
IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Data Enclave: A Data-Centric
Trusted Execution Environment

Yuanchao Xu†, James Pangia‡, Chencheng Ye∥, Yan Solihin⋆, and Xipeng Shen‡
University of California, Santa Cruz†, North Carolina State University‡,

Huazhong University of Science and Technology∥, University of Central Florida⋆
yxu314@ucsc.edu, jpangia@ncsu.edu, yecc@hust.edu.cn, xshen5@ncsu.edu, Yan.Solihin@ucf.edu

Abstract—Trusted Execution Environments (TEEs) protect
sensitive applications in the cloud with the minimal trust in the
cloud provider. Existing TEEs with integrity protection however
lack support for data management primitives, causing data
sharing between enclaves either insecure or cumbersome. This
paper proposes a new data abstraction for TEEs, data enclave.
As a data-centric abstraction, data enclave is decoupled from an
enclave’s existence, is equipped with flexible secure permission
controls, and crytographically isolated. It eliminates the hurdles
for enclaves to cooperate efficiently, and at the same time, enables
dynamic shrinking of the height of integrity tree for performance.
This paper presents this new abstraction, its properties, and the
architecture support. Experiments on synthetic benchmarks and
three real-world applications all show that data enclave can help
improve the efficiency of enclaves and inter-enclave cooperations
significantly while enhancing the security protection.

Keywords—Memory Security, Memory Architecture, Trusted
Execution Environments

I. INTRODUCTION

Trusted Execution Environment (TEE) receives increasing
interests in cloud computing as it offers a hardware-protected
environment (i.e., an enclave) to host security-critical and
privacy-preserving applications with minimal trust in the cloud
provider [1]–[9]. TEEs isolate program execution and states
from the underlying OS, hypervisor, I/O devices, and even
individuals with physical access to the machine, providing
extensive protection against various attacks.

(a) One enclave handle user inputs (b) Computation involves multiple entities

Enclave 1
(OpenSSL)

Enclave 2
(Application)

User inputs

Response

Enclave 1
(Paient data)

Enclave 2
(ML model)

privacy-preserved data

Results

Preprocessed inputs

Fig. 1. Examples of uses of multi-enclave data sharing. (a) OpenSSL in
nested enclave [10]. (b) Multi-party ML [11]

With TEE popularity, TEE is increasingly used to host in-
creasingly complex code, including entire applications, beyond
just security-critical cryptographic functions. With such uses,
the inflexibility of current TEE designs becomes problem-
atic [12]–[19]. A key issue is TEEs lack support for data
management primitives, which leads to several problems. One
problem is the complication of sharing data between enclaves.
This is unfortunate because allowing multiple enclaves to share
data has been demonstrated to improve security and support
multi-entity computation model [10], [11], [20]–[23]. As re-
cent studies showed that attackers could manipulate user inputs

and exploit vulnerabilities in an enclave to leak its data [24]–
[28], researchers proposed to isolate the code that handles
user inputs or third-party libraries (e.g. OpenSSL) in a first
enclave, while leaving computation in a second enclave [10],
[20], [21](Fig. 1 (a)). By employing this isolation, attacks
are limited to the enclave 1, effectively preventing significant
data leaks from the enclave 2. In scenarios involving multiple
entities, each entity is typically reluctant to share their data
or code with others [11], [22], [23]. For instance, a hospital
does not want to share patient data to a machine learning
(ML) provider that performs diagnoses, and the ML provider
does not want to share ML models with the hospital. Using
multiple enclaves and privacy-preserving data sharing fulfills
these requirements (Fig. 1 (b)).

An ideal data sharing should satisfy several criteria: it
should be high-performing (with low overhead access latency
to shared data), flexible (allowing users to specify sharing
policy and sharers), and secure (providing authentication and
uncompromising security). Existing solutions for data sharing
satisfy at most one of these criteria. For example, sharing
data via public (untrusted) memory [29] requires software
encryption and decryption, which incurs high performance
overheads and leaves the public memory vulnerable to tam-
pering and replay attacks. Similarly, data sealing [30] allows
an enclave to seal data for later use by another enclave
from the same developer, but sealing and unsealing require
additional encryption, decryption, and integrity verification.
Elasticlave [29] permits an enclave’s data to be memory-
mapped to another enclave, providing low-overhead access
to shared data. However, the sharing is not flexible. First,
the enclave must specify the ID of the other enclave, which
necessitates the other enclave to be instantiated prior to sharing
and to pass its ID to the sharing enclave. Moreover, data
does not exist independently beyond the enclave; hence, if the
sharing enclave terminates, the data disappears. Finally, the
security of data sharing is crucial since sharing data across
enclaves introduces a new risk where vulnerabilities in one
enclave can lead to compromising the other enclave via the
shared data. This has not been addressed in prior works.

We argue that the root of the difficulties in managing data
in enclaves is the absence of a good data abstraction. Current
TEEs only define enclaves as process-centric abstractions akin
to processes and threads outside of TEEs. Data has no exis-
tence beyond being a part of an enclave. In contrast, outside

of TEEs, data abstraction is rich (files, memory maps, etc.),
where data can be managed separately from processes. Thus,
in this paper, we propose a new data abstraction for TEEs
which we refer to as Data Enclave. A data enclave supports
several important features. First, data enclave’s existence is de-
coupled from an enclave’s existence, allowing flexible sharing.
An enclave needs to attach it before use and can detach it after
use. When detached, a data enclave continues its existence
until deleted. A data enclave has read/write permission that
can be set for a specific enclave. A data enclave also needs
to be cryptographically isolated to protect against the same
threats as enclaves, i.e. from system software and physical
attacks. Hence, a data enclave employs memory encryption
and integrity verification, supported with appropriate metadata
(encryption counters, message authentication codes, and the
integrity tree). The data enclave abstraction also supports
primitives for efficiently and flexibly managing data sharing
between enclaves.

With the new data-centric abstraction for TEEs, new capa-
bilities are enabled or enhanced. First, primitives for data shar-
ing between enclaves allow for highly efficient cooperation,
enabling high performance sharing patterns. Second, data-
centric abstraction allows programmers to define independent
lifecycles and permissions for data pools while providing
secure authentication. Third, detachment of data enclaves
enables an optimization to shrink the height of integrity tree
to improve enclave performance. Finally, although beyond
the scope of this paper, data enclave abstraction can enable
future new data management techniques which may include
durability, fault tolerance, NUMA optimizations, etc.

The data enclave can be integrated with most TEEs. To
demonstrate its advantages, we design it on top of Intel
SGX. Our design features an authenticator for verifying attach
requests, new instructions supporting sharing primitives, and
memory controller logic that enforces access permissions
while handling integrity trees for both data enclaves and SGX
enclaves. This design accommodates independent lifecycles
and dynamic, asymmetric permissions for cooperating en-
claves on data enclaves, fitting the needs of various situations.

We model our data enclave abstraction using the Gem5 [31]
simulator to evaluate its performance and security, on mi-
crobenchmarks, SPEC, and three real-world workloads. Over-
all, this paper makes the following contributions:

1) We propose a new data-centric abstraction for TEEs,
the Data Enclave, which provides existence, permission,
and isolation for data.

2) We propose a scalable, flexible, and secure data-sharing
method for the Data Enclave that enables enclaves to
cooperate in computation via shared data.

3) We introduce the integrity tree attach-
ment/detachment mechanism to explore security-
performance implications.

4) Our evaluation shows that the data enclave achieves a 1-
3 orders of magnitude speedup in inter-enclave sharing
latency and enhances application performance by 20-
179% compared to scalable SGX.

II. BACKGROUND

This section provides some background on Intel Software
Guard Extensions (SGX) as an example TEE. SGX assumes
the processor as the Trusted Computing Base (TCB) [32]–[34].
All off-chip resources, including the memory bus, physical
memory, privileged software (e.g., OS or hypervisors), and
applications, are vulnerable to unauthorized reads or writes
by attackers.

SGX shields the execution of code and data in a hardware-
protected environment called an enclave. In this threat model,
SGX Enclaves employ counter mode encryption [35], [36] to
provide data confidentiality. During encryption, the ciphertext
is generated by XORing a plaintext block (from a written
back cacheline) with a One Time Pad (OTP). A per-cacheline
counter is incremented on each cacheline write to ensure
temporal variation in the encrypted data.

SGX uses Message Authentication Codes (MACs) to pro-
vide data integrity, and the integrity tree to detect replay
attacks. On every cacheline writeback, the MAC of this block
is generated using a cryptographic hash function of the block
content, address, counter, and a secure key [36]. On a last-level
cache (LLC) miss, the MAC is recomputed and is checked
against the stored MAC.

A00 A01 … A07

Hash

B00 … B07 MAC11

Secure Region:

Hash

C00 … C07 MAC21

Hash

C70 … C77 MAC27

…

56 bit encryption counter 56 bit hash

Level 2:

Level 1:

Level 0:

…

Fig. 2. Intel SGX integrity tree

Replay attacks involve the attacker overwriting the existing
tuple {data, MAC, and encryption counter}, which may pass
MAC verification. An integrity tree, a structure for ensuring
the integrity of a large area of memory with limited on-
chip storage, was proposed to detect such attacks [32], [37],
[38], as shown in Figure 2.Every 512-bit node of the tree
comprises 8 56-bit counters and a 56-bit MAC. The MAC
of a node is generated with 8 56-bit counters in this node
and a 56-bit counter in its parent node (using Carter-Wegman
algorithm [39]). On each access to a counter (e.g., C00), its
integrity can be verified by accessing its parent node counter
at level 1 (B00) and recomputing the MAC (MAC21). The
integrity of the level 1 node can be verified by using the
counter at level 0, and so on. The integrity tree root is always
stored in the trusted secure region. On a cacheline writeback,
the counter for that block and all its ancestor counters are in-
cremented, and corresponding MACs are updated. To improve
the performance of accessing security metadata, it is cached
in the LLC or a dedicated cache in the memory controller.

The high-level design of Intel SGX is as follows (more
details in SGX manuals [40]). SGX partitions the memory into

enclave page cache (EPC) and non-EPC. When the application
allocates a sensitive page, it is mapped in the EPC. SGX
realizes its access logic through the handling of TLB misses;
hence TLB flushes are needed when the application enters or
exits the enclave [33]. A register in the core is added to keep
the enclave ID that issues the TLB misses. In the memory
controller (MC), SGX introduces Processor Reserved Memory
Range Registers (PRMRRs) to distinguish the memory ranges
for normal memory and processor reserved memory (PRM).
Memory Encryption Engine (MEE) in the MC accelerates
encryption, MAC, and integrity tree computation.

At boot time, the BIOS defines the PRM area. The
ECREATE instruction creates the secure context of an SGX
enclave. Memory pages containing code and data are copied
into the enclave’s encrypted memory by invoking the EADD.
The page contents in the SGX enclave are hashed to generate
a cryptographic hash (i.e., measurement) by invoking the
EEXTEND. After all the trusted code and data are transferred
into the enclave, the creation is finalized by invoking EINIT.
During the attestation process [41], the CPU uses the master
secret key to sign the measurement and generate a report.
The report is passed to Intel’s servers to verify that the
signature was produced by a genuine Intel processor, and the
measurement generated by enclave code and data is the same
as the user’s, indicating the code and data are the same as the
user-provided code and data.

III. MOTIVATION AND DESIGN PRINCIPLES

The current approaches [13], [29], [30] to supporting data
sharing among enclaves are inadequate, as shown in Table I.
We will discuss more details.

A classic strategy is SGX-provided sealing [30], which
permits a new enclave to access sealed data created by
either the same developer or the same enclave. Sealing and
unsealing are expensive as they require additional encryption,
decryption, and integrity verification. Sealing enables a data
pool to maintain an independent lifecycle, but it does not allow
programmers the flexibility to express enclave-wise sharing
schemes or to modify them dynamically. Instead, sharing is
restricted to enclaves created by the same developer.

Another approach is to rely on software encryption and
decryption [29]. This approach employs public memory as a
coordinator for data transmission between two enclaves. As
depicted in Figure 3, client and server enclaves, operating with
distinct encryption keys, exchange data via public, untrusted
memory. Since the coordinator uses public memory, the send-
ing enclave must encrypt data in software for confidentiality,
append MACs for integrity, and then place it into the coor-
dinator’s memory. This software encryption differs from the
hardware encryption used in enclave memory. After the data
is copied into the destination enclave, it must be decrypted
and verified in software.

This data sharing method incurs a high overhead, as it
requires multiple trusted/untrusted boundary crossings, result-
ing in multiple data copying (two for the request and two
for the response) and software encryption (one pair for the

Req Req
encrypt

Client Enclave
(enclave encryption key1)

Coordinator

Req Req Req
copy copy decrypt

Resp Resp
decrypt

Resp Resp Resp
copy copy encrypt

Software encrypted data

Server Enclave
(enclave encryption key2)

Fig. 3. Client-server data sharing in TEEs.

request and one for the response). Its sharing flexibility is
also low due to the lack of data-centric abstraction in TEEs.
Current TEEs regard enclave data as part of an enclave,
binding its lifecycle and permission to the enclave. This ab-
sence hinders programmers’ ability to define sharing schemes
between enclaves and data pools before enclave creation,
define independent lifecycles for data pools, and set associated
access permissions for enclaves. Another major weakness of
this sharing approach is overlooking the potential emergence
of new attack surfaces introduced by sharing. For example,
a potential attack surface could allow malicious attackers to
create an attacker-controlled enclave, posing as both client and
server enclaves, to monitor or modify data-sharing between
actual client and server enclaves. This attack is similar to
man-in-the-middle attacks [42]. Therefore, robust and secure
authentication mechanisms are indispensable to authenticate
enclave identities to thwart such threats.

TABLE I
COMPARISON ON DIFFERENT DESIGNS FOR DATA SHARING.

Names Performance Flexibility Security

Software encrypt-decrypt Low Low Low
Elasticlave [29] High Low Low
Sealing [30] Low Medium Medium
Plug-In Enclave [13] Read-only code during initialization
Data Enclave (this paper) High High High

Elasticlave [29] is a recent solution that allows data from
one enclave to be shared with another enclave through a new
share (X) system call. This call expresses that a consec-
utive Virtual Address (VA) memory in the caller’s enclave
is shared with another enclave whose ID is X . To avoid the
overhead of encryption and decryption associated with moving
data between enclaves, Elasticlave assumes all enclaves use the
same encryption key. However, this assumption compromises
security as it negates cryptographic isolation between enclaves.
Moreover, it is incompatible with current TEEs, such as AMD
SEV [43] and Intel TDX [44], which operate under the design
that different enclaves employ distinct encryption keys. In
terms of flexibility, Elasticlave does not decouple the lifecycle
of the shared data and enclave, resulting in three issues: the
caller’s enclave must know the ID of the other enclave, the
other enclave must be instantiated prior to sharing, and data
ceases to exist if the caller’s enclave terminates.

Finally, Plug-in Enclave [13] allows sharing, but only for
read-only code and only during enclave initialization. This
design does not support data sharing.

Addressing the shortcomings of prior solutions is essential
for the practical adoption of enclaves when data sharing is
needed. Specifically, an ideal solution should follow three prin-
ciples: high performance, flexible sharing, and uncompro-
mising security. The rest of this paper presents the solution we
create based on these principles. To the best of our knowledge,
this is the first proposal that offers secure data abstraction,
decoupled from existing enclave while maintaining the strong
security and efficiency.

IV. OVERVIEW

A. Data Enclave Abstraction

We highlight two important aspects of our data enclave
abstraction: (1) dynamic and asymmetric permission manage-
ment; (2) secure and flexible sharing primitives. We will refer
to regular enclaves as “main enclaves” or simply as “enclaves”,
in contrast to our new abstraction,“data enclaves”.

Our data abstraction is based on the concept of data
enclaves. A data enclave wraps data that is managed as a
single unit in terms of the life cycle, permission, sharing,
and isolation. Each data enclave is associated with a unique
key generated by the processor for encryption. After creation
(and until deletion), its lifetime is independent from the the
creating enclave’s lifetime. The attachment of data enclaves to
main enclaves is N-to-M; a data enclave may be attached to
multiple main enclaves, and a main enclave may have multiple
data enclaves attached.

Data enclave offers two levels of permissions: the first level
pertains to which enclave can attach it (attach permission),
and the second level pertaining an enclave’s ability to read or
write a data enclave that it attaches (access permission). The
attach permission is used for authentication in response to an
attach(); the attach() fails if the authentication fails. The access
permission is memory access permission made by an enclave
to data in an attached data enclave. The access permission is
restricted to at most the attach permission.
Dynamic and asymmetric permissions. Existing TEEs can
only share data through the untrusted world (Figure 3). Our
abstraction allows users to create independent data enclaves
and allows main enclaves to have dynamic asymmetric attach
permissions on them. Programmers can dynamically grant an
attach permission to a main enclave for a data enclave, and
revoke it later. Our abstraction also enables low-overhead data
sharing: a main enclave can attach and directly access a data
enclave after attaching it, eliminating the copying and software
encryption through the untrusted world. Furthermore, the
asymmetric attach permissions allow a data enclave to support
concurrent accesses with different permissions. For example,
to support a producer-consumer sharing pattern, write-only
attach permission can be given to the producer, while read-
only attach permission can be given to the consumer. Once
attached by both, a data enclave is mapped to both the address
space of the producer and the consumer.

While the attach permission allows for the accommodation
of various computational and communicational patterns, the

management of access permission facilitates efficient intra-
enclave isolation. This mechanism can be utilized to dy-
namically enable or disable read/write permission, analogous
to a protection domain in Intel’s Memory Protection Keys
(MPK) [45], but is applied at a data enclave granularity level.
The change() instruction, as illustrated in Table II, provides
such a capability. The ability to associate a data enclave with
a protection domain helps prevent accidental disclosure of
datum in a data enclave or accidental overwrite of a datum,
just as MPK in providing intra-process isolation for a regular
process [46].
Flexible, secure data sharing. Our data enclave abstraction
allows each data enclave to have an independent lifecycle,
thereby allowing programmers to manage the data enclave
independently from enclaves. The data enclave allows users to
express sharing schemes specifying which enclaves can attach
a data enclave before or after launching main enclaves. We
design a secure measurement-based authentication to verify
enclaves’ identities when they attach a data enclave. A main
enclave can only attach the data enclave if this attachment is
permitted in user-defined sharing schemes. By using measure-
ments for authentication, an enclave can share a data enclave
to future enclaves (even including the future instance of itself)
that are not instantiated yet. Intel SGX relies on measurement
for attestation, and here we use a similar mechanism for attach
authentication.

TABLE II
DATA ENCLAVE INSTRUCTIONS AND THEIR SEMANTICS

Instructions Semantics
create(size, deid) Create a data enclave whose id is deid.
destroy(deid) Destroy this data enclave.

grant(deid, M, P) Grant P access permission of this data enclave to
a main enclave whose measurement is M.

revoke(deid, M) Revoke the access of this data enclave to a main enclave
whose measurement is M.

attach(deid, P) The caller main enclave has up to P access permission
on this data enclave if authentication passes.

detach (deid) Remove the caller main enclave access permission on
this data enclave

change(deid, P) Change the caller main enclave access permission
on this data enclave (deid) to P.

update(S) Update caller main enclave’s measurement by hashing its
measurement and string S.

Data enclave instructions. Table II lists data enclave instruc-
tions and their semantics. All instructions can only be executed
within a main enclave. Excluding the create() instruction, all
other instructions can be successfully issued by main enclaves
that attached this data enclave. The update() instruction can be
used to prevent attacks from replicating main enclaves. More
details is in Section VII-E.

B. Data Enclave Usage Example

Figure 4 illustrates an example of using a data enclave
to share data between two main enclaves. Data Enclave 1
has already been created. As shown in Figure 4 (a), the
programmer initially sets up the client enclave and the server
enclave, and defines sharing schemes: Data Enclave 1 can be
shared with a main enclave whose measurement is X (Client

Enclave); and a main enclave whose measurement is Y (Server
Enclave). The respective permissions for these enclaves are
read-write and read-only.

After that, computation of the two enclave begins (Fig-
ure 4 (b)). Client Enclave A’s attach() can be executed success-
fully if its measurement is X. After that, its access permission
is added to the data enclave local metadata. Server Enclave B
also uses its measurement for attach() authentication, and the
read-only permission is obtained if authentication passes.

Client Enclave A

Data enclave 1

Server Enclave B
attach(1, RW)

Data enclave attach list

st data enclave 1
detach(1)
st data enclave 1

attach(1, RO)
st data enclave 1

ld data enclave 1
detach(1)

Enclave A’s Data enclave
local metadata

Data enclave ID Perm.
1 RW

Enclave B’s Data enclave
local metadata

Data enclave ID Perm.
1 RO

Data enclave ID attached enclave ID 1
1 A

attached enclave ID 2
B

Data enclave sharing scheme list

Data enclave ID Measurment of
first main enclave

1 X

Measurment of second
main enclave

Y
Perm.

RO
Perm.
RW

(a) Step 1: Set up computation and sharing schemes

(b) Step 2: Start computation

Programmers

Data enclave 1
Client Enclave

Server Enclave

RW

RO
Server

Fig. 4. Data enclave usage example.

We enable programmers to describe sharing schemes when
they set up enclave computation, providing flexible data
sharing. These schemes can be modified after computations
starts. Throughout this sharing process, no data copy or addi-
tional software encryption/decryption is needed. Main enclaves
can access data enclave 1’s data after passing authentica-
tion, accessing data in-place. Programmers can define sharing
schemes without requiring data enclaves to be part of an
enclave. Authentication verifies the enclave’s measurement as
the unique identifier during attach(), thwarting potential attacks
from attackers’ enclaves.

C. Threat Model

We use the threat model similar to SGX [9], [10], [47],
[48]. The TCB of our system contains the processor and
processor reserved memory. All other hardware (e.g., off-
chip memory) and software (e.g., OS and hypervisors) are
untrusted. An attacker may have full control of the privileged
software (e.g., OS) and application that attempt to compromise
data confidentiality and integrity. An adversary could perform
a man-in-the-middle attack by intercepting the memory bus
and replaying stale data values.

The difference between our threat model and the SGX
threat model is that a main enclave can trust other main
enclaves as some enclaves may collaboratively compute. This

permits users to split an application into multiple collaborating
main enclaves. A main enclave only shares data enclaves with
other trusted main enclaves. Although important, side-channel
attacks [49], [50], CPU bugs [51], and denial-of-service [52]
are out of scope of this work.

V. DESIGN

A. Data Enclave Design Overview

Figure 5 (a) provides the overview of data enclave design.
Data enclave metadata records sharing information and data
enclave runtime information (see Section V-B). We design
a new authenticator to handle all data enclave instructions
(Section V-C). The new data enclave cache in the memory con-
troller (MC) enforces data enclave access logic (Section V-D).
We modify the Memory Encryption Engine (MEE) logic to
support integrity tree attaching (Section V-E).

Core

Cache

Memory Controller
PRMRR MEE

Processor
reserved
memory

Untrusted Trusted
Data enclave region

Data enclave
cache

General
dataNo used

Data enclave 1
Protected Data

(encrypted)
Security

metadata

Data enclave 2
Protected Data

(encrypted)
Security

metadata
Data enclave region boundary

Authenticator

accessesall data enclave
instructions

Data enclave metadataSGX metadata
In-memory trusted region

(a) Data enclave design overview

(b) Data enclave memory layout

Fig. 5. (a) Data enclave architecture overview, grey parts are modified or
new components. (b) Data enclave memory layout.

Figure 5 (b) shows memory layout. We partition DRAM into
the following regions: the Processor Reserved Memory (PRM)
for SGX, the general data region, and the data enclave region.
The data enclave region can grow or shrink to accommodate
newly allocated data enclaves and release memory for deal-
located data enclaves. This region-based design is beneficial
for hardware to accelerate normal memory access checks (see
Section V-D). All SGX metadata and data enclave metadata
are stored in PRM. Each data enclave comprises a contiguous
physical memory region.

B. Data Enclave Metadata

The data structures for data enclaves include global meta-
data and local per main enclave metadata, as shown in Fig-
ure 6. The first data structure, data enclave sharing scheme
list, is a system-wide data structure that records user-defined

sharing schemes. We enable programmers to describe sharing
schemes when they set up enclaves.

Data Enclave ID 1
Data enclave list

Size PA range
Data Enclave ID 2 Size PA range

Root
Root

Data enclave freelist
Data enclave region boundary Free space Allocated space

(a) Data enclave global metadata
Data enclave local metadata for main enclave 1

Size PA range
Size PA range

Perm.
Perm.

VA range
VA range

(b) Data enclave local per main enclave metadata

…

Data Enclave ID 1
Data enclave attach list

attached enclave ID 1

of attached enclaves
of attached enclaves

attached enclave ID 2 …
Data Enclave ID 2 attached enclave ID 1 attached enclave ID 2 …

Data Enclave ID 1
Data Enclave ID 2

Encr. key
Encr. key

Data enclave sharing scheme list
Data Enclave ID 1 measurement of main enclave 1 …
Data Enclave ID 2 measurement of main enclave 1 …

Perm.
Perm.

Attach state
Attach state

Fig. 6. Data enclave metadata

The second data structure, the data enclave freelist, a
system-wide data structure that records the data enclave region
boundary, allocated data enclaves, and free space in the region.
The third data structure is the data enclave list, a system-wide
data structure that records each data enclave information. Each
entry is created upon a data enclave creation. The root and
encryption key are sealed [30] in memory for confidentiality
and integrity. The fourth data structure is the data enclave
attach list, a system-wide data structure that records attach
information of each data enclaves. Each data enclave can be
attached to up to 64 main enclaves at the same time. The
fifth data structure is the data enclave local metadata,a per
main enclave data structure that records runtime information
of attached data enclaves for a main enclave. Each entry is
created upon a successful execution of attach().

C. Data Enclave Authenticator

Data enclave instructions in Table II can be executed in two
ways: in hardware or in software. With the former approach,
the hardware engine handles the execution of the instruc-
tions and manages data enclave metadata (state and sharing
information) in hardware tables. However, this approach has
a high hardware complexity (especially verification) because
the instructions need to read (and modify) multiple metadata.
Thus, we explore the latter option, by relying on a special
type of enclave to execute the data enclave instructions in
software, with data enclave metadata maintained as a software
data structure in the special enclave. We refer to the special
enclave as the authenticator.

We use the authenticator to verify and handle all data
enclave instructions issued by main enclaves. The authenti-
cator is implemented to behave like a daemon main enclave
that is instantiated at system boot and alive for as long
as the system is on. Special memory-mapped registers that
are OS-inaccessible are added in order for the processor to
communicate with the authenticator.

Figure 7 shows the workflow of the authenticator. Suppose
a main enclave executes a data enclave instruction (say, to
attach a data enclave). The instruction packet is written to
a special register that triggers the authenticator, either by the

SGX metadata

Authenticator Main enclave
1 Inst.

2
Data enclave local metadata

3

Data enclave global metadata

Fig. 7. Workflow of the authenticator

authenticator polling on the register or an interrupt is triggered
to switch in the authenticator. The authenticator then retrieves
the type of instruction and parameters, and executes it 1 . The
authenticator first retrieves the metadata (e.g., measurement)
of the caller enclave 2 . According to data enclave metadata
and caller enclave measurement, if this instruction passes
authentication and is allowed, data enclave metadata is updated
accordingly 3 . For our current design, an enclave’s measure-
ment includes its code and data memory. We use enclave’s
measurement as the unique type of an enclave to describe
sharing schemes and perform authentication, because it is
stored in the trusted computing base and cannot be overwritten.
It is practically impossible for attackers to construct another
enclave with the same measurement to pass authentication.

Data enclave instructions are not executed frequently, with
the exception of change() that modifies a main enclave access
permission on a data enclave. There are several works explor-
ing hardware-based intra-enclave isolation designs [10], [53],
[54]. Designing efficient intra-enclave isolation is not the focus
of our paper, so we use the LIGHTENCLAVE [54] design for
change().

D. Data Enclave Access Logic Design

Contrary to the SGX design, which only needs to differen-
tiate between accesses to EPC memory or not. Data enclave
design expands the SGX access logic to distinguish among
three types of memory access: EPC memory, attached data
enclave access, and non-enclave memory, as shown in Fig 8.

Traditional
page table

checks
Enclave
access?

Address in
EPC?

Address in
data enclave

region?

Replace
address

with
abort
page

Access
Address No Yes

Yes

No

Allow
memory
access

Address in
EPC?

Address in
data enclave

region?

Memory
checks

Signal
Fault

No

Pass checks?

No

Yes

Yes

No
Yes

1

6

7

8

2

3

4

5

No

Fig. 8. Data enclave access logic

An access is compared against the PTE permission 1 . If the
passed access is from an SGX enclave (i.e., main enclave), its
address is compared against the EPC address range 2 and the
data enclave region address range 3 . If this address belongs

to any of them, the memory checks are performed for this
access. If not, a signal fault is triggered. Memory checks verify
integrity by using the MAC and integrity tree verifications 4 .
If both verifications pass, this access is allowed. If one of
them is not passed, a signal fault is triggered 5 . If this access
is not from an SGX enclave, its address is compared against
the EPC address range 6 and the data enclave region address
range 7 . If this address belongs to any of them, the access
address is replaced with an aborted page. If not, this access is
allowed 8 .

To support this access logic, we design a data enclave cache
and a data enclave register to record the current address range
of the data enclave region in MC to handle TLB misses.
Figure 9 illustrates the design and mechanism of the data
enclave cache. Each entry has a 36-bit Page Frame Number
(PFN) start, a 36-bit PFN end, a 10-bit data enclave ID, a
10-bit SGX enclave IDs, and a 2-bit permissions, and a 2-bit
attach state.

PRM range reg.
Data enclave range reg.

Address with a SGX enclave ID

Matched PRM & ID≠0

Construct the
SGX enclave TLB entry

Matched data enclave
range & ID≠0

PFN start Data enclave ID
0x70... 28
0x50… 115

PFN end
0x80…
0x51…

Data enclave cache

1 2

3

4

Data enclave metadata

Miss

SGX enclave ID
1

45

Signal fault
Fill 5 Allowed7

Data enclave TLB entry

6

Not matched & ID=0
Construct
normal TLB entry

Signal fault

Matched any & ID=0

Perm.
RW
RO

Denied

8

9

Encr. key
…
…

Attach state
00
01

Fig. 9. Data enclave lookaside buffer design and workflow

The data enclave cache is used in the following way. A
TLB miss with an address and an SGX enclave ID uses the
address to compare against the PRM range register and the
data enclave range register 1 . If the address is in the PRM
range and the enclave ID is not 0, which indicates this access
is from an SGX enclave and accesses the SGX enclave, the
logic performs the checks and constructs the SGX enclave
TLB entry if checks passed 2 . If the address is in the data
enclave range and the ID is not 0, the address and the SGX
enclave ID are compared against data enclave cache entries 3 .
If a matching entry is not found, the SGX enclave ID and
the address are used to search in memory metadata 4 . The
constructed entry is added to the data enclave cache 5 . If the
SGX enclave does not have permission to this data enclave, a
fault is generated 6 . Otherwise, the access is allowed, and a
data enclave TLB entry is constructed 7 .

For a TLB miss that does not come from an SGX enclave,
its SGX enclave ID is 0. To optimize the non-SGX-enclave
TLB miss latency in data enclaves, we use a data enclave
range register to indicate the address range of the data enclave
region. Because all non-SGX-enclave accesses cannot access
any data enclave, we do not need to know which data enclave
it tries to access by searching the data enclave cache and
in-memory metadata. With this design, a TLB miss whose

SGX enclave ID is 0 uses the address to compare against two
range registers 1 . If the address matches with any of them,
indicating that this TLB miss is issued by non-SGX-enclave
but tries to access SGX enclaves or data enclaves, a signal fault
is generated 8 . If the address does not match with any range
registers, meaning that this TLB miss tries to access normal
memory, the normal TLB miss handler proceeds to construct
a normal TLB entry 9 .

For a last-level cache miss or cacheline write back, the
physical address of the cacheline is compared against PFNs in
the data enclave cache to retrieve the corresponding encryption
key. The Advanced Encryption Standard (AES) encryption en-
gine uses this encryption key to decrypt/encrypt the cacheline.

This design aligns with the existing Intel SGX design, which
relies on the TLB to accelerate access checks. Due to the
reliance on TLB checking, SGX enclave EENTER or EEXIT
issues TLB range flushes for SGX enclave and data enclave
region addresses. Revoke(), attach(), detach(), or
change() changes the permission in metadata and flushes
the corresponding data enclave address range in TLB.

E. Integrity Tree Attaching

Intel SGX stores integrity tree roots of enclaves in a limited
number of MEE registers as part of the root of trust. When
the number of enclave roots exceeds register capacity, the
infrequently used roots may be sealed and moved to DRAM. In
the data enclave design, many roots of data enclave integrity
trees need to be placed into MEE root registers. Frequently
sealing and spilling roots to memory could result in significant
overheads.

A straightforward solution is to add more registers to
accommodate more roots, like PENGLAI enclave [55]. The
drawback is that the performance will reduce significantly
due to register thrashing, which occurs when the working
set of roots exceeds the number of registers. Given various
application characteristics, determining a suitable number of
registers to avoid thrashing is challenging. We propose attach-
able integrity trees to enable several integrity trees to form
a single root integrity tree to mitigate register thrashing and
balance performance and hardware costs.

1) Integrity tree attachment, detachment, and swapping
mechanisms: We propose new primitives to attach, detach,
and swap the data enclave’s integrity tree to or from the
main/SGX enclave integrity tree. In order to attach a data
enclave’s integrity tree to an SGX integrity tree, there needs to
be room in the SGX integrity tree. We can increase the SGX
integrity tree level to create a new root, and use the second
level (root’s child) to attach/detach data enclave integrity tree
roots to the SGX integrity tree. This can continue until all the
new root’s children are taken. Beyond that, if there is another
data enclave that needs to be attached, we have several options
that can be considered (discussed in Section V-E3).

Figure 10(a) illustrates integrity tree attachment by adding
one tree level. Let us first illustrate adding one tree level. In the
figure, C00-C07 is the original SGX integrity tree root, while
B00-B07 is the newly created root. We use the SGX integrity

B00 B01 … B05 B06 B07

Hash

C00 … C07 MAC11

Secure Region:

Hash

D00 … D07 MAC21

…

Hash

C10 … C17 MAC12

Hash

D80 … D87 MAC22

…

(a) Single root with 1-level-increasing

A00 A01 … A06 A07

Hash

B00 B01 MAC01

Secure Region:

…

Hash

C00 MAC11… …

… Hash

C10 MAC12…
…

…

Hash

B10 MAC02…

Hash

C80 MAC19… …

…

…

(b) Single root with 2-level-increasing

For incoming
data enclaves

SGX enclave integrity tree Data enclave 1 integrity tree
Original rootData enclave 2 integrity tree

Fig. 10. Integrity tree attachment by adding one level (a) or two levels (b).

tree key to further hash it into a 56-bit B00. Then the new root
value is created, with B00 computed from the old root, B01-
B07 zeroed, and MAC value (MAC11) computed and stored
in the node. Then, the new root is stored in the secure on-chip
register, displacing the original root.

After a new SGX enclave root is created, the next step is
to integrate the data enclave integrity tree by attaching it. The
data enclave original root (C10-C17) is hashed into a 56-bit
string; then, it is put into B01. The MAC value (MAC12)
is computed and stored in the node where the data enclave
root stays. The SGX integrity tree reuses the existing integrity
subtree of this data enclave (D80-D87 and etc.).

Therefore, with the mechanism discussed above, adding
one level to the integrity tree accommodates 7 data enclave
integrity trees. Figure 10 (b) shows an example that by adding
two levels to the original SGX integrity tree, now we can
accommodate 8 × 8 − 1 = 63 data enclave integrity trees.
Generalizing, for an N -ary tree, adding M levels allows us to
attach MN − 1 data enclave integrity trees.

The steps of integrity tree detachment are as follows.
Integrity tree detachment recalculates the hash (MAC12) and
verifies data enclave root (C10-C17) integrity until the SGX
enclave root. If both verifications pass, the root is sealed and
written back to data enclave metadata. Then the data enclave’s
related nodes are cleaned. Specifically, in the one additional
level case, cleaning only needs to set the hashed root (B01)
as zero. In the two additional levels case, cleaning needs to
set the hashed root (B01) as zero and recalculate the node’s
MAC (MAC01) and the related root value (A00).

Finally, in addition to the integrity tree attachment, we
propose integrity tree swap. If there are more data enclaves to
attach than the number of nodes in the integrity tree, instead
of adding another level to the tree, we could alternatively swap
an existing tree with a new one. With the integrity tree swap

mechanism, we can detach one least recently used (LRU) data
enclave root to its data enclave global metadata, and then
attach another data enclave integrity tree in its place. Swapping
allows us to keep a shallow tree and prioritize keeping hot
data enclaves’ integrity trees attached. Note that the integrity
tree attachment status is not the same as the data enclave
attachment status; with swapping, an attached data enclave
may have its integrity tree detached.

There are three major benefits of the integrity tree attach-
ment mechanism. (1) This mechanism allows dynamically
attaching/detaching the integrity tree, reducing tree height to
improve its update/verification performance. (2) This mecha-
nism forms a single root integrity tree, requiring very small
hardware modification to the existing SGX design to support it.
(3) The integrity tree attachment or detachment only involves
several nodes calculation and one memory access, incurring a
smaller overhead than sealing.

Integrity tree attachment, detachment, and swapping only
affect integrity trees. The access permissions of different SGX
enclaves on data enclaves are enforced on handling TLB
misses (see Section V-D).

2) Security Metadata Management: In our design, all data
enclaves and SGX enclaves use fixed mappings between data
blocks and security metadata. When attaching the integrity
tree, the integrity tree of the SGX enclave might grow by 1 or
2 levels. The additional metadata resulting from this growth
is housed in the SGX enclave’s preallocated space. Each SGX
enclave statically preallocates 4608 bytes to accommodate
metadata stemming from a 2-level growth in the integrity
tree. The locations to store additional metadata is also fixed
for integrity tree growth by one level or two levels. This
preallocated space is only used if the integrity tree is increased
by tree attaching.

With integrity tree attachment, the Memory Controller (MC)
needs information on how to retrieve security metadata from
increase integrity tree. We utilize a 2-bit attach state in data
enclave metadata to indicate this. A 00, 01, or 10 state
indicates this data enclave’s integrity tree is “not attached”,
“attached to an enclave tree with 1-level growth, and “attached
to an enclave tree with 2-level growth”, respectively.

3) Design Space of Integrity Tree Roots: With SGX design,
MEE has registers for SGX enclave integrity roots, so these
roots can be accessed efficiently. It is hard to envision how
many registers are needed to accommodate data enclave’s roots
in different applications. We explore three designs to handle
this problem. Figure 11 illustrates the three designs.

The multiple root design (Figure 11(a)) directly adds more
root registers in the MEE for data enclaves to store the roots of
data enclaves, which is similar to PENGLAI [55]. This design
does not increase tree heights for both integrity trees. However,
this design suffers from a significant performance drop from
frequently evicting and filling roots between registers and
memory when there is register thrashing.

On the other hand, the single root design (Figure 11(b))
leverages integrity tree attachment to reuse existing root reg-
isters in the SGX design. When a data enclave integrity tree

MEE
SGX root
registers

Data enclave
root registers

SRAM
SGX

metadata
DE

meta.

Evict/
Fill

Evict/
Fill

MEE
SGX root
registers

SRAM
SGX

metadata
DE

meta.

Evict/
Fill

Attach/
Detach

(a) Multiple root (b) Single root

MEE
SGX root
registers

Data enclave
root registers

SRAM
SGX

metadata
DE

meta.

Evict/
Fill Fill

(c) Hybrid

Evict

Detach

Fig. 11. Three designs of integrity tree roots: (a) Multiple root, (b) Single
root, and (c) Hybrid. DE meta. represent data enclave metadata.

needs to be accessed, this tree is attached to the SGX enclave
integrity tree, and the integrity tree detachment is performed if
necessary. This design does not need additional registers, while
it needs to update one or two more nodes for an enclave write.

The hybrid design (Figure 11 (c)) balances hardware cost
and performance by combining the two designs discussed
above. When a data enclave integrity tree needs to be accessed,
its root is placed in the data enclave root registers initially to
achieve better performance. When data enclave root registers
are used up, the LRU data enclave root is evicted (i.e.,
attached) to the SGX enclave integrity tree. We estimate
the LRU data enclave by selecting the data enclave is not
in data enclave cache. When the SGX integrity tree cannot
accommodate a new data enclave root, the LRU data enclave
root in the SGX integrity tree is detached and stored in data
enclave metadata. In this design, we put hot data enclave
roots in root registers and put warm data enclave roots in the
SGX integrity tree, avoiding performance degradation of the
multiple root design due to limited hardware resources and
improving the single root performance.

The increased level could be made dynamically adjustable.
Although important, this paper does not focus on profiling
and optimizing this parameter. Our evaluation uses the fixed
increased level.

F. Other Details

To allocate data in data enclaves, we implemented a simple
region-based memory management library for programmers
to specify the data enclave ID in the allocation/deallocation
calls. As each data enclave space is allocated on creation, the
library only needs to maintain a freelist for each data enclave
to handle allocation/deallocation.

A data enclave can be swapped out entirely to storage, and
then swapped to DRAM when it is attached. When a data
enclave is swapped in, preference is given for swapping to the
same Physical Address (PA) range that it was attached last;
this allows its integrity to be verified on the fly, as the integrity
tree root is always in the secure region. If a data enclave is
swapped to a different PA range, its integrity is verified first,
and then the data is re-encrypted with new PAs.

We assume 1024 as the maximum number of data enclaves,
based on the length of the data enclave ID in hardware
components. This constraint can be relaxed by extending the
number of bits used for the enclave ID.

If two main enclaves attach a data enclave concurrently,
the integrity tree of the data enclave is not attached to the
integrity trees of any main enclaves. Its metadata update and
verification are performed independently.

G. Space Costs

Our design adds the data enclave cache, a data enclave
region boundary register and data enclave root registers in
MC. Date enclave metadata is the in-memory data structure.
The total on-chip storage introduced is 1984 bytes, which is
much smaller than the counter cache. The single root design
introduces 1040 bytes. The memory space includes the global,
per SGX, and per data enclave metadata.

TABLE III
SPACE COST

New on-chip
Components

Entry size
(bytes) # of entries Size

(bytes)
Data enclave cache 29.75 32 952
Data enclave root registers 64 16 (0) 1024
Data enclave region boundary 8 1 8
Memory space Size (bytes)
Global data enclave metadata 32768
Per SGX metadata for data enclave 20992
Per data enclave metadata 256

VI. EVALUATION METHODOLOGY

Simulator: To evaluate our designs, we built a cycle level
simulator with Gem5 v20.1.0.5 [31]. Table IV shows the
parameters. Integrity verification of a newly fetched block
is overlapped with decryption and data use, similar to prior
work [48], [56], [57]. We use separate metadata caches for
counters, MACs, and integrity tree nodes. Attach and detach
use a 1000-cycle latency as it needs to range flush TLB entries,
in line with range flush cost in prior work [58].

TABLE IV
SIMULATOR PARAMETERS

Processor Configuration
CPU 1 core, OOO, x86 64, 4.00GHz
L1 Cache 8-way, 64KB, 64B block, Access latency: 2 cycles
L2 Cache 512KB, 16-way, 64B block, Access latency: 20 cycles
L3 Cache 4MB, 32-way, 64B block, Access latency: 30 cycles

Memory and Memory Controller Configuration
Counter Cache 128KB, 8-way, 64B block
MAC Cache 128KB, 8-way, 64B block
Integrity Tree Cache 128KB, 8-way, 64B block
Data enclave cache Fully associative, 32 entries, access latency: 30 cycles
Root registers Access latency: 8 cycles
MAC/Encryption/
Integrity tree latency 40 cycles for a cacheline

SRAM/Memory DDR4 2400MHz, tRCD/tCL/tRP/
tRAS/tWR=14/14/14/32/15ns

Data enclave instructions latency
attach()/detach() latency 1000 cycles

Workloads: We evaluate data enclave sharing using syn-
thetic benchmarks and three real-world applications. To assess
the performance impact of splitting data into multiple data
enclaves without sharing, we conduct experiments on SPEC
2006 benchmarks and microbenchmarks.

We construct synthetic benchmarks for two sharing patterns:
producer-consumer and client-server patterns. The synthetic
benchmarks only include data sharing time and exclude any
other application execution time. We evaluate IOZone [59],
Recommender [60] and Redis [61] to show performance
impacts for real-world applications in data sharing between
enclaves. More details are in Section VII-B

We assess the impact of shrinking a large integrity tree into
smaller ones by distributing data into different data enclaves
using SPEC benchmarks. Each benchmark is executed within
an SGX enclave that stores the code, local variables, and small
heap data. We designate each heap object larger than 32KB
as a data enclave.

In our microbenchmark evaluation, we investigate the im-
pact of shrinking a large integrity tree on different numbers of
total data enclaves and in-use data enclaves. Each microbench-
mark runs within an SGX enclave that stores the code and
local variables. We initialize 128 32MB data enclaves for
each microbenchmark data structure. During execution, each
microbenchmark performs update operations on a subset of
these data enclaves (4, 8, 16, 32, 64) for 100K operations,
representing varying numbers of in-use data enclaves. After
100K operations, the microbenchmark detaches the data en-
claves of the current subset (i.e., working set) and attaches
data enclaves of another subset. The five microbenchmarks are:
Linked List (LL), AVL Tree (AVL), Hash Map (HM), B+tree
(BT), and Red-black tree (RBT), which are also utilized in
other studies [62]–[65].

For synthetic benchmarks, we fast-forward the simulator be-
fore the data sharing part and then perform detailed simulation.
For other benchmarks, we sample 10 billion cycles.

Schemes: We evaluate the following eight schemes. (1)
SGXv1, which is SGX version 1 with 256MB EPC. (2)
Scalable SGX (ScaleSGX) is an idealized version of SGXv1
with a large enough PRM to accommodate all enclave data and
metadata without page swapping. Both SGXv1 and Scalable
SGX perform software measurement and software encryp-
tion/decryption when they put or fetch data from public
memory. (3) Data enclave hybrid design with adding one level
to the integrity tree (Hybrid1 or Data enclave) (4) Data enclave
(single root) with one additional level to the integrity tree
(SingleRoot1). (5) Data enclave with the multiple root design
(MultipleRoot). (6) ElasticOneKey, which is Elasticlave [29]
with one encryption key for all enclaves and shared data.
(7) ElasticMultiKey, which is Elasticlave modified to use
different encryption keys for different enclaves and shared
data. (8) ElasticIntegrity, which adds MAC and integrity tree
to ElasticMultiKey to provide the same protection level as the
data enclave. We implement all Elastic schemes in Gem5 for
comparison.

VII. EVALUATION

A. Synthetic Benchmark Results

Figure 12 presents the latency results for both producer-
consumer sharing and server-client sharing patterns. Data
enclave latency is substantially lower than ScaleSGX due

to in-place data access without necessitating software en-
cryption/decryption or integrity verification. In the producer-
consumer sharing model, the data enclave design achieves a
speedup of 100X for 256 bytes and 2000X for 4096KB of data.
Additionally, the latency of data sharing through data enclaves
remains almost constant across all record sizes. ElasticOneKey
has slightly higher overheads (4-10%) than data enclave due to
page table manipulation. ElasticMultiKey needs decrypt and
re-encrypt the shared data region; thus, it incurs 2.4 to 4.9×
higher overheads than data enclave. Importantly, data enclave
surpasses ElasticMultiKey’s performance while providing a
more flexible data abstraction with enhanced capabilities.

(b) Server-Client(a) Producer-consumer

Fig. 12. Performance of the two data sharing patterns.

(b) Data enclave (Hybrid1)(a) Scalable SGX

Fig. 13. The breakdowns of the client-server sharing pattern.

Figure 13 provides a breakdown of the client-server sharing
pattern. For ScaleSGX, the majority of the ”other” component
is setting up the secure communication channel. When dealing
with small record sizes, data copying and the other component
consume most of the time. As the record size increases, the
overhead of encryption/decryption and integrity verification
become more dominant since their latency grows linearly with
the request size. Data enclave instructions’ latency represent
the majority of the sharing time (between 89-94%).

B. Real-world Application Results

IOZone (File I/O). IOZone [59] is a benchmark tool for
file systems that generates and measures a variety of file
operations. We place the IO request generator in an SGX
enclave and the file system that handles the requests within
another SGX enclave. A data enclave is utilized to transfer
requests and data between the two enclaves. This evaluation

represents the producer-consumer sharing pattern for writes
and the client-server sharing pattern for reads.

(b) Random Write(a) Random Read

Fig. 14. The performance of read and write.

Figure 14 presents read and write bandwidth on different
request sizes. Data enclave offers a 1.5-3.2× speedup over
ScaleSGX on read. As the record size increases, the perfor-
mance gap narrows since the data enclave performance ap-
proaches the performance bottleneck of storage. Data enclave
exhibits a 1.2-1.6× speedup over ScaleSGX on writes due to
the lower frequency of data exchange. ElasticIntegrity is 5-
12% slower than data enclave due to additional encryption
and decryption.

Recommender (product recommendation service). Rec-
ommender [60] is an open-source tool that uses collaborative
filtering to suggest products. The tool builds a model based on
a user’s past behavior, and the behavior is extrapolated from
other users to provide highly accurate suggestions. We retrofit
the included benchmark to build the model stored in the server
enclave. Each user has a data enclave (32MB) to store the
personal history of purchases. Each user has its own function
to generate new history (1KB/16KB/256KB) stored in its data
enclave. Each user’s function is put in an SGX enclave. The
server enclave fetches data from user data enclaves in turn.

This application represents the producer-consumer sharing
model with multiple producers and one consumer. The server
SGX enclave attaches all user data enclaves with read-only
permission, while each user SGX enclave attaches its own
data enclave with read-write permission.

Fig. 15. Normalized throughput of Recommender over data enclave.

Figure 15 results show that the data enclave design outper-
form ScaleSGX in performance, achieving 1.4-1.8X speedup
with 16 user data regions and 1.6-2.1X when increased to 64.
Data enclave outperforms ElasticIntegrity by 9-14% for 16

user data regions and 14-21% when expanded to 64. Improved
performance stems from the increased data exchanges between
server and user SGX enclaves as user numbers grow and the
smaller integrity tree size.

Redis (key-value store application). We build a key-value
store server based on Redis [61], an open-source key-value
store. The client code generate requests, and the Redis server
code performs insert/update/search of requests. The server
code and data are in one enclave, while the client code and data
are in another enclave. The client submits requests to the data
enclave request buffer, and the server processes these requests
after every (1/4/16) request(s). Once processing is complete,
the server places the results in the response buffer for the client
to retrieve. ScaleSGX employs two public memory pools for
server-client data exchange.

100% insert100% search

Fig. 16. Normalized throughput of Redis over data enclave.

Figure 16 demonstrates the data enclave design’s 81-179%
improvement over ScaleSGX and 8-12% over ElasticIntegrity.
Greater speedup is shown with fewer accumulated requests due
to ScaleSGX’s and ElasticIntegrity’s more sharing latency.

C. SPEC Results

Fig. 17. Execution time of various schemes with SPEC benchmarks, normal-
ized to the non-secure baseline.

Figure 17 shows the execution time of SPEC benchmark
results, normalized to the insecure baseline. These benchmarks
have 2-23 data enclaves, with an average of 10 data enclaves.
SingleRoot1 reduces 5.3% overhead over ScaleSGX on aver-
age, because its tree height is almost the same as ScaleSGX.
MultipleRoot further improves integrity tree performance by
10.4% from smaller integrity trees. Hybrid1 has almost the

(a) LL (b) AVL (c) HM (d) BT (e) RBT
of data enclaves N

or
m

al
ize

d
ex

ec
. t

im
e

Fig. 18. Normalized execution time of multiple designs on different working set sizes over non-secure baseline.

same performance as MultipleRoot, while it reduces the need
for hardware registers in MEE. ElasticIntegrity has a similar
performance as ScalaSGX. SGXv1 incurs more overhead than
all schemes, because page swapping from/to EPC dominates
its execution time.

D. Microbenchmark Results

Figure 18 shows microbenchmark results, with each figure
representing a microbenchmark. The x-axis shows increasing
data enclave numbers (working set size), and different lines
illustrate various schemes. Each point indicates execution time
normalized to a non-enclave system. Lower temporal locality
is observed when multiple data enclaves are involved.

Several cross points reveal interesting performance trends.
SingleRoot1 outperforms ScaleSGX with smaller working sets
due to a reduced integrity tree height. However, when working
sets exceed 8 data enclaves, SingleRoot1’s performance falls
behind ScaleSGX as integrity tree swapping overheads dom-
inate. MultipleRoot outperforms ScaleSGX and SingleRoot1
for working sets of up to 16 data enclaves, given 16 root
registers in MEE. When working sets surpass 16 data enclaves,
performance declines due to frequent root spilling/restoring.
Hybrid1 mitigates degradation by employing integrity tree
attachment without extra hardware costs, improving ScaleSGX
performance by 13.1% on average and outperforming all other
schemes.

E. Security Analysis

For external-to-enclave threats, our design provides the
same protection for data enclaves as SGX enclaves. We assume
attackers could have full control of the privileged software
(e.g., OS) and physical access to the machine. For the assur-
ance of confidentiality, each data enclave is encrypted with
a unique encryption key known exclusively to the hardware.
Integrity is upheld via MACs and an integrity tree for each
data enclave. Access control is strictly enforced through our
architecture, prohibiting the OS or other SGX enclaves from
accessing data or security metadata within a data enclave.
The data enclave range register guarantees that only an SGX
enclave can construct data enclave TLB entries. The data
enclave cache and the in-memory metadata record which SGX
enclave can access a data enclave.

Our design effectively prevents three potential risks asso-
ciated with inter-enclave sharing. The first risk pertains to

the attacker’s potential initiation of no-plaintext attacks [66],
which aims to disclose the victim enclave’s data by comparing
ciphertext in attacker-controlled data enclaves and victim en-
claves. This threat is non-existent if the encryption seed relies
on physical addresses, since it is enclave-specific. However,
it is still possible that addresses are reused over time. Our
design prevents this threat by employing distinct keys for
data enclaves and main enclaves, thereby overcoming the
vulnerability in the Elasticlave system [29], which assumes
one encryption key for all enclaves. The second risk involves
the attacker enclave’s attach() to pre-existing data enclaves.
Our design mitigates this by using the main enclave’s measure-
ment for authentication in attach(). Even though the attacker
can launch main enclaves and try to attach data enclaves,
measurements of main enclaves are securely calculated and
stored in TCB and cannot be modified by attackers. It is
practically impossible for attackers to create a main enclave
that has the same measurement as the victim’s main enclave.

The third potential risk from inter-enclave sharing is that
attacker may attempt to create a fake main enclave (a replica)
by replicating a main enclave’s code and data. The attacker can
use the replica to attach data enclaves. While the attacker is not
able to modify code and data in a replica, with inter-enclave
sharing, if the main enclave has non-idempotent operations
(i.e., increase a value by 100) on data enclaves, the replica
can corrupt data enclave content, e.g. by increasing this value
by 100 again, making it different from intended. Such a risk
is mitigated by the ability of main enclave measurement to
include a secret value, such as a string.

Main enclave 1 Data enclave 1

Main enclave
metadata

Data enclave sharing scheme list

Data enclave ID Measurment of the
first main enclave

1 hash(X+secret)
Perm.
RW

2
Initialize

3

Trusted third
party (e.g.,

user)
Receive secret

Update measurment

4

5
attach()

1

Fig. 19. Example of preventing attacks from replicating a main enclave.

Even though replicating code and data is very difficult, our

design can mitigate this risk. As shown in Fig. 19, when the
user describes the sharing scheme, the measurement is a hash
value of code, data, and a secret 1 . After the initialization of
Main Enclave 1, its measurement is the hash value of the code
and data, represented as X 2 . After some computation in main
enclave 1, it seeks to attach data enclave 1. It first establishes a
secure communication channel with a trusted third party, such
as the user, to receive a secret (e.g., a 256-byte string) 3 . The
main enclave 1 executes the update instruction to update its
measurement by hashing the current measurement X and the
secret 4 . The main enclave can attach data enclave 1 and pass
authentication by providing the measurement of code, data,
and the secret 5 . Even though the attacker can replicate code
and data to create a replica, the attacker has no knowledge of
the secret. Therefore, its measurement does not allow attaching
data enclave 1. Prior work has studied how to prevent the
attacker enclave from pretending to be the user’s enclave to
build communication channel [67].

VIII. RELATED WORK

We discussed closely related work in Section III. This
section discusses other related work.

A rich set of work optimizes integrity trees. PENGLAI [55]
introduces more integrity tree root registers to store sub-roots
of the integrity trees, such that updates/verifications can stop
at sub-roots. VAULT [48] uses a variable arity integrity tree to
reduce the memory traffic of the integrity tree. Bonsai Merkle
Trees are another type of integrity tree whose MACs only
reside in leaf nodes [37]. Gassend et al. [68] proposed to cache
tree nodes on the CPU to improve verification performance.
Szefer et al. [69] propose a skewed tree that puts frequently
accessed locations of memory to the nodes with a shorter
path to the root to improve integrity tree performance. Suh
et al. [38] introduce incremental hash of logs to check a
sequence of accesses to improve verification performance.
Parallelizable Authentication Tree [70] and Tamper-Evident
Counter Tree [71] explored how to update and authenticate in
parallel, but with more memory overhead.

One branch of prior efforts provides intra-enclave isola-
tion. EnclaveDOM [53] and LIGHTENCLAVE [54] propose
combining memory protection keys (MPK) [45] to define
domains and their access control for intra-enclave isolation.
Nested enclave [10] proposes two-level enclaves where an
inner enclave can access the outer enclave, but not vice versa.

Some TEEs do not include integrity protection. They extend
the virtual machine/monitor to manage protected memory allo-
cation, like AMD Secure Encrypted Virtualization (SEV) [43],
[72], ARM TrustZone-based TEEs [73] and RISC-V-based
TEEs [74]–[76]. IceClave [77] adds memory encryption and
the integrity tree on top of Trustzone in ARM. CHANCEL [21]
instruments enclave memory access with checks to enforce
boundaries of isolated domains.

There are various studies about building trusted execution
environments. AEGIS [78] provides memory protection with
encryption, MACs, and Merkle Tree to enable protected ap-
plications securely under both software and hardware attacks.

SecureME [79] and SecureBlue++ [80] provide both hardware
and software protection with a limited change to the OS. A
recent work [56] proposes speculation on secure architecture
design to improve performance. Phantom [81] proposes a
secure processor design to obfuscate the addresses and provide
integrity verification by using Merkle tree and MACs.

IX. CONCLUSION

The paper introduces a novel concept called Data Enclaves
as a solution to the limitations of current TEEs in enabling se-
cure data sharing between enclaves. The proposed architecture
designs have minimal hardware requirements and support data
enclave logic with attachable integrity trees. Our experimental
results demonstrate that using data enclaves can provide a
speedup of 1-3 orders of magnitude of data sharing latency
over existing TEEs.

ACKNOWLEDGMENT

We thank all the anonymous reviewers whose feedback is
helpful for improving the final version of the paper. This
material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 2106629, 2312206, CNS-
2312207 and CNS-2107068, and Office of Naval Research
(ONR) under grant No. N00014-23-1-2136. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NSF or ONR.

REFERENCES

[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’keeffe, Mark L Stillwell, et al. Scone: Secure linux containers with
intel sgx. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 689–703, 2016.

[2] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding ap-
plications from an untrusted cloud with haven. ACM Transactions on
Computer Systems (TOCS), 33(3):1–26, 2015.

[3] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,
Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.
Securekeeper: Confidential zookeeper using intel sgx. In Proceedings
of the 17th International Middleware Conference, pages 1–13, 2016.

[4] Chia-Che Tsai, Donald E Porter, and Mona Vij. {Graphene-SGX}: A
practical library {OS} for unmodified applications on {SGX}. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 645–
658, 2017.

[5] Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E Gonzalez, and
Ion Stoica. Oblivious coopetitive analytics using hardware enclaves.
In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–17, 2020.

[6] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A distributed sandbox for untrusted computation on
secret data. ACM Transactions on Computer Systems (TOCS), 35(4):1–
32, 2018.

[7] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure
database using sgx. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 264–278. IEEE, 2018.

[8] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada
Popa, and Donald E Porter. Civet: An efficient java partitioning
framework for hardware enclaves. In 29th USENIX Security Symposium
(USENIX Security 20), pages 505–522, 2020.

[9] Intel software guard extensions. https://www.intel.com/content/www/
us/en/developer/tools/software-guard-extensions/overview.html. Online;
accessed Jun, 2022.

[10] Joongun Park, Naegyeong Kang, Taehoon Kim, Youngjin Kwon, and
Jaehyuk Huh. Nested enclave: Supporting fine-grained hierarchical
isolation with sgx. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 776–789. IEEE,
2020.

[11] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious {Multi-
Party} machine learning on trusted processors. In 25th USENIX Security
Symposium (USENIX Security 16), pages 619–636, 2016.

[12] Sam Newman. Building microservices. ” O’Reilly Media, Inc.”, 2021.
[13] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential serverless made

efficient with plug-in enclaves. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages 306–
318. IEEE, 2021.

[14] Stefan Brenner and Rüdiger Kapitza. Trust more, serverless. In
Proceedings of the 12th ACM International Conference on Systems and
Storage, pages 33–43, 2019.

[15] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and
Christof Fetzer. Clemmys: Towards secure remote execution in faas. In
Proceedings of the 12th ACM International Conference on Systems and
Storage, pages 44–54, 2019.

[16] Aakanksha Saha and Sonika Jindal. Emars: efficient management and
allocation of resources in serverless. In 2018 IEEE 11th international
conference on cloud computing (CLOUD), pages 827–830. IEEE, 2018.

[17] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya.
Deadline-aware dynamic resource management in serverless computing
environments. In 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), pages 483–492. IEEE,
2021.

[18] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
Putting the” micro” back in microservice. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 645–650, 2018.

[19] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 427–444, 2018.

[20] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
{SGXJail}: Defeating enclave malware via confinement. In 22nd In-

ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2019), pages 353–366, 2019.

[21] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca,
and Byoungyoung Lee. Chancel: Efficient multi-client isolation under
adversarial programs. In NDSS, 2021.

[22] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego
Perino, and Nicolas Kourtellis. Ppfl: privacy-preserving federated
learning with trusted execution environments. In Proceedings of the
19th annual international conference on mobile systems, applications,
and services, pages 94–108, 2021.

[23] Wenhao Wang, Yichen Jiang, Qintao Shen, Weihao Huang, Hao Chen,
Shuang Wang, XiaoFeng Wang, Haixu Tang, Kai Chen, Kristin Lauter,
et al. Toward scalable fully homomorphic encryption through light
trusted computing assistance. arXiv preprint arXiv:1905.07766, 2019.

[24] Twelve malicious python libraries found and removed from pypi.
https://www.zdnet.com/article/twelve-malicious-python-libraries-
found-and-removed-from-pypi/. Online; accessed Jun, 2022.

[25] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites:
exploiting the ssl 3.0 fallback. Security Advisory, 21:34–58, 2014.

[26] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, et al. The matter of heartbleed. In Proceedings of the
2014 conference on internet measurement conference, pages 475–488,
2014.

[27] Marion Marschalek. The wolf in sgx clothing. Bluehat IL (Jan 2018),
2018.

[28] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave
malware with intel sgx. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 177–196.
Springer, 2019.

[29] Zhijingcheng Yu, Shweta Shinde, Trevor E. Carlson, and Prateek Saxena.
Elasticlave: An efficient memory model for enclaves, 2020.

[30] Intel scalable sealing. https://sgx101.gitbook.io/sgx101/sgx-bootstrap/
sealing. Online; accessed Jun, 2022.

[31] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[32] Shay Gueron. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, 2016.

[33] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, 2016.

[34] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan Del Cuvillo. Using innovative instructions to create trustworthy
software solutions. HASP@ ISCA, 11(10.1145):2487726–2488370,
2013.

[35] Helger Lipmaa, Phillip Rogaway, and David Wagner. Ctr-mode en-
cryption. In First NIST Workshop on Modes of Operation, volume 39.
Citeseer. MD, 2000.

[36] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and
Yan Solihin. Improving cost, performance, and security of memory
encryption and authentication. ACM SIGARCH Computer Architecture
News, 34(2):179–190, 2006.

[37] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin.
Using address independent seed encryption and bonsai merkle trees to
make secure processors os-and performance-friendly. In 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), pages 183–196. IEEE, 2007.

[38] G Edward Suh, Dwaine Clarke, Blaise Gasend, Marten Van Dijk, and
Srinivas Devadas. Efficient memory integrity verification and encryption
for secure processors. In Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36., pages 339–
350. IEEE, 2003.

[39] Mark N Wegman and J Lawrence Carter. New hash functions and their
use in authentication and set equality. Journal of computer and system
sciences, 22(3):265–279, 1981.

[40] Intel sgx development guide. https://download.01.org/intel-sgx/linux-
1.7/docs/Intel SGX Developer Guide.pdf. Online; accessed Jun, 2022.

[41] Intel sgx attestation services. https://www.intel.com/content/www/us/
en/developer/tools/software-guard-extensions/attestation-services.html.
Online; accessed Jun, 2022.

[42] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the
middle attacks. IEEE communications surveys & tutorials, 18(3):2027–
2051, 2016.

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/sealing
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/sealing
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html

[43] Amd sev-snp. https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-more.pdf.
Online; accessed Jun, 2022.

[44] Intel. Intel trust domain extensions (intel tdx).
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
trust-domain-extensions.html, 2023.

[45] Intel. Intel 64 and ia-32 architectures software developer’s manual.
https://software.intel.com/en-us/articles/intel-sdm. Online; accessed 11
November, 2019.

[46] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo
Kim. libmpk: Software abstraction for intel memory protection keys
(intel {MPK}). In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 241–254, 2019.

[47] Intel scalable sgx. https://www.intel.com/content/www/us/en/products/
docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html. On-
line; accessed Jun, 2022.

[48] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. Vault:
Reducing paging overheads in sgx with efficient integrity verification
structures. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 665–678, 2018.

[49] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
arXiv preprint arXiv:1801.01203, 2018.

[50] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
973–990, 2018.

[51] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. Lvi: Hijacking transient execution through microarchi-
tectural load value injection. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 54–72. IEEE, 2020.

[52] Anthony D Wood and John A Stankovic. Denial of service in sensor
networks. computer, 35(10):54–62, 2002.

[53] Marcela S Melara, Michael J Freedman, and Mic Bowman. Enclave-
dom: Privilege separation for large-tcb applications in trusted execution
environments. arXiv preprint arXiv:1907.13245, 2019.

[54] Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo
Chen. A {Hardware-Software} co-design for efficient {Intra-Enclave}
isolation. In 31st USENIX Security Symposium (USENIX Security 22),
pages 3129–3145, 2022.

[55] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin
Xia, Binyu Zang, and Haibo Chen. Scalable memory protection in the
{PENGLAI} enclave. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21), pages 275–294, 2021.

[56] Tamara Silbergleit Lehman, Andrew D Hilton, and Benjamin C Lee.
Poisonivy: Safe speculation for secure memory. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–13. IEEE, 2016.

[57] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy El-
sasser, and Moinuddin K Qureshi. Synergy: Rethinking secure-memory
design for error-correcting memories. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
454–465. IEEE, 2018.

[58] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and
Gabriel H Loh. Avoiding tlb shootdowns through self-invalidating tlb
entries. In 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 273–287. IEEE, 2017.

[59] WilliamD NORCOTT. Iozone filesystem benchmark. http://www.
iozone. org/, 2003.

[60] Recommender is a c library for product recommendations/suggestions
using collaborative filtering (cf). http://ghamrouni.github.io/
Recommender/index.html. Online; accessed Sept, 2022.

[61] Redis. https://redis.io/. Online; accessed February, 2022.
[62] Yuanchao Xu, ChenCheng Ye, Yan Solihin, and Xipeng Shen. Hardware-

based domain virtualization for intra-process isolation of persistent
memory objects. In 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), pages 680–692. IEEE, 2020.

[63] Pengfei Zuo, Yu Hua, and Yuan Xie. Supermem: Enabling application-
transparent secure persistent memory with low overheads. In Pro-

ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 479–492, 2019.

[64] Yuanchao Xu, Yan Solihin, and Xipeng Shen. Merr: Improving security
of persistent memory objects via efficient memory exposure reduction
and randomization. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 987–1000, 2020.

[65] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin. Temporal
exposure reduction protection for persistent memory. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 908–924. IEEE, 2022.

[66] Xiang Peng, Peng Zhang, Hengzheng Wei, and Bin Yu. Known-plaintext
attack on optical encryption based on double random phase keys. optics
letters, 31(8):1044–1046, 2006.

[67] Fritz Alder, Arseny Kurnikov, Andrew Paverd, and N Asokan. Migrating
sgx enclaves with persistent state. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 195–206. IEEE, 2018.

[68] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten Van Dijk,
and Srinivas Devadas. Caches and hash trees for efficient memory
integrity verification. In The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.,
pages 295–306. IEEE, 2003.

[69] Jakub Szefer and Sebastian Biedermann. Towards fast hardware memory
integrity checking with skewed merkle trees. In Proceedings of the
Third Workshop on Hardware and Architectural Support for Security
and Privacy, pages 1–8, 2014.

[70] W Eric Hall and Charanjit S Jutla. Parallelizable authentication trees.
In International Workshop on Selected Areas in Cryptography, pages
95–109. Springer, 2005.

[71] Reouven Elbaz, David Champagne, Ruby B Lee, Lionel Torres, Gilles
Sassatelli, and Pierre Guillemin. Tec-tree: A low-cost, parallelizable tree
for efficient defense against memory replay attacks. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages
289–302. Springer, 2007.

[72] Amd sev. https://developer.amd.com/sev/. Online; accessed Jun, 2022.
[73] Arm trustzone for cortex. https://www.arm.com/technologies/trustzone-

for-cortex-a#:∼:text=Arm%20TrustZone%20technology%20offers%
20an,trust%20based%20on%20PSA%20guidelines. Online; accessed
Jun, 2022.

[74] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX
Security Symposium (USENIX Security 16), pages 857–874, 2016.

[75] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 287–305, 2017.

[76] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan
Mangard, and Ahmad-Reza Sadeghi. Timber-v: Tag-isolated memory
bringing fine-grained enclaves to risc-v. In NDSS, 2019.

[77] Luyi Kang, Yuqi Xue, Weiwei Jia, Xiaohao Wang, Jongryool Kim,
Changhwan Youn, Myeong Joon Kang, Hyung Jin Lim, Bruce Jacob,
and Jian Huang. Iceclave: A trusted execution environment for in-
storage computing. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 199–211, 2021.

[78] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and
Srinivas Devadas. Aegis: Architecture for tamper-evident and tamper-
resistant processing. In ACM International Conference on Supercom-
puting 25th Anniversary Volume, pages 357–368, 2003.

[79] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic.
Secureme: a hardware-software approach to full system security. In
Proceedings of the international conference on Supercomputing, pages
108–119, 2011.

[80] Rick Boivie and Peter Williams. Secureblue++: Cpu support for secure
execution. IBM, IBM Research Division, RC25287 (WAT1205-070),
pages 1–9, 2012.

[81] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi,
Krste Asanovic, John Kubiatowicz, and Dawn Song. Phantom: Practical
oblivious computation in a secure processor. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
pages 311–324, 2013.

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
http://ghamrouni.github.io/Recommender/index.html
http://ghamrouni.github.io/Recommender/index.html
https://redis.io/
https://developer.amd.com/sev/
https://www.arm.com/technologies/trustzone-for-cortex-a#:~:text=Arm%20TrustZone%20technology%20offers%20an,trust%20based%20on%20PSA%20guidelines.
https://www.arm.com/technologies/trustzone-for-cortex-a#:~:text=Arm%20TrustZone%20technology%20offers%20an,trust%20based%20on%20PSA%20guidelines.
https://www.arm.com/technologies/trustzone-for-cortex-a#:~:text=Arm%20TrustZone%20technology%20offers%20an,trust%20based%20on%20PSA%20guidelines.

	Introduction
	Background
	Motivation and Design Principles
	Overview
	Data Enclave Abstraction
	Data Enclave Usage Example
	Threat Model

	Design
	Data Enclave Design Overview
	Data Enclave Metadata
	Data Enclave Authenticator
	Data Enclave Access Logic Design
	Integrity Tree Attaching
	Integrity tree attachment, detachment, and swapping mechanisms
	Security Metadata Management
	Design Space of Integrity Tree Roots

	Other Details
	Space Costs

	Evaluation Methodology
	Evaluation
	Synthetic Benchmark Results
	Real-world Application Results
	SPEC Results
	Microbenchmark Results
	Security Analysis

	Related Work
	Conclusion
	References

