +
∑

tj:tj<t

γi(t − tj)) (17)

λ(i, t) = exp(xT(i, t)β), (18)

where φi(·) is a nonnegative link function that can be either lin-
ear or nonlinear,μi is the baseline intensity, γi(·) is the triggering
kernel function (e.g., the exponential kernel), and {tj : tj < t}
contains the event times before time t.

In the linear and nonlinear Hawkes processes, the intensity
function only considers the influence of past events rather than
the covariate information (Hawkes 2018). In contrast, the pro-
posed cNHPP directly establishes an explanatory model for the
intensity function that incorporates the current and historical
covariate information. This yields more interpretable outcomes
for assessing wildfire risks, aiding utilities in enhancing wildfire
mitigation strategies and power grid operation planning based
on real-time environmental data. For this reason, the Hawkes
process is known as a self-exciting process, but the proposed
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cNHPP is not a self-exciting process. Specifically when n = 0
in (7) or ξ = 0 in (4), the proposed cNHPP degenerates to the
conventional NHPP model with a log-linear intensity function,
which only depends on the current covariate information (Cox
1972).

3. Application: Wildfire Ignition Risks on California

Power Transmission Lines

We apply the proposed approach for modeling and predicting
wildfire risks on networks of power transmission lines in part
of California. Section 3.1 provides detailed descriptions of the
datasets. Section 3.2 presents the model outputs and provides
some useful insights on the impact of wildfires on power deliv-
ery infrastructures. Comparison studies are presented in Sec-
tion 3.3.

3.1. Data

This application example involves four major datasets: (i) power
delivery infrastructure data, (ii) wildfire incident data, (iii)mete-
orological data, and (iv) vegetation data. Figure 4(a) shows the
main power transmission lines in California. This dataset is
obtained, in the shapefile format, from the U.S. Energy Informa-
tion Administration (EIA). In particular, we focus on a spatial
area indicated by the square in Figure 4(a). This spatial area is
defined by [120◦W, 119◦W] × [36◦N, 37◦N], and there is a total
number of 6398 power transmission lines within this area; see
Figure 4(b). Figure 4(c) shows the histogram of the lengths of
these 6398 segments, and most of these line segments are less
than 1000 meters.

The fire incident dataset contains the information about
overhead power-line fires, including fire locations and dates.
The wildfire incident data are obtained from the California
Public Utilities Commission (CPUC), which is a government
agency that regulates public utility companies including pri-
vately owned electric, natural gas, and telecommunications
companies. In response to increasingly severe overhead power-
line wildfires, CPUC requires electricity companies to report
data on power-line fires. We obtain the fire incident data
reported from the SouthernCalifornia Edison (SCE), PacificGas
and Electric (PG&E), and San Diego Gas and Electric (SDG&E)
companies. From June 1 to June 30, 2019, a total number of 15

wildfires were reported within the study area. On average, there
was a fire incident every two days due to the high temperature
and dry weather at the beginning of the summer season.

Meteorological data are obtained from the High-Resolution
RapidRefresh (HRRR)modelmaintained byNOAA.TheHRRR
model provides hourly meteorological data with a spatial res-
olution of 3 kilometers. Although HRRR contains 170 meteo-
rological variables in 2D surface levels, most of these variables
are the same meteorological conditions but in different pressure
regions. Hence, we select three representative variables, includ-
ing temperature (2 meters above ground), specific humidity
(2 meters above ground), and wind speed (10 meters above
ground). For convenience, we denote temperature as TMP (◦C),
specific humidity as SPFH (kg · kg−1), and wind speed as
WIND (m · s−1). Because power lines do not always locate in a
regular grid, the meteorological data at the nearest grid points
are assigned to each power line segment. As an illustration,
Figure 5(a)–(c) show themeteorological conditions at 12:00 p.m.
UTC on June 01, 2019.

Vegetation data are obtained from theNormalizedDifference
Vegetation Index (NDVI) that indicates the vegetation-water
status. A higher NDVI corresponds to a denser and healthier
vegetation canopy and vice versa. This dataset is obtained from
the Moderate Resolution Imaging Spectroradiometer (MODIS)
on board NASA’s Aqua and Terra satellites. Because MODIS
only has 8-day NDVI data products, we manually calculate
daily NDVI values using the daily land surface reflectance
products by NDVI = (ρNIR − ρred)(ρNIR + ρred)

−1 where
ρred and ρNIR, respectively, denote the reflectances of near-
infrared and red spectral regions. Detailed descriptions about
the reflectance products can be found in MODIS (2015). Here,
ρred and ρNIR have a 250-m spatial resolution in MODIS land
surface reflectance products, and so do the processed NDVI
data. Figure 5(d) gives an example of the processedNDVI values
that range from 0 to 1.

3.2. Results and Discussions

Based on the power transmission line data above, λ(t) is a
column vector that contains the intensity functions of the 6398
power lines. The convolutional covariate matrix X̃ is a 6398 ×

6 matrix, and the sparse weighted adjacency matrix W has a

Figure 4. (a) Main power transmission lines in California; (b) Power transmission lines in the study area; (c) Histogram of the length of line segments in the study area.
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Figure 5. Illustration of three meteorological variables and the processed vegetation data on June 01, 2019: (a) TMP (◦C); (b) SPFH (kg · kg−1); (c) WIND (m · s−1); (d)
Normalized Difference Vegetation Index (NDVI).

dimension of 6398 × 6398. In this application, we let wii′ =

1
/

|�i| for i′ ∈ �i, implying that all neighbors of segment i
equally contribute to the fire intensity of the ith segment. Here,
our focus is on daily wildfire risk, and � equals one day.

We let x1(i, t), x2(i, t), x3(i, t) x4(i, t), and x5(i, t), respectively,
denote the NDVI, TMP, WIND, SPFH, and the LENGTH of the
ith segment at day t. Specifically, we use the TMP, WIND, and
SPFH from the HRRR model at 12:00 p.m. UTC to represent
their daily quantities. All covariates are standardized so as to
facilitate the comparison between their effects β1, β2, β3, β4,
and β5. An intercept β0 is also included. The parameters θ =

(ξ ,β0,β1,β2,β3,β4,β5)
T in (13) are estimated by maximizing

the log-likelihood function (14). Note that, the log-likelihood
function (14) is concavewith respect toβ, but the computational
cost of X̃(t) for different values of ξ is extremely high. Hence, we
adopt a more practical approach by considering a finite number
of ξ (for computing X̃(t)), and compare the corresponding

maximized log-likelihoods with respect to β̂ . In particular, we
consider a finite set {0.1, 0.2, . . ., 0.9} for ξ , and let K = 7
meaning that the historical covariate information from the past
one week is considered. For each ξ , X̃(t) is computed, and
the MLE of β is found using the SciPy package using the
L-BFGS-Bmethod in Python. The maximum log-likelihood is

found when ξ = 0.7, and the corresponding β̂ is found as β̂0 =

−2.760 (−3.109,−2.412), β̂1 = −1.521 (−1.795,−1.248),
β̂2 = 0.541 (0.058, 1.025), β̂3 = 0.860 (0.407, 1.312), β̂4 =

−0.470 (−0.871,−0.069), and β̂5 = 2.716 (2.356, 3.076), where
the values in (, ) are the large-sample approximate 95% confi-
dence bounds.

It is seen that higher temperature and stronger wind speed
increase the wildfire risks by factors of 1.72 (i.e., exp(β̂2)) and
2.36 (i.e., exp(β̂3)), respectively. Such findings can be well justi-
fied as follows: (i) a higher temperature makes the ignition of
the underlying fuels easier (e.g., grasses, shrubs, dead leaves,
etc.), (ii) with an increased wind speed, the electrical conduc-
tors and surrounding vegetation are more likely to result in
arcing, increasing the probability of wildfire ignition (Mitchell
2013; Vazquez et al. 2022). Both NDVI and SPFH have negative
impacts on wildfire risks, while SPFH has a relatively weaker
effect compared with that of NDVI. Note that, a higher NDVI
indicates healthier vegetation with more water conditions and
fewer potential fuels that can be ignited. Similarly, a high SPFH
gives potential fuels more moisture, reducing the wildfire risk.

In fact, NDVI (with β̂1 = −1.521) is found to be more influ-
ential than the other three dynamical environmental variables
(recall that all covariates are standardized). Activities such as
weeding are highly recommended to eliminate unhealthy vege-
tation around power delivery infrastructures. Finally, LENGTH
is found to be the most influential factor, with β̂5 = 2.783,
which is consistent with our experience that longer lines are
more susceptible to initiating a fire.

The proposed model can also be used for short-term fore-
casting of wildfire intensities. The forecasted wildfire intensities
are obtained once the convolutional matrix X̃(t + k) can be
computed given future covariate values, that is, log λ̂(t + k) =

X̃(t + k)β̂ . To demonstrate the predictive capabilities of our
model, we treat the future covariate values as if they were known
exactly and use their real values from our datasets. Figure 6
shows the estimated and forecasted wildfire event intensities
based on the proposed approach. It is seen that different power
line segments are associated with different wildfire risks due to
the spatially- and temporally-varying covariate information. It
is also seen from the second row of Figure 6 that the forecasted
wildfire risks change smoothly over time. This is because the
proposed model incorporates the cumulative long-term effects
of covariates and the estimated decay factor ξ̂ = 0.7. As a
result, the wildfire intensities do not dramatically change in a
short period even if the current covariates change abruptly. Note
that, if a smaller decay value ξ is obtained, the cumulative effects
decay faster and the forecasted wildfire risks are more sensitive
to current environmental conditions.

3.3. Comparison Studies

In this section, we first present the comparison based on the
real datasets. Because there is a limited number of fire events,
a simulation-based comparison is also presented.

3.3.1. Comparison based on the Real Data

Based on the realwildfire data, we compare the proposedcNHPP
model with three models: (i) HPP: Homogeneous Poisson Pro-
cess (HPP) that models the wildfire intensity as a constant over
the entire network, that is, log λ(i, t) = log λ for i = 1, 2, . . .,N;
(ii) NHPP: Conventional NHPP model for which the wildfire
intensity is only determined by the current covariates without
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Figure 6. (Top row): estimated wildfire event intensities for power lines at June 01, 2019, June 15, 2019, and June 30, 2019; (Bottom row): one-day, three-day, and five-day
ahead forecasts of wildfire event intensities.

Table 1. Estimated parameters from different models.

HPP NHPP mRNN cNHPP

λ̂ (rate×10−5 ) 7.815 – – –

ξ̂ (decay) – – 0.670 0.700

β̂0 (intercept) – −9.023 −2.926 −2.760

β̂1 (NDVI) – −2.744 −1.538 −1.521

β̂2 (TMP) – 0.598 0.830 0.541

β̂3 (WIND) – 1.362 0.737 0.860

β̂4 (SPFH) – −0.343 −0.652 −0.470

β̂5 (LENGTH) – 4.399 2.783 2.716
log-likelihood −156.853 −153.695 −151.923 −151.864

accounting for the cumulative effects of covariates and spatial
dependency, that is, log λ(i, t) = x

T(i, t)β for i = 1, 2, . . .,N;
(iii) mRNN: The model-inherited RNN (mRNN) described in
Supplement B and implemented by PyTorch with the Adam
optimizer (learning rate = 0.001) in training the model. Conver-
gence of the loss function andunknownparameters are provided
in Supplement C, where a total number of 20,000 epochs are
employed.

Table 1 presents the estimated model parameters using the
same training data described in Section 3.2. We see from this
table thatcNHPP andmRNN yield larger log-likelihood than that
of HPP and NHPP. Although NHPP, cNHPP, and mRNN give
different estimated values for the effects β , the signs of these
estimates remain consistent. Based on the estimates in Table 1,
we obtain the estimated intensity functions for all power-line
segments from NHPP, mRNN, and cNHPP. Figure 7 shows the
corresponding density plots of the estimated wildfire intensities

over the power lines on selected days. It is seen that density
plots are all centered around the average λ̂ obtained from the
HPP model (the vertical dashed line), suggesting that all three
approaches perform reasonably well in terms of estimating the
underlying wildfire risks over the network of power transmis-
sion lines. It is also noted that the proposed cNHPP generates
longer upper tails of the estimated intensity on two of the three
days. This observation indicates that the proposed model may
better capture some extreme cases and identify transmission
lines with high risks.

We further validate the proposed approach in quantifying
wildfire risks over the network of power lines. Note that, there
are two challenges associated with validating the proposed
approach: (i) because only 15 fire incidents are included in the
training datasets and the majority of the power lines do not
experience any fires, traditional measures (such as the mean
prediction error, C-index, etc.) become less effective unless we
have a much bigger dataset with a much larger number of fire
incidents; (ii) power lines with high fire intensitymay not always
have fire incidents, while power lines with relatively low fire
intensity can occasionally catch fire. Hence, we validate the
capabilities of the proposed model by using a straightforward
but interpretable procedure: for each fire incident, we first order
the estimated fire intensities from the lowest to the highest for
all power transmission lines, and then compute the percentile
of the estimated intensity associated with the power line where
the wildfire incident occurs. If the model works well, we expect
the calculated percentiles associated with those power lines with
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Figure 7. Distribution of estimated wildfire intensities on power transmission lines by different models at selected days (the dashed line denotes the estimated average
wildfire intensity based on the HPPmodel).

Figure 8. Percentiles of the estimated intensities associated with those power lines where fire events occur.

fire events to be high. The results are shown in Figure 8. It is
seen that, among 8 out of the 15 wildfire incidents, cNHPP and
mRNN yield higher percentiles than NHPP. This suggests that
incorporating historical cumulative covariate effects and spa-
tial dependency has the potential to improve the conventional
NHPP model.

3.3.2. Comparisonwith the Simulated Data

Because the number of fire events in this dataset is not sufficient
for a comprehensive comparison, a simulation-based compari-
son is performed in this section. To perform a comprehensive
comparison study, a sufficiently large number of wildfire events
are simulated, based on the parameters shown in Table 1, over
the entire power transmission network and within a window
of 37 days. In particular, we first compute two intensity func-
tions, respectively, for the proposed cNHPP and the conven-
tional NHPP. Then, we scale up these two estimated intensity
functions by a factor of 5000 to generate two wildfire incident
datasets. This simulation is based on the thinning approach for
generating the NHPP (Lewis and Shedler 1979), and the two
simulated datasets are, respectively, denoted as SimDataA and
SimDataB.

In this simulation-based comparison, we compare the pro-
posed approaches to the convectional NHPP model, as well as
two models based on the Hawkes processes. The first Hawkes
process, denoted as Hawkes, is the linear Hawkes process
with an exponential triggering kernel, while the second Hawkes
process, denoted as nl-Hawkes, is a nonlinear Hawkes pro-
cess recently proposed by Zhou et al. (2022). To compare the

predictive capabilities of different models, data from the first 30
days are used for training while the data from the last 7 days are
used for testing purposes.

The Mean Absolute Prediction Error (MAPE) is adopted
to evaluate the performance of different approaches. Here, the
MAPE is defined as MAPE = 1

N

∑N
i=1 |Ni([t, t + 1)) −

∫ t+1
t λ̂(i, u)du|, where Ni([t, t + 1)) represents the number of

observed wildfires on day t+ 1 on the ith segment, and λ̂(i, u) is
the predicted intensity function at time u for the ith segment.
Table 2 shows the MAPE obtained from the four approaches
based on the two simulated datasets. It is seen that the pro-
posed cNHPP yields the lowest MAPE for 6 out of the 7 days
in SimDataA, and ties for the lowest MAPE for 6 out of
the 7 days with the NHPP in SimDataB. It is also extremely
important to note that the proposed cNHPP and conventional
NHPP approaches have exactly the same MAPE on dataset
SimDataB. This is because the proposed cNHPP includes the
NHPP as a special case (see Section 2.3.2), and SimDataB

is generated from an NHPP. Hence, the proposed cNHPP

can achieve a comparable prediction performance even when
the simulated wildfire data are generated from the an NHPP
model.

If a wildfire event is predicted to occur when the predicted
wildfire intensity surpasses a specific threshold Xu and Schoen-
berg (2011), the Receiver Operating Characteristic (ROC)
curves can also be constructed to assess different modeling
approaches. The False Positive Rate (FPR) denotes the pro-
portion of transmission lines without wildfires for which the
predicted intensity exceeds the threshold, while theTrue Positive
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Table 2. Comparison of MAPE for different approaches.

Day 31 Day 32 Day 33 Day 34 Day 35 Day 36 Day 37 Total

cNHPP (SimDataA) 0.460 0.492 0.459 0.453 0.433 0.423 0.526 1.242

NHPP 0.478 0.521 0.467 0.478 0.453 0.447 0.659 1.484
Hawkes 0.489 0.510 0.490 0.474 0.455 0.460 0.534 1.521
nl-Hawkes 0.472 0.496 0.472 0.470 0.455 0.446 0.524 1.442
cNHPP (SimDataB) 0.468 0.511 0.449 0.464 0.465 0.444 0.658 1.305

NHPP 0.468 0.511 0.449 0.464 0.465 0.444 0.658 1.305

Hawkes 0.485 0.510 0.479 0.496 0.492 0.505 0.694 1.513
nl-Hawkes 0.492 0.515 0.479 0.486 0.490 0.474 0.685 1.479

NOTE: The “bold”highlights some good model performance.

Figure 9. ROC curves for different approaches based SimDataA (left) and SimDataB (right).

Figure 10. F1 scores for different approaches on the simulated dataset SimDataA (left) and simulated dataset SimDataB (right).

Rate (TPR) represents the proportion of transmission lines with
fires for which the predicted intensity also exceeds the threshold.
Both FPR and TPR are used to generate ROC curves shown in
Figure 9, and the Area Under the Curve (AUC) is also reported.
We observe that the proposed cNHPP achieves the highest AUC
and a higher TPR for any given FPR in SimDataA, and it ties
for the highest AUC and a higher TPR for any given FPR with
the NHPP in SimDataA. Additionally, nl-Hawkes slightly
outperforms Hawkes.

Finally, from the perspective of power grid operations,
another performancemetric can be used for model comparison.
In practice, given the limited resources available for preventive
actions, utilities often prioritize power lines with higher pre-
dicted intensities. If the model performs well, this strategy is
expected to achieve a greater accuracy in directing preventive
efforts to power lines with actual wildfires. In this context, we
define True Positive (TP) as the percentage of power lines, for
which preventive actions are scheduled, that actually catch fire;
False Positive (FP) as the power lines where no fires occur but
for which preventive actions are scheduled; and False Negative
(FN) as the percentage of power lines that catch fires but for
which preventive actions are not taken. Then, the F1 score can

be calculated as follows: F1 = 2TP
2TP+FP+FN , and is shown in

Figure 10 for different approaches based on both SimDataA
and SimDataB. The horizontal axis represents the percentile
threshold at which preventive actions are performed. It is seen
that the proposed cNHPP model achieves the highest F1 scores
across all percentile thresholds on both simulated datasets,
SimDataA and SimDataB. This finding shows the potential
of the proposed model for prioritizing limited resources for
power grid fire prevention.

4. Conclusions

This article proposed a Convolutional Non-homogeneous Pois-
son Process (cNHPP) on a linear network. On each network
segment, the intensity function is given by the sum of two
components. The first component is used to capture the effects
of current covariates, while the second term is used to capture
the effects of covariates in the previous time step due to spatial-
temporal dependency among neighboring network segments.
The article showed that the intensity function can be given by
the sum of an infinite series, where each term of the series
captures the effects of either the current or historical covariates.
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The article provided detailed discussions on how the two com-
ponents can be constructed, the computation of the intensity
function, the graphical representation of the proposed cNHPP,
the continuous-time representation of the model, and how the
proposed approach is different from the existing self-exciting
process. In the application example, the proposed approach has
been successfully applied to model and predict the wildfire risks
over a network of power transmission lines in California. The
model captured how weather and vegetation variables affect
the wildfire risks on power transmission lines and provided
some useful insights for mitigating wildfire risks. Comprehen-
sive comparison studies have been demonstrated the predictive
capabilities of the proposed cNHPP in terms of MAPE, area
under the ROC curves, and the F1 score. It is noted that the
proposed approach is computationally intensive (primarily due
to the convolution operations). Hence, one important future
research is to investigate computationally efficient method so
that the proposed model can be applied to a large power line
network.

Supplementary Materials

The online supplementary materials include: the derivation of long-term
cumulative effects h(i, t) (Supplement A), representation of cNHPP using
the architecture of a Recurrent Neural Network (Supplement B), as well as
the parameter estimation results of the RNN for Section 3.3.1 (Supplement
C). We also provide the Python code for reproducing Table 1, Figures 6–8
in this article.
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