Existence of Rotating Stars with Variable
Entropy

Juhi Jang® Walter A. Strauss! and Yilun Wu?

Abstract

We model a rotating star as a compressible fluid subject to gravita-
tional forces. In almost all the mathematical literature the entropy is
considered to be constant. Here we allow it to be variable. We consider a
star that steadily rotates differentially around a fixed axis, say the z-axis.
We prove the existence of a family of such stars with small angular velocity
w and small entropy variation s and with an equation of state p = Ke®p”.
Our analysis reduces to a hyperbolic equation for the modified entropy
coupled to an elliptic equation for the modified density, together with a
mass constraint. Due to the variable entropy and the consequent loss of
both regularity and variational structure, all the methods in the previous
literature fail. We develop a new ad hoc perturbative strategy that allows
us to construct rotating stars that bifurcate from the non-rotating ones.

1 Introduction

1.1 Rotating Stars

The study of rotating stars is a classical topic in astrophysics and mathematics,
and there has been a great deal of interest and activity for centuries. Early
studies can be tracked back to Newton, Maclaurin, Jacobi, Poincaré, Liapunov
et al who studied incompressible stars, while compressible stars began to be
treated later by Lichtenstein [25] and Chandrasekhar [6]. We refer to [8, 22] for
historical accounts on the topic. Other excellent general references are [33, 16].
The existence of rotating stars with a given angular velocity distribution is not
a trivial task. In particular the support of a star is not known a priori and it is
one of the unknowns.

In the search for rotating star solutions there are two modern approaches.
One is based on variational methods where the rotating solutions are obtained
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via a constrained minimization problem [3, 4, 13, 14, 24, 27, 28, 35|, and the
other is based on perturbative methods where the solutions are obtained by an
implicit function theorem or contraction mapping principle around non-rotating
Lane-Emden stars [17, 19, 20, 21, 29, 30]. The second approach has been ex-
tended to construct a global set of rotating stars [31]. Both approaches have
been particularly successful to prove the existence of rotating star solutions with
constant entropy, in which case an integral reformulation can be effectively used.

When it comes to rotating star solutions with variable entropy, however, very
few results are available, despite its physical importance [18, 33]. The goal of this
paper is to establish the existence of rotating star solutions for self-gravitating
perfect fluids with variable entropy. To the best of our knowledge, ours is the
first mathematical result on rotating star solutions that allows variable entropy.
Furthermore, ours is the first that allows the prescribed angular velocity w to
depend on both of the cylindrical coordinates r and z, while all prior works
treated merely r-dependent angular velocity profiles. As we will see from (11),
any z-dependence of the angular velocity implies that entropy is not constant. A
system with such a nontrivial z-dependence is called a barocline. Actual stellar
rotations typically exhibit such dependence. An example is our own sun [33].

Our problem does not have a variational structure. Although the implicit
function theorem would seem like a natural technique, it does not work because
of the loss of regularity. Instead we use an explicit iteration and we perform
estimates in two different normed spaces in Sections 4 and 5. In order to make
optimal use of the available regularity, most of our analysis is carried out in a
bounded domain.

1.2 Euler-Poisson Model

Now we describe the main contents of the current work. We regard the star as a
compressible inviscid fluid. The basic equations are those of Euler-Poisson which
describe the conservation of mass, momentum and energy subject to self-gravity
and the transport of entropy by the fluid. The equations are:

pe+ V- (pv) =0, (1)

(pv)e + V- (pv@ V) + Vp=pVU, (2)

st +v-Vs=0, (3)
_ pa’,t) .,

U(z,t) =G . |x—x’\dm7 (4)

where p is the density, v the velocity, p the pressure, s the entropy, and G
Newton’s universal constant of gravitation. The first three equations are valid
in the region {p > 0} occupied by the star. We assume the pressure p is a
function of p and s, specifically that the star is a simple ideal gas:

p=Ke’p”, (5)

as in [9] (p.6-7), [5] (Section 3.4) and [12](p. 61-62), where K > 0 and v > 1
are constants. Note that the entropy transport equation (3) is a consequence of



the other conservation laws together with the energy conservation law:
Lo Lo
plovP+e) ) + V- (p(gVIP+e ) v) + V- (pv) =pVU v, (6)
t

e = — s y—1
y—1°"

where

-1
is the specific internal energy. For notational convenience we choose K = y—-

and G = 1 in the following, but the same results hold for any positive K ;nd
G.

Our main result states that there exists a family of rotating solutions which
are axisymmetric and even in z and which bifurcate from the non-rotating (Lane-
Emden) radial solution p® that has a radius R® and zero entropy. (See Lemma
2.1 for details of such non-rotating star solutions.) We denote by Bgro the ball
with radius R® centered at the origin on which p° is supported. In the following

9 _
theorem, let 5 € (0, min (Z, 1)) be given. The parameter x measures the
v -

intensity of rotation, and p measures the size of the floor entropy. Here floor
entropy refers to the entropy on the equatorial plane z = 0.

4
Theorem 1. Assume g <y <2, and vy # 3 Let B be an arbitrary open ball

strictly containing Bro. Let so € CYP(B N {z = 0}) be a given azisymmetric
floor entropy profile on the equatorial plane {z = 0}, and w € C*P(B) be a
given axisymmetric angular velocity profile that is even in z. Then there exists
a family of solutions (py s Swku) € [CVP(B))? for k,u > 0 sufficiently small,
which depend continuously on (k, 1) and converge to (p°,0) as (k, 1) — 0 such
that each solution satisfies the following properties.

® (PrusSk,p) 1S azisymmetric and even in z.

® (PrusSk,u) B8 a time independent solution of (1)-(5), where the velocity v
is an azisymmetric rotation with angular velocity \/r w(r, z).

o s, satisfies the floor entropy condition
Sﬁaﬂ|z:0 = HSo-

® p. . 1S nonnegative, compactly supported in B and has the same total mass
_ 0
/ Prp dx = / p- dx
B Bro

as the Lane-Emden solution.



The exceptional index v = 4/3 is excluded from the theorem. It is the mass
critical index for which all the radial Lane-Emden solutions have the identical
total mass. In this exceptional case there is a trivial curve of non-rotating
solutions which are related to each other by scaling. Moreover, in case v = 4/3
with constant entropy and angular velocity, it is shown in [32] that there does
not exist any slowly rotating solution close to a given Lane-Emden solution with
the same total mass. So in that case the local solution space is exhausted by
the trivial curve of non-rotating stars.

1.3 Related Literature

So far as we know, the only works in the literature that are related to the Euler-
Poisson equations with variable entropy are [10, 11, 26, 34, 37]. Our result differs
from them in several important ways. First of all, most of the earlier works
that considered variable entropy were essentially restricted to solving only the
divergence of the momentum equation (2) on a given domain with prescribed
entropy s, while the curl part was largely ignored. Therefore such solutions do
not necessarily satisfy the Euler-Poisson system. In fact, even if the curl part
holds, as for instance in the case of radial symmetry, in order to recover the
momentum equation from the divergence and the curl components, one would
need an extra boundary condition (different from the Dirichlet condition of p)
on the surface of the star. Without such a boundary condition, the two sides of
the momentum equation would differ by the gradient of a harmonic function.
See Section 2.1 for a more detailed discussion. This key step of going from the
divergence and the curl back to the original system seems to be missing in all
the prior works, with the exception of [37].

In [37], the author uses a variational method on an integral formulation of
the momentum equation, in a spirit analogous to the prior variational results
[3] with constant entropy. However, in order to fit variable entropy into this
framework, the author has to work with functions that are constants on a given
nested family of ellipsoids. As all the test functions for the Euler-Lagrange
variation then have fixed ellipsoidal symmetry, the solutions obtained in [37]
merely solve ellipsoidal averages of the momentum equation and do not solve
the original system.

In summary, to the best of our knowledge, Theorem 1 is the first existence
result of variable entropy rotating star solutions to the full Euler-Poisson system.
In order to obtain our result, we predetermine neither the entropy s nor the fluid
domain of the star. Both of them appear as unknowns in our formulation.

1.4 Significance of the dependence on z

Moreover, all of the above mentioned works require an angular velocity profile w
that depends only on r. In contrast, our result allows an arbitrary axisymmetric
rotation speed w that is even in z. In our opinion, when allowing variable
entropy, an w with nontrivial z-dependence presents the more interesting case,
and in a certain sense the only interesting case. In fact, as we shall see in Section



2.1, the curl of the momentum equation implies that w? depends only on r if
and only if Vs and Vp are parallel vectors everywhere. In other words, if w?
depends only on 7, then s must be constant on the level surfaces of p. This fact
is known as the Poincaré-Wavre theorem in the physics literature ([33]). If the
solution is close to a nonrotating Lane-Emden star, all level surfaces of p have
different values. In this case there exists a one-variable function f such that
s = f(p) on the fluid domain. Such a solution is called a barotrope. Therefore
the pressure p also depends only on p. Finally, we point out that the rotation
speed of our own sun depends on both 7 and z ([33]), so that our result provides
the first mathematical description in the Euler-Poisson model of our own star.

Before beginning to discuss our method, we set the convention here that
all functions dealt with in this paper are axisymmetric and are even in the z
variable. Therefore, every function space we will use is assumed to have the
above mentioned symmetry without further declaration. In particular, a C*
function V' with such symmetry will have the properties that VV'(0,0,0) = 0,
0.,V (0,0,2) =0, 9,,V(0,0,2) = 0, 9,V(x1,22,0) = 0. For the same reason,
we identify a function defined for r > 0,z > 0 with a function defined on R3
with the above mentioned symmetry without further explanation.

2 Reformulation

The main difficulties come from the presence of the nontrivial entropy. First of
all, the entropy cannot be prescribed arbitrarily but must be solved together
with the other unknowns. In fact, by taking the curl of the momentum equa-
tion, one finds that the entropy satisfies a first order transport equation whose
coefficients are given by the first derivatives of the density (or enthalpy). The z
derivative of the angular velocity comes into the transport equation as a source
term. This new transport structure highlights fundamental differences between
constant and variable entropy. For variable entropy, we are led to studying the
ensuing system of equations which is of mixed elliptic-hyperbolic type, while for
constant entropy we would be led to a purely elliptic problem. The nontrivial
coupling between the entropy and the enthalpy precludes an integral reformu-
lation.

2.1 Reduction to the Div-Curl System

As a first step to solving this problem, we must choose certain good variables
that yield a system with better structure. This is a crucial step in our analysis.
We use cylindrical coordinates (r,z) where all the functions are independent
of the cylindrical angle 6. Steady flow means that all the time derivatives in
(1)-(3) vanish. Rotation with angular velocity w means that the velocity is
v = Vkw(r, z)reg, where reg = (—x2,21,0). As a result, the mass conservation
equation (1) and the entropy transport equation (3) are automatically satisfied.



The momentum equation (2) reduces to

% =V <1 * p> + kwire,., (7)

where re, = (21, x2,0). We introduce the new variables and constant

S=e¢7, V=ptem s/ g = 1 ) (8)
) ) ,y _ 1
Then (7) takes the form
1 va
SVV =V (|| * S) + kwlre,. 9)

This equation is originally only required to hold on the fluid domain, namely
where p > 0.
However, we will look for a solution to the slightly modified equation

LoV,
SVV =V <|| * S) + Kwire,, (10)
where V; = max(V,0), in a large ball Br containing the fluid domain, where
R will be chosen later. The density p will then be recovered as VS 1
this way, the fluid domain is not prescribed in advance, but is obtained as the
positivity set of the solution V. Taking the curl and the divergence of (10), we
obtain the two scalar equations

SV, — 8.V, = —k(w?r)., (11)
Vq
V- (SVV) = 747r?+ + KV - (w?re,). (12)

We will regard (11) as a transport equation for S with coefficients given by
components of VV' and source term given by its right hand side. Although we
will treat (11) structurally as a transport equation, it has nothing directly to do
with the actual entropy transport by fluid velocity given in (3). Equation (11)
illustrates the effect of the dependence on z of the angular velocity. In fact, it
is immediately clear that any z-dependence of w implies that the entropy is not
constant.

Equation (12), on the other hand, will be treated basically as a semilinear
elliptic equation for V' with S appearing as a coefficient. However, as we will
see more clearly later, the coupling of S with V' causes the whole problem to
have a quasilinear flavor.

We have to supplement (11) and (12) with suitable boundary conditions.
The first of these is the floor entropy condition (on the equatorial plane)

S0r.0) = exp (220 ) (13)



where so(r) is the floor entropy profile which we treat as essentially arbitrary,
and p is a small parameter. We will use this condition to uniquely solve the
transport equation (11). Secondly, the bounded domain Bp is employed in order
to make maximal use of the elliptic regularity estimates. Consequently, we will
need a key boundary condition of V' on 0Bpg that will help us recover (10) from
its curl and divergence. Such a boundary condition can be much simplified if
we cut off w? and sp near dBR. Such a cut-off will have no effect to our final
solution.

2.2 Non-rotating Solution

For clarification, let us be a bit more specific about the non-rotating Lane-
Emden solution around which we perturb.

6
Lemma 2.1. Given 5 < v <2 and R® > 0, there exists a unique function V°

which is continuous on R, positive in the ball Bro and negative outside Bpo,
as well as a unique constant o such that

VY= T « (VL 4+ af (14)

in all of R3. Furthermore (Vo,ao) has the following properties: a® < 0, VO
C3P(R?), where By = min (¢ —1,1), and VO|BRO € C°°(Bgro). Furthermore,
VY is radially symmetric and strictly decreasing, and

L )

T—0t T

1

< 0. (15)

Here (V') means the radial derivative of V°.

Proof. The classical reference is Chapter IV of [7]. See also Lemmas 3.2 and 3.3
of [30]. O

Obviously V' = VY is a solution to (10) with S = 1 and s = 0. Fixing a radius
R > R°, we will perturb V° to a solution V corresponding to a rotating star.
Since V¥ is strictly negative near Bg, the support of V, will stay away from
0Bp if the perturbation is sufficiently small. The following useful observation
is obvious.

Remark 2.1. There ezists a 6 > 0 such that if |V — VO||CO(?R)< 0, then the
support of Vi is contained in B o, g .
2

In our perturbative method, V' will always stay close to VY on Bg. Therefore,
without loss of generality, we can first multiply w? and so by a smooth cutoff
function x such that x = 1 on Bgro,r and x = 0 outside B o .z, and then

solve the whole problem. Since the fluid domain will always be contained in
Bro,r, the cutoff will be invisible to the solution. In the following, we will
2



always assume that w? and so are prepared in this way, and when appropriate,
we will even extend these functions outside Bgr by zero. Such an extension is
obviously smooth as well.

2.3 Boundary Condition and Main Theorem

As we shall see in Section 3, the solution S to the transport equation (11) will
be identically equal to 1 near dBg, as a consequence of the cutoff we performed
on w? and sg. The same cutoff and (10) imply that

1 v
VV =V ( s +) (16)
H]
near 0Br. We thus obtain the key boundary condition on V:
1 v
V:H*?"—i—a on 0BR (17)

for some constant «. Note that V. will be supported on B ro,r by Remark 2.1.

2
Thus the function VZS™" that appears under the convolution in (17) can be

regarded as the zero extension from its values on Bp to R3.
Finally, we prescribe the mass constraint

ve
/ — do=M= (V94 da, (18)
BR BR
so that our rotating star will have the same mass M as the unperturbed Lane-
Emden star.
Our method to work with the div-curl system is summarized in the following
lemma.

Lemma 2.2. Let w? € C*#(Bg) and suppose that V € C*P(Bg), 0 < S €
CYP(Bg) solve (11), (12), (17). Also suppose that S =1, w = 0 in a neighbor-
hood of 0Bgr. Then s = ylogS € C**(Bg), p = VIS~ € C*P(Bg) solve (7)
and (5) in the set {p > 0}.

Proof. Let
Loy,
W =S8VV -V ﬂ*? — Kwire,
on Br. We have
VxW=ISV, -85V, + n(w2r)z]e9. (19)
V-W=V-(SVV)+4rViS™! — kV - (w’re,). (20)
By (19) and (11), W is a C'*#conservative vector field on Bg. Thus there exists

Y € C*P(Bpg) such that Vi) = W. By (20) and (12), Ay =V -W = 0. So ¢ is
harmonic on Bg. Since S = 1 and w? = 0 in a neighborhood of Bg,

vw=W:v<V—ﬁ*‘§) (21)



in the same neighborhood. By (21) and (17), the tangential derivative of ¢ on
0Bp is zero. Thus 1 is a constant on 0Bg. It follows that v is identically equal
to a constant on Br. Thus W = 0 on Bg. In other words, (10) holds on Bg. It
is now straightforward to see that (7) and (5) are equivalent to (10) under the
given change of variables where p > 0. O

Our problem is thus reduced to finding solutions of (11) and (12) subject
to the boundary data on the floor (13), (17) and the mass constraint (18) on
the large ball Br. The existence result for our reformulated div-curl system is
stated as follows.

Theorem 2. Let 59 € C*P(BrN{z = 0}) and w? € C*P(Bg) be given. There
exist € > 0, €1 > 0 such that if |k|+|u|< €1, then there exists a unique solution
(V*,a*) € C*F(Bg) x R, and S* € C#(Bg) to (11), (12), (13), (17), (18),
with [|(V*,a™) — (Vo,ao)ch,ﬁ(B—R)Xﬂgg €. Furthermore, the solution has the
properties that V' is supported on Bw, and S* = 1 outside Bg, for some

fized Ry € (Ro,R)

Theorem 1 is a direct consequence of Lemma 2.2 and Theorem 2, as we now
show.

Proof of Theorem 1: We may assume B = Bp where R > Ry. By Theorem 2,
we have a family of solutions V. , € C?#(Bg) and S, ,, € C*#(Bg) which sat-
isfy all the assumptions in Lemma 2.2. Therefore s, , = ylog S, , € Cl’ﬂ(B73)
and py, = VF?’HJFS’,;}L € CYP(Bg) solve (7) and (5) on {p > 0}. Together
with the velocity profile v = v/k w(r, z)(—x2, x1,0), it is then easy to see that
(Pr,p» S,p) 1s a time independent solution of (1)-(5) and that (py. ., Sk, ;) satisfies
all the properties in Theorem 1. O

The rest of the paper is devoted to the proof of Theorem 2. Before going
any further, we outline our strategy as well as the difficulties in the proof of
Theorem 2.

2.4 TIteration Scheme and Regularity Difficulties

Our solution to the div-curl system will be constructed as a fixed point of the
mapping F = (F1, Fz) defined as follows. We write

FilV,o, k1) =V# and Fo(V,a,k,p) = o,
where V# is the solution to the linear elliptic equation
V- (SVV#) = —4xVIS™! + kV - (w’re,) (22)
on Bp subject to the Dirichlet boundary condition

V#:i V‘E

.|*§—|—a (23)



on OBg. Here S = .#(V, k, i) is the solution to the transport equation
S, V,—-S,V, = fn(wzr)z (24)

with the equatorial boundary condition

Ksg(r)

S(r,0)=e + . (25)

Finally, we define
o =a +/V£S—1 — M. (26)

The Lane-Emden solution given in Lemma 2.1 can now be formulated as
F(V9 a0,0) = (V°aP).

Our goal is to look for (V) close to (VY,a®) solving F(V, a, s, ) = (V, a), for
given small parameters &, ;. We will work in the space (V,a) € C?#(Bg) x R
where 0 < 8 < min(¢ — 1, 1).

Most of the difficulty of the problem lies in the subtle loss of regularity
of the V-component of the mapping F, which is a consequence of the loss of
regularity in the S transport equation (24). As we will see in Section 3, since
the coefficients of the S transport terms in (24) involve first derivatives of V,
S will lose a derivative and belong only to C'1# (Br) in general. Since at most
one derivative of S appears in (22), we will be able to recover V# in exactly
the same space C%# (Br) using Schauder theory. In fact, this is one of the main
reasons we chose S and V' to be our good variables. By comparison, for instance,
if we were to use s and p as variables, the corresponding elliptic equation would
involve second derivatives of s and could not be used to recover a solution in
the same regularity space.

However, even with the choice of our good variables, F still suffers a loss of
regularity at the level of its Fréchet derivative. Of course, the natural method
to solve the perturbed fixed point problem is to apply the implicit function
theorem. Such an approach requires the existence of the Fréchet differential in
the same regularity space. If one then tries to vary V by a variation §V, the
corresponding variation 4.5 satisfies

(69), V. = (69).V, = (S +05),(6V). + (S +65).(6V)y,
which linearizes to
(08), V2 = (0S).Vy = =S, (6V) + S2(3V),.. (27)

The right hand side of (27) involves first derivatives of S, which in general
belong only to C%?(Bg). As a consequence, one can only obtain C%#(Bg)
estimates on 05. 4S5 will be smoother along the characteristics, but not so along
the transverse direction. This is not enough to recover the Fréchet differential
of F in C?#(Bg). This loss of derivative is an essential feature of the entropy

10



transport equation and cannot be remedied by discovering any hidden structure
in the problem. In fact, F does not even depend continuously on V in the space
C*P(Bg) as soon as one shifts away from the special Lane-Emden solution
V9. The essential reason is that the C” Hoélder norm is discontinuous with
respect to smooth inner variations of a C'? function, such as a horizontal shift:
f(z) = f(z+ h). As a result of (24), the characteristics along which S is
transported are level curves of V. Thus a smooth variation of V' can cause these
characteristics to be shifted horizontally, resulting in a discontinuous variation of
S in CYP(Bg). Since the first derivative of S appears in (22), the discontinuity
would be passed on to V7.

We overcome this difficulty by working directly with the standard Newton
iteration scheme (as in the proof of the implicit function theorem). For sim-
plicity, we denote by DF° the Fréchet derivative of F with respect to (V, ) at
(V°,a°,0,0). Recall that the entropy is constant (S = 1) for the Lane-Emden
solution. Thus the above mentioned loss of regularity on the Fréchet differen-
tial does not happen at this particular point in function space. We write the
equation (V,a) = F(V, e, k, 1) as

(‘/a a) - (Voa Oéo) = ‘F(‘/a a, li,[t) - ]:(Voa Oéoa Oa 0)7
and further as

(V-V%a-a’) -~ DF(V -V a-a
= F(V,a,k,p1) — F(V°,a°0,0) = DFO(V = V% a — a?).

At this point, we will show invertibility of I — DF°. This step is fairly non-
trivial, as it amounts to working with an elliptic operator with an unfavorable
sign for the maximum principle. Inverting I — DF°, we obtain

(V-V%a—-a
= (I - DF)'YFV,a,k,pu) — F(V°a®0,0) = DFO(V — V% a—a)]. (28)

As is explained above, we will not attempt to show that the right hand side
of (28) is a contraction in C?#(Bg) x R (as is commonly done in the proof
of the implicit function theorem). Instead, we produce a sequence (V,, a;,) of
approximate solutions by iterating the right hand side of (28), and show that:

(1) The sequence is uniformly bounded and remains near (V9,a) in the space
C*#(Bg) x R.

(i1) (Vg1 — Vi, ang1 — @) contracts in the weaker space Cl’ﬂ(?R) xR asn
grows.

Note that the loss of derivative of 65 in (27) described above can now be toler-
ated if the goal is to only get the weaker C1#(Bg) estimates on V41 — V,,. We
will then combine the smooth norm estimates with the rough ones using inter-
polation of Holder norms, and conclude that the iteration sequence converges

11



in C27 (Br) x R for some 0 < 8 < 3, which will be enough to get a solution
to our problem.

The whole problem is of quasilinear type, because S has the same regularity
as VV | which then appears as the coefficient of the second order elliptic term in
(22). Of course, first derivatives of S also appear in (22), which seem like fully
nonlinear combinations of second derivatives of V. However, when the solutions
are close to Lane-Emden, the first derivatives of S are small in size, and can
be absorbed by the main elliptic term. The method of combining estimates
of smooth norms with rough norms may also prove useful in treating other
quasilinear hyperbolic problems.

2.5 Outline of Paper

The rest of the paper will be organized as follows. In Section 3, we obtain the
CY#(Bpg) estimates on S by solving (24) using the method of characteristics.
Although the solution is easy to write down formally, one cannot automatically
get the required estimates, since the characteristic vector field is degenerate near
the origin. In order to properly estimate S near the origin, we must prove certain
weighted Holder estimates on the characteristic coordinates. This makes Section
3 rather technical. In Section 4, we prove the invertibility of the linearized
operator at the Lane-Emden solution and then construct the iteration map
using this inverse. In Section 5, we prove convergence of the iteration scheme
in C>F (Br) x R for any 0 < 8’ < f3, by first showing uniform boundedness
of the smooth norms, and then showing contraction of the rough norms of the
iteration sequence. We also show eventually that the solution thus obtained
actually lies in the smoother space C2#(Bg), and is unique.

3 Entropy Estimates

In this section, we derive the C1#(Bp) estimates for S via the method of char-
acteristics. It is immediate from (24) that the characteristics are the level curves
of V. A minor problem arises when one tries to solve (24) with boundary condi-
tion (25). When V is perturbed away from V', some of the characteristics near
OBgr may end on 0B and not on {z = 0}. In this case, the boundary data (25)
on the equatorial plane is not enough to uniquely determine S. To avoid such
ambiguity in the definition of S, we solve (24) in a slightly larger ball.

First of all, as in Lemma 2.1, we regard V° as defined not only on B, but on
the entire space R®. A function V € C%P(Bg) defined on By can be extended
to Bry1 in the following way. Let

E:C*P(Bg) —» C*#(Bry1)

be a bounded linear extension operator such that the support of Eu is contained
in Bp, 1 forall u € C?P(Bgr). We extend V by

Vet = VY + E(V = V9.

12



Such an extended V has the property that if ||V — Voch,B(BfR)< d, then

Vext — VO||CQ,L;(W)< 26 and Vi =V on Bryy \BRJF%.

Slightly abusing the notation, we still denote Vg by V. As is explained in
the discussion following Lemma 2.1, so and w? can be regarded as defined on
Bpryti. Then we define S to be the solution to (24) and (25) on Bryi. Since
V =V outside B +1, none of the characteristics will penetrate 0Bpr11, and S
is uniquely defined.

We are now ready to state the main result of this section.

Theorem 3. Fiz 3 € (0,1). Let w? and sy be prepared as above. Assume
50 € CYP(Brii N{z=0}) and w? € C*P(Br;.).

(i) Then there exists 6 > 0 such that for every V with ||V — VO||Cz,g(?R)< g,
and extended to Bry1 as explained above, the equations (24), (25) admit a
unique solution S € CY#(Bry1). Moreover, there is a radius Ry € (R°, R) such
that S(r,z) =1 for |(r,z)|> R1.

(11) If |k|+|p|< 1, then there exists a constant C > 0 such that the function
S satisfies

R pp——CT Y (29)

In order to prove Theorem 3, we will of course construct the solution S

by the method of characteristics. The characteristic ODEs associated with the
transport equation (24) are given by

O (t.7) = Valr(t, ), 2(8, 7)),

t
_ 30
a(taT) - _‘/T(T(taT)7Z(taT))7 ( )
r(0,7) =7, 2(0,7) = 0.

We are using t as a parameter along the characteristic curves and 7 as a label
of the individual curves. (¢ has nothing to do with time.) These characteristic
equations define a mapping ¢ : (t,7) — (r, 2).

The remainder of Section 3 constitutes the proof of Theorem 3. It involves
technical estimates of S by using the characteristic coordinates (¢, 7). They may
be skipped on first reading if the reader is only interested in the main existence
proof.

3.1 Characteristic Coordinates
We now construct the characteristic coordinates on
Q:BR+10{T>0,Z>O}7 (31)

which amounts to the construction of the diffeomorphism which maps a proper
open set in (¢,7) coordinates onto €. We will consistently use ||| and |-||x,s
to denote the C*(Bg) and C**(Bg) norms. We begin by constructing the
mapping ¢ on a precise set.
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Proposition 3.1. There exists § > 0 sufficiently small such that, for any func-
tion V. for which ||V — V°||3< 8, there exists an open subset O C {(t,7) | t >
0,0 < 7 < R+1} and a C* diffeomorphism ¢ : O — Q such that (r(t, 1), z(t,T)) =
g?)(t,T) extends to a C* map on O\ {r = 0}, and solves (30).

We will prove this proposition by means of a few lemmas. We first write
down the trivial coordinates (1, 2°) induced by the nonrotating V°.
Lemma 3.1. Let (r°(t,7),2°(t,7)) = ¢°(t,7) be the solution to (30) for the
function V.= VOo(\/r2 + 22). Then
0y/ t VO i t
(r(t,7), 208, 7)) = 7 (Cos <—(V V(@) ) ,sin <—( V() >) (32)

T T

with its corresponding domain

0_ 1 T
(0] {(t,r),0<r<R+ ’0<t<—2(V0)/(T)

In particular, |¢°(t, 7)|= 7.

Proof. Since VO(r,z) = VO(/r2 + 22), we can easily check that (30) leads to
e [(r°)? + (2°)?] = 0, which in turn implies (r°)*+(z%)* = 7°. Hence r(t,7) =

TcosO(t) and 2°(t, 7) = 7sin O(t) for some O(t). The first equation of (30) gives
0y/ 0y’
O VO gince 100, 7) = 7, 9(0) = 0. Thus o) = — LDy 1y
dt T T
0,0

T
order to cover the first quadrant in r°, 2° coordinates, we want 0 < 6(t) < 3

This verifies the domain O° specified above. The last assertion trivially follows
from ()% 4 (%)% = 72 O

For general V, the domain will be distorted from O°. For convenience, we
will actually construct the map ¢ to a slightly extended domain O® such that
o(t,7) = (r(t,7), 2(t, 7)) solves (30). To this end, we define

T T T
0% =< (¢t 0 R+1,—<t< —————+ —
{(,r), <T<R+1, 1 < <—2(V0)'(7)+4a}
where oy
a= sup 7_( )'(7) >0
0<T<R+1 T
by Lemma 2.1.

Lemma 3.2. Define ¢ to be the solution to (30). Then ¢ is a C* map on O%,
with a range avoiding the third quadrant, and there exists a constant C > 0 such
that for (t,7), (t1,7), (t2, 7), (t,71), (¢, 72) € O,

|¢(t77-) - ¢O(t, 7-)|§ C”V - V0||2t7-7 (33)
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|¢(t177—) - ¢0(t177—) - ¢(t277—) + ¢O(t277—)|
< C”V*V0”2|¢O(t137) 7¢O(t277)|7 (34)

lp(t, 1) — 8O(t, 1) — (t, 72) + ¢°(t, 72)|
<OV = VO a|g®(t, 1) — ¢°(t, 7). (35)

Remark 3.1. Lemma 3.2 concerns solutions to (30) starting at (7,0), but sim-
ilar estimates hold for solutions starting at a general point (r,z) in O%.

Remark 3.2. An obvious consequence of (33) is that

T S BT (L4 OO (36)

when ||V —VO|2< 6.

Proof. We begin by noting that the solution to (30) is defined for all ¢ if 0 <
T < R+ 1, because the characteristics are confined to a compact region Bry1.
¢ is a C' map as VV € C'. We denote ¢° = (r?, 2).

Proof of (33). Writing

r r0
O 1) = 2 (t7) = Vil 2) — (V0.0 29)

ot
=V.(r,z) — VZ(TO, zo) + (V- VO)Z(TO,ZO),

z 20
a—(tﬂ') — a—(t,T) =V.(r,z) — (VO)T(TO, zo)

ot ot
= VT(Ta Z) - V;“(TO7 ZO) + (V - Vo)r(rovzo)y

and V(V =V (r° 2% = V(V -V, 2°) =V (V -V)(0,0), we can integrate
and estimate

6(t,7) — 6°(t,7)] < 2|Vl / 16(5,7) — ¢°(s,7)| dt

t
2V =V [ 16,7 d. (37
0
By Gronwall’s inequality, this implies
|6(t,7) = " (¢, 7)|< 221V I |V = VO|ort < OV — VO|art. (38)

Here we have used |¢°(s, 7)|= 7 as shown in Lemma 3.1.
Proof of (34). We write

2 (r(t.r) = 1°(t.7) — (b1, 7) + 101, 7)
—V(r2) — (V0.0
Vir2) — Vel (V - VO, ),

15



g (z(t,T) - zo(t,T) —2(t1,7) + zo(tl,'r))
= Vy(r,2) = (V9),(r, 20)
= Vi(r,2) = Vi (r%,2°) + (V = V9),.(+°, 20),
and use
[VV(r,2) = VV (1, 20)] < [V ]lalp(t, 7) = ¢°(t, )|
< ||VH2|¢(t’ T) - (bo(t’T) - (b(tlvT) + ¢0(t1,T)|
+ ||VH2|¢(t17T) - ¢0(t137)|

< |Vlalo(t,7) = 8°(t, 1) — d(t1,7) + ¢°(t1, 7)]
F OV = VO|or.

Here we have used (33) on the last term. As a consequence,
|6(t,7) = ¢°(t,7) — d(t1,7) + ¢°(t1,7)]
< CIIVllz/tt|¢(8,T) = ¢%(s,7) = ¢(t1,7) + ¢"(t1,7)| ds
1
+ OV = VOar(t — t1).
Now we use Gronwall on [tq, 2] to get

|¢(t177—) - ¢O(t1a7—) - ¢(t277—) + ¢O(t2a7—)|
< OV =V ar(ty — t1). (39)

Finally, observe that the range of ¢1,t3 and (32) imply
T(ta —t1) < C19°(t1,7) — ¢°(t2,7)|, (40)

and the proof of (34) is complete.
Proof of (35). To prove (35), we consider the equations satisfied by ¢,

87’:;— = ‘/zr(rv Z)T‘r + sz(rv 2)2’7-7
% = —an(’/’, Z)TT - Vrz(ra Z)ZT7 <41)

r-(0,7) =1, z-(0,7) =0,

and similar equations satisfied by ¢2 with V' replacing V. Taking differences
of the ¢, equations and ¢ equations as before, we get
9 0 0 0
57 (9r(6,7) = 65, 7)) | < ClIVl2lér — $21+CIV = V72
+C[VO3l¢ — ¢°|
< CV2lér = @2+CIIV = VO|la. (42)
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Here we have used (33) to absorb the last term by the second term. We integrate
and use Gronwall as before to conclude

o (t,7) = @2(t, 7)< CIV = V2. (43)
We integrate in 7 on [r1, 72] to get
o(t, 1) — O(t, 1) — (t, 72) + ¢°(t, 72)|< CIIV = VO|o| 11 — 7.

Finally observing
71— 72| < @0t 1) — ¢°(t, 72)|

completes the proof. O

Proof of Proposition 3.1. First we will show that ¢ is one-to-one on O%;
secondly we will show that ¢(O®) covers € ; and finally we will show that ¢ has
non-zero Jacobian on O%. Then we will just define ¢ to be the restriction of ¢

to ¢~ 1(Q).

Step 1: ¢ is 1-1 on O%. We begin by observing that ¢(t1,71) # ¢(t2, 72) when-
ever 71 # To. Suppose this were false and t; > to. Then ¢(t1,71) = ¢(t2, T2),
71 # 7o and t; > ty. Tracing the solution backwards in ¢, we would have
o(t; — to,71) = ¢(0,72) = (12,0) for t; —to > 0. This is not possible, because
the solution never enters the third quadrant of the (r, z) plane and can only go
from the fourth quadrant to the first quadrant by the positivity of —V,. on the
positive r-axis. To see the latter fact, write V,, = (V°), +(V —V?), and observe
0y’
that  inf M
0<r<R+1 r

> 0 and

(V= VO (r,0)[= [(V = V) (r,0) = (V = V) (0,0)[< [V = VOlar. (44)

Thus
—Vi(r,0) >0 for0<r<R+1 (45)

if |V — V| is sufficiently small.
Now we consider ¢(t1,7) and ¢(te,7) with ¢t; # t2. We obviously have
#°(t1,7) # ¢°(t2, 7). Inequality (34) now implies ¢(t1,7) # ¢(ta, 7).

Step 2: Q C $(0*). We pick (1, z0) € Q. Let 19 = /72 4 22. Denote the polar
coordinates of (rg, z9) by (70,6p). We solve the ODE in (30) backwards in ¢
ﬁ + 81a’ with initial value at (79,60). If
V = VO the solution reaches the final point with polar coordinates (70,0f) =
_ 0V/ _ VO /

Mi). Note that since  inf —07))
To 8a 0<T<R+1 T

for an interval of length ¢y =

(10, — = b > 0, we have

b
|60¢|> g— We now use Remark 3.1 and use a modified version of (33) with
a

starting point at (79, 60p) to conclude that for a general V', we have

|(r, 2)(—to) — 7o(cos b, sin )| < C|[V — VO||2-7o. (46)
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Together with the lower bound on ||, this implies that (r,z)(—tp) is in the
fourth quadrant, as long as ||V — V°| is sufficiently small. Since the only way
to enter the fourth quadrant is to pass the positive r-axis, we conclude that the
solution (r, z)(t) must intersect the segment 0 < r < R+ 1 at some value r = 7y
for some t = —t; € (—tp,0). By uniqueness, ¢(t1,71) = (0, 20). It remains to
show that (¢1,7) € O%. In fact, we use Remark 3.1 again to get

|(11,0) — To(cos 0y, sin 1) |< C|V — VO|lo-70, (47)
where 6, is the polar angle of (r,2)(—t;) when V = V. This implies
[T = m|< CIIV = VO (48)
By the smoothness of V°, we have

(VO;?(TO) - (VO;—}(Tl) < Clro —n|< CIV = V5. (49)

‘We now note that

T ™ T s
+— <OV - VOHQ+_2 !

i
O<h<to< o) T8 = V() " 8a

T T

AT o

provided ||V — V|5 is sufficiently small. Thus (t;,71) € O

Step 3: ¢ has non-zero Jacobian on O®. We now compute the Jacobian of ¢ (¢, 7) =

(r(t, 1), z(t,7)).

rize — ez = Va(r(t,7), 2(6,7)) 27 + Vo(r(t,7), 2(t,7))7,

) (51)
dr
On the other hand,
d
%V(r(t,T),z(t,T)) =Viry + Vo2, = V.V, -V, V, =0, (52)
so that
V(r(t,7),2(t,7)) = V(r(0,7),2(0,7)) = V(,0). (53)
Thus d
TeZy — Tr2p = d—V(r(t,T), z(t,7)) = V.(1,0) <0 (54)
T
by (45). We finish the proof by defining O = ¢~ (Q), and b= dlo- O

Our next task is to derive some Hoélder type estimates of the first derivatives
of the characteristic coordinates.
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3.2 Regularity of the Characteristics

Lemma 3.3. Fiz 3 € (0,1). Let |[V—V"||2.5 be sufficiently small and ¢ : O — Q
be the diffeomorphism given in Proposition 3.1 and let (t,7), (t1,71), (t2,72) € O,
(r,2), (r1,21), (12, 22) € Q. Denote ¢~ (r,2) = (t(r,2),7(r,2)). There exists a
constant C' > 0 such that

|¢t(t7 T)IS CT7 M)T(ta T)|S Ca (55)
IVWWMSWJL%,WﬂnﬂSC- (56)
162 (t1,71) — s (b2, m2)|< C|ts — talHr1 — 7al?), (57)

1 1
\ﬁ@mmn—ﬁ@wmwscwr%#ﬂn—mm, (58)

| + 22) 5V t(r1, 21) — (13 + 23) 5 Vit(ra, 22)|< Cl(r1, 21) — (2, 22) [, (59)
‘(7“% + Z%)QVT(Tl,Zl) - (7”5 + ZS)QVT(T27Z2)‘ < C|(r1,21) — (7“2,22)|ﬁ (60)
Proof. Proof of (55). By (30) and (36),
¢e(t, 7)< [V][2lo(t, 7)< ClIV |27

The bound on ¢, is easily obtained from (41). In fact, (43) gives such a bound.
Proof of (56). To estimate V¢!, we note that
Zr —r,

tr = ) tZ = I (61)
T2 — Tr 2t Tty —Tr2t

—Zt Tt
T = , Ty = . (62)
Tier — T2t TtZr — T+ 2t

Let us estimate t,. First recall (54) and write

Zr 1
fy= T~ 63
v, (r,0)7 (63)
Now |z, |< C by (55), and since (V. — V,?)(0,0) = 0,
1 %), !
Wm0 = L0 [ =m0 s
T T 0
Thus v -
(7,0 #(7,0
T T
(10
Since  inf =) (n.0) = b > 0, we have VT(T’O)‘ > b > 0 when ||V —
0<T<R+1 T T 2
V95 is sufficiently small. We deduce from (63), (55) and (36) that
C c C
< = < = . 65
s S B T v (65)
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The expressions t,, 7., T, can be estimated similarly. The only difference for
Tr, T» is that the numerators in (62) involve ¢;, which can be estimated with an
extra factor of 7, as is seen in (55).

Proof of (57). We next obtain Hélder estimates of the first derivatives of ¢ and
¢~ 1. It is easy to see that one just needs to prove it first for the case 71 = 7o,

then for the case t; = to. Assuming for the moment that m, = 75 = 7, we note
ta

that ¢, (t2,7) — ¢r(t1,7) = oir(s,7)ds and use (41) for ¢y to get

t1
o7 (t2,7) — @7 (t1, TS [V 2l @7 llolt2 — ta|< Clta — ta].
We assume t; = ¢t =t and use (41) again to get

0

5 (6rlt.70) = 6, (6.72)| < VIl (t.7) = 6. (072)

+ ||V||2,ﬁ|¢(t7 7_1) - ¢(t77—2)|ﬁ
< |[Vll2|¢r (¢ 1) — @7 (t, 72)]
+C|Va,5lm — 72|

Here the bound on ¢(t,71) — ¢(t,72) can be obtained by using (55) as

(8, 71) — o(t, T2)|=

< C|my — 72l

/T " ety )ds

Now we integrate and use Gronwall to conclude

‘d)T(t’Tl) - ¢T(t77-2)|§ O|Tl - 72‘ﬁ~

This proves (57).
Proof of (58). Let us now compute

Lr(t7) = VL(6(1,7)
1
- / [Ver(8(t,57)) (£ 57) + Vel 6(t, 57) 2 (1, 57)] ds,  (66)
0
for which we used V,(¢(¢,0)) = 0. It follows that
%Tt(tlle) - %Tt(t277—2)

= /O [‘/ZT(¢(t17 571))T7(t17 57—1) - ‘/ZT(QS(t% 572))T7(t27 57—2)] ds

+/ Voo (P(t1, 871)) 2, (t1, 871) — Veo(0(ta, s72)) 27 (t2, $T2)] ds,
0
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We can write similar expressions for %zt. Inequality (58) now follows from the
following estimates:
V2V ((t1,5m1)) = V2V (b2, 572))| < |[Vl2,5]¢(t1, 571) — (b2, 572)[°
< C[Vellg(Itr = ta|+m1 —7))"
< C(|tr = tal+|m = 7)),
¢+ (t,s7)] < C,
|67 (t1, 571) — b7 (b2, 572)| < C([ts — to|+|m1 — 72”).

Note that the last estimate above is the previously proven (57).
Proof of (59). We now recall (63) to get

1+ (r? + 2’2)# 27

p I Vir(57,0) ds’

Denoting by (t;,7;) = ¢~ *(rs, ), i = 1,2, we have

(r} + ) (1, 2) = (8 4+ 23) % (12, 2)
_ ot )P () et )M 2 (te,T)
T1 fol Vir(871,0) ds T2 fo Vir(872,0) ds
_ oty m)['+? zr(t, 1)  z(t2,T2)
Ty fol Vir(871,0) ds fol Vir(872,0) ds
27 (t2, 72) <¢(t1,71)|1+ﬁ _ ¢(f2,72)|1+5>
fol Vyr(872,0) ds Ti T2
To estimate (68), we use (36) for the size of ¢(t1,71), (55), (57) for z,(t1,71) —

zr(t2, 72), and Holder estimates on V.. for the integrand to infer that the size
of (68) is bounded by

(68)

(69)

Crl ([t1 — ta|+|m1 — m/7). (70)

1
Without loss of generality, assume 0 < |(r1,21)|< [(re,22)]. If §|(r2,22)\§
[(r1,21)|< |(re, 22)|, use (36), (56) to deduce that (70) is bounded by

C3+23)* <212(7’1’21) — (r2, 22)[+|(r1, 21) — (7‘2’22)|B>

ri + 21
r1,21) — (r2,22)|' 77
< C(Tlazl)(T2722)|ﬂ(|( |(21 z(1)|1—5) +|(7’1a21)|ﬁ>
< O|(r1,21) — (12, 22) . (71)

1
It [(ry, 21)|< 5\(7’2,22”, then |(r1,21)|< |(r1,21) — (72, 22)|- In this case, (70) is
bounded by

C|(r1,20) P (14 (71, 21) — (r2, 22)|°) < C|(r1,21) — (r2, 22)|°.

21



1
Next we estimate the terms in the parentheses of (69). If 5|(r2, 22)|< |(71, 21)|<

[(ra, 22)|, we write them as

148_ 148 _
(71, 21)] (12, 22)] T |(ra, 2) A 22T (72)
71 T1T2

which can be bounded by
c (|(7‘1721)|5|(7"1’Z1) — (r2, 22| n |(r1,21) — (7“2,Z2)>

(s, 20) (2, 22) 15
r,21) — (1o, 29)|7 4
< Oltrs, ) — (ra, 2P 2 |(7)‘1,z(1)71’_2)|
< C|(r1,21) — (12, 22)|°. -

1
If |(r1, 21)|< §|(r2, 29)|, the terms in the parentheses of (69) is bounded by

C (|(r1, 21)|7+(r2, 22)°) < Cl(r2,22)[°< C|(r1, 21) — (72, 22)[°.

The proof of (59) for ¢, is now complete. The estimates on ¢, are completely
analogous.
Proof of (60). We write

e (74)

Jo Ver(s7,0) ds

(24 22) 37 (r,2) = (17 + 2%)%

and estimate as before. We only have to use (58) to replace (57) in the argument.
O

3.3 Weighted Holder spaces and S estimates

To facilitate the proof of Theorem 3, we introduce the following weighted Holder
spaces. For simplicity we denote (r,z) by x. Given 8 € (0,1), k € R, for a
continuous function f on By, we define the norms

2" P f (@) = |y* P fy)
[ fllgos=sup z|*|f(x)[+  sup | 2 |
(k) zeBpg z,yEBR,x#y ‘I - y|

(75)

lloos= sup lefFlf @)+ sup  min(left?, |yt+oy L@ ZIW - g
(k] z€BR z,yEBR,x#Y ‘3? - y|6

The spaces C?,;? and C’[Ok’]ﬁ are defined accordingly as sets of continuous functions
with finite norms. We may now reformulate (56), (59), (60) as

VteChy, Ve (77)

The spaces C(Olf and C[Ok’]'e actually coincide, as we show in the next lemma.
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Lemma 3.4. For each k, there exists a constant C > 0 such that

1
— < < .
&1 llcos < 1Flcas < Cllflons (78)

Proof. First consider the case that k+ 8 > 0. Assume x,y are in the first octant
and |z|< |y| without loss of generality, so that min(|z|*+2, |y|*™7) = |z|F*T7. We
estimate

2| P f () — |y[*TP f (y)

|z —yl?
_ B - S) | 1) (el )
|z —yl? |z —y|?
= (I) + (II)
We have
11 Wflleg

it < <y,

[f@)lyl* P — ]

iy T—T < C sup [yl )]

Yy R
ly
If |z|< U
o< 5

|y|k+’8 k

< Clf W)= 5~ < C sup [yl*|f(y)l-
‘y| yEBR

These estimates imply || f||0.6< C| f|lo0.6. The case when k4§ < 0 can be
(k) (K]

estimated in a similar way by just assuming |z|> |y| in the above estimates
instead.

Let us now focus on the reverse direction and assume k + S > 0 again.
Assuming |z|< |y| without loss of generality, we write

|k+/3 f(l‘) — f(y)

x
| jz —yl?
_ @) — P fy) | F ) (TPl
|z —yl? |z —yl?
= (I) + (II).
Obviously
1< 5
1< 17 lgss
and (II) can be estimated as above. The case k + 5 < 0 is analogous. O

The weighted Holder spaces C?If enjoy the following algebraic property,
which will be useful for the Holder estimates of the entropy.
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Lemma 3.5. For given 8 € (0,1), k,l € R, there exists a constant C > 0 such
that

< .
IFgllce, < Clifllcgelgllcne (79)
Proof. One obviously has
|lz[** f(2)g(@)| < sup [x|*|f(2)[- sup |2|'|g(z)].
rEBR r€EBR

On the other hand, for z,y € Bgr, © # v,
|z[FHHHE fa)g(x) — y[* P f(y)g(y)
|z —yl?
_ 2" f (@) (]2 P g () — [y g () N yl'g(y) (J2[*7 f (@) = [y|**7 f(y))
|z =yl |z —yl?

lylP —|a]?
+ |$|kf($)|y|lg(y)w~

It is obvious that every term in the above sum is bounded by C/||f|| 50.5 ||l 0.5
*) 0

We are now prepared to prove Theorem 3.

Proof of Theorem 3. Note the obvious bound |[VS|o < [[VS| 06 . Thus
8

the key in the following proof is to obtain C?’_%) estimates on V.S. Indeed, it is
easy to see that the unique solution S to (24), (25) is given by

S((t, ) = 57—k / (WPr).(B(t', 7)) dt". (20)

Since k appears as a linear coefficient in (80) and the same is true for p in the

estimate |el“+m — 1|< Clul|so(7) /7| for bounded sg, it will only be necessary
to provide uniform estimates on sy and on the integral in (80). Thus (29) will
be a consequence of such estimates.

More specifically, (80) defines .S in the first quadrant, while the values of S in
the other quadrants are determined by symmetry. We observe that S(r,z) =1
near the boundary o(f) Bpg. In fact, by the set up of T heorergl 3 we know that
so(T) =0 for 7 > w, w?(r,z) = 0 for /72 + 22 > M, while (36)

o 6 6
implies that

2R0—|—4RT < ol 7)< RO +5R .
RO +5R ’ 2RO + 4R

if |V — V9 g2< § is sufficiently small. Now if /72 + 22 = |¢(t,7)|> R, =

(81)

R+ 5R 2R% + 4R 2R + 4R 2R° + 4R
—— ., th > d |o(t — R =
6 5 enT > R0+5R 1 6 , all ‘¢( aT)|> R0+5R 1

2R% + 4R
T—i—' As a consequence, we see that S(r,z) =1 for \/r2 + 22 > R;.
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By Proposition 3.1, ¢ is a C' diffeomorphism. Thus S(r, z) is obviously C*
on §2. We will now obtain Holder estimates for the first derivatives. We only
show details for the r-derivative because the z-derivative is analogous.

Sr(r, 2)
= ueusof(f) so(T)7r (82)
— w(wW?r). (1, 2)t, (83)

— KTp /0 [(W2T)z'r'(¢(t,7 T))T‘r(tlv T) + (w2r)zz(¢(t/7 T))ZT(t/’ 7—)] dt'. (84)

We estimate each term one by one. First of all,

pso(T(r1,21)) pusg(r(rg,z3))

‘e ¥ —e v SC||86||0||VTH()|(T1721)_(7’2,32)‘

< O|(r1,21) — (12, 22)|

by (56). Thus e C%'(Bg). By (77) and Lemma 3.5, we only need to
bound sg(7(r, z)) in C’?’_ﬂﬂ) in order to estimate (82). Indeed, since s;(0) = 0,
B
LU
(2 + %)%

_B
(2 +2%) 72 [s(7(r, 2))I< lIsoll1.e

by (81), and

|s6(T(r1,21)) — s5(7(ra, 22))| < Cllsoll1,sIVTl5(r1, 21) — (72, 22)|°
< C|(r1,21) — (ra, 22)[P.

In order to estimate (83), we must bound (w?r), in C?Bl 5y, s can be seen
from (77) and Lemma 3.5. By Lemma 3.4, we may compute the C[O_’Bl_ ) horm
of (w?r), instead. In fact, we show that it belongs to CO ! | C C'[ 1—p)» as follows.
_ rvr2 4+ 22
|(r, 2)| 72| (w?)=(r, 2)r|< lw? 2 =55 < C.

r2 422 =
Let 72 4 27 > r3 4 23.

|- | )2(r1, 21)r1 — (w?), (7"2722)7”2|

| Tlvzl) (T2722)‘

< (P +2D) 7 V3|w?) 24/ i+ 23

< C.

(71, 21)

Now to estimate (84), we must bound the integral term in C( )" Indeed,

(@) (@, IS w22l é(t, 7(r, 2))|< Cr(r,2) < Cl(r2)| - (85)
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by (81). The same estimate holds for (w?r)... Together with (55), this implies
that the integral in (84) is bounded by C|(r, z)|< C|(r, 2)|”.

We now turn to the Holder estimate on the integral. Denote (¢;,7;) =
¢ H(riyzi), i = 1,2. We assume |(r,21)|< |(r2, 22)| and write

/0 1[(w27")zr(¢(t/»ﬁ))rr(t/,71) + (W) (B, 71)) 2 (', 71)) dt!
a /0 2[(w27")z7'(¢(t/7 7—2))TT(t/a7—2) + (WQT)ZZ(Qb(t/a72))Z7(t/772)] dt’

- /1[(w27")zr(¢(t'»Tl))rr(t’,ﬁ) + (W) (ot 1)z (' )] dt! (86)

+/0 2 [<w2r)zr((/l)(t/7 Tl))r‘r(t/aTl) - <w2r)zr((/l)(t/a 72)>r7(t/a7-2) (87)
+ (W) (@, 1))z (', 1) = (W) (S, 72)) 27 (), m2)] dt'. (88)
By (85) and a similar estimate on (w?r).., (86) is bounded by

(11, 21) — (12, 22)
(1, 21)]

C|(r1,z1)|[t1 — t2| < C|(r1,72)] < C|(r1,21) — (re, 22)|

where we have used (56) to estimate V¢. Now we write the integrand of (87) as

[(W?r)ar(O(t', 1)) = (WPr)ar(S(t, 7)) (', 72) (89)
+ (@r)ar (@t 7)) (', 1) = o (8, 72))- (90)
By (55) and (56), we deduce that (89) is bounded by

o ll2,6l167 1621V Tl 1 (1, 21) = (ra, 22)1° < C|(r1, 21) = (r2, 22)].
Also, by (85), (57), (56), we obtain that (90) is bounded by
C|(r1,20)lIm1 = 72/’ < ClIVT[§](r1, 21) = (1, 22)P< C(r1, 21) = (2, 20) .

Thus we conclude that (87) is bounded by C|(r1,21) — (r2, 22)|®. Similar esti-
mates can be obtained for (88). We have shown that the integral in (84) is in
C'(Ofe), and we have completed the C!? estimates of S on Br N {r >0,z > 0}.

Finally, in order to extend the C*# estimates of S to Bg, we must show
that S,.(0,2) = 0, S.(r,0) = 0. In fact, by (30), (54), (62),

Vi(r,2)

(2 = T 0

So for > 0 V.(0.2)
r(Y, 2
r 07 === =0
09 60.2.0)
by the axisymmetry of V. On the other hand, we obviously have (w?r).(0,z) =
0. The formula of S, given by (82), (83), (84) now shows that S,.(0, z) = 0. The

proof that S,(r,0) = 0 is similar. O
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4 Construction of the Iteration Map

Recall the definition of the mapping F in Section 2.4. The next lemma estab-
lishes the basic properties of F.

Lemma 4.1. Let 8 € (0,min(g,1)), so € CY?(Br N {z = 0}), and w? €
C%*P(Bgr). Then there exist ko > 0, po > 0 and a neighborhood Bs(V°) of
VO in C*P(Bg) such that F maps Bs(V®) x R x (—ko, ko) X (—po, ko) into a
bounded subset of C%P(Bg) x R.

Proof. We let Bs(V°) be the neighborhood of V° in C*#(By) specified in The-
orem 3. By that theorem, for each V' € Bs (V") there exists a unique solution
S € CYP(Bg) to (24) and (25). We fix such a pair V and S.

We have to show that (i) the solution V# to (22), (23) exists, is unique and

€ C*8(Bg) and (ii) o given in (26) is a well-defined finite number. The
latter claim (ii) is clear since V{S™! is integrable. To verify (i), we invoke the
Schauder theory for second-order linear elliptic equations. By (29), if we limit
ko and po suitably, then S € C14 (Bgr) is bounded away from 0, the function

—_ 1

—4nVIS™ 4KV (w?re,) belongs to C%P(Bg), and the function H*(VES*I)Jra
belongs to C*#(Bp). By Corollary 6.9 of [15], the Dirichlet problem (22), (23)
has a unique solution V# € 02 (Bpg) whose C*# norm depends only on ||S|| 3,
IV la,5 and flo?[l2 . 0

In the next lemma we estimate a typical semilinear term in a Hoélder norm.

Lemma 4.2. Let U,V € CY(Bg) and |[V|1< 1. Let g € CYP1([0, |U||o+1]) for
some 0 < B < p1 < 1. Then there is a constant C > 0 such that

lg(U +V) = g(U) = ¢ @)Vllo < llglhe Vg, (91)
lg(U +V) = g(U) = ¢ @)Vllo,s < Cligllus, I0IL+12 Vg™ " (92)

Proof. Since g € C*, we can write

(9(U +V) = g(U) — ¢’ / U+ V) — g (U))(x) dt - V(x)
I

Since |U + ¢V | o< ||U|lo+1 for |V][1< 1, we have
I7llo< llglh, s, V115" (94)
so that (91) follows. Also

U +V)—g(U) — g (U)V]os < o
< [o,s

0o[Vlo,s
AlVIE V]es.  (95)
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To estimate [I]o g, we compute

1
[(z) = I(y)| = ‘/0 lg'(U(z) +tV(x)) — g (Uly) + tV(y))] dt

—[g'(U(2)) = ' (U(y))]

< gl (U(2) + V(@) = Uly) = tV ()" +|U(2) = U(y)|™)
< Cliglus (IUILAHIV D)™ |2 — y|7. (96)

On the other hand,
H(2) = I(y)|< 2 ]lo< 2[lglls Vo' (97)

Since 8 < (1, we can interpolate between (96) and (97) to get

(@) = I(y)|< Clgllus, WU +IVID |z =yl VT (98)

Thus
o6 < Cligllus, (I0IL+1)2 Vg7, (99)
and (92) follows from (95). O

Next we show that the mapping F is Fréchet differentiable and also that
I — DF is invertible in case kK = u = 0.
6 4
Lemma 4.3. Let 5 <y <2 v # 3 Fiz 8 € (0,min(q—1,1)). Then

F(V,a,0,0) is Fréchet differentiable with respect to (V,a) on C*P(Bg) x R,
and
A=TI-Dwy,,FVa’0,0) (100)

is invertible with a bounded inverse. Furthermore, A1 s also bounded in the
CI’B(BR) x R norm, that is,

1AV 60) | o1, 5y xS I8V, 00) | 7y e (101)

for all (3V,da) € C*#(Bg) x R.

Proof. Tt is easy to see from (24) and (25) that S =1 in case k = y = 0. Thus
by (22), (23), (26), (V¥ o) = F(V,a,0,0) solves

AV# = —4xV{  on Bg, (102)
1
VH# = ] *VI+a ondBg, (103)
a#=a+/ VIdx— M. (104)
Br
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From (102), (103), it follows that V# — ﬂ * VI — o is harmonic on Br with

zero boundary values. Thus

Vi = ﬂ «Vi+a (105)

actually holds in the whole ball Bg. It is then not hard to show using Lemma
4.2 that (V, @) = (V#, o) is Fréchet differentiable with

Dy VF#(0V, 6a) = ﬁ « (Vf_lév) + b, (106)

Dy.aya(6V,6a) = da +q ; VISV da. (107)
R
It is also easy to see that the Fréchet derivative of (V, o) (V#, a®) is compact
on C?P(Bg) x R, so that A defined by (100) is Fredholm of index zero. As for
invertibility, we only need to prove its injectivity. So assume that (§V,da)
satisfies A(6V,0a) = 0. That is,

3V = || « ((VO)51av) +da, (108)

/ (V)4 6V dx = 0. (109)
Br

We must prove that these equations admit only the zero solution. This will
follow in a way similar to Lemma 4.3 of [31]; the argument is also related to
section 4 of [30].

In fact, we extend 6V to the entire R? by (108). It follows that

A(8V) = —4mq(VO) sV (110)

Let Yi,,(0) (I = 0,1,2,..., m = —I,...,1, & € S?) be the standard spherical
harmonics. For any function f(x) with = € R?, denote its (I,m) component by

finlle) = (£ Vi) (al) = [ £(e10)¥i(6) diat.

We will first show (6V);,, = 0if I > 1, so that only a radial component remains.
Indeed, taking the (I, m) component of (110), and using
ASz

A = 8‘230‘ + am +

/ (Age f)g dseb = /S F(Bsg) deab,

s2
AS2Y2m = _l(l + l)Yirru
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we obtain

A6V - 6V = —amaV T Ve (1)

Since (V%) = 0 for |z|> R, we can solve (111) explicitly there and obtain
(6V)im(z) = Cla| "V 4+Dla|". (112)
Since dV is bounded near infinity, we obtain
(6V)im () = Cla| =Y if x> RO. (113)
By Lemma 2.1, (V°)" = 9}, V° < 0 for |z[> 0. We define for |2|> 0

wlm = (((S“jggtn (114)

Note that for [ > 1,

@) 5= gy [, 6 (e16) = 3V O] Vi (0) st
<Gl o vV

VO @) 1yi<|el

Inequality (15) and V(6V)(0) = 0 imply that

‘II‘LI%+ Yim(z) = 0. (115)
By (14),
AV = —4r(VO)1, (116)
from which it follows that
2
A[(VO)] - W(VO)' = —4mq(VO)1 1 (V0. (117)

From (111), (114), (117) we get
2V(VO) Vi | 2-1(1+1)

Ay, VO 4y, = 0. 118

Yim + (Vo), |$‘2 ( ) (i ( )

If I > 1, then 2—1(I+1) <0. Letting ¥ = sup ¢y,(x) > 0 and using the
0<|z|<RO

strong maximum principle on (118), we know that ¥ cannot be attained at any
interior point on the punctured ball 0 < |z|< R°. By the condition (115) at the
origin, ¥ can only be attained for |z|= R°, so that t,,(R") = ¥. By the Hopf
maximum principle, 6|x‘z/11m(R0) > 0. Now the C! continuity of 1, across the
surface at |z|= R" and (113), (114), (116) implies

C
(RO)HH(VO) (RY)’

0 < U = ¢y (R°) = (119)
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c1-1
(RO)!+2(VO) (RO)
These equations force 1 — [ > 0, which contradicts the assumption that [ > 1.

We therefore conclude that ¥ = sup ¢y, (z) < 0. By similar reasoning,
0<|z|<RO

. |ir‘1f o Yim(z) > 0. Tt follows that vy, as well as (6V);,, vanish on Bgo.
<|z|<

(113) now implies 0V}, = 0 everywhere.
Since §V is now restricted to be a radial function, (110) can be regarded as
the following ODE (using ' to denote 9),)):

0 < O3 tim(R%) =

(120)

2
(6V)" + m(cSV)’ +4mq(V0)4 16V = 0. (121)
We also have the obvious condition
(6V)'(0) =0 (122)

due to symmetry. On the other hand, we note that by scaling symmetry of
2
(116), V(2;a) = a7=1V%(ax) solves

AV + 47V = 0. (123)
It follows that U = 9,V (z; 1) solves
AU + 4mq(V) U =0,

or
2
U’ + HU’ +4rq(VO) U =0, (124)
x
with
U’'(0) = 0. (125)
So 6V and U satisfy the same ODE with vanishing derivative at zero. By

uniqueness, it follows that 0V = CU for some constant multiple C. Also,
V(x; a) satisfies

/ VIde = a%/ (V91 da. (126)
R3 R3
Taking the derivative with respect to a and setting a = 1, we get
0yg—1 3—¢ 0\q
gV Ude=—— [ (V°)L dv#0 (127)
R3 q—1 Jrs

if ¢ # 3. In this case, (109) and the condition §V = CU obtained above imply
that C = 0. Hence 6V and da are zero. The proof is complete as we observe

4
that ¢ = 3 if and only if v = 3

It remains to reprove the lemma in the weaker space C%(Bg). Observe that
the right hand sides of (106) and (107) are well-defined for 6V € CY#(Bg), so
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that we can extend the definition of A to C'#(Bg) x R. Once again A is
Fredholm with index zero on C'#(Bg) x R. Thus we only need to show that
(108), (109) has unique zero solution assuming merely that 6V € C*#(Bg).
But due to the gain of regularity of the right hand side of (108), we can recover
6V € C*P(Bg). The result thus follows. O

We define the sequence of approximate solutions (V,,, a,,) by

(V07a0) = (Vov ao)v (128)
(Vn+17 a7L+1) = (VTM an) - Ail[(vna an) - ‘F(an Qnp, K, ,u)} (129)

Here (128) simply means that we use the Lane-Emden solution as the zeroth step
in the iteration. In order for such iterations to be defined for all n, we require
V,, to remain close to V® in C*#(Bg). This will be established in Lemma 5.1.

5 Convergence of Iterations and Uniqueness

In this section, we fix § < 1 := min(¢ — 1,1) and will prove convergence of
the iteration sequence in c2F (Br) x R for every 0 < ' < 3. The argument
consists mainly of two steps. In the first step we show that all (V,, «;,) remain
in a small neighborhood of (V°,a®) in the C%#(Bg) x R norm, so that the
next term in the sequence is always well-defined by applying Lemma 4.1. In the
second step we show that the CI’B(?R) x R norm of (V41 — Vo, g1 — @)
contracts, so that the iterates form a Cauchy sequence in the low norm. We
then use interpolation in the hierarchy of Holder spaces to prove convergence.

To avoid clutter in the equations, we further simplify the notation as follows.
Denote

g(V) =V
and
F(V,a,k,p1) by F(V,a), F(V,a,0,0) by FO(V,a).

Recall that the Lane-Emden solution (V?,a®) is a fixed point: F°(V? o) =
(V9,a%). As before, we also use the notation (V#,a#) = F(V,«). Moreover,
we denote

Doy F(V°,a°,0,0) by DF°

and
(6VT,6a’) = DFO(6V, 6).

From Lemma 4.3 and (102), (103), (104) we may write

AV = —4ng (VO)§V  on Bp, (130)
1
sVt = T (¢'(V°)6V) + 6o on OB, (131)
sat = da +/ g (VO)éV dx. (132)
Br
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Thus we use # to denote components of the nonlinear mapping F, and { to
denote components of the linearized operator DF’. We also denote the ex-
ponentiated entropy S constructed in Theorem 3 by .#(V) to emphasize its
dependence on V. Finally, we denote by X the space C*#(Bg) x R.

5.1 Boundedness in the High Norm
We now prove the uniform boundedness of the X norm of the iterates.

Lemma 5.1. For alle > 0, e; > 0 sufficiently small, if ||(Vy,, an) —(V?, a%)|| x <
e and |k|+|p|< e, then |(Vig1, ang1) — (V0,a%)||x< €.

Proof. We first take € < 0 as given in Lemma 4.1, so that (V, 41, ap41) is well-
defined. From (129) and F°(V?, a®) = (V°,a”) we get
(Vat1 = V% any1 —a?)
=V, =V%a,—a”) =AYV, = V% a, —a®) — F(V, o) + FO(VO,a")}
=V —V%a, —a®) = A YAV, -V a,, —a¥) — R, }

= AR, (133)
where the remainder R,, := (V,%, %) is defined as

(V.©

n

aR) = F(Vy,an) — FO(V0, %) — DFY(V, — V%, a, — a°)
=WV# -V af —a) — ((V,, = V)T, (e, — aO)1). (134)
By the definitions of the respective terms, we have

Amg(Va)

. #Y — (w?
V(L (V,)VV,) ) + &V - (w®re,) on Bg, (135)
1 g(Va)
VH#E = =% +ao, ondB
[ (V) )
9(Vn)
af” = ay, + dr — M.

Br
V- (V(V, = V)T = —4zg' (VO)(V,, = V®)  on Bg, (136)
(Vo = VO) = 24 (¢'(VO) (Ve = V) + an —a®  on 0B

(an — ) =a, —a° +/ g VOV, =V da.
Br
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Combining the preceding equations, we obtain equations for (V,Zz , 045), namely,

AVE =V ({1 - ZVo)}VV,#) — drg(V,,) {y(lv) - 1}
—dm {Q(Vn) —g(VO) — g (VO)(V,, — VO)} + kV - (Wre,)

= Il+IQ+I3+I4 in BR, (137)

VR - ﬁ ) ({y(lv) - 1} g(vn>> 4 ﬁ e {g(Va) = g(V°) — ¢ (VO) (Vi — V)

=I5+ Ig on OBg, (138)
R __ 1 o T ) 0 o 0 T
aR _/BR{Y(Vn) 1} (V) dzx + {g VO — g (VO(V, =V} d

Now let [|(Vi, ) — (V2,0 x< € and |k|+|p|< ‘. where €, €; are to be
determined. We first estimate the C*#(Bg) norm of V,® by means of Schauder
estimates. This amounts to estimating the C’Oﬁ(BR) norm of (137) and the
C*P(OBR) norm of (138). Indeed, we have

1llo.s< IViFll2,6ll (Vo) = Ll16< Cex (140)
by Lemma 4.1 and Theorem 3. Similarly,
[[12 (V) = Ulo,p< Cer. (141)
On the other hand, by Lemma 4.2, we have
[llo,6< ClIVi = VOllgly* = Cet+o, (142)

where 0y = 81 — . It is obvious that ||I403< Ce;. By standard potential

estimates, the convolution with izl is bounded from C°?(Bgr 1) to C*#(Bg).
x

Because all the functions appearing under the convolution 3(138) are supported

in the interior of By, we only have to bound their C?(Bg) norms. It follows

as before that ||I5]|2,5< Cer, and ||Ig|j2,5< Ce' ™. We now use the Schauder

estimates to conclude that
VR ll2,8< Cex 4 Cet o (143)

We also use the previous estimates directly to estimate I; and Ig, thereby ob-
taining
|aR|< Cey + Cetto, (144)
Estimation of (133) yields
|(Vas1, ans1) = (V0,001 x < A xoxCler + €49
< Oley + € Fon),

We now choose € so small that Ce' T < %, and €1 so small that Ce; < % The
proof is complete. O
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5.2 Contraction in the Low Norm

For notational convenience we denote .#(V,,) by S,,. We denote by Y the space
CYP(Bg) xR. By Lemma 5.1, V,, and o, are well-defined, and ||V;, — V|2 < €
for all n if |x|+|p|< €1. We want to prove that the Y-norm of (V,, — V,,_1, o, —
ay,—1) decays. To that end, we first estimate the difference S,, — S,,—1.

Lemma 5.2. Let S, = .7(V,) be given as above. Then
150 = Sn-1llo< ClIVSn-allo[V(Va = Vai)llo (145)
150 = Sn-allge., < CIVSn-1lllIV (Ve = Va1)llo.s (146)

where C[Ol’fﬂ] denotes the weighted Hoélder space defined in (76).
Proof. We note that the difference S,, — S,,_1 is the solution to the transport
equation

(0:V0)0r(Sp — Sn—1) — (0 V0)0.(Sp — Sn—1) = hp, (147)

where
hn = (azSn—l)ar(th - Vn—l) - (arsn—l)ﬁz(vn - Vn—l)a (148)

with the zero floor data (S,, — S,—1)(r,0) = 0. Then S,, — S,,_1 satisfies

(Sp, — Sn—1)(r,2) = /0 ho(o(t', 7)) dt’, (149)

where (r,2) = ¢(t,7) is the C' diffeomorphism given by the characteristic co-
ordinates associated with V;,, as in Section 3.1. The C° estimate (145) follows
directly from (149) since t is bounded.

To show (146), it suffices to estimate the weighted Holder semi-norm. To
this end, let (rq, z1), (12, 22) be given. We may assume 0 < |(ry, z1)|< |(72, 22)|
without loss of generality. By letting (¢;,7;) = ¢~ (74, %), i = 1,2, we see that

(Sn — Sn=1)(r1,21) — (Sp — Sn—1)(re, 22)

t1 ta
:/ ha(o(t',11)) dt’ +/ ha(o(t', 1)) — hn(@(t', 72)) dt’ (150)
ta 0
= Il + IQ
For the first integral I; we have by (56)

(11, 21) = (r2, 22)

|(r1, 21)]

For I, using the Holder regularity of h,, and (55), (56), we obtain

[11]< [t — ta|[|hnllo< C [l Anllo (151)

L] < Cllérllg I — 721P| B0,
< CIV7llgl(r1, 21) = (r2, 22)1° [ nllos
< C|(r1,21) = (r2,22)|° || lo,6- (152)
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Combining the above estimates, we deduce that

|(r1,210) [ [(Sn — Sn—1)(r1, 21) — (Sn — Sn—1)(r2, 22)]

< Cl(r1, 1) = (r2,22)|°[[nllo,s- (153)
By the definition (76) of the C’[Ol’fm norm, we have proven (146). O

We now write the recursive equation for the difference (V;,—V,,_1, ety —vp—1).
From (133), we have

(Vn+1 - V'ru Qp41 — an) = A_I(Rn - Rnfl)y (154>
where

Rn—Rp_1= -F(Vna an) - ]:(Vn—h OZn—l) - D]:O(Vn —Vo—1, 0 — OZn—l)
= (Vn# - Vn#fl = (Vo — Vn—l)Ta a# —al (an — O‘n—l)T) (155)

n—1""

= Wh,al —al ). (156)

n—1

Here we denoted the first component of R,, — R,_1 by W,,. We obtain the
equation for W, from (135), (136):

V- (Sp,VW,)=-V - -H, —47G, on Bg, (157)
where
Hy ={Sn =1} V(V, = Vo) +[Sn = Spa] VVF | (158)
and v v
Gn = g(Sn) - g(Sn_l) - g/(Vo)(‘/;L - Vn—1)7 (159)
n n—1
and on the surface 0Br we have
1
W, = ﬂ * Gy, (160)
Similarly, we have
ak —al = G, dx. (161)
Br

Lemma 5.3. There exist e > 0,¢; > 0 such that if sup||(Vy,, an)—(V?, a%) || x < €
n>1

for |k|+|pu|< €1, then
1
||(Vn+1 - anan+1 - O‘n)”YS §||(Vn - anla Qp — anfl)”Y (162)

for all n.
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Proof. We first claim the estimates
[Hrllo,s< Cerl|(Vi = Vo1, 0 — 1) ly (163)

and
IGnllo< Cler + €™)[[Ve = Vaa b +C Ve = Vaallg ™ (164)
Indeed, by (130), (131) with 6V =V,, — V,,_1, da = a,, — a1 and standard
potential theoretic estimates, we have
|(Vi — Vn—l)THLﬁ <O(|[Vi = Va—tllo+Ham — 1)
= C”(Vn — Va1, 00 — an—l)”Y- (165)

We denote the two terms in (158) by H,1 and H,3 respectively. We estimate

HHnIHOﬁ < ||{Sn - 1}V(Vn - anl)T”O,ﬁ
< ClISn = 1ol (Ve = V1) Tll1s
S O€1||(Vn - Vn—laan - an—1)||Y7 (166)

where we have used (29). On the other hand,

| Huzllos < 1Sn = Sn—1] YV 1 llo,

<[[Sn = S VVEllgos, (167)
< C)1Sn = Sn-allnz, IVl (168)
< OlIV(Sn-1 = DlloslVa = Va—1ll1, (169)
S C€1||Vn - Vn,1||1$5. (170)

Here we used the definition of the weighted Holder spaces and Lemmas 3.4

and 3.5 regarding their properties to get (167) and (168). We used Lemma 5.2

and the estimate ||vVn#:_1HCO,B < |[VV# < C to get (169). That V7 | is
(-1

bounded in C? follows from the last assertion of Lemma 4.1. Combining the
above estimates, we infer that

[ Hnllo,s< Cerl|(Vi — Vam1, a — 1) |ly (171)
We may rewrite G,, as

Gn = [g(Vn) - g(Vn—l) - g/(vn—l)(vn - Vn—l)] + {gl(vn—l) - g/(VO)} (Vn - Vn—l)

- {;n - 1} [9(Var) = g(Vo1)] + [Sln - S:_J (Vo)

= Gnl + Gn2 + Gn3 + Gn4'

By (91),
1Guillo< ClIVa = Vaallg ™. (172)
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We also have
|Gusllo< ClIVaes = VOIG IV = Vacrlo< Ce [V = Vaa o (173)
From (29),
1Gnsllo< CllSn = HolIVa = Vaallo< Cearl[Vi = Vi llo- (174)
From Lemma 5.2,

||Gn4||0§ C”Sn - Sn—l”() S C”Sn—l - 1”1”‘/” - Vn—l”l
S C€1HVn — Vn,1||1. (175)

(164) follows from combining the above estimates.
By standard potential estimates, we have

< ClIGullo- (176)

1
H x Gy,
|| 1,8

We now use the C*# Schauder estimates given by Theorem 8.33 of [15] on the
equations (157), (160) to get

[Whll1,s
< C(|Hnllo,s+11Gullo)
< Cler + )|(Vi = Vi1, an — @)y +C[ Vs = Voo 67
< Cle + 6’81)||(Vn — Vo1, — an—1)|ly

(177)

where ||V, — Vi,—1]/0< 2¢, which follows from the assumption that ||(V,,, an) —
(V9 a%) | x< e for all n > 1. We also have from (161) that

ot — e |< Cler + ) [V = Vil (178)
From (154), (156) and by Lemma 4.3 we get

[(Vat1 = Vs a1 — o) [ly
S CHA_1||Y~>Y(61 + GBI)H(VTL - V’I’L717 Qp — anfl)HY
< Cler + )|(Vin = Vet i — )|y (179)

1 1
We now choose €; so small that Ce; < T and € so small that Ce”t < —, which

completes the proof. O

5.3 Existence and Uniqueness

We need the following interpolation lemma on Hoélder spaces.
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Lemma 5.4. Let 0 < ' < B. There exists a C > 0 such that

[ull2,6: < Cllu

Yl (180)

loll.p< Cllvlig?llvlly 5™, (181)
for all u € C*P(BR) and v € CYP(BR). Here

248 =M1+ 8) + (1 - A)(2+B),
148 = (1—a)(1+B).

Proof. See [2] or Ex. 3.2.6 in [23]. O

We are now ready to prove the main existence theorem, which we repeat for
the reader’s convenience.

Theorem 2. Let s9 € CY?(Br N {z = 0}) and w?® € C*P(Bgr) be given.
There exist € > 0, €1 > 0 such that if |k|+|p|< €1, then there exists a unique
solution (V*,a*) € X, and S* € CYP(Bg) to (11), (12), (13), (17), (18),
with ||(V*,a*) — (V°,a°%)||x < €. Furthermore, the solution satisfies that V7 is
supported on B o,y , and S* =1 outside By, for some fited Ry € (R°, R).

2

Proof. We take € and €; small enough that Lemmas 5.1 and 5.3 hold. It follows
by iteration that

C
||(Vn - anlaan - anfl)HYé 27
Lemma 5.2 now gives
C
||Sn - Sn—l”OS 2?
Pick a 8’ € (0,3). Lemmas 5.1, 5.4 together with the preceding estimates imply
that

C

||Vn - Vn—1||27ﬁ'§ Pan’ (182)
C

S0 — Sn-1ll1,8< o (183)

It follows that {V,} is a Cauchy sequence in C># (Bg), {Sn} is a Cauchy
sequence in CY%'(Bg), and {a,} is a Cauchy sequence in R. Denote their
limits by V*, S* and «o*. By (129), we have

(Vn7 an,) - ./_"(Vn, Qnp, K, :u') = A(Vn-l—l - Vny Ap41 — an)~ (184)

Since A is bounded on C*# (Bg) x R by Lemma 4.3, (Viy, ) — F(Vi, 0t i, 1)
converges to zero, and (V7 o) = F(V,, an, k, 1) converges to (V*,a*) in
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c> (Br) x R. We know that V;#, o and S, satisfy the equations

(Sn)T(Vn)z - (Sn)z(‘/n)r = */ﬁ?(wz'f')z on BR7

HSQ

Sp(r,0)=e |
4 n
V- (S, VVH#) = —% + KV - (w?re,) on Bg,
V# = Tll ] g(SV") +a, ondBp
ot :an+/ 9(Vn) dx — M.
BR Sn

Taking the limit as n tends to infinity, we see that (11), (12), (13), (17), (18)
are satisfied by V*, a*, 5™,

To see that V* € C*#(Bg) and ||[(V*,a*) — (V?,a%)||x< €, we recall from
Lemma 5.1 that ||(V,,, @) — (V% ag)||x< €. So

0. —_ Vo — 9.0, — Vo
||Vn _ V0H2+Z ‘alaj[vn 4 ](lj:)_ yagaj[vn 14 ](y)|

+ Jan, —al|< e
.
Taking the limit as n tends to infinity, we get V* € C*#(Bg) and ||(V*,a*) —
(V°,a%)||x< e. Choosing € < sup V9(z), and recalling that V° is posi-
|z|>(R°+R)/2
tive precisely on Bro, it follows that V7 is supported on B(ro ) 2 (see Remark
2.1). That S* =1 outside Br, was already proven in Theorem 3.

Finally in order to prove uniqueness, suppose there are two such fixed points
(Vi a7, S7) and (V5 @3,55). We can write S = .7(V;*), and
(V*va;’k) = (Vi*7a*) —A_l[(V»*,a*) _}—(V‘*va*)] (185)

7 i

for i = 1,2. We can now simply repeat on (185) the low-norm estimates on
(129) obtained in Lemma 5.3 to get

* * * * 1 * * % *
IV = V3, a1 —ag)lly< SV = V2 a1 — ag)lly- (186)

Thus ||(V}* — V5, a] — a3)|ly= 0 and the two solutions coincide. O
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