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Abstract

We model a rotating star as a compressible fluid subject to gravita-

tional forces. In almost all the mathematical literature the entropy is

considered to be constant. Here we allow it to be variable. We consider a

star that steadily rotates differentially around a fixed axis, say the z-axis.

We prove the existence of a family of such stars with small angular velocity

ω and small entropy variation s and with an equation of state p = Ke
s
ρ
γ
.

Our analysis reduces to a hyperbolic equation for the modified entropy

coupled to an elliptic equation for the modified density, together with a

mass constraint. Due to the variable entropy and the consequent loss of

both regularity and variational structure, all the methods in the previous

literature fail. We develop a new ad hoc perturbative strategy that allows

us to construct rotating stars that bifurcate from the non-rotating ones.

1 Introduction

1.1 Rotating Stars

The study of rotating stars is a classical topic in astrophysics and mathematics,
and there has been a great deal of interest and activity for centuries. Early
studies can be tracked back to Newton, Maclaurin, Jacobi, Poincaré, Liapunov
et al who studied incompressible stars, while compressible stars began to be
treated later by Lichtenstein [25] and Chandrasekhar [6]. We refer to [8, 22] for
historical accounts on the topic. Other excellent general references are [33, 16].
The existence of rotating stars with a given angular velocity distribution is not
a trivial task. In particular the support of a star is not known a priori and it is
one of the unknowns.

In the search for rotating star solutions there are two modern approaches.
One is based on variational methods where the rotating solutions are obtained
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via a constrained minimization problem [3, 4, 13, 14, 24, 27, 28, 35], and the
other is based on perturbative methods where the solutions are obtained by an
implicit function theorem or contraction mapping principle around non-rotating
Lane-Emden stars [17, 19, 20, 21, 29, 30]. The second approach has been ex-
tended to construct a global set of rotating stars [31]. Both approaches have
been particularly successful to prove the existence of rotating star solutions with
constant entropy, in which case an integral reformulation can be effectively used.

When it comes to rotating star solutions with variable entropy, however, very
few results are available, despite its physical importance [18, 33]. The goal of this
paper is to establish the existence of rotating star solutions for self-gravitating
perfect fluids with variable entropy. To the best of our knowledge, ours is the
first mathematical result on rotating star solutions that allows variable entropy.
Furthermore, ours is the first that allows the prescribed angular velocity ω to
depend on both of the cylindrical coordinates r and z, while all prior works
treated merely r-dependent angular velocity profiles. As we will see from (11),
any z-dependence of the angular velocity implies that entropy is not constant. A
system with such a nontrivial z-dependence is called a barocline. Actual stellar
rotations typically exhibit such dependence. An example is our own sun [33].

Our problem does not have a variational structure. Although the implicit
function theorem would seem like a natural technique, it does not work because
of the loss of regularity. Instead we use an explicit iteration and we perform
estimates in two different normed spaces in Sections 4 and 5. In order to make
optimal use of the available regularity, most of our analysis is carried out in a
bounded domain.

1.2 Euler-Poisson Model

Now we describe the main contents of the current work. We regard the star as a
compressible inviscid fluid. The basic equations are those of Euler-Poisson which
describe the conservation of mass, momentum and energy subject to self-gravity
and the transport of entropy by the fluid. The equations are:

ρt +∇ · (ρv) = 0, (1)

(ρv)t +∇ · (ρv ⊗ v) +∇p = ρ∇U, (2)

st + v · ∇s = 0, (3)

U(x, t) = G

∫

R3

ρ(x′, t)

|x− x′|dx
′, (4)

where ρ is the density, v the velocity, p the pressure, s the entropy, and G
Newton’s universal constant of gravitation. The first three equations are valid
in the region {ρ > 0} occupied by the star. We assume the pressure p is a
function of ρ and s, specifically that the star is a simple ideal gas:

p = Kesργ , (5)

as in [9] (p.6-7), [5] (Section 3.4) and [12](p. 61-62), where K > 0 and γ > 1
are constants. Note that the entropy transport equation (3) is a consequence of
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the other conservation laws together with the energy conservation law:

(

ρ

(

1

2
|v|2+ε

))

t

+∇ ·
(

ρ

(

1

2
|v|2+ε

)

v

)

+∇ · (pv) = ρ∇U · v, (6)

where

ε =
K

γ − 1
esργ−1

is the specific internal energy. For notational convenience we choose K =
γ − 1

γ
and G = 1 in the following, but the same results hold for any positive K and
G.

Our main result states that there exists a family of rotating solutions which
are axisymmetric and even in z and which bifurcate from the non-rotating (Lane-
Emden) radial solution ρ0 that has a radius R0 and zero entropy. (See Lemma
2.1 for details of such non-rotating star solutions.) We denote by BR0 the ball
with radius R0 centered at the origin on which ρ0 is supported. In the following

theorem, let β ∈
(

0,min

(

2− γ

γ − 1
, 1

))

be given. The parameter κ measures the

intensity of rotation, and µ measures the size of the floor entropy. Here floor
entropy refers to the entropy on the equatorial plane z = 0.

Theorem 1. Assume
6

5
< γ < 2, and γ 6= 4

3
. Let B be an arbitrary open ball

strictly containing BR0 . Let s0 ∈ C1,β(B ∩ {z = 0}) be a given axisymmetric
floor entropy profile on the equatorial plane {z = 0}, and ω ∈ C2,β(B) be a
given axisymmetric angular velocity profile that is even in z. Then there exists
a family of solutions (ρκ,µ, sκ,µ) ∈ [C1,β(B)]2 for κ, µ > 0 sufficiently small,
which depend continuously on (κ, µ) and converge to (ρ0, 0) as (κ, µ) → 0 such
that each solution satisfies the following properties.

• (ρκ,µ, sκ,µ) is axisymmetric and even in z.

• (ρκ,µ, sκ,µ) is a time independent solution of (1)-(5), where the velocity v

is an axisymmetric rotation with angular velocity
√
κ ω(r, z).

• sκ,µ satisfies the floor entropy condition

sκ,µ|z=0 = µs0.

• ρκ,µ is nonnegative, compactly supported in B and has the same total mass

∫

B

ρκ,µ dx =

∫

BR0

ρ0 dx

as the Lane-Emden solution.
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The exceptional index γ = 4/3 is excluded from the theorem. It is the mass
critical index for which all the radial Lane-Emden solutions have the identical
total mass. In this exceptional case there is a trivial curve of non-rotating
solutions which are related to each other by scaling. Moreover, in case γ = 4/3
with constant entropy and angular velocity, it is shown in [32] that there does
not exist any slowly rotating solution close to a given Lane-Emden solution with
the same total mass. So in that case the local solution space is exhausted by
the trivial curve of non-rotating stars.

1.3 Related Literature

So far as we know, the only works in the literature that are related to the Euler-
Poisson equations with variable entropy are [10, 11, 26, 34, 37]. Our result differs
from them in several important ways. First of all, most of the earlier works
that considered variable entropy were essentially restricted to solving only the
divergence of the momentum equation (2) on a given domain with prescribed
entropy s, while the curl part was largely ignored. Therefore such solutions do
not necessarily satisfy the Euler-Poisson system. In fact, even if the curl part
holds, as for instance in the case of radial symmetry, in order to recover the
momentum equation from the divergence and the curl components, one would
need an extra boundary condition (different from the Dirichlet condition of ρ)
on the surface of the star. Without such a boundary condition, the two sides of
the momentum equation would differ by the gradient of a harmonic function.
See Section 2.1 for a more detailed discussion. This key step of going from the
divergence and the curl back to the original system seems to be missing in all
the prior works, with the exception of [37].

In [37], the author uses a variational method on an integral formulation of
the momentum equation, in a spirit analogous to the prior variational results
[3] with constant entropy. However, in order to fit variable entropy into this
framework, the author has to work with functions that are constants on a given
nested family of ellipsoids. As all the test functions for the Euler-Lagrange
variation then have fixed ellipsoidal symmetry, the solutions obtained in [37]
merely solve ellipsoidal averages of the momentum equation and do not solve
the original system.

In summary, to the best of our knowledge, Theorem 1 is the first existence
result of variable entropy rotating star solutions to the full Euler-Poisson system.
In order to obtain our result, we predetermine neither the entropy s nor the fluid
domain of the star. Both of them appear as unknowns in our formulation.

1.4 Significance of the dependence on z

Moreover, all of the above mentioned works require an angular velocity profile ω
that depends only on r. In contrast, our result allows an arbitrary axisymmetric
rotation speed ω that is even in z. In our opinion, when allowing variable
entropy, an ω with nontrivial z-dependence presents the more interesting case,
and in a certain sense the only interesting case. In fact, as we shall see in Section
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2.1, the curl of the momentum equation implies that ω2 depends only on r if
and only if ∇s and ∇ρ are parallel vectors everywhere. In other words, if ω2

depends only on r, then s must be constant on the level surfaces of ρ. This fact
is known as the Poincaré-Wavre theorem in the physics literature ([33]). If the
solution is close to a nonrotating Lane-Emden star, all level surfaces of ρ have
different values. In this case there exists a one-variable function f such that
s = f(ρ) on the fluid domain. Such a solution is called a barotrope. Therefore
the pressure p also depends only on ρ. Finally, we point out that the rotation
speed of our own sun depends on both r and z ([33]), so that our result provides
the first mathematical description in the Euler-Poisson model of our own star.

Before beginning to discuss our method, we set the convention here that
all functions dealt with in this paper are axisymmetric and are even in the z
variable. Therefore, every function space we will use is assumed to have the
above mentioned symmetry without further declaration. In particular, a C1

function V with such symmetry will have the properties that ∇V (0, 0, 0) = 0,
∂x1

V (0, 0, z) = 0, ∂x2
V (0, 0, z) = 0, ∂zV (x1, x2, 0) = 0. For the same reason,

we identify a function defined for r > 0, z > 0 with a function defined on R
3

with the above mentioned symmetry without further explanation.

2 Reformulation

The main difficulties come from the presence of the nontrivial entropy. First of
all, the entropy cannot be prescribed arbitrarily but must be solved together
with the other unknowns. In fact, by taking the curl of the momentum equa-
tion, one finds that the entropy satisfies a first order transport equation whose
coefficients are given by the first derivatives of the density (or enthalpy). The z
derivative of the angular velocity comes into the transport equation as a source
term. This new transport structure highlights fundamental differences between
constant and variable entropy. For variable entropy, we are led to studying the
ensuing system of equations which is of mixed elliptic-hyperbolic type, while for
constant entropy we would be led to a purely elliptic problem. The nontrivial
coupling between the entropy and the enthalpy precludes an integral reformu-
lation.

2.1 Reduction to the Div-Curl System

As a first step to solving this problem, we must choose certain good variables
that yield a system with better structure. This is a crucial step in our analysis.
We use cylindrical coordinates (r, z) where all the functions are independent
of the cylindrical angle θ. Steady flow means that all the time derivatives in
(1)-(3) vanish. Rotation with angular velocity ω means that the velocity is
v =

√
κω(r, z)reθ, where reθ = (−x2, x1, 0). As a result, the mass conservation

equation (1) and the entropy transport equation (3) are automatically satisfied.
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The momentum equation (2) reduces to

∇p
ρ

= ∇
(

1

|·| ∗ ρ
)

+ κω2rer, (7)

where rer = (x1, x2, 0). We introduce the new variables and constant

S = es/γ , V = ργ−1e(γ−1)s/γ , q =
1

γ − 1
. (8)

Then (7) takes the form

S∇V = ∇
(

1

|·| ∗
V q

S

)

+ κω2rer. (9)

This equation is originally only required to hold on the fluid domain, namely
where ρ > 0.

However, we will look for a solution to the slightly modified equation

S∇V = ∇
(

1

|·| ∗
V q
+

S

)

+ κω2rer, (10)

where V+ = max(V, 0), in a large ball BR containing the fluid domain, where
R will be chosen later. The density ρ will then be recovered as V q

+S
−1. In

this way, the fluid domain is not prescribed in advance, but is obtained as the
positivity set of the solution V . Taking the curl and the divergence of (10), we
obtain the two scalar equations

SrVz − SzVr = −κ(ω2r)z, (11)

∇ · (S∇V ) = −4π
V q
+

S
+ κ∇ · (ω2rer). (12)

We will regard (11) as a transport equation for S with coefficients given by
components of ∇V and source term given by its right hand side. Although we
will treat (11) structurally as a transport equation, it has nothing directly to do
with the actual entropy transport by fluid velocity given in (3). Equation (11)
illustrates the effect of the dependence on z of the angular velocity. In fact, it
is immediately clear that any z-dependence of ω implies that the entropy is not
constant.

Equation (12), on the other hand, will be treated basically as a semilinear
elliptic equation for V with S appearing as a coefficient. However, as we will
see more clearly later, the coupling of S with V causes the whole problem to
have a quasilinear flavor.

We have to supplement (11) and (12) with suitable boundary conditions.
The first of these is the floor entropy condition (on the equatorial plane)

S(r, 0) = exp

(

µs0(r)

γ

)

, (13)
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where s0(r) is the floor entropy profile which we treat as essentially arbitrary,
and µ is a small parameter. We will use this condition to uniquely solve the
transport equation (11). Secondly, the bounded domain BR is employed in order
to make maximal use of the elliptic regularity estimates. Consequently, we will
need a key boundary condition of V on ∂BR that will help us recover (10) from
its curl and divergence. Such a boundary condition can be much simplified if
we cut off ω2 and s0 near ∂BR. Such a cut-off will have no effect to our final
solution.

2.2 Non-rotating Solution

For clarification, let us be a bit more specific about the non-rotating Lane-
Emden solution around which we perturb.

Lemma 2.1. Given
6

5
< γ < 2 and R0 > 0, there exists a unique function V 0

which is continuous on R
3, positive in the ball BR0 and negative outside BR0 ,

as well as a unique constant α0 such that

V 0 =
1

|·| ∗ (V
0)q+ + α0 (14)

in all of R3. Furthermore (V 0, α0) has the following properties: α0 < 0, V 0 ∈
C3,β0(R3), where β0 = min (q − 1, 1), and V 0|BR0

∈ C∞(BR0). Furthermore,

V 0 is radially symmetric and strictly decreasing, and

lim
τ→0+

(V 0)′(τ)

τ
< 0. (15)

Here (V 0)′ means the radial derivative of V 0.

Proof. The classical reference is Chapter IV of [7]. See also Lemmas 3.2 and 3.3
of [30].

Obviously V = V 0 is a solution to (10) with S ≡ 1 and κ = 0. Fixing a radius
R > R0, we will perturb V 0 to a solution V corresponding to a rotating star.
Since V 0 is strictly negative near ∂BR, the support of V+ will stay away from
∂BR if the perturbation is sufficiently small. The following useful observation
is obvious.

Remark 2.1. There exists a δ > 0 such that if ‖V − V 0‖C0(BR)< δ, then the
support of V+ is contained in BR0+R

2

.

In our perturbative method, V will always stay close to V 0 on BR. Therefore,
without loss of generality, we can first multiply ω2 and s0 by a smooth cutoff
function χ such that χ ≡ 1 on BR0+R

2

and χ ≡ 0 outside BR0+2R
3

, and then

solve the whole problem. Since the fluid domain will always be contained in
BR0+R

2

, the cutoff will be invisible to the solution. In the following, we will
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always assume that ω2 and s0 are prepared in this way, and when appropriate,
we will even extend these functions outside BR by zero. Such an extension is
obviously smooth as well.

2.3 Boundary Condition and Main Theorem

As we shall see in Section 3, the solution S to the transport equation (11) will
be identically equal to 1 near ∂BR, as a consequence of the cutoff we performed
on ω2 and s0. The same cutoff and (10) imply that

∇V = ∇
(

1

|·| ∗
V q
+

S

)

(16)

near ∂BR. We thus obtain the key boundary condition on V :

V =
1

|·| ∗
V q
+

S
+ α on ∂BR (17)

for some constant α. Note that V+ will be supported on BR0+R
2

by Remark 2.1.

Thus the function V q
+S

−1 that appears under the convolution in (17) can be
regarded as the zero extension from its values on BR to R

3.
Finally, we prescribe the mass constraint

∫

BR

V q
+

S
dx =M =

∫

BR

(V 0)q+ dx, (18)

so that our rotating star will have the same mass M as the unperturbed Lane-
Emden star.

Our method to work with the div-curl system is summarized in the following
lemma.

Lemma 2.2. Let ω2 ∈ C2,β(BR) and suppose that V ∈ C2,β(BR), 0 < S ∈
C1,β(BR) solve (11), (12), (17). Also suppose that S = 1, ω = 0 in a neighbor-
hood of ∂BR. Then s = γ logS ∈ C1,β(BR), ρ = V q

+S
−1 ∈ C1,β(BR) solve (7)

and (5) in the set {ρ > 0}.
Proof. Let

W = S∇V −∇
(

1

|·| ∗
V q
+

S

)

− κω2rer

on BR. We have

∇×W = [SrVz − SzVr + κ(ω2r)z]eθ. (19)

∇ ·W = ∇ · (S∇V ) + 4πV q
+S

−1 − κ∇ · (ω2rer). (20)

By (19) and (11), W is a C1,βconservative vector field on BR. Thus there exists
ψ ∈ C2,β(BR) such that ∇ψ =W . By (20) and (12), ∆ψ = ∇ ·W = 0. So ψ is
harmonic on BR. Since S = 1 and ω2 = 0 in a neighborhood of ∂BR,

∇ψ =W = ∇
(

V − 1

|·| ∗
V q
+

S

)

(21)
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in the same neighborhood. By (21) and (17), the tangential derivative of ψ on
∂BR is zero. Thus ψ is a constant on ∂BR. It follows that ψ is identically equal
to a constant on BR. Thus W = 0 on BR. In other words, (10) holds on BR. It
is now straightforward to see that (7) and (5) are equivalent to (10) under the
given change of variables where ρ > 0.

Our problem is thus reduced to finding solutions of (11) and (12) subject
to the boundary data on the floor (13), (17) and the mass constraint (18) on
the large ball BR. The existence result for our reformulated div-curl system is
stated as follows.

Theorem 2. Let s0 ∈ C1,β(BR ∩ {z = 0}) and ω2 ∈ C2,β(BR) be given. There
exist ϵ > 0, ϵ1 > 0 such that if |κ|+|µ|< ϵ1, then there exists a unique solution
(V ∗, α∗) ∈ C2,β(BR) × R, and S∗ ∈ C1,β(BR) to (11), (12), (13), (17), (18),
with ‖(V ∗, α∗) − (V 0, α0)‖C2,β(BR)×R

≤ ϵ. Furthermore, the solution has the

properties that V ∗
+ is supported on BR0+R

2
, and S∗ = 1 outside BR1

for some

fixed R1 ∈ (R0, R).

Theorem 1 is a direct consequence of Lemma 2.2 and Theorem 2, as we now
show.

Proof of Theorem 1: We may assume B = BR where R > R0. By Theorem 2,
we have a family of solutions Vκ,µ ∈ C2,β(BR) and Sκ,µ ∈ C1,β(BR) which sat-
isfy all the assumptions in Lemma 2.2. Therefore sκ,µ = γ logSκ,µ ∈ C1,β(BR)
and ρκ,µ = V q

κ,µ+
S−1
κ,µ ∈ C1,β(BR) solve (7) and (5) on {ρ > 0}. Together

with the velocity profile v =
√
κ ω(r, z)(−x2, x1, 0), it is then easy to see that

(ρκ,µ, sκ,µ) is a time independent solution of (1)-(5) and that (ρκ,µ, sκ,µ) satisfies
all the properties in Theorem 1.

The rest of the paper is devoted to the proof of Theorem 2. Before going
any further, we outline our strategy as well as the difficulties in the proof of
Theorem 2.

2.4 Iteration Scheme and Regularity Difficulties

Our solution to the div-curl system will be constructed as a fixed point of the
mapping F = (F1,F2) defined as follows. We write

F1(V, α, κ, µ) = V # and F2(V, α, κ, µ) = α#,

where V # is the solution to the linear elliptic equation

∇ ·
(

S∇V #
)

= −4πV q
+S

−1 + κ∇ · (ω2rer) (22)

on BR subject to the Dirichlet boundary condition

V # =
1

|·| ∗
V q
+

S
+ α (23)
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on ∂BR. Here S = S (V, κ, µ) is the solution to the transport equation

SrVz − SzVr = −κ(ω2r)z (24)

with the equatorial boundary condition

S(r, 0) = e
µs0(r)

γ . (25)

Finally, we define

α# = α+

∫

V q
+S

−1 −M. (26)

The Lane-Emden solution given in Lemma 2.1 can now be formulated as

F(V 0, α0, 0, 0) = (V 0, α0).

Our goal is to look for (V, α) close to (V 0, α0) solving F(V, α, κ, µ) = (V, α), for
given small parameters κ, µ. We will work in the space (V, α) ∈ C2,β(BR) × R

where 0 < β < min(q − 1, 1).
Most of the difficulty of the problem lies in the subtle loss of regularity

of the V -component of the mapping F , which is a consequence of the loss of
regularity in the S transport equation (24). As we will see in Section 3, since
the coefficients of the S transport terms in (24) involve first derivatives of V ,
S will lose a derivative and belong only to C1,β(BR) in general. Since at most
one derivative of S appears in (22), we will be able to recover V # in exactly
the same space C2,β(BR) using Schauder theory. In fact, this is one of the main
reasons we chose S and V to be our good variables. By comparison, for instance,
if we were to use s and ρ as variables, the corresponding elliptic equation would
involve second derivatives of s and could not be used to recover a solution in
the same regularity space.

However, even with the choice of our good variables, F still suffers a loss of
regularity at the level of its Fréchet derivative. Of course, the natural method
to solve the perturbed fixed point problem is to apply the implicit function
theorem. Such an approach requires the existence of the Fréchet differential in
the same regularity space. If one then tries to vary V by a variation δV , the
corresponding variation δS satisfies

(δS)rVz − (δS)zVr = −(S + δS)r(δV )z + (S + δS)z(δV )r,

which linearizes to

(δS)rVz − (δS)zVr = −Sr(δV )z + Sz(δV )r. (27)

The right hand side of (27) involves first derivatives of S, which in general
belong only to C0,β(BR). As a consequence, one can only obtain C0,β(BR)
estimates on δS. δS will be smoother along the characteristics, but not so along
the transverse direction. This is not enough to recover the Fréchet differential
of F in C2,β(BR). This loss of derivative is an essential feature of the entropy
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transport equation and cannot be remedied by discovering any hidden structure
in the problem. In fact, F does not even depend continuously on V in the space
C2,β(BR) as soon as one shifts away from the special Lane-Emden solution
V 0. The essential reason is that the Cβ Hölder norm is discontinuous with
respect to smooth inner variations of a Cβ function, such as a horizontal shift:
f(x) 7→ f(x + h). As a result of (24), the characteristics along which S is
transported are level curves of V . Thus a smooth variation of V can cause these
characteristics to be shifted horizontally, resulting in a discontinuous variation of
S in C1,β(BR). Since the first derivative of S appears in (22), the discontinuity
would be passed on to V #.

We overcome this difficulty by working directly with the standard Newton
iteration scheme (as in the proof of the implicit function theorem). For sim-
plicity, we denote by DF0 the Fréchet derivative of F with respect to (V, α) at
(V 0, α0, 0, 0). Recall that the entropy is constant (S ≡ 1) for the Lane-Emden
solution. Thus the above mentioned loss of regularity on the Fréchet differen-
tial does not happen at this particular point in function space. We write the
equation (V, α) = F(V, α, κ, µ) as

(V, α)− (V 0, α0) = F(V, α, κ, µ)−F(V 0, α0, 0, 0),

and further as

(V − V 0, α− α0)−DF0(V − V 0, α− α0)

= F(V, α, κ, µ)−F(V 0, α0, 0, 0)−DF0(V − V 0, α− α0).

At this point, we will show invertibility of I − DF0. This step is fairly non-
trivial, as it amounts to working with an elliptic operator with an unfavorable
sign for the maximum principle. Inverting I −DF0, we obtain

(V − V 0, α− α0)

= (I −DF0)−1[F(V, α, κ, µ)−F(V 0, α0, 0, 0)−DF0(V − V 0, α− α0)]. (28)

As is explained above, we will not attempt to show that the right hand side
of (28) is a contraction in C2,β(BR) × R (as is commonly done in the proof
of the implicit function theorem). Instead, we produce a sequence (Vn, αn) of
approximate solutions by iterating the right hand side of (28), and show that:

(i) The sequence is uniformly bounded and remains near (V 0, α0) in the space
C2,β(BR)× R.

(ii) (Vn+1 − Vn, αn+1 − αn) contracts in the weaker space C1,β(BR)× R as n
grows.

Note that the loss of derivative of δS in (27) described above can now be toler-
ated if the goal is to only get the weaker C1,β(BR) estimates on Vn+1 −Vn. We
will then combine the smooth norm estimates with the rough ones using inter-
polation of Hölder norms, and conclude that the iteration sequence converges
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in C2,β′

(BR) × R for some 0 < β′ < β, which will be enough to get a solution
to our problem.

The whole problem is of quasilinear type, because S has the same regularity
as ∇V , which then appears as the coefficient of the second order elliptic term in
(22). Of course, first derivatives of S also appear in (22), which seem like fully
nonlinear combinations of second derivatives of V . However, when the solutions
are close to Lane-Emden, the first derivatives of S are small in size, and can
be absorbed by the main elliptic term. The method of combining estimates
of smooth norms with rough norms may also prove useful in treating other
quasilinear hyperbolic problems.

2.5 Outline of Paper

The rest of the paper will be organized as follows. In Section 3, we obtain the
C1,β(BR) estimates on S by solving (24) using the method of characteristics.
Although the solution is easy to write down formally, one cannot automatically
get the required estimates, since the characteristic vector field is degenerate near
the origin. In order to properly estimate S near the origin, we must prove certain
weighted Hölder estimates on the characteristic coordinates. This makes Section
3 rather technical. In Section 4, we prove the invertibility of the linearized
operator at the Lane-Emden solution and then construct the iteration map
using this inverse. In Section 5, we prove convergence of the iteration scheme
in C2,β′

(BR) × R for any 0 < β′ < β, by first showing uniform boundedness
of the smooth norms, and then showing contraction of the rough norms of the
iteration sequence. We also show eventually that the solution thus obtained
actually lies in the smoother space C2,β(BR), and is unique.

3 Entropy Estimates

In this section, we derive the C1,β(BR) estimates for S via the method of char-
acteristics. It is immediate from (24) that the characteristics are the level curves
of V . A minor problem arises when one tries to solve (24) with boundary condi-
tion (25). When V is perturbed away from V 0, some of the characteristics near
∂BR may end on ∂BR and not on {z = 0}. In this case, the boundary data (25)
on the equatorial plane is not enough to uniquely determine S. To avoid such
ambiguity in the definition of S, we solve (24) in a slightly larger ball.

First of all, as in Lemma 2.1, we regard V 0 as defined not only on BR, but on
the entire space R

3. A function V ∈ C2,β(BR) defined on BR can be extended
to BR+1 in the following way. Let

E : C2,β(BR) → C2,β(BR+1)

be a bounded linear extension operator such that the support of Eu is contained
in BR+ 1

2
for all u ∈ C2,β(BR). We extend V by

Vext = V 0 + E(V − V 0).

12



Such an extended V has the property that if ‖V − V 0‖C2,β(BR)< δ, then

‖Vext − V 0‖C2,β(BR+1)
< 2δ and Vext ≡ V 0 on BR+1 \BR+ 1

2
.

Slightly abusing the notation, we still denote Vext by V . As is explained in
the discussion following Lemma 2.1, s0 and ω2 can be regarded as defined on
BR+1. Then we define S to be the solution to (24) and (25) on BR+1. Since
V = V 0 outside BR+ 1

2
, none of the characteristics will penetrate ∂BR+1, and S

is uniquely defined.
We are now ready to state the main result of this section.

Theorem 3. Fix β ∈ (0, 1). Let ω2 and s0 be prepared as above. Assume
s0 ∈ C1,β(BR+1 ∩ {z = 0}) and ω2 ∈ C2,β(BR+1).

(i) Then there exists δ > 0 such that for every V with ‖V −V 0‖C2,β(BR)< δ,

and extended to BR+1 as explained above, the equations (24), (25) admit a
unique solution S ∈ C1,β(BR+1). Moreover, there is a radius R1 ∈ (R0, R) such
that S(r, z) ≡ 1 for |(r, z)|> R1.

(ii) If |κ|+|µ|< 1, then there exists a constant C > 0 such that the function
S satisfies

‖S − 1‖C1,β(BR+1)
< C(|κ|+|µ|). (29)

In order to prove Theorem 3, we will of course construct the solution S
by the method of characteristics. The characteristic ODEs associated with the
transport equation (24) are given by



















∂r

∂t
(t, τ) = Vz(r(t, τ), z(t, τ)),

∂z

∂t
(t, τ) = −Vr(r(t, τ), z(t, τ)),

r(0, τ) = τ, z(0, τ) = 0.

(30)

We are using t as a parameter along the characteristic curves and τ as a label
of the individual curves. (t has nothing to do with time.) These characteristic
equations define a mapping ϕ : (t, τ) → (r, z).

The remainder of Section 3 constitutes the proof of Theorem 3. It involves
technical estimates of S by using the characteristic coordinates (t, τ). They may
be skipped on first reading if the reader is only interested in the main existence
proof.

3.1 Characteristic Coordinates

We now construct the characteristic coordinates on

Ω = BR+1 ∩ {r > 0, z > 0}, (31)

which amounts to the construction of the diffeomorphism which maps a proper
open set in (t, τ) coordinates onto Ω. We will consistently use ‖·‖k and ‖·‖k,β
to denote the Ck(BR) and Ck,β(BR) norms. We begin by constructing the
mapping ϕ on a precise set.
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Proposition 3.1. There exists δ > 0 sufficiently small such that, for any func-
tion V for which ‖V − V 0‖2< δ, there exists an open subset O ⊂ {(t, τ) | t >
0, 0 < τ < R+1} and a C1 diffeomorphism ϕ̃ : O → Ω such that (r(t, τ), z(t, τ)) =
ϕ̃(t, τ) extends to a C1 map on O \ {τ = 0}, and solves (30).

We will prove this proposition by means of a few lemmas. We first write
down the trivial coordinates (r0, z0) induced by the nonrotating V 0.

Lemma 3.1. Let (r0(t, τ), z0(t, τ)) = ϕ0(t, τ) be the solution to (30) for the

function V = V 0(
√

r2 + z2). Then

(r0(t, τ), z0(t, τ)) = τ

(

cos

(

− (V 0)′(τ)t

τ

)

, sin

(

− (V 0)′(τ)t

τ

))

(32)

with its corresponding domain

O0 =

{

(t, τ), 0 < τ < R+ 1, 0 < t <
πτ

−2(V 0)′(τ)

}

.

In particular, |ϕ0(t, τ)|= τ .

Proof. Since V 0(r, z) = V 0(
√

r2 + z2), we can easily check that (30) leads to
∂

∂t

[

(r0)2 + (z0)2
]

= 0, which in turn implies (r0)2+(z0)2 = τ2. Hence r0(t, τ) =

τ cos θ(t) and z0(t, τ) = τ sin θ(t) for some θ(t). The first equation of (30) gives
dθ

dt
= − (V 0)′(τ)

τ
. Since r0(0, τ) = τ , θ(0) = 0. Thus θ(t) = − (V 0)′(τ)

τ
t. In

order to cover the first quadrant in r0, z0 coordinates, we want 0 < θ(t) <
π

2
.

This verifies the domain O0 specified above. The last assertion trivially follows
from (r0)2 + (z0)2 = τ2.

For general V , the domain will be distorted from O0. For convenience, we
will actually construct the map ϕ to a slightly extended domain Oa such that
ϕ(t, τ) = (r(t, τ), z(t, τ)) solves (30). To this end, we define

Oa =

{

(t, τ), 0 < τ < R+ 1,− π

4a
< t <

πτ

−2(V 0)′(τ)
+

π

4a

}

where

a = sup
0<τ<R+1

−(V 0)′(τ)

τ
> 0

by Lemma 2.1.

Lemma 3.2. Define ϕ to be the solution to (30). Then ϕ is a C1 map on Oa,
with a range avoiding the third quadrant, and there exists a constant C > 0 such
that for (t, τ), (t1, τ), (t2, τ), (t, τ1), (t, τ2) ∈ Oa,

|ϕ(t, τ)− ϕ0(t, τ)|≤ C‖V − V 0‖2tτ, (33)
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|ϕ(t1, τ)− ϕ0(t1, τ)− ϕ(t2, τ) + ϕ0(t2, τ)|
≤ C‖V − V 0‖2|ϕ0(t1, τ)− ϕ0(t2, τ)|, (34)

|ϕ(t, τ1)− ϕ0(t, τ1)− ϕ(t, τ2) + ϕ0(t, τ2)|
≤ C‖V − V 0‖2|ϕ0(t, τ1)− ϕ0(t, τ2)|. (35)

Remark 3.1. Lemma 3.2 concerns solutions to (30) starting at (τ, 0), but sim-
ilar estimates hold for solutions starting at a general point (r, z) in Oa.

Remark 3.2. An obvious consequence of (33) is that

1

1 + Cδ
τ ≤ |ϕ(t, τ)|≤ (1 + Cδ)τ (36)

when ‖V − V 0‖2< δ.

Proof. We begin by noting that the solution to (30) is defined for all t if 0 <
τ < R + 1, because the characteristics are confined to a compact region BR+1.
ϕ is a C1 map as ∇V ∈ C1. We denote ϕ0 = (r0, z0).
Proof of (33). Writing

∂r

∂t
(t, τ)− ∂r0

∂t
(t, τ) = Vz(r, z)− (V 0)z(r

0, z0)

= Vz(r, z)− Vz(r
0, z0) + (V − V 0)z(r

0, z0),

∂z

∂t
(t, τ)− ∂z0

∂t
(t, τ) = Vr(r, z)− (V 0)r(r

0, z0)

= Vr(r, z)− Vr(r
0, z0) + (V − V 0)r(r

0, z0),

and ∇(V −V 0)(r0, z0) = ∇(V −V 0)(r0, z0)−∇(V −V 0)(0, 0), we can integrate
and estimate

|ϕ(t, τ)− ϕ0(t, τ)| ≤ 2‖V ‖2
∫ t

0

|ϕ(s, τ)− ϕ0(s, τ)| dt

+ 2‖V − V 0‖2
∫ t

0

|ϕ0(s, τ)| ds. (37)

By Gronwall’s inequality, this implies

|ϕ(t, τ)− ϕ0(t, τ)|≤ 2e2∥V ∥2t‖V − V 0‖2τt ≤ C‖V − V 0‖2τt. (38)

Here we have used |ϕ0(s, τ)|= τ as shown in Lemma 3.1.
Proof of (34). We write

∂

∂t

(

r(t, τ)− r0(t, τ)− r(t1, τ) + r0(t1, τ)
)

= Vz(r, z)− (V 0)z(r
0, z0)

= Vz(r, z)− Vz(r
0, z0) + (V − V 0)z(r

0, z0),
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∂

∂t

(

z(t, τ)− z0(t, τ)− z(t1, τ) + z0(t1, τ)
)

= Vr(r, z)− (V 0)r(r
0, z0)

= Vr(r, z)− Vr(r
0, z0) + (V − V 0)r(r

0, z0),

and use

|∇V (r, z)−∇V (r0, z0)| ≤ ‖V ‖2|ϕ(t, τ)− ϕ0(t, τ)|
≤ ‖V ‖2|ϕ(t, τ)− ϕ0(t, τ)− ϕ(t1, τ) + ϕ0(t1, τ)|
+ ‖V ‖2|ϕ(t1, τ)− ϕ0(t1, τ)|

≤ ‖V ‖2|ϕ(t, τ)− ϕ0(t, τ)− ϕ(t1, τ) + ϕ0(t1, τ)|
+ C‖V − V 0‖2τ.

Here we have used (33) on the last term. As a consequence,

|ϕ(t, τ)− ϕ0(t, τ)− ϕ(t1, τ) + ϕ0(t1, τ)|

≤ C‖V ‖2
∫ t

t1

|ϕ(s, τ)− ϕ0(s, τ)− ϕ(t1, τ) + ϕ0(t1, τ)| ds

+ C‖V − V 0‖2τ(t− t1).

Now we use Gronwall on [t1, t2] to get

|ϕ(t1, τ)− ϕ0(t1, τ)− ϕ(t2, τ) + ϕ0(t2, τ)|
≤ C‖V − V 0‖2τ(t2 − t1). (39)

Finally, observe that the range of t1, t2 and (32) imply

τ(t2 − t1) ≤ C|ϕ0(t1, τ)− ϕ0(t2, τ)|, (40)

and the proof of (34) is complete.
Proof of (35). To prove (35), we consider the equations satisfied by ϕτ :



















∂rτ
∂t

= Vzr(r, z)rτ + Vzz(r, z)zτ ,

∂zτ
∂t

= −Vrr(r, z)rτ − Vrz(r, z)zτ ,

rτ (0, τ) = 1, zτ (0, τ) = 0,

(41)

and similar equations satisfied by ϕ0τ with V 0 replacing V . Taking differences
of the ϕτ equations and ϕ0τ equations as before, we get

∣

∣

∣

∣

∂

∂t

(

ϕτ (t, τ)− ϕ0τ (t, τ)
)

∣

∣

∣

∣

≤ C‖V ‖2|ϕτ − ϕ0τ |+C‖V − V 0‖2

+ C‖V 0‖3|ϕ− ϕ0|
≤ C‖V ‖2|ϕτ − ϕ0τ |+C‖V − V 0‖2. (42)

16



Here we have used (33) to absorb the last term by the second term. We integrate
and use Gronwall as before to conclude

|ϕτ (t, τ)− ϕ0τ (t, τ)|≤ C‖V − V 0‖2. (43)

We integrate in τ on [τ1, τ2] to get

|ϕ(t, τ1)− ϕ0(t, τ1)− ϕ(t, τ2) + ϕ0(t, τ2)|≤ C‖V − V 0‖2|τ1 − τ2|.

Finally observing
|τ1 − τ2|≤ |ϕ0(t, τ1)− ϕ0(t, τ2)|

completes the proof.

Proof of Proposition 3.1. First we will show that ϕ is one-to-one on Oa;
secondly we will show that ϕ(Oa) covers Ω ; and finally we will show that ϕ has
non-zero Jacobian on Oa. Then we will just define ϕ̃ to be the restriction of ϕ
to ϕ−1(Ω).

Step 1: ϕ is 1-1 on Oa. We begin by observing that ϕ(t1, τ1) 6= ϕ(t2, τ2) when-
ever τ1 6= τ2. Suppose this were false and t1 ≥ t2. Then ϕ(t1, τ1) = ϕ(t2, τ2),
τ1 6= τ2 and t1 ≥ t2. Tracing the solution backwards in t, we would have
ϕ(t1 − t2, τ1) = ϕ(0, τ2) = (τ2, 0) for t1 − t2 ≥ 0. This is not possible, because
the solution never enters the third quadrant of the (r, z) plane and can only go
from the fourth quadrant to the first quadrant by the positivity of −Vr on the
positive r-axis. To see the latter fact, write Vr = (V 0)r+(V −V 0)r and observe

that inf
0<r<R+1

−(V 0)′(r)

r
> 0 and

|(V − V 0)r(r, 0)|= |(V − V 0)r(r, 0)− (V − V 0)r(0, 0)|≤ ‖V − V 0‖2·r. (44)

Thus
−Vr(r, 0) > 0 for 0 < r < R+ 1 (45)

if ‖V − V 0‖2 is sufficiently small.
Now we consider ϕ(t1, τ) and ϕ(t2, τ) with t1 6= t2. We obviously have

ϕ0(t1, τ) 6= ϕ0(t2, τ). Inequality (34) now implies ϕ(t1, τ) 6= ϕ(t2, τ).

Step 2: Ω ⊂ ϕ(Oa). We pick (r0, z0) ∈ Ω. Let τ0 =
√

r20 + z20 . Denote the polar

coordinates of (r0, z0) by (τ0, θ0). We solve the ODE in (30) backwards in t

for an interval of length t0 =
θτ0

−(V 0)′(τ0)
+

π

8a
, with initial value at (τ0, θ0). If

V = V 0, the solution reaches the final point with polar coordinates (τ0, θf) =

(τ0,−
−(V 0)′(τ0)

τ0

π

8a
). Note that since inf

0<τ<R+1

−(V 0)′(τ)

τ
= b > 0, we have

|θf|>
πb

8a
. We now use Remark 3.1 and use a modified version of (33) with

starting point at (τ0, θ0) to conclude that for a general V , we have

|(r, z)(−t0)− τ0(cos θf, sin θf)|≤ C‖V − V 0‖2·τ0. (46)
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Together with the lower bound on |θf|, this implies that (r, z)(−t0) is in the
fourth quadrant, as long as ‖V − V 0‖2 is sufficiently small. Since the only way
to enter the fourth quadrant is to pass the positive r-axis, we conclude that the
solution (r, z)(t) must intersect the segment 0 < r < R+1 at some value r = τ1
for some t = −t1 ∈ (−t0, 0). By uniqueness, ϕ(t1, τ1) = (r0, z0). It remains to
show that (t1, τ1) ∈ Oa. In fact, we use Remark 3.1 again to get

|(τ1, 0)− τ0(cos θ1, sin θ1)|≤ C‖V − V 0‖2·τ0, (47)

where θ1 is the polar angle of (r, z)(−t1) when V = V 0. This implies

|τ0 − τ1|≤ C‖V − V 0‖2. (48)

By the smoothness of V 0, we have

∣

∣

∣

∣

τ0
(V 0)′(τ0)

− τ1
(V 0)′(τ1)

∣

∣

∣

∣

≤ C|τ0 − τ1|≤ C‖V − V 0‖2. (49)

We now note that

0 < t1 < t0 <
πτ

−2(V 0)′(τ)
+

π

8a
≤ C‖V − V 0‖2+

πτ1
−2(V 0)′(τ1)

+
π

8a

≤ πτ1
−2(V 0)′(τ1)

+
π

4a
, (50)

provided ‖V − V 0‖2 is sufficiently small. Thus (t1, τ1) ∈ Oa.

Step 3: ϕ has non-zero Jacobian on Oa. We now compute the Jacobian of ϕ(t, τ) =
(r(t, τ), z(t, τ)).

rtzτ − rτzt = Vz(r(t, τ), z(t, τ))zτ + Vr(r(t, τ), z(t, τ))rτ

=
d

dτ
V (r(t, τ), z(t, τ)). (51)

On the other hand,

d

dt
V (r(t, τ), z(t, τ)) = Vrrt + Vzzt = VrVz − VzVr = 0, (52)

so that
V (r(t, τ), z(t, τ)) = V (r(0, τ), z(0, τ)) = V (τ, 0). (53)

Thus

rtzτ − rτzt =
d

dτ
V (r(t, τ), z(t, τ)) = Vr(τ, 0) < 0 (54)

by (45). We finish the proof by defining O = ϕ−1(Ω), and ϕ̃ = ϕ|O.

Our next task is to derive some Hölder type estimates of the first derivatives
of the characteristic coordinates.
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3.2 Regularity of the Characteristics

Lemma 3.3. Fix β ∈ (0, 1). Let ‖V−V 0‖2,β be sufficiently small and ϕ : O → Ω
be the diffeomorphism given in Proposition 3.1 and let (t, τ), (t1, τ1), (t2, τ2) ∈ O,
(r, z), (r1, z1), (r2, z2) ∈ Ω. Denote ϕ−1(r, z) = (t(r, z), τ(r, z)). There exists a
constant C > 0 such that

|ϕt(t, τ)|≤ Cτ, |ϕτ (t, τ)|≤ C, (55)

|∇t(r, z)|≤ C√
r2 + z2

, |∇τ(r, z)|≤ C. (56)

|ϕτ (t1, τ1)− ϕτ (t2, τ2)|≤ C(|t1 − t2|+|τ1 − τ2|β), (57)
∣

∣

∣

∣

1

τ1
ϕt(t1, τ1)−

1

τ2
ϕt(t2, τ2)

∣

∣

∣

∣

≤ C(|t1 − t2|β+|τ1 − τ2|β), (58)

|(r21 + z21)
1+β
2 ∇t(r1, z1)− (r22 + z22)

1+β
2 ∇t(r2, z2)|≤ C|(r1, z1)− (r2, z2)|β , (59)

∣

∣

∣
(r21 + z21)

β
2 ∇τ(r1, z1)− (r22 + z22)

β
2 ∇τ(r2, z2)

∣

∣

∣
≤ C|(r1, z1)− (r2, z2)|β (60)

Proof. Proof of (55). By (30) and (36),

|ϕt(t, τ)|≤ ‖V ‖2|ϕ(t, τ)|≤ C‖V ‖2τ.

The bound on ϕτ is easily obtained from (41). In fact, (43) gives such a bound.
Proof of (56). To estimate ∇ϕ−1, we note that

tr =
zτ

rtzτ − rτzt
, tz =

−rτ
rtzτ − rτzt

, (61)

τr =
−zt

rtzτ − rτzt
, τz =

rt
rtzτ − rτzt

. (62)

Let us estimate tr. First recall (54) and write

tr =
zτ

1
τ Vr(τ, 0)

1

τ
. (63)

Now |zτ |≤ C by (55), and since (Vr − V 0
r )(0, 0) = 0,

1

τ
Vr(τ, 0) =

(V 0)r(τ, 0)

τ
+

∫ 1

0

(V − V 0)rr(sτ, 0) ds.

Thus
∣

∣

∣

∣

Vr(τ, 0)

τ
− (V 0)r(τ, 0)

τ

∣

∣

∣

∣

≤ ‖V − V 0‖2 (64)

Since inf
0<τ<R+1

−(V 0)r(τ, 0)

τ
= b > 0, we have

∣

∣

∣

∣

Vr(τ, 0)

τ

∣

∣

∣

∣

>
b

2
> 0 when ‖V −

V 0‖2 is sufficiently small. We deduce from (63), (55) and (36) that

|tr|≤
C

τ
≤ C

|ϕ(t, τ)| =
C√

r2 + z2
. (65)
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The expressions tz, τr, τz can be estimated similarly. The only difference for
τr, τz is that the numerators in (62) involve ϕt, which can be estimated with an
extra factor of τ , as is seen in (55).
Proof of (57). We next obtain Hölder estimates of the first derivatives of ϕ and
ϕ−1. It is easy to see that one just needs to prove it first for the case τ1 = τ2,
then for the case t1 = t2. Assuming for the moment that τ1 = τ2 = τ , we note

that ϕτ (t2, τ)− ϕτ (t1, τ) =

∫ t2

t1

ϕtτ (s, τ)ds and use (41) for ϕtτ to get

|ϕτ (t2, τ)− ϕτ (t1, τ)|≤ ‖V ‖2‖ϕτ‖0|t2 − t1|≤ C|t2 − t1|.

We assume t1 = t2 = t and use (41) again to get

∣

∣

∣

∣

∂

∂t
(ϕτ (t, τ1)− ϕτ (t, τ2))

∣

∣

∣

∣

≤ ‖V ‖2|ϕτ (t, τ1)− ϕτ (t, τ2)|

+ ‖V ‖2,β |ϕ(t, τ1)− ϕ(t, τ2)|β

≤ ‖V ‖2|ϕτ (t, τ1)− ϕτ (t, τ2)|
+ C‖V ‖2,β |τ1 − τ2|β .

Here the bound on ϕ(t, τ1)− ϕ(t, τ2) can be obtained by using (55) as

|ϕ(t, τ1)− ϕ(t, τ2)|=
∣

∣

∣

∣

∫ τ1

τ2

ϕτ (t, s)ds

∣

∣

∣

∣

≤ C|τ1 − τ2|.

Now we integrate and use Gronwall to conclude

|ϕτ (t, τ1)− ϕτ (t, τ2)|≤ C|τ1 − τ2|β .

This proves (57).
Proof of (58). Let us now compute

1

τ
rt(t, τ) =

1

τ
Vz(ϕ(t, τ))

=

∫ 1

0

[Vzr(ϕ(t, sτ))rτ (t, sτ) + Vzz(ϕ(t, sτ))zτ (t, sτ)] ds, (66)

for which we used Vz(ϕ(t, 0)) = 0. It follows that

1

τ1
rt(t1, τ1)−

1

τ2
rt(t2, τ2)

=

∫ 1

0

[Vzr(ϕ(t1, sτ1))rτ (t1, sτ1)− Vzr(ϕ(t2, sτ2))rτ (t2, sτ2)] ds

+

∫ 1

0

[Vzz(ϕ(t1, sτ1))zτ (t1, sτ1)− Vzz(ϕ(t2, sτ2))zτ (t2, sτ2)] ds,
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We can write similar expressions for
1

τ
zt. Inequality (58) now follows from the

following estimates:

|∇2V (ϕ(t1, sτ1))−∇2V (ϕ(t2, sτ2))| ≤ ‖V ‖2,β |ϕ(t1, sτ1)− ϕ(t2, sτ2)|β

≤ C‖∇ϕ‖β0 (|t1 − t2|+|τ1 − τ2|)β

≤ C(|t1 − t2|+|τ1 − τ2|)β ,
|ϕτ (t, sτ)| ≤ C,

|ϕτ (t1, sτ1)− ϕτ (t2, sτ2)| ≤ C(|t1 − t2|+|τ1 − τ2|β).
Note that the last estimate above is the previously proven (57).
Proof of (59). We now recall (63) to get

(r2 + z2)
1+β
2 tr(r, z) =

(r2 + z2)
1+β
2

τ

zτ
∫ 1

0
Vrr(sτ, 0) ds

. (67)

Denoting by (ti, τi) = ϕ−1(ri, zi), i = 1, 2, we have

(r21 + z21)
1+β
2 tr(r1, z1)− (r22 + z22)

1+β
2 tr(r2, z2)

=
|ϕ(t1, τ1)|1+β

τ1

zτ (t1, τ1)
∫ 1

0
Vrr(sτ1, 0) ds

− |ϕ(t2, τ2)|1+β

τ2

zτ (t2, τ2)
∫ 1

0
Vrr(sτ2, 0) ds

=
|ϕ(t1, τ1)|1+β

τ1

(

zτ (t1, τ1)
∫ 1

0
Vrr(sτ1, 0) ds

− zτ (t2, τ2)
∫ 1

0
Vrr(sτ2, 0) ds

)

(68)

+
zτ (t2, τ2)

∫ 1

0
Vrr(sτ2, 0) ds

( |ϕ(t1, τ1)|1+β

τ1
− |ϕ(t2, τ2)|1+β

τ2

)

. (69)

To estimate (68), we use (36) for the size of ϕ(t1, τ1), (55), (57) for zτ (t1, τ1)−
zτ (t2, τ2), and Hölder estimates on Vrr for the integrand to infer that the size
of (68) is bounded by

Cτβ1 (|t1 − t2|+|τ1 − τ2|β). (70)

Without loss of generality, assume 0 < |(r1, z1)|≤ |(r2, z2)|. If
1

2
|(r2, z2)|≤

|(r1, z1)|≤ |(r2, z2)|, use (36), (56) to deduce that (70) is bounded by

C(r21 + z21)
β
2

(

1
√

r21 + z21
|(r1, z1)− (r2, z2)|+|(r1, z1)− (r2, z2)|β

)

≤ C|(r1, z1)− (r2, z2)|β
( |(r1, z1)− (r2, z2)|1−β

|(r1, z1)|1−β
+ |(r1, z1)|β

)

≤ C|(r1, z1)− (r2, z2)|β . (71)

If |(r1, z1)|≤
1

2
|(r2, z2)|, then |(r1, z1)|≤ |(r1, z1)− (r2, z2)|. In this case, (70) is

bounded by

C|(r1, z1)|β
(

1 + |(r1, z1)− (r2, z2)|β
)

≤ C|(r1, z1)− (r2, z2)|β .

21



Next we estimate the terms in the parentheses of (69). If
1

2
|(r2, z2)|≤ |(r1, z1)|≤

|(r2, z2)|, we write them as

|(r1, z1)|1+β−|(r2, z2)|1+β

τ1
+ |(r2, z2)|1+β τ2 − τ1

τ1τ2
, (72)

which can be bounded by

C

( |(r1, z1)|β |(r1, z1)− (r2, z2)|
|(r1, z1)|

+
|(r1, z1)− (r2, z2)|

|(r2, z2)|1−β

)

≤ C|(r1, z1)− (r2, z2)|β
|(r1, z1)− (r2, z2)|1−β

|(r1, z1)|1−β

≤ C|(r1, z1)− (r2, z2)|β . (73)

If |(r1, z1)|≤
1

2
|(r2, z2)|, the terms in the parentheses of (69) is bounded by

C
(

|(r1, z1)|β+|(r2, z2)|β
)

≤ C|(r2, z2)|β≤ C|(r1, z1)− (r2, z2)|β .

The proof of (59) for tr is now complete. The estimates on tz are completely
analogous.
Proof of (60). We write

(r2 + z2)
β
2 τr(r, z) = (r2 + z2)

β
2

− zt
τ

∫ 1

0
Vrr(sτ, 0) ds

(74)

and estimate as before. We only have to use (58) to replace (57) in the argument.

3.3 Weighted Hölder spaces and S estimates

To facilitate the proof of Theorem 3, we introduce the following weighted Hölder
spaces. For simplicity we denote (r, z) by x. Given β ∈ (0, 1), k ∈ R, for a
continuous function f on BR, we define the norms

‖f‖C0,β
(k)

= sup
x∈BR

|x|k|f(x)|+ sup
x,y∈BR,x ̸=y

∣

∣|x|k+βf(x)− |y|k+βf(y)
∣

∣

|x− y|β . (75)

‖f‖C0,β
[k]

= sup
x∈BR

|x|k|f(x)|+ sup
x,y∈BR,x ̸=y

min(|x|k+β , |y|k+β)
|f(x)− f(y)|

|x− y|β . (76)

The spaces C0,β
(k) and C0,β

[k] are defined accordingly as sets of continuous functions

with finite norms. We may now reformulate (56), (59), (60) as

∇t ∈ C0,β
(1) , ∇τ ∈ C0,β

(0) . (77)

The spaces C0,β
(k) and C0,β

[k] actually coincide, as we show in the next lemma.
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Lemma 3.4. For each k, there exists a constant C > 0 such that

1

C
‖f‖C0,β

(k)
≤ ‖f‖C0,β

[k]
≤ C‖f‖C0,β

(k)
. (78)

Proof. First consider the case that k+β ≥ 0. Assume x, y are in the first octant
and |x|≤ |y| without loss of generality, so that min(|x|k+β , |y|k+β) = |x|k+β . We
estimate

|x|k+βf(x)− |y|k+βf(y)

|x− y|β

=
|x|k+β(f(x)− f(y))

|x− y|β +
f(y)

(

|x|k+β−|y|k+β
)

|x− y|β
= (I) + (II)

We have
|I|≤ ‖f‖C0,β

[k]
.

If
|y|
2

≤ |x|≤ |y|,

|II|≤ C
|f(y)||y|k+β−1|x− y|

|x− y|β ≤ C sup
y∈BR

|y|k|f(y)|.

If |x|≤ |y|
2
,

|II|≤ C|f(y)| |y|
k+β

|y|β ≤ C sup
y∈BR

|y|k|f(y)|.

These estimates imply ‖f‖C0,β
(k)

≤ C‖f‖C0,β
[k]

. The case when k + β < 0 can be

estimated in a similar way by just assuming |x|≥ |y| in the above estimates
instead.

Let us now focus on the reverse direction and assume k + β ≥ 0 again.
Assuming |x|≤ |y| without loss of generality, we write

|x|k+β f(x)− f(y)

|x− y|β

=
|x|k+βf(x)− |y|k+βf(y)

|x− y|β +
f(y)

(

|y|k+β−|x|k+β
)

|x− y|β
= (I) + (II).

Obviously
|I|≤ ‖f‖C0,β

(k)
,

and (II) can be estimated as above. The case k + β < 0 is analogous.

The weighted Hölder spaces C0,β
(k) enjoy the following algebraic property,

which will be useful for the Hölder estimates of the entropy.
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Lemma 3.5. For given β ∈ (0, 1), k, l ∈ R, there exists a constant C > 0 such
that

‖fg‖C0,β
(k+l)

≤ C‖f‖C0,β
(k)

‖g‖C0,β
(l)
. (79)

Proof. One obviously has
∣

∣|x|k+lf(x)g(x)
∣

∣ ≤ sup
x∈BR

|x|k|f(x)|· sup
x∈BR

|x|l|g(x)|.

On the other hand, for x, y ∈ BR, x 6= y,

|x|k+l+βf(x)g(x)− |y|k+l+βf(y)g(y)

|x− y|β

=
|x|kf(x)

(

|x|l+βg(x)− |y|l+βg(y)
)

|x− y|β +
|y|lg(y)

(

|x|k+βf(x)− |y|k+βf(y)
)

|x− y|β

+ |x|kf(x)|y|lg(y) |y|
β−|x|β

|x− y|β .

It is obvious that every term in the above sum is bounded by C‖f‖C0,β
(k)

‖g‖C0,β
(l)

.

We are now prepared to prove Theorem 3.

Proof of Theorem 3. Note the obvious bound ‖∇S‖0,β≤ ‖∇S‖C0,β
(−β)

. Thus

the key in the following proof is to obtain C0,β
(−β) estimates on ∇S. Indeed, it is

easy to see that the unique solution S to (24), (25) is given by

S(ϕ(t, τ)) = e
µs0(τ)

γ − κ

∫ t

0

(ω2r)z(ϕ(t
′, τ)) dt′. (80)

Since κ appears as a linear coefficient in (80) and the same is true for µ in the

estimate |e
µs0(τ)

γ − 1|≤ C|µ||s0(τ)/γ| for bounded s0, it will only be necessary
to provide uniform estimates on s0 and on the integral in (80). Thus (29) will
be a consequence of such estimates.

More specifically, (80) defines S in the first quadrant, while the values of S in
the other quadrants are determined by symmetry. We observe that S(r, z) ≡ 1
near the boundary of BR. In fact, by the set up of Theorem 3 we know that

s0(τ) ≡ 0 for τ >
2R0 + 4R

6
, ω2(r, z) ≡ 0 for

√

r2 + z2 >
2R0 + 4R

6
, while (36)

implies that
√

2R0 + 4R

R0 + 5R
τ < |ϕ(t, τ)|<

√

R0 + 5R

2R0 + 4R
τ (81)

if ‖V − V 0‖C2< δ is sufficiently small. Now if
√

r2 + z2 = |ϕ(t, τ)|> R1 =

R0 + 5R

6
, then τ >

√

2R0 + 4R

R0 + 5R
R1 >

2R0 + 4R

6
, and |ϕ(t′, τ)|> 2R0 + 4R

R0 + 5R
R1 =

2R0 + 4R

6
. As a consequence, we see that S(r, z) = 1 for

√

r2 + z2 > R1.
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By Proposition 3.1, ϕ is a C1 diffeomorphism. Thus S(r, z) is obviously C1

on Ω. We will now obtain Hölder estimates for the first derivatives. We only
show details for the r-derivative because the z-derivative is analogous.

Sr(r, z)

= µe
µs0(τ)

γ s′0(τ)τr (82)

− κ(ω2r)z(r, z)tr (83)

− κτr

∫ t

0

[(ω2r)zr(ϕ(t
′, τ))rτ (t

′, τ) + (ω2r)zz(ϕ(t
′, τ))zτ (t

′, τ)] dt′. (84)

We estimate each term one by one. First of all,
∣

∣

∣
e

µs0(τ(r1,z1))
γ − e

µs0(τ(r2,z2))
γ

∣

∣

∣
≤ C‖s′0‖0‖∇τ‖0|(r1, z1)− (r2, z2)|

≤ C|(r1, z1)− (r2, z2)|

by (56). Thus e
µs0(τ)

γ ∈ C0,1(BR). By (77) and Lemma 3.5, we only need to

bound s′0(τ(r, z)) in C
0,β
(−β) in order to estimate (82). Indeed, since s′0(0) = 0,

(r2 + z2)−
β
2 |s′0(τ(r, z))|≤ ‖s0‖1,β

|τ(r, z)|β

(r2 + z2)
β
2

≤ C

by (81), and

|s′0(τ(r1, z1))− s′0(τ(r2, z2))| ≤ C‖s0‖1,β‖∇τ‖β0 |(r1, z1)− (r2, z2)|β

≤ C|(r1, z1)− (r2, z2)|β .

In order to estimate (83), we must bound (ω2r)z in C0,β
(−1−β), as can be seen

from (77) and Lemma 3.5. By Lemma 3.4, we may compute the C0,β
[−1−β] norm

of (ω2r)z instead. In fact, we show that it belongs to C0,1
[−2] ⊂ C0,β

[−1−β], as follows.

|(r, z)|−2|(ω2)z(r, z)r|≤ ‖ω2‖2
r
√
r2 + z2

r2 + z2
≤ C.

Let r21 + z21 ≥ r22 + z22 .

|(r1, z1)|−1

∣

∣(ω2)z(r1, z1)r1 − (ω2)z(r2, z2)r2
∣

∣

|(r1, z1)− (r2, z2)|

≤ (r21 + z21)
−1/2‖ω2‖2

√

r21 + z21

≤ C.

Now to estimate (84), we must bound the integral term in C0,β
(−β). Indeed,

|(ω2r)zr(ϕ(t
′, τ))|≤ ‖ω2‖2|ϕ(t′, τ(r, z))|≤ Cτ(r, z) ≤ C|(r, z)| (85)
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by (81). The same estimate holds for (ω2r)zz. Together with (55), this implies
that the integral in (84) is bounded by C|(r, z)|≤ C|(r, z)|β .

We now turn to the Hölder estimate on the integral. Denote (ti, τi) =
ϕ−1(ri, zi), i = 1, 2. We assume |(r1, z1)|≤ |(r2, z2)| and write

∫ t1

0

[(ω2r)zr(ϕ(t
′, τ1))rτ (t

′, τ1) + (ω2r)zz(ϕ(t
′, τ1))zτ (t

′, τ1)] dt
′

−
∫ t2

0

[(ω2r)zr(ϕ(t
′, τ2))rτ (t

′, τ2) + (ω2r)zz(ϕ(t
′, τ2))zτ (t

′, τ2)] dt
′

=

∫ t1

t2

[(ω2r)zr(ϕ(t
′, τ1))rτ (t

′, τ1) + (ω2r)zz(ϕ(t
′, τ1))zτ (t

′, τ1)] dt
′ (86)

+

∫ t2

0

[(ω2r)zr(ϕ(t
′, τ1))rτ (t

′, τ1)− (ω2r)zr(ϕ(t
′, τ2))rτ (t

′, τ2) (87)

+ (ω2r)zz(ϕ(t
′, τ1))zτ (t

′, τ1)− (ω2r)zz(ϕ(t
′, τ2))zτ (t

′, τ2)] dt
′. (88)

By (85) and a similar estimate on (ω2r)zz, (86) is bounded by

C|(r1, z1)||t1 − t2|≤ C|(r1, r2)|
|(r1, z1)− (r2, z2)|

|(r1, z1)|
≤ C|(r1, z1)− (r2, z2)|,

where we have used (56) to estimate ∇t. Now we write the integrand of (87) as

[(ω2r)zr(ϕ(t
′, τ1))− (ω2r)zr(ϕ(t

′, τ2))]rτ (t
′, τ2) (89)

+ (ω2r)zr(ϕ(t
′, τ1))[rτ (t

′, τ1)− rτ (t
′, τ2)]. (90)

By (55) and (56), we deduce that (89) is bounded by

‖ω2‖2,β‖ϕτ‖1+β
0 ‖∇τ‖β0 |(r1, z1)− (r2, z2)|β≤ C|(r1, z1)− (r2, z2)|β .

Also, by (85), (57), (56), we obtain that (90) is bounded by

C|(r1, z1)||τ1 − τ2|β≤ C‖∇τ‖β0 |(r1, z1)− (r2, z2)|β≤ C|(r1, z1)− (r2, z2)|β .

Thus we conclude that (87) is bounded by C|(r1, z1) − (r2, z2)|β . Similar esti-
mates can be obtained for (88). We have shown that the integral in (84) is in

C0,β
(−β), and we have completed the C1,β estimates of S on BR ∩ {r > 0, z > 0}.
Finally, in order to extend the C1,β estimates of S to BR, we must show

that Sr(0, z) = 0, Sz(r, 0) = 0. In fact, by (30), (54), (62),

τr(r, z) =
Vr(r, z)

Vr(τ(r, z), 0)
.

So for τ > 0

τr(0, z) =
Vr(0, z)

Vr(τ(0, z), 0)
= 0

by the axisymmetry of V . On the other hand, we obviously have (ω2r)z(0, z) =
0. The formula of Sr given by (82), (83), (84) now shows that Sr(0, z) = 0. The
proof that Sz(r, 0) = 0 is similar.
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4 Construction of the Iteration Map

Recall the definition of the mapping F in Section 2.4. The next lemma estab-
lishes the basic properties of F .

Lemma 4.1. Let β ∈ (0,min(q, 1)), s0 ∈ C1,β(BR ∩ {z = 0}), and ω2 ∈
C2,β(BR). Then there exist κ0 > 0, µ0 > 0 and a neighborhood Bδ(V

0) of
V 0 in C2,β(BR) such that F maps Bδ(V

0) × R × (−κ0, κ0) × (−µ0, µ0) into a
bounded subset of C2,β(BR)× R.

Proof. We let Bδ(V
0) be the neighborhood of V 0 in C2,β(BR) specified in The-

orem 3. By that theorem, for each V ∈ Bδ(V
0) there exists a unique solution

S ∈ C1,β(BR) to (24) and (25). We fix such a pair V and S.
We have to show that (i) the solution V # to (22), (23) exists, is unique and

V # ∈ C2,β(BR) and (ii) α# given in (26) is a well-defined finite number. The
latter claim (ii) is clear since V q

+S
−1 is integrable. To verify (i), we invoke the

Schauder theory for second-order linear elliptic equations. By (29), if we limit
κ0 and µ0 suitably, then S ∈ C1,β(BR) is bounded away from 0, the function

−4πV q
+S

−1+κ∇·(ω2rer) belongs to C
0,β(BR), and the function

1

|·| ∗(V
q
+S

−1)+α

belongs to C2,β(BR). By Corollary 6.9 of [15], the Dirichlet problem (22), (23)
has a unique solution V # ∈ C2,β(BR) whose C

2,β norm depends only on ‖S‖1,β ,
‖V ‖2,β and ‖ω2‖2,β .

In the next lemma we estimate a typical semilinear term in a Hölder norm.

Lemma 4.2. Let U, V ∈ C1(BR) and ‖V ‖1< 1. Let g ∈ C1,β1([0, ‖U‖0+1]) for
some 0 < β < β1 < 1. Then there is a constant C > 0 such that

‖g(U + V )− g(U)− g′(U)V ‖0 ≤ ‖g‖1,β1
‖V ‖1+β1

0 , (91)

‖g(U + V )− g(U)− g′(U)V ‖0,β ≤ C‖g‖1,β1
(‖U‖1+1)β‖V ‖1+β1−β

0,β . (92)

Proof. Since g ∈ C1, we can write

[g(U + V )− g(U)− g′(U)V ](x) =

∫ 1

0

[g′(U + tV )− g′(U)](x) dt · V (x)

: = I(x) · V (x). (93)

Since ‖U + tV ‖0≤ ‖U‖0+1 for ‖V ‖1< 1, we have

‖I‖0≤ ‖g‖1,β1‖V ‖β1

0 , (94)

so that (91) follows. Also

[g(U + V )− g(U)− g′(U)V ]0,β ≤ [I]0,β‖V ‖0+‖I‖0[V ]0,β

≤ [I]0,β‖V ‖0,β+‖g‖1,β1‖V ‖β1

0 [V ]0,β . (95)
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To estimate [I]0,β , we compute

|I(x)− I(y)| =
∣

∣

∣

∣

∫ 1

0

[g′(U(x) + tV (x))− g′(U(y) + tV (y))] dt

− [g′(U(x))− g′(U(y))]

∣

∣

∣

∣

≤ ‖g‖1,β1

(

|U(x) + tV (x)− U(y)− tV (y)|β1+|U(x)− U(y)|β1
)

≤ C‖g‖1,β1
(‖U‖1+‖V ‖1)β1 |x− y|β1 . (96)

On the other hand,

|I(x)− I(y)|≤ 2‖I‖0≤ 2‖g‖1,β1
‖V ‖β1

0 . (97)

Since β < β1, we can interpolate between (96) and (97) to get

|I(x)− I(y)|≤ C‖g‖1,β1(‖U‖1+‖V ‖1)β |x− y|β‖V ‖β1−β
0 . (98)

Thus
[I]0,β ≤ C‖g‖1,β1(‖U‖1+1)β‖V ‖β1−β

0 , (99)

and (92) follows from (95).

Next we show that the mapping F is Fréchet differentiable and also that
I −DF is invertible in case κ = µ = 0.

Lemma 4.3. Let
6

5
< γ < 2, γ 6= 4

3
. Fix β ∈ (0,min (q − 1, 1)). Then

F(V, α, 0, 0) is Fréchet differentiable with respect to (V, α) on C2,β(BR) × R,
and

Λ = I −D(V,α)F(V 0, α0, 0, 0) (100)

is invertible with a bounded inverse. Furthermore, Λ−1 is also bounded in the
C1,β(BR)× R norm, that is,

‖Λ−1(δV, δα)‖C1,β(BR)×R
≤ ‖(δV, δα)‖C1,β(BR)×R

(101)

for all (δV, δα) ∈ C2,β(BR)× R.

Proof. It is easy to see from (24) and (25) that S ≡ 1 in case κ = µ = 0. Thus
by (22), (23), (26), (V #, α#) = F(V, α, 0, 0) solves

∆V # = −4πV q
+ on BR, (102)

V # =
1

|·| ∗ V
q
+ + α on ∂BR, (103)

α# = α+

∫

BR

V q
+ dx−M. (104)
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From (102), (103), it follows that V # − 1

|·| ∗ V
q
+ − α is harmonic on BR with

zero boundary values. Thus

V # =
1

|·| ∗ V
q
+ + α (105)

actually holds in the whole ball BR. It is then not hard to show using Lemma
4.2 that (V, α) 7→ (V #, α#) is Fréchet differentiable with

D(V,α)V
#(δV, δα) =

q

|·| ∗
(

V q−1
+ δV

)

+ δα, (106)

D(V,α)α
#(δV, δα) = δα+ q

∫

BR

V q−1
+ δV dx. (107)

It is also easy to see that the Fréchet derivative of (V, α) 7→ (V #, α#) is compact
on C2,β(BR)× R, so that Λ defined by (100) is Fredholm of index zero. As for
invertibility, we only need to prove its injectivity. So assume that (δV, δα)
satisfies Λ(δV, δα) = 0. That is,

δV =
q

|·| ∗
(

(V 0)q−1
+ δV

)

+ δα, (108)

∫

BR

(V 0)q−1
+ δV dx = 0. (109)

We must prove that these equations admit only the zero solution. This will
follow in a way similar to Lemma 4.3 of [31]; the argument is also related to
section 4 of [30].

In fact, we extend δV to the entire R
3 by (108). It follows that

∆(δV ) = −4πq(V 0)q−1
+ δV. (110)

Let Ylm(θ) (l = 0, 1, 2, . . . , m = −l, . . . , l, θ ∈ S
2) be the standard spherical

harmonics. For any function f(x) with x ∈ R
3, denote its (l,m) component by

flm(|x|) = 〈f, Ylm〉(|x|) =
∫

S2

f(|x|θ)Ylm(θ) dS2θ.

We will first show (δV )lm = 0 if l ≥ 1, so that only a radial component remains.
Indeed, taking the (l,m) component of (110), and using

∆ = ∂2|x| +
2

|x|∂|x| +
1

|x|2∆S2 ,

∫

S2

(∆S2f)g dS2θ =

∫

S2

f(∆S2g) dS2θ,

∆S2Ylm = −l(l + 1)Ylm,
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we obtain

∆[(δV )lm]− l(l + 1)

|x|2 (δV )lm = −4πq(V 0)q−1
+ (δV )lm. (111)

Since (V 0)+ = 0 for |x|> R0, we can solve (111) explicitly there and obtain

(δV )lm(x) = C|x|−(l+1)+D|x|l. (112)

Since δV is bounded near infinity, we obtain

(δV )lm(x) = C|x|−(l+1) if |x|≥ R0. (113)

By Lemma 2.1, (V 0)′ = ∂|x|V
0 < 0 for |x|> 0. We define for |x|> 0

ψlm =
(δV )lm
(V 0)′

. (114)

Note that for l ≥ 1,

|ψlm(x)| :=
∣

∣

∣

∣

1

(V 0)′(x)

∫

S2

[δV (|x|θ)− δV (0)]Ylm(θ) dS2θ

∣

∣

∣

∣

≤ C|x|
|(V 0)′(x)| sup

|y|≤|x|

|∇(δV )(y)|.

Inequality (15) and ∇(δV )(0) = 0 imply that

lim
|x|→0+

ψlm(x) = 0. (115)

By (14),
∆V 0 = −4π(V 0)q+, (116)

from which it follows that

∆[(V 0)′]− 2

|x|2 (V
0)′ = −4πq(V 0)q−1(V 0)′. (117)

From (111), (114), (117) we get

∆ψlm +
2∇(V 0)′ · ∇ψlm

(V 0)′
+

2− l(l + 1)

|x|2 (V 0)′ψlm = 0. (118)

If l ≥ 1, then 2 − l(l + 1) ≤ 0. Letting Ψ = sup
0<|x|<R0

ψlm(x) > 0 and using the

strong maximum principle on (118), we know that Ψ cannot be attained at any
interior point on the punctured ball 0 < |x|< R0. By the condition (115) at the
origin, Ψ can only be attained for |x|= R0, so that ψlm(R0) = Ψ. By the Hopf
maximum principle, ∂|x|ψlm(R0) > 0. Now the C1 continuity of ψlm across the

surface at |x|= R0 and (113), (114), (116) implies

0 < Ψ = ψlm(R0) =
C

(R0)l+1(V 0)′(R0)
, (119)
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0 < ∂|x|ψlm(R0) =
C(1− l)

(R0)l+2(V 0)′(R0)
. (120)

These equations force 1 − l > 0, which contradicts the assumption that l ≥ 1.
We therefore conclude that Ψ = sup

0<|x|<R0

ψlm(x) ≤ 0. By similar reasoning,

inf
0<|x|<R0

ψlm(x) ≥ 0. It follows that ψlm, as well as (δV )lm, vanish on BR0 .

(113) now implies δVlm = 0 everywhere.
Since δV is now restricted to be a radial function, (110) can be regarded as

the following ODE (using ′ to denote ∂|x|):

(δV )′′ +
2

|x| (δV )′ + 4πq(V 0)q−1
+ δV = 0. (121)

We also have the obvious condition

(δV )′(0) = 0 (122)

due to symmetry. On the other hand, we note that by scaling symmetry of

(116), V (x; a) = a
2

q−1V 0(ax) solves

∆V + 4πV q
+ = 0. (123)

It follows that U = ∂aV (x; 1) solves

∆U + 4πq(V 0)q−1
+ U = 0,

or

U ′′ +
2

|x|U
′ + 4πq(V 0)q−1

+ U = 0, (124)

with
U ′(0) = 0. (125)

So δV and U satisfy the same ODE with vanishing derivative at zero. By
uniqueness, it follows that δV = CU for some constant multiple C. Also,
V (x; a) satisfies

∫

R3

V q
+ dx = a

3−q
q−1

∫

R3

(V 0)q+ dx. (126)

Taking the derivative with respect to a and setting a = 1, we get

∫

R3

q(V 0)q−1
+ U dx =

3− q

q − 1

∫

R3

(V 0)q+ dx 6= 0 (127)

if q 6= 3. In this case, (109) and the condition δV = CU obtained above imply
that C = 0. Hence δV and δα are zero. The proof is complete as we observe

that q = 3 if and only if γ =
4

3
.

It remains to reprove the lemma in the weaker space C1,β(BR). Observe that
the right hand sides of (106) and (107) are well-defined for δV ∈ C1,β(BR), so
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that we can extend the definition of Λ to C1,β(BR) × R. Once again Λ is
Fredholm with index zero on C1,β(BR) × R. Thus we only need to show that
(108), (109) has unique zero solution assuming merely that δV ∈ C1,β(BR).
But due to the gain of regularity of the right hand side of (108), we can recover
δV ∈ C2,β(BR). The result thus follows.

We define the sequence of approximate solutions (Vn, αn) by

(V0, α0) = (V 0, α0), (128)

(Vn+1, αn+1) = (Vn, αn)− Λ−1[(Vn, αn)−F(Vn, αn, κ, µ)]. (129)

Here (128) simply means that we use the Lane-Emden solution as the zeroth step
in the iteration. In order for such iterations to be defined for all n, we require
Vn to remain close to V 0 in C2,β(BR). This will be established in Lemma 5.1.

5 Convergence of Iterations and Uniqueness

In this section, we fix β < β1 := min(q − 1, 1) and will prove convergence of

the iteration sequence in C2,β′

(BR) × R for every 0 < β′ < β. The argument
consists mainly of two steps. In the first step we show that all (Vn, αn) remain
in a small neighborhood of (V 0, α0) in the C2,β(BR) × R norm, so that the
next term in the sequence is always well-defined by applying Lemma 4.1. In the
second step we show that the C1,β(BR) × R norm of (Vn+1 − Vn, αn+1 − αn)
contracts, so that the iterates form a Cauchy sequence in the low norm. We
then use interpolation in the hierarchy of Hölder spaces to prove convergence.

To avoid clutter in the equations, we further simplify the notation as follows.
Denote

g(V ) = V q
+

and
F(V, α, κ, µ) by F(V, α), F(V, α, 0, 0) by F0(V, α).

Recall that the Lane-Emden solution (V 0, α0) is a fixed point: F0(V 0, α0) =
(V 0, α0). As before, we also use the notation (V #, α#) = F(V, α). Moreover,
we denote

D(V,α)F(V 0, α0, 0, 0) by DF0

and
(δV †, δα†) = DF0(δV, δα).

From Lemma 4.3 and (102), (103), (104) we may write

∆(δV †) = −4πg′(V 0)δV on BR, (130)

δV † =
1

|·| ∗ (g
′(V 0)δV ) + δα on ∂BR, (131)

δα† = δα+

∫

BR

g′(V 0)δV dx. (132)
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Thus we use # to denote components of the nonlinear mapping F , and † to
denote components of the linearized operator DF0. We also denote the ex-
ponentiated entropy S constructed in Theorem 3 by S (V ) to emphasize its
dependence on V . Finally, we denote by X the space C2,β(BR)× R.

5.1 Boundedness in the High Norm

We now prove the uniform boundedness of the X norm of the iterates.

Lemma 5.1. For all ϵ > 0, ϵ1 > 0 sufficiently small, if ‖(Vn, αn)−(V 0, α0)‖X<
ϵ and |κ|+|µ|< ϵ1, then ‖(Vn+1, αn+1)− (V 0, α0)‖X< ϵ.

Proof. We first take ϵ < δ as given in Lemma 4.1, so that (Vn+1, αn+1) is well-
defined. From (129) and F0(V 0, α0) = (V 0, α0) we get

(Vn+1 − V 0, αn+1 − α0)

= (Vn − V 0, αn − α0)− Λ−1{(Vn − V 0, αn − α0)−F(Vn, αn) + F0(V 0, α0)}
= (Vn − V 0, αn − α0)− Λ−1{Λ(Vn − V 0, αn − α0)−Rn}
= Λ−1Rn, (133)

where the remainder Rn := (V R
n , αR

n ) is defined as

(V R
n , αR

n ) = F(Vn, αn)−F0(V 0, α0)−DF0(Vn − V 0, αn − α0)

= (V #
n − V 0, α#

n − α0)− ((Vn − V 0)†, (αn − α0)†). (134)

By the definitions of the respective terms, we have

∇ · (S (Vn)∇V #
n ) = −4πg(Vn)

S (Vn)
+ κ∇ · (ω2rer) on BR, (135)

V #
n =

1

|·| ∗
g(Vn)

S (Vn)
+ αn on ∂BR

α#
n = αn +

∫

BR

g(Vn)

S (Vn)
dx−M.

∇ · (∇V 0) = −4πg(V 0) on BR,

V 0 =
1

|·| ∗ g(V
0) + α0 on ∂BR

α0 = α0 +

∫

BR

g(V 0) dx−M.

∇ · (∇(Vn − V 0)†) = −4πg′(V 0)(Vn − V 0) on BR, (136)

(Vn − V 0)† =
1

|·| ∗ (g
′(V 0)(Vn − V 0)) + αn − α0 on ∂BR

(αn − α0)† = αn − α0 +

∫

BR

g′(V 0)(Vn − V 0) dx.
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Combining the preceding equations, we obtain equations for (V R
n , αR

n ), namely,

∆V R
n = ∇ ·

(

{1− S (Vn)}∇V #
n

)

− 4πg(Vn)

{

1

S (Vn)
− 1

}

− 4π
{

g(Vn)− g(V 0)− g′(V 0)(Vn − V 0)
}

+ κ∇ · (ω2rer)

:= I1 + I2 + I3 + I4 in BR, (137)

V R
n =

1

|·| ∗
({

1

S (Vn)
− 1

}

g(Vn)

)

+
1

|·| ∗
{

g(Vn)− g(V 0)− g′(V 0)(Vn − V 0)
}

:= I5 + I6 on ∂BR, (138)

αR
n =

∫

BR

{

1

S (Vn)
− 1

}

g(Vn) dx+

∫

BR

{

g(Vn)− g(V 0)− g′(V 0)(Vn − V 0)
}

dx

:= I7 + I8. (139)

Now let ‖(Vn, αn) − (V 0, α0)‖X< ϵ and |κ|+|µ|< ϵ1, where ϵ, ϵ1 are to be
determined. We first estimate the C2,β(BR) norm of V R

n by means of Schauder
estimates. This amounts to estimating the C0,β(BR) norm of (137) and the
C2,β(∂BR) norm of (138). Indeed, we have

‖I1‖0,β≤ ‖V #
n ‖2,β‖S (Vn)− 1‖1,β≤ Cϵ1 (140)

by Lemma 4.1 and Theorem 3. Similarly,

‖I2‖0,β≤ C‖Vn‖0,β‖S (Vn)− 1‖0,β≤ Cϵ1. (141)

On the other hand, by Lemma 4.2, we have

‖I3‖0,β≤ C‖Vn − V 0‖1+δ1
0,β = Cϵ1+δ1 , (142)

where δ1 = β1 − β. It is obvious that ‖I4‖0,β≤ Cϵ1. By standard potential

estimates, the convolution with
1

|x| is bounded from C0,β(BR+1) to C
2,β(BR).

Because all the functions appearing under the convolution in (138) are supported
in the interior of BR, we only have to bound their C0,β(BR) norms. It follows
as before that ‖I5‖2,β≤ Cϵ1, and ‖I6‖2,β≤ Cϵ1+δ1 . We now use the Schauder
estimates to conclude that

‖V R
n ‖2,β≤ Cϵ1 + Cϵ1+δ1 . (143)

We also use the previous estimates directly to estimate I7 and I8, thereby ob-
taining

|αR
n |≤ Cϵ1 + Cϵ1+δ1 . (144)

Estimation of (133) yields

‖(Vn+1, αn+1)− (V 0, α0)‖X ≤ ‖Λ−1‖X→XC(ϵ1 + ϵ1+δ1)

≤ C(ϵ1 + ϵ1+δ1).

We now choose ϵ so small that Cϵ1+δ1 <
ϵ

2
, and ϵ1 so small that Cϵ1 <

ϵ

2
. The

proof is complete.
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5.2 Contraction in the Low Norm

For notational convenience we denote S (Vn) by Sn. We denote by Y the space
C1,β(BR)×R. By Lemma 5.1, Vn and αn are well-defined, and ‖Vn−V 0‖2,β< ϵ
for all n if |κ|+|µ|< ϵ1. We want to prove that the Y -norm of (Vn − Vn−1, αn −
αn−1) decays. To that end, we first estimate the difference Sn − Sn−1.

Lemma 5.2. Let Sn = S (Vn) be given as above. Then

‖Sn − Sn−1‖0≤ C‖∇Sn−1‖0‖∇(Vn − Vn−1)‖0 (145)

‖Sn − Sn−1‖C0,β
[1−β]

≤ C‖∇Sn−1‖β‖∇(Vn − Vn−1)‖0,β (146)

where C0,β
[1−β] denotes the weighted Hölder space defined in (76).

Proof. We note that the difference Sn − Sn−1 is the solution to the transport
equation

(∂zVn)∂r(Sn − Sn−1)− (∂rVn)∂z(Sn − Sn−1) = hn, (147)

where
hn = (∂zSn−1)∂r(Vn − Vn−1)− (∂rSn−1)∂z(Vn − Vn−1), (148)

with the zero floor data (Sn − Sn−1)(r, 0) = 0. Then Sn − Sn−1 satisfies

(Sn − Sn−1)(r, z) =

∫ t

0

hn(ϕ(t
′, τ)) dt′, (149)

where (r, z) = ϕ(t, τ) is the C1 diffeomorphism given by the characteristic co-
ordinates associated with Vn, as in Section 3.1. The C0 estimate (145) follows
directly from (149) since t is bounded.

To show (146), it suffices to estimate the weighted Hölder semi-norm. To
this end, let (r1, z1), (r2, z2) be given. We may assume 0 < |(r1, z1)|≤ |(r2, z2)|
without loss of generality. By letting (ti, τi) = ϕ−1(ri, zi), i = 1, 2, we see that

(Sn − Sn−1)(r1, z1)− (Sn − Sn−1)(r2, z2)

=

∫ t1

t2

hn(ϕ(t
′, τ1)) dt

′ +

∫ t2

0

hn(ϕ(t
′, τ1))− hn(ϕ(t

′, τ2)) dt
′

:= I1 + I2

(150)

For the first integral I1 we have by (56)

|I1|≤ |t1 − t2|‖hn‖0≤ C
|(r1, z1)− (r2, z2)|

|(r1, z1)|
‖hn‖0 (151)

For I2, using the Hölder regularity of hn and (55), (56), we obtain

|I2| ≤ C‖ϕτ‖β0 |τ1 − τ2|β‖hn‖0,β
≤ C‖∇τ‖β0 |(r1, z1)− (r2, z2)|β‖hn‖0,β
≤ C|(r1, z1)− (r2, z2)|β‖hn‖0,β . (152)
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Combining the above estimates, we deduce that

|(r1, z1)|· |(Sn − Sn−1)(r1, z1)− (Sn − Sn−1)(r2, z2)|
≤ C|(r1, z1)− (r2, z2)|β‖hn‖0,β . (153)

By the definition (76) of the C0,β
[1−β] norm, we have proven (146).

We now write the recursive equation for the difference (Vn−Vn−1, αn−αn−1).
From (133), we have

(Vn+1 − Vn, αn+1 − αn) = Λ−1(Rn −Rn−1), (154)

where

Rn −Rn−1 = F(Vn, αn)−F(Vn−1, αn−1)−DF0(Vn − Vn−1, αn − αn−1)

= (V #
n − V #

n−1 − (Vn − Vn−1)
†, α#

n − α#
n−1 − (αn − αn−1)

†) (155)

:= (Wn, α
R
n − αR

n−1). (156)

Here we denoted the first component of Rn − Rn−1 by Wn. We obtain the
equation for Wn from (135), (136):

∇ · (Sn∇Wn) = −∇ ·Hn − 4πGn on BR, (157)

where

Hn = {Sn − 1}∇(Vn − Vn−1)
† + [Sn − Sn−1]∇V #

n−1 (158)

and

Gn =
g(Vn)

Sn
− g(Vn−1)

Sn−1
− g′(V 0)(Vn − Vn−1), (159)

and on the surface ∂BR we have

Wn =
1

|·| ∗Gn. (160)

Similarly, we have

αR
n − αR

n−1 =

∫

BR

Gn dx. (161)

Lemma 5.3. There exist ϵ > 0, ϵ1 > 0 such that if sup
n≥1

‖(Vn, αn)−(V 0, α0)‖X< ϵ

for |κ|+|µ|< ϵ1, then

‖(Vn+1 − Vn, αn+1 − αn)‖Y ≤
1

2
‖(Vn − Vn−1, αn − αn−1)‖Y (162)

for all n.

36



Proof. We first claim the estimates

‖Hn‖0,β≤ Cϵ1‖(Vn − Vn−1, αn − αn−1)‖Y , (163)

and
‖Gn‖0≤ C(ϵ1 + ϵβ1)‖Vn − Vn−1‖1+C‖Vn − Vn−1‖1+β1

0 . (164)

Indeed, by (130), (131) with δV = Vn − Vn−1, δα = αn − αn−1 and standard
potential theoretic estimates, we have

‖(Vn − Vn−1)
†‖1,β ≤ C(‖Vn − Vn−1‖0+|αn − αn−1|)

= C‖(Vn − Vn−1, αn − αn−1)‖Y . (165)

We denote the two terms in (158) by Hn1 and Hn2 respectively. We estimate

‖Hn1‖0,β ≤ ‖{Sn − 1}∇(Vn − Vn−1)
†‖0,β

≤ C‖Sn − 1‖0,β‖(Vn − Vn−1)
†‖1,β

≤ Cϵ1‖(Vn − Vn−1, αn − αn−1)‖Y , (166)

where we have used (29). On the other hand,

‖Hn2‖0,β ≤ ‖[Sn − Sn−1]∇V #
n−1‖0,β

≤ ‖[Sn − Sn−1]∇V #
n−1‖C0,β

[−β]
(167)

≤ C‖Sn − Sn−1‖C0,β
[1−β]

‖∇V #
n−1‖C0,β

[−1]
(168)

≤ C‖∇(Sn−1 − 1)‖0,β‖Vn − Vn−1‖1,β (169)

≤ Cϵ1‖Vn − Vn−1‖1,β . (170)

Here we used the definition of the weighted Hölder spaces and Lemmas 3.4
and 3.5 regarding their properties to get (167) and (168). We used Lemma 5.2

and the estimate ‖∇V #
n−1‖C0,β

[−1]
≤ ‖∇V #

n−1‖1≤ C to get (169). That V #
n−1 is

bounded in C2 follows from the last assertion of Lemma 4.1. Combining the
above estimates, we infer that

‖Hn‖0,β≤ Cϵ1‖(Vn − Vn−1, αn − αn−1)‖Y . (171)

We may rewrite Gn as

Gn = [g(Vn)− g(Vn−1)− g′(Vn−1)(Vn − Vn−1)] +
{

g′(Vn−1)− g′(V 0)
}

(Vn − Vn−1)

+

{

1

Sn
− 1

}

[g(Vn)− g(Vn−1)] +

[

1

Sn
− 1

Sn−1

]

g(Vn−1)

:= Gn1 +Gn2 +Gn3 +Gn4.

By (91),

‖Gn1‖0≤ C‖Vn − Vn−1‖1+β1

0 . (172)
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We also have

‖Gn2‖0≤ C‖Vn−1 − V 0‖β1

0 ‖Vn − Vn−1‖0≤ Cϵβ1‖Vn − Vn−1‖0. (173)

From (29),

‖Gn3‖0≤ C‖Sn − 1‖0‖Vn − Vn−1‖0≤ Cϵ1‖Vn − Vn−1‖0. (174)

From Lemma 5.2,

‖Gn4‖0≤ C‖Sn − Sn−1‖0 ≤ C‖Sn−1 − 1‖1‖Vn − Vn−1‖1
≤ Cϵ1‖Vn − Vn−1‖1. (175)

(164) follows from combining the above estimates.
By standard potential estimates, we have

∥

∥

∥

∥

1

|·| ∗Gn

∥

∥

∥

∥

1,β

≤ C‖Gn‖0. (176)

We now use the C1,β Schauder estimates given by Theorem 8.33 of [15] on the
equations (157), (160) to get

‖Wn‖1,β
≤ C(‖Hn‖0,β+‖Gn‖0)
≤ C(ϵ1 + ϵβ1)‖(Vn − Vn−1, αn − αn−1)‖Y +C‖Vn − Vn−1‖1+β1

0

≤ C(ϵ1 + ϵβ1)‖(Vn − Vn−1, αn − αn−1)‖Y

(177)

where ‖Vn − Vn−1‖0≤ 2ϵ, which follows from the assumption that ‖(Vn, αn) −
(V 0, α0)‖X< ϵ for all n ≥ 1. We also have from (161) that

|αR
n − αR

n−1|≤ C(ϵ1 + ϵβ1)‖Vn − Vn−1‖1 (178)

From (154), (156) and by Lemma 4.3 we get

‖(Vn+1 − Vn, αn+1 − αn)‖Y
≤ C‖Λ−1‖Y→Y (ϵ1 + ϵβ1)‖(Vn − Vn−1, αn − αn−1)‖Y
≤ C(ϵ1 + ϵβ1)‖(Vn − Vn−1, αn − αn−1)‖Y . (179)

We now choose ϵ1 so small that Cϵ1 <
1

4
, and ϵ so small that Cϵβ1 <

1

4
, which

completes the proof.

5.3 Existence and Uniqueness

We need the following interpolation lemma on Hölder spaces.
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Lemma 5.4. Let 0 < β′ < β. There exists a C > 0 such that

‖u‖2,β′≤ C‖u‖λ1

1,β‖u‖1−λ1

2,β , (180)

‖v‖1,β′≤ C‖v‖λ2
0 ‖v‖1−λ2

1,β , (181)

for all u ∈ C2,β(BR) and v ∈ C1,β(BR). Here

2 + β′ = λ1(1 + β) + (1− λ1)(2 + β),

1 + β′ = (1− λ2)(1 + β).

Proof. See [2] or Ex. 3.2.6 in [23].

We are now ready to prove the main existence theorem, which we repeat for
the reader’s convenience.

Theorem 2. Let s0 ∈ C1,β(BR ∩ {z = 0}) and ω2 ∈ C2,β(BR) be given.
There exist ϵ > 0, ϵ1 > 0 such that if |κ|+|µ|< ϵ1, then there exists a unique
solution (V ∗, α∗) ∈ X, and S∗ ∈ C1,β(BR) to (11), (12), (13), (17), (18),
with ‖(V ∗, α∗) − (V 0, α0)‖X≤ ϵ. Furthermore, the solution satisfies that V ∗

+ is
supported on BR0+R

2

, and S∗ = 1 outside BR1
for some fixed R1 ∈ (R0, R).

Proof. We take ϵ and ϵ1 small enough that Lemmas 5.1 and 5.3 hold. It follows
by iteration that

‖(Vn − Vn−1, αn − αn−1)‖Y ≤
C

2n
.

Lemma 5.2 now gives

‖Sn − Sn−1‖0≤
C

2n
.

Pick a β′ ∈ (0, β). Lemmas 5.1, 5.4 together with the preceding estimates imply
that

‖Vn − Vn−1‖2,β′≤ C

2λ1n
, (182)

‖Sn − Sn−1‖1,β′≤ C

2λ2n
. (183)

It follows that {Vn} is a Cauchy sequence in C2,β′

(BR), {Sn} is a Cauchy

sequence in C1,β′

(BR), and {αn} is a Cauchy sequence in R. Denote their
limits by V ∗, S∗ and α∗. By (129), we have

(Vn, αn)−F(Vn, αn, κ, µ) = Λ(Vn+1 − Vn, αn+1 − αn). (184)

Since Λ is bounded on C2,β′

(BR)×R by Lemma 4.3, (Vn, αn)−F(Vn, αn, κ, µ)
converges to zero, and (V #

n , α#
n ) = F(Vn, αn, κ, µ) converges to (V ∗, α∗) in

39



C2,β′

(BR)× R. We know that V #
n , α#

n and Sn satisfy the equations

(Sn)r(Vn)z − (Sn)z(Vn)r = −κ(ω2r)z on BR,

Sn(r, 0) = e
µs0
γ ,

∇ · (Sn∇V #
n ) = −4πg(Vn)

Sn
+ κ∇ · (ω2rer) on BR,

V #
n =

1

|·| ∗
g(Vn)

Sn
+ αn on ∂BR

α#
n = αn +

∫

BR

g(Vn)

Sn
dx−M.

Taking the limit as n tends to infinity, we see that (11), (12), (13), (17), (18)
are satisfied by V ∗, α∗, S∗.

To see that V ∗ ∈ C2,β(BR) and ‖(V ∗, α∗) − (V 0, α0)‖X≤ ϵ, we recall from
Lemma 5.1 that ‖(Vn, αn)− (V 0, α0)‖X< ϵ. So

‖Vn − V 0‖2+
∑

i,j

|∂i∂j [Vn − V 0](x)− ∂i∂j [Vn − V 0](y)|
|x− y|β + |αn − α0|< ϵ.

Taking the limit as n tends to infinity, we get V ∗ ∈ C2,β(BR) and ‖(V ∗, α∗)−
(V 0, α0)‖X≤ ϵ. Choosing ϵ < sup

|x|>(R0+R)/2

V 0(x), and recalling that V 0 is posi-

tive precisely on BR0 , it follows that V ∗
+ is supported on B(R0+R)/2 (see Remark

2.1). That S∗ = 1 outside BR1
was already proven in Theorem 3.

Finally in order to prove uniqueness, suppose there are two such fixed points
(V ∗

1 , α
∗
1, S

∗
1 ) and (V ∗

2 , α
∗
2, S

∗
2 ). We can write S∗

i = S (V ∗
i ), and

(V ∗
i , α

∗
i ) = (V ∗

i , α
∗
i )− Λ−1[(V ∗

i , α
∗
i )−F(V ∗

i , α
∗
i )] (185)

for i = 1, 2. We can now simply repeat on (185) the low-norm estimates on
(129) obtained in Lemma 5.3 to get

‖(V ∗
1 − V ∗

2 , α
∗
1 − α∗

2)‖Y ≤
1

2
‖(V ∗

1 − V ∗
2 , α

∗
1 − α∗

2)‖Y . (186)

Thus ‖(V ∗
1 − V ∗

2 , α
∗
1 − α∗

2)‖Y = 0 and the two solutions coincide.
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