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ABSTRACT

Recent years have witnessed increasing interest in machine learn-
ing inferences on serverless computing for its auto-scaling and
cost effective properties. Existing serverless computing, however,
lacks effective job scheduling methods to handle the schedule space
dramatically expanded by GPU sharing, task batching, and inter-
task relations. Prior solutions have dodged the issue by neglecting
some important factors, leaving some large performance potential
locked. This paper presents ESG, a new scheduling algorithm that
directly addresses the difficulties. ESG treats sharable GPU as a first-
order factor in scheduling. It employs an optimality-guided adaptive
method by combining A*-search and a novel dual-blade pruning to
dramatically prune the scheduling space without compromising
the quality. It further introduces a novel method, dominator-based
SLO distribution, to ensure the scalability of the scheduler. The re-
sults show that ESG can significantly improve the SLO hit rates
(61%-80%) while saving 47%-187% costs over prior work.
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1 INTRODUCTION

Recent years have witnessed a rapidly growing interest in machine
learning (ML) inferences on serverless platforms, thanks to the ease
of programming and maintenance, autoscaling, and pay-as-you-go
billing of serverless computing [17, 19, 27, 57-59].

Due to the computing-intensive nature of ML inferences, it is de-
sirable to provide GPU support on serverless platforms to ML work-
loads, which can help significantly boost the service throughput
for the massive parallelism of GPUs [23, 24]. However, the current
state of commercial serverless platforms (e.g., AWS Lambda [2],
Google Cloud Function [7], Azure Function [3], and Knative [8]) is
falling behind: The schedulers and resource management are still
CPU-centric, oblivious to GPU resources.

There have been some recent research efforts toward adding
GPU support to ML on serverless platforms. Some approaches
have leveraged NVIDIA MPS [10] to facilitate GPU sharing across
distinct function instances [22, 30, 58]. Others have introduced
techniques to enable batching for ML inference, thus increasing
overall throughput [16, 58]. Additionally, certain studies have ex-
tended scheduling algorithms to manage heterogeneous computing
resources more effectively [25, 56].

Despite the progress made so far, two challenges remain, which
have kept much of the potential of GPU out of reach for serverless
ML.

(i) The dramatically expanded search space for schedul-
ing. An important step in serverless scheduling is to configure the
serverless functions, that is to determine the amount of resource to
assign to each of the serverless functions in an application to meet
the Service Level Objective (SLO) while consuming the minimum
resource. The configuration space is as large as n = mk, where
m is the number of resource allocation options for one serverless
function in the application, and k is the number of functions in the
application. Without considering sharable GPUs, the options for a
function are just the number of vCPUs to consider. With sharable
GPUs, the space becomes three-dimensional: (batch size, number
of vCPUs, number of vGPUs). The "batch size" here refers to the
number of invocations of a serverless function to be grouped into
one batch to run. Batching is essential for GPU throughput due to
its massive parallelism. The search space hence expands cubically,
fromn = mk ton = (mk)3 (assuming the same number of options in
all dimensions and a function can have its own options values). For
m = 5,k = 7, the space increases from 78K options to 476 trillions.
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Table 1: Comparison of serverless systems

Features INFless | Fast-GShare | Orion | Aquatope | ESG
GPU sharing v v X X v
Inter-function
relation x x v v v
Adaptive sched. v v X X v
Data locality X X X X vV
Pre-warming v X v V Y

(ii) The significantly increased complexity in handling per-
formance variations. Because the number of different states of
available resources is multiplied by the available vGPUs, it calls for
an adaptive scheduling algorithm to handle them properly. Perfor-
mance variation is an inherent problem in serverless computing,
where the running times of a serverless function vary much across
invocations [43]. Batching exacerbates it as unpredictable job ar-
rival times cause variations in the waiting time for forming a batch.
Along with these variations, the system workload and resource
availability on a serverless system show constant changes. There-
fore, adapting agilely to dynamic changes and variations becomes
crucial for a scheduler.

Previous studies have all dodged those challenges by neglect-
ing some important dimensions of the problem (Table 1), causing
a substantial loss in the quality of scheduling. These dimensions
include inter-function relations, GPU sharing, and runtime
system state variations. Specifically, based on the neglected di-
mension(s), previous solutions fall into one of two groups. (i) Those
works neglecting the relations between functions, represented by Fast-
GShare [30] and INFless [58], two most recent studies on sharable
GPU support for serverless ML. An ML-based application often
consists of multiple stages of work, which form a pipeline or a
directed acyclic graph (DAG) [36]. A chatbot, for example, responds
to a user’s input by going through stages of speech recognition,
natural language understanding, speech synthesis, and so on. The
SLO of an Al-based application is usually for the end-to-end latency
of the entire process. The schedule and configuration of one stage
hence affect other stages, such as how much latency those stages
can still have to allow the end-to-end time to meet the SLO, how
much resource used in total, whether the data transfer is local or
remote, and so on. Neglecting the inter-stage relations to reduce
the scheduling complexity is hence not ideal, causing a large loss
in quality (36%-61% as Section 5.1 shows). (ii) Those that neglect
GPU sharing and runtime variations, represented by Orion [43] and
Aquatope [61]. These proposals regard a GPU as a single device
attached to a CPU and schedule jobs purely based on CPU and
memory availability. Moreover, they are rigid: They pick a good
configuration for every stage of the application before its execu-
tion, and then stick to the configuration throughout that execution,
regardless of whether the actual latencies of some functions differ
substantially from the expectation or how the resource availability
changes as the execution reaches later stages. The strategy also
leads to a large loss in scheduling quality (46%-80% as Section 5.1
shows).

Addressing the limitations is essential for unlocking the full
potential of GPU for serverless ML. It is, however, not easy: The
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solution must be efficient enough to handle the enormous configu-
ration space and agile enough to adapt to the dynamic changes of
the system.

This paper presents our solution, a new scheduling algorithm
named ESG (which stands for Efficient Serverless Scheduling for
Sharable GPUs), which, for the first time, addresses all those chal-
lenges at the same time. ESG treats sharable GPU as a first-order
factor in scheduling. For scheduling efficiency, ESG employs A*-
search and introduces a dual-blade pruning to dramatically prune
the huge search space of schedules without compromising the qual-
ity. For scalability, ESG further introduces dominator-based SLO
distribution to prevent space explosion. For the quality of the sched-

uling results, ESG takes an optimality-guided adaptive approach.
Rather than deciding the resource assignment of all functions in a
workflow at the beginning and keeping it unchanged throughout
the DAG execution as previous solutions [43, 44] do, ESG revisits
and adjusts the schedules before the dispatch of every serverless
function to adapt to the dynamic changes of the environment and
the performance variability of the functions.

We have evaluated ESG on a series of workloads involving six
DNNs and compared the performance with four state-of-the-art
serverless scheduling solutions, INFless [58], FaST-GShare [30],
Orion [43] and Aquatope [61]. The results show that the new sched-
uling algorithm ESG is effective in addressing the new challenges,
consistently achieving the highest SLO hit rates with significantly
lower resource usage, exhibiting a notable 61%-80% improvement
in SLO hit rates and saving 47%-187% in costs than INFless and
Fast-GShare, especially in challenging scenarios.

Overall this work makes the following major contributions:

e It provides ESG, the first scheduling algorithm that simulta-
neously tackles inter-function relations, GPU sharing, batch-
ing, and runtime variations.

e It introduces a set of novel optimizations to ensure high
efficiency and scalability of the scheduling algorithm.

o It empirically confirms the effectiveness of ESG by compar-
ing it with the state of the art represented by four previous
scheduling algorithms.

2 BACKGROUND

Serverless architecture. We use OpenWhisk [11] as an exam-
ple to explain the common architecture of serverless computing.
OpenWhisk is an open-source, distributed Serverless platform that
executes functions ! in response to events at any scale. Figure 1
shows the architecture of OpenWhisk [1, 54]. It has a RESTful API,
through which, users can create actions, invoke actions and check
the action status. NGINX translates the command and forwards it
to the Controller. Controller is where task scheduling happens. It
maintains the health and remaining capacity of each Invoker (i.e.,
a computing node), tracks the warm instances on each Invoker,
decides the resource assignments to tasks, and assigns tasks to
Invokers. Then the Controller sends the invocation message to the
selected Invoker via distributed messaging component (Kafka). The
Invoker creates an execution environment (Docker container) after
receiving the invocation message and manages its runtime (includ-
ing stopping the container). OpenWhisk sets a fixed 10-minute

“Function” in this paper refers to Serverless Function.
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Figure 1: OpenWhisk architecture. Controller is where sched-
uling happens.

keep-alive policy for each instance; the Invoker informs the Con-
troller when it unloads a container [54].

Scheduling of Serverless Functions. There are two main steps
in scheduling serverless functions.

The first step is resource assignment, which determines the
amount of resources assigned to a function. It is based on the mem-
ory requirement specified in the configuration, which is converted
by some platforms into a number of vCPUs (each vCPU is asso-
ciated with a fixed amount of memory). The scheduler ultimately
determines the amount of resources to be assigned to that instance,
which may be more than required to achieve better performance.
OpenWisk uses the required amount by default, while recently
schedulers [15, 26, 43, 48, 61] used a more sophisticated algorithm
to decide the assignment of resources.

The second step is to map a function instance to an Invoker
(e.g., a computing node). The controller maintains the available
CPU resources of each Invoker according to its memory usage. In
OpenWhisk, the controller picks one of the Invokers based on the
hash value calculated by the namespace and action of the function.
The generated index is called "home-invoker" [11], which is the
invoker where the future instances of the function will reside by
default. But if that invoker becomes unhealthy or lacks capacity,
the scheduler will look for other invokers through a deterministic
search. The mapping scheme is designed to get more warm starts.
GPU Sharing. GPU sharing is to allow multiple processes to share a
single GPU for their executions. Modern GPUs support time sharing
(one after the other) and spatial sharing. Spatial sharing is essential
for ML inferences because an inference by an ML model often uses
only a fraction of the massive parallel computing capacity of a GPU.
Allowing multiple processes to execute concurrently on a GPU is
essential for turning its computing power into throughput. Mod-
ern GPUs from NVIDIA offer two mechanisms for spatial sharing,
Multi-Process Service (MPS) [10] and Multi-Instance GPU (MIG) [9].
MIG gives better isolations between partitions. MIG’s ability to par-
tition a single GPU into multiple hardware-isolated instances not
only maximizes resource utilization but also significantly bolsters
security, a critical aspect in today’s cloud computing landscape.
Although the size of a MIG partition is fixed at system booting time,
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Figure 2: The app-func-wise (AFW) job queues of two exam-
ple ML-based applications, and the ESG algorithm workflow
in handling one job queue.

one application or serverless function may use more than one MIG
partition by launching multiple GPU kernels concurrently.

3 SOLUTION: ESG SCHEDULING ALGORITHM

This section presents ESG, our GPU sharing-aware scheduling algo-
rithm that is designed to respond to the unsolved challenges from
inter-function relations and dynamic changes of resources.

3.1 Overview

ESG runs on the Controller of a serverless platform. Its objective
is to maximize the Service Level Objective (SLO) hits of DNN
inferences—that is, make as many DNN inferences deliver their
results within the SLO latency as possible—while minimizing re-
source consumption (and hence cost). The problem is intuitive to
understand, so a formal definition is omitted here for the sake of
space. Interested readers may see the Appendix A for a formal
rigorous definition of the problem.

For easy explanation, Figures 2 (a) and (b) illustrate two serverless
ML-based applications in the form of DAG. Application 1 uses three
DNN serverless functions in a sequence to first upscale an input
image, then deblur it, and finally classify it. Application 2 uses two
DNN serverless functions to first deblur an input image and then
generate a depth image from it.
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ESG introduces application-function-wise (AFW) job queues to
group requests for the same serverless function of the same appli-
cation together. The five serverless functions in Figure 2 (a) and (b)
each have their own AFW job queue, as illustrated in Figure 2 (c).
Notice that even though the same Deblur function is used in both
applications, two AFW queues are created, one for each. This design
allows ESG to put the functions of the same application on the same
machine when possible to reduce the overhead of communications
between functions (Section 3.4). The AFW queues reside on the
Controller. Each of them gets populated as user requests arrive or
its predecessor functions produce some triggering outputs.

Two-step Design. Figure 2 (d) outlines the high-level workflow
of the two core algorithms of ESG. The Controller examines the
job queues in a round-robin manner. If a job queue is ready to be
scheduled, ESG_10Q, the first core algorithm of ESG, figures out an
appropriate configuration for some jobs in that queue. The configu-
ration includes (i) batch size: the number of jobs to be scheduled
as a group—which we call a task; (ii) #vCPUs: the amount of CPU
resources to use; (iii) #vGPUs: the amount of GPU resource to use.
(Section 3.2 details the resource model). Then, the second core al-
gorithm of ESG, ESG_Dispatch, assigns the task to an appropriate
Invoker machine to run.

Note that ESG_1Q does not consider current resource availability
constraints; as a result, ESG_Dispatch may not be able to find any
Invokers having enough resource to run the task in a configuration
found by ESG_1Q. ESG solves the issue by letting ESG_1Q output
multiple top configurations, forming a configuration priority queue.
ESG_Dispatch repeatedly dequeus the priority queue until it finds
an Invoker that has enough resources to handle the configuration. If
none of the configurations works, the scheduler records that AFW
job queue in a recheck list, and moves on to the next AFW job queue.
Each time it finishes processing a job queue, it tries again on the
job queues in the recheck list; it may succeed now, as the states of
the worker nodes have changed. If a queue stays in the recheck list
too long (e.g., 3 rounds), it will be dispatched with the minimum
configuration to ensure progress.

This two-step design is for two reasons: (i) finding optimal con-
figurations takes some time and the states of the workers may have
changed during that time; (ii) finding optimal configurations itself is
already complicated, adding the dynamic changing machine status
into the search process would further complicate the problem. The
two-step design decouples the complexities and hence simplifies
the solution. Meanwhile, by postponing the resource availability
check to the second step, it is able to consider the current state of
workers.

The two core algorithms both feature some novel designs, which
help ESG address the two key challenges in adding sharable GPU
into serverless computing, namely, the dramatically expanded re-
source assignment space and the increased complexity in handling
dynamic changes in resource availability and function running
times. We next first explain the resource and task models used in
this work and then detail both algorithms.

3.2 Resource Model and Task Model

Resource model. A change to the resource model for heteroge-
neous serverless computing is the inclusion of GPU units. Modern
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GPUs are equipped with built-in mechanisms to support GPU par-
tition and sharing. Multi-instance GPU (MIG) in NVIDIA GPU, for
instance, allows GPUs to be securely partitioned into up to seven
separate GPU Instances for CUDA applications. With MIG, each
instance’s processors have separate and isolated paths through the
entire memory system, including the on-chip crossbar ports, L2
cache banks, memory controllers, and DRAM address buses that
are assigned uniquely to an individual instance. We accordingly
integrate the notion of vGPU into the serverless computing re-
source model. Here, each vGPU is equivalent to the minimum GPU
partition of the sharing system (in our case, MIG). We assume each
GPU is partitioned into the maximum number of MIG instances (7
for A100).

For a modern GPU-supported container, when it is launched,
it can be set to use one or more vCPUs and one or more vGPUs.
When it is set to use multiple vGPUs, it can use them by invoking
multiple GPU kernels concurrently, one on each.

Current serverless platforms typically associate a certain amount

of memory with one vCPU, which simplifies resource allocation:
the platform can use vCPU as the allocation unit without explicitly
allocating memory. GPU memory is associated with vGPU in a sim-
ilar way, naturally enabled by MIG. We, however, do not associate
vGPU with vCPU but make them separate resources for allocation.
It is because there is no clear correlation between the amount of
CPU usage and the amount of GPU usage in applications.
Task model. The applications targeted in this work are ML infer-
ence applications. (ML training is out of the scope.) There are two
special extensions to the task model in heterogeneous serverless
computing. (i) Each serverless function may now contain both CPU
and GPU parts. (ii) For ML inferences, even though requests may
come one by one, the inference function is often written in a way
that it can accept a batch of requests and process them together
at one invocation of the function. If the function is given multiple
vGPUs, it automatically uses data parallel inferences by launching
multiple GPU kernels with each processing one portion of the batch
on one vGPU. We call the inference of one request a job and the
set of jobs processed by an invocation of a serverless function a
task.

3.3 ESG_1Q Algorithm

As Figure 2(d) shows, ESG_1Q tries to identify a good configuration
for the jobs in an AFW queue so that the application can complete
within the SLO latency with the minimum resource cost.

There are two complications: (i) speed-cost tension; a configu-
ration that leads to faster execution tends to incur a higher cost.
(ii) Inter-function dependence; the configuration selected for one
function determines how much time is left for other functions in
the application and hence affects how to best configure the other
functions.

Our approach is to convert the problem into a path-finding prob-
lem in the configuration space of an application. The top part of
Figure 3 illustrates the configuration space of a 3-function appli-
cation. A path from the leftmost column to the rightmost column
specifies the configurations for each of the three functions of the
application. The red path in Figure 3, for instance, corresponds to a
case where the first function processes two requests each time with
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path_list = {}
new_path_list = {}
best_full_paths = {} // the list of the best full paths
best_full_paths_maxCost = MAX_COST
foreach fun in functions of application A
sort config_list(fun) in ascending order of resource cost
foreach config in config_list(fun)
foreach path in path_list
new_path = path.append(config)
// prune on time
time_lowBound = getTimeLowBound(new_path)
if (time_lowBound > TARGET_LATENCY)
continue  // skip the path to avoid future consideration
// prune on cost
cost_lowBound = getCostLowBound(new_path)
if (cost_lowBound > best_full_paths_maxCost)
break
new_path_list.insert(new_path)
update best_full_paths & best_full_paths_maxCost
path_list = new_path_list
new_path_list = {}
f best_full_paths is empty
setDefaultPaths(best_full_paths)
return best_full_paths

(b) Basic ESG_1Q algorithm in pseudo-code

Figure 3: (a) Top: Example of the configuration space of a three-function application and two configuration paths in the space.
Bottom: the time and per-job resource costs of the two paths. (b) Basic ESG_1Q algorithm in pseudo-code.

four vCPUs and one vGPUs, the second function processes two
requests with two vCPUs and one vGPU, and the third processes
one request with one vCPU and two vGPUs.

Different paths result in different times and resource costs as
exemplified by the table in Figure 3(a). The Controller can estimate
the times with performance profiles of the functions and calculate
the costs based on the unit costs of vCPU and vGPU and the running
times.

With that formulation, the goal of ESG becomes finding the path
in the configuration space of the application that meets the SLO la-
tency and has the lowest resource cost. So each time, what ESG_1Q
returns is not just a configuration good for the current function,
but a sequence of configurations good for the whole application.
It is important to note that unlike previous methods, Orion [43]
and Aquatope [61], ESG calls ESG_1Q again when later functions
in the application are to be scheduled, so that it can accommodate
the dynamic resource changes and running time fluctuations.

A*-Search with Dual-Bladed Pruning in ESG_1Q. ESG_1Q uses
A*-search as the basis for the path finding, and proposes two tech-
niques, Dual-bladed pruning and dominator-based SLO distribution,
to ensure the efficiency and scalability of the algorithm for server-
less scheduling.

The A* search algorithm is an efficient and popular path finding
and graph traversal method [31]. It efficiently finds the shortest
path from a start node to a target node in a weighted graph. A*
uses a heuristic to estimate the cost to reach the goal from each
node, guiding the search towards the target more efficiently than
algorithms like Dijkstra’s, which only consider the actual cost from
the start node. The total cost f(n) of a node n is calculated as f(n)

= g(n) + h(n), where g(n) is the cost from the start node to n, and
h(n) is the estimated cost (heuristic) from n to the goal. A" is a
best-first search algorithm, meaning it explores a path that appears
to be most promising by using the cost function f(n). It prioritizes
paths that are expected to lead more quickly to the target. The
algorithm maintains a priority queue (often implemented as a min-
heap) of nodes to be explored, sorted by their f(n) value. A* is both
complete and optimal, meaning it will always find a solution if one

exists, and the solution will be the shortest possible path, provided
that the heuristic function h(n) is admissible (it never overestimates
the true cost) and consistent (monotonic).

ESG_1Q builds on A%, the optimality of which makes ESG sched-
uling optimality-guided. ESG_1Q meanwhile improves the path
finding with dual-bladed pruning. Figure 3 (b) outlines the basic idea.
It prunes the search space based on both running time and resource
usage, efficiently avoiding exploration of unnecessary subspaces.
The pruning effectively estimates the lower and upper bounds of
the costs of a path. When a partial path p forms, ESG_1Q calcu-
lates three bounds, tLow, rscLow, and rscFastest, and uses them
for pruning, as follows:

o tLow: the lower bound of the time cost of all paths prefixed
by p. ESG_1Q estimates it by summing the time of the func-
tions in p (obtained from the profiles) and the minimum
time of each function (among all its possible configurations)
not covered by p. It is used in time-based pruning (function
getTimeLowBound in Figure 3 (b)).

o rscLow: the lower bound of the resource usage of all paths
prefixed by p. ESG_1Q estimates it by adding the resource
usage of the functions in p (obtained from the profiles) and
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the minimum resource usage of each function (among all its
possible configurations) not covered by p. It is used in the
cost-based pruning (function getCostLowBound in Figure 3
(b))

o rscFastest: the summation of the resource consumed by p
and the resource consumed by other functions when they
run the fastest. It is used in updating
best_full_paths_maxCost in Figure 3 (b) to tighten the bound
for cost-based pruning.

Note that for ease of understanding, Figure 3 (b) shows only the
basic design of ESG_1Q; Omitted details (e.g., the use of priority
list for best-first search) are documented in Appendix B.

Dominator-based SLO Distribution for Scalability. Even with Dual-
blade pruning, when dealing with lengthy call sequences within
an application, the algorithm’s execution time can still be exceed-
ingly long. To address this issue, we introduce a strategy named
dominator-based SLO distribution. It uses stage grouping to divide
the functions of the application into several function groups, uses
SLO distribution to assign a specific SLO latency to each group, and
then applies the ESG_1Q search algorithm to each individual group.
To ensure maximal quality, the groups are maximized under the
constraints of tolerable schedule latency. This strategy provides a
way to strike a good balance between the scheduling scalability and
the benefits of considering inter-function relations in scheduling.

For this approach to work, we need to determine how to group
functions and assign individual SLOs to these groups. This solution
should be adaptable to both linear pipelines and more complex
DAGs with splits and joins.

Our solution is a reduction-based hierarchical method. It is based
on an observation that the DAGs in serverless applications are
usually hierarchically reducible, as Figure 4 illustrates. The design
is inspired by dominator-based code analysis in compilers [14]. The
algorithm includes four steps.

First, it creates the dominator tree of the DAG following tradi-
tional compiler-based code analysis [14]. In a dominator tree, each
edge indicates an immediate domination relation in the DAG?, as
illustrated in Figure 4. The data structure offers the basis for an
ordered traversal and reduction in processing.

Second, it labels each node in the dominator tree with the average
normalized length (ANL) of its function (say f;), averagec (I, (c)),
where c is a configuration, I (c) is the normalized length of the
function f; in configuration c, calculated as tf (c)/ X tf, (¢); tf, (c)
is the execution time of function f; in configuration c, read from
the performance profile.

Third, it traverses the dominator tree in a post-order (children
before parents). At each node (say x), if it has more than one child,
it calls subroutine reduce(x) to first reduce and reorganize its de-
scendants. The reduce operation is to combine its branches into one
node, as illustrated in Figure 4 (c). The ANL of that new node is
the maximum of the sums of the ANL of all the branches. After
that, the algorithm checks if the parent of x has more than one
child and if so, it calls the subroutine slo_group(x) to partition x
and its descendants into one or more groups. Note that thanks to
reduce, the descendants of x are guaranteed to form a single list. The

2A dominates B if all paths from the root to B must first reach A; an immediate
dominator is the closest dominator except the node itself [14].
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partition simply groups consecutive g nodes into one group, where
g is the maximum group size (Section 5.4 reports how g affects per-
formance). An exception is the nodes generated by reduction, each
of which stays as an individual node to prevent their subsumed
groups’ sizes from being bloated. This process continues until the
algorithm reaches the root. Throughout the process, the algorithm
records the reduction process for the next step to use.

Finally, the algorithm assigns SLO latency to each of the groups.
This process reverses the reduction process. It starts from the final
form of the reduced dominator tree (which is a list) and partitions
the end-to-end SLO latency proportionally based on the ANLs of
its groups. It then calls subroutine slo_assign(x) for each reduced
node in the current list to partition the SLO latency of x and assigns
the partitions to the nodes that x subsumes. This process continues
until every group gets its SLO quota.

3.4 ESG_Dispatch: Mapping to Worker Nodes

After ESG_1Q, ESG_Dispatch maps the current group of jobs to
an Invoker node. As we introduced in Section 2, the OpenWhisk
scheduling always chooses the home-invoker first; if not feasible, it
tries other worker nodes. Our algorithm chooses the home-invoker
for the first function in the workflow. For other functions, it would
try to choose the invoker that runs its predecessor function in
the workflow. This locality-sensitive treatment is possible thanks
to our introduced AFW queues. It helps reduce data transfer, as
communications on the same node can use local file systems rather
than remote storage. This consistent policy is beneficial for getting
warm starts. If the home-invoker or predecessor-invoker does not
have enough available resources, the algorithm will try other warm
Invokers. If it fails, it will check other cold invokers and choose the
one with the most available resources.

4 METHODOLOGY FOR EVALUATION

To evaluate the efficacy of the scheduling algorithm, we create
a framework that can emulate various serverless workloads and
scenarios. The emulations are based on actual performance of the
serverless functions measured on actual machines in various con-
figurations (batch size, CPU and GPU resource allocations). The
machine is as specified in Table 2. To accommodate the impact
of other runtime factors on the performance, the emulations add
Gaussian noises to the performance. The emulation is equipped
with a workload generator, which generates workloads by sampling
the set of serverless functions randomly based on a specified ar-
rival rate. The set of workloads we considered in the evaluation are
further detailed in Sec 4.1. The hardware resource of the considered
testbed in the emulations consists of 16 nodes, with each equipped
with 16 vCPUs and 1 GPU (up to 7 vGPUs by MIG). The scheduler
and job dispatching implementation is based on the controller in
OpenWhisk [1].

We use proxy threads to monitor the function call intervals,
predict subsequent invocations, and preemptively warm up in-
stances. Studies have shown that pre-warming can help reduce
delays caused by cold starts. There have been several methods pro-
posed before, with some using ML models [61] and others [42, 43,
54, 58] using a histogram-based policy to adjust container keep-
alive times. We use a lightweight method for prewarming. It uses
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(b) Dominator tree. The green boxes mark the two groups
already identified; the orange box mark the subgraphs to reduce.

(c) Dominator tree after a reduction. Three more groups are identified.

Figure 4: Illustration of dominator-based SLO distribution.

Exponential Weighted Moving Average (EWMA) [6] to predict
the invocation intervals of functions and pre-warms the function
instances accordingly. After pre-warming, ESG uses the same keep-
alive policy as OpenWhisk, to keep the instance alive for 10 minutes.

Table 2: Experimental testbed configuration

CPU device AMD EPYC 7302P 16-Core Processor
CPU Mhz 1499.866

CPU memory 128GB DDR4 3200MHz ECC DRAM
GPU device NVIDIA A100 80GB
GPU memory 80GB

MIG instances

Up to 7 MIGs@10GB

4.1 Applications

The workloads in the experiments are series of calls to four ap-
plications, with each consisting of a sequence of DNN inferences.
Table 3 reports the source, inputs, DNN models, execution time
in the minimum configuration (1vCPU, 1vGPU, batch size=1), and
cold start time of the functions. The four applications are detailed
as follows:

e Image classification: It detects and classifies objects, im-
portant for autonomous driving [29] and other domains. Its
workflow is to use super-resolution [39] first to enhance
the clarity of an image, and then use segmentation [5, 20]
followed by classification [12, 32] to identify the objects.

o Depth recognition: This application measures the distance
of an object from a camera, which is essential to 3D scene
reconstruction and augmented reality [37]. Its workflow uses
deblur [4] followed by super-resolution first to enhance
the image and then recognize image depth with another
DNN [49].

e Background elimination: This application eliminates un-
necessary and unwanted items and objects from images [18].
Its workflow is super-resolution followed by deblur to en-
hance the image clarity and then uses background removal
DNN [47] to eliminate the background.

Table 3: Serverless Functions

. [Execution|Cold startlInput image|
Function name [Time (ms)[time (ms) sli’ze (MB)g Model
Super resolution [39] 86 3503 2.7 SRGAN
Segmentation [5, 20] 293 16510 2.5 deeplabv3_resnet50|
Deblur [4] 319 22343 1.1 DeblurGAN

Classification [12, 32] 147 18299 0.147 ResNet50
Background removal [47]] 1047 3729 2.5 U? Net
Depth recognition [49] 828 16479 0.648 MiDaS

¢ Expanded image classification: This is a more advanced
image classification application with a longer workflow: de-
blur, followed by superresolution, background removal, seg-
mentation, and classification.

For the workload setting, we examined the traces published by
Azure [54] to determine job arrival rates. We get the job arrival
rates of every minute from the Azure traces, based on which we
derived three situations for our DNN applications respectively with
heavy, normal, and light workloads. In each workload, one of
the four DNN applications is randomly picked to get invoked in
each time interval. The length of a job arrival interval is selected
randomly in ranges [10-16.8ms], [20-33.6ms], and [40-67.2ms]
respectively in the three situations. Figure 5 shows the distribution
of the job arrival intervals in the three situations.

We tested three SLOs. Let L be the time needed by the applica-
tion to complete its entire workflow when it runs alone with the
minimum configuration. (i) In the strict setting, a SLO hit occurs
when the application completes within 0.8 X L. (i) In the moderate
setting, a SLO hit happens when the application completes within
1 x L. (iii) In the relaxed setting, a SLO hit happens when the
application completes within 1.2 X L.

Those three levels of requirements correspond to users’ possible
expectations of service: strict for the light case, moderate for the
normal case, and relaxed for the heavy case, denoted as strict-
light, moderate-normal, and relaxed-heavy workloads in the
evaluation section.

Following AWS EC2 pricing [58], we set the price of a vCPU to
0.034$/hour. Based on the pricing of an entire GPU on AWS, we
divide it by # of vGPUs and set the price of a vGPU to 0.67$/hour.
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Figure 5: Job arrival intervals used in the evaluation part for
different workload settings.

4.2 Comparison Counterparts

We evaluate our ESG algorithm by comparing it with four state-of-
the-art scheduling algorithms, including INFless [58] and FaST-
GShare [30], the latest algorithms for sharable GPU-based server-
less ML, as well as the best-first search algorithm in Orion [43] and
the Bayesian Optimization-based scheduling in Aquatope [61].
The original Orion [43] and Aquatope [61] do not support GPU
sharing, but their scheduling algorithms represent the latest search-
based scheduling and model-based scheduling, respectively. For
comparison, we extend both with GPU sharing support, as ex-
plained below.

InFless: InFless schedules jobs by enumerating the configurations
for each function without considering the inter-function relations.
In worker node selection, a resource efficiency metric is used to
maximize the throughput while reducing resource fragmentation.
InFless provides no method for distributing an application’s SLO to
its functions. Our experiment follows a prior work [36] to do the
distribution based on the average service times of the functions.
FaST-Gshare: This work uses FaST-Manager to manage spatio-

temporal resources for GPU multiplexing. It also employs an enumeration-

based scheduling algorithm which enumerates the configurations
based on throughput performance metrics. Its node selection tries
to minimize GPU resource fragmentation. It offers no method for
distributing an application’s SLO either. We apply the same method
as in INFless.

Aquatope: Aquatope relies on an offline training process, in which
the application of interest is profiled in many sample executions
based on Bayesian Optimization (BO), through which it builds up a
performance model and learns about the statistically good configu-
rations for every stage in the application (encoded in an acquisition
function). In deployment, it uses the learned best configurations for
the application. Specifically, the training process starts with 100
bootstrapping samples, iterates 50 rounds (we sample five config-
urations in each round), and selects the best configuration. The
nature of its reliance on offline training makes it unable to adapt to
dynamic workload changes, as shown in the next section.

Orion: Orion creates a performance model to address runtime
variations, consolidates parallel invocations into a single virtual
machine (VM), and implementes instance pre-warming to eliminate
cold starts. Its scheduling uses best-first search, which creates a
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priority queue, in which all new states are added. Adding vGPU
into the algorithm, we expand its state definition to a vector of
(batch size, #CPUs, and #vGPUs), one for each stage. The algorithm
examines possible states, with each new state increasing the current
state in one dimension of the configuration vector, and the start state
So has the minimum values for every stage function. The scheduling
method decides the schedule for all the stages of an application at
the invocation of the first stage; no dynamic adaptation between
stages. As in the original work, P95 latency is used as the search goal.
The configuration with the closest latency to the SLO is returned
when the search exceeds a cut-off time (e.g., 100ms) before reaching
the goal.

The GPU-sharing and batching policy can improve resource
utilization, as shown in Section 5.5. So, to evaluate the effectiveness
of the scheduling algorithm, in our comparisons, we enable the
same GPU-sharing and batching for all the scheduling algorithms;
the same data locality and pre-warming policy proposed in this
work are also used; the only difference is the scheduling algorithm.
INFless and FaST-GShare do not follow the data locality policy but
their resource fragmentation minimization policy.

5 EVALUATION

Our evaluation examines (i) the overall effectiveness of ESG in max-
imizing SLO hit rates while minimizing the cost; (ii) the reasons for
the benefits of ESG over the state-of-the-art scheduling algorithms
(INFless [58], FaST-GShare [30], Orion [43] and Aquatope [61]); (iii)
the overhead and sensitivity analysis of ESG.

5.1 End-to-End Performance

Figure 6 shows the average SLO hit rates and total normalized
cost (ESG is 1) for all applications across three situations. In all
three scenarios, ESG consistently shows a high SLO hit rate. Its
benefit is especially pronounced in the strict-light scenario: Its hit
rate is 46%-80% higher than BO and Orion, and 36%-61% higher
than INFless and Fast-GShare. It is noteworthy that ESG achieves
the significantly higher SLO hit rates with similar or much less re-
source cost compared to other methods, as Figure 6 shows. Detailed
SLO hit rates and cost of each application are shown in Figure 8.
ESG consistently achieves the highest SLO hit rate at a lower cost,
whereas INFless consumes the most resources.

For a more detailed view, Figure 7 shows the end-to-end laten-
cies of each of the four applications in the relaxed-heavy setting.
ESG consistently achieves latencies below but close to the SLO
latency. The configurations found by other methods cause the jobs
to either run too slow (e.g., FaST-GShare) or to use more resources
(e.g., INFless) than necessary at the expense of larger cost or poor
performance of other applications.

For instance, INFless selects configurations that yield lower la-
tencies for applications such as “image classification”, “depth recog-
nition”, and “background elimination” compared to other methods.
This is due to its resource efficiency metric in scheduling, which
reduces resource fragmentation and increases system throughput,
thereby preferring to utilize all remaining resources in one invoker.
However, this approach of allocating excessive resources, as con-
firmed by the highest resource costs shown in Figure 8, leads to
prolonged waiting times and increased latency for the “expanded
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Figure 6: The average SLO hit rate and the cost (normalized to ESG cost) under different SLO and workload settings. The left
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Figure 7: End-to-end latency for each application in relaxed-heavy setting.

image classification” application. This application is particularly
affected due to its extensive pipeline, which involves more pipeline
stages awaiting resources.

5.2 Detailed Analysis

In this section, we provide a detailed analysis to examine the reasons
for the benefits of ESG over other methods.

Compared to INFless and FaST-GShare: INFless and FaST-
GShare distribute the end-to-end SLO to different stages based
on their average service times, without considering their inter-
dependencies. Consequently, if certain early stages experience de-
lays due to data transfer overhead and cold start latency, the later
stages do not adjust their SLO settings, resulting in prolonged exe-
cution time, especially when the application has multiple functions.
As demonstrated in Figure 7(d), FaST-GShare and INFless always
yield the largest latency. Furthermore, in selecting worker nodes,
they prefer reducing resource fragmentation rather than focusing
on data locality and data transfer latency. This results in even lower
SLO hit rates, a fact that is evidenced by the numerous strikes seen
in the FaST-GShare curve of Figure 7.

Compared to Orion: Orion is a search-based method. It faces
a trade-off between the search time and the quality of the search
result. Figure 9 shows the tradeoff in the strict-light setting. In this
setting, Orion can find quite good configurations. The blue curve
in Figure 9 shows the hit rates of those configurations when search
overhead is not counted in. But when the search time is counted in,
the hit rates drop dramatically, as the green curve in Figure 9 shows.
Moreover, because Orion decides the configurations for all functions
in an application when scheduling the first function and does not
adjust the configurations of later stages, the configurations are often
low in quality or do not even apply. It is especially common when
the resource availability changes significantly along time. Table 4
shows the percentage of times when the configurations fail to apply
to a function because the batch size in the configuration is even
greater than the number of jobs in the queue of that function when
it is time to be scheduled. In the moderate-normal and relaxed-
heavy settings, because resource availability changes substantially,
the percentage is as much as 27-52%.
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Figure 8: SLO hit rates and cost for each application in three different workload settings.
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ESG overperforms Orion because (i) ESG finds better configura-
tions much faster, thanks to its dual-bladed pruning and dominator-
based SLO distribution (overhead analysis shown in the next sub-
section); (i) ESG adapts the configurations for every function in
a workflow. As a result, with a smaller overhead, ESG produces
configurations that meet the SLO and demand fewer computing
resources. The lower computing resource demand gives multi-fold
benefits. It not only lowers the cost, but also makes the function
more likely to fit into the available resource of the predecessor
worker node, which in turn leads to better data locality, less com-
munication overhead, and fewer cold starts, which all contribute to
the higher SLO hits.

Compared to Aquatope: Aquatope relies on a statistical model
trained with offline traces. It has negligible scheduling overhead.
However, ESG surpasses Aquatope because of the better quality
of the configurations given by ESG. As shown in Figure 5, real
workloads and resource conditions continually change. Being a
method based on an offline training model, the BO method cannot
adapt to dynamic changes. It assumes that configurations remain

Table 4: Pre-planned scheduling miss rate

System setting Conﬁgurat.ion miss rate
Best-first search (Orion) | BO (Aquatope)
Strict-light 9.6% 85.5%
Moderate-normal 27.32% 59.85%
Relaxed-heavy 51.68% 58.72
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Figure 10: Scheduling overhead distribution of ESG (function
group size is 3).

unchanged unless functions or inputs are modified, but this static
scheduling configuration proves inadequate in an ever-changing
real-world environment where future job and worker node statuses
are uncertain. It is confirmed by the rightmost column in Table 4,
which shows that 59-86% of the configurations preset by the BO
method do not apply in actual executions because the actual queue
length is smaller than the batch size in the configuration.

5.3 Overhead Analysis

Figure 10 reports the scheduling overhead distribution of ESG in
the three settings (using the default function group size 3), with
the green triangle indicating the average. The searching overhead
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Figure 11: Sensitive study of (K) in strict-light setting, the
cost of K=5 is set to be 1.

increases with more relaxed SLO settings. It is because in relaxed
SLO settings, more configurations can satisfy the SLO, resulting in
fewer configurations being pruned during the search process. But
overall, the search overhead is less than 10ms. In comparison, the
time taken by a brute-force search would be orders of magnitude
higher. In the case where each function has 256 configurations, the
search time is 7258ms.

5.4 Sensitive study

In ESG, there are two parameters, the maximal size of a function
group and the number of solutions in the configuration priority
queue (K). The default maximal group size is set to 3 because when
the size increases to 4, the search time jumps to 1201ms (for 256
configurations per function) due to the exponential growth of the
configuration space. Regarding the impact of K value, Figure 11
reports our observations. As K increases from 1 to 80, the average
search overhead increases from 3ms to 8ms, the latency remains
similar, and the cost decreases slightly. The default K is set to 5 in
ESG.

5.5 Impact of GPU-sharing and Batching

Through our ablation study, we assess how the GPU-sharing and
batching strategies enhance GPU resource efficiency. We individu-
ally removed either the GPU-sharing or batching strategy from ESG
and contrasted the results with the original ESG. We set a heavy
workload in this experiment specifically to underline the effects
of the batching strategy. The results indicate that both strategies
boost the usage of GPU resources, as evident in Figure 12.

Without the GPU-sharing strategy, the waiting time is substan-
tially prolonged compared to ESG. This is because jobs are queued,
waiting for a GPU (currently in use) to free up. Consequently, the
data-locality strategy may falter, leading to substantial data transfer
costs and worse SLO hit rates. The batching strategy is crucial in
conserving cost, as shown in Figure 12. The batching policy will
delay the execution time; thus, no-batching policy will not decrease
the SLO hit rates.

6 RELATED WORK

Heterogeneous serverless computing: Recent studies on GPU-
based serverless computing focused on CPU-GPU data transfer [33,
60] and cold start overhead [52, 53]. Some prior works [38, 46]
studied the scheduling tasks on GPUs but regarded an entire GPU as
the minimal computing unit. Other works [22, 30, 58] proposed the
GPU-sharing scheduling for inference applications but neglected
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the inter-function relations of the DAG workflows. There have been
efforts to extend serverless computing support to heterogeneous
hardware, including FPGAs and Nvidia DPUs [25, 56]. Additionally,
Dgsf [28] proposed the disaggregated GPU for serverless computing
that is orthogonal to our work.

Serverless resource management: Several works [21, 35, 43,
48, 55, 58, 61] have studied the resource management problem in
serverless computing. Orion [43] and INFless [58] are search-based
scheduling algorithm. SIMPPO [48] used reinforcement learning
for serverless resource management. Aquatope [61] is a Bayesian
Optimization based scheduling algorithm, which builds upon Ice-
Breaker [51] and CLITE [45] and extends BO in new ways than what
was previously done in other BO-inspired solutions like SATORI [50]
or Ribbon [40], and inspired the OLPart [21].

Optimization of data transfer: Researchers realize the data trans-
fer between workers and remote database lead to unnecessary
latency. FaaSFlow [41] proposed to partition the workflow into
sub-graphs and schedule these functions in one invoker to avoid
data transfer. Nightcore [34] proposed the internal function calls
and low-latency message channels, and efficient threading for I/O
to reduce the data transfer latency. Sonic [42] proposed the hybrid
data passing methods, which are direct-message passing and re-
mote storage to reduce the data transfer latency. Palette [13] used
the "colors" to place successive invocations related to each other on
the same executing node. As shown in previous sections, due to the
lack of effective methods to handle large schedule space, prior work
left much potential for sharable GPU locked for ML on serverless
platforms.

7 CONCLUSION

This study has proposed and evaluated a new algorithm ESG to
effectively schedule ML workloads on serverless platforms with
sharable GPUs. The search algorithm employs an optimality-guided
adaptive method by combining A*-search and a novel dual-blade
pruning to effectively prune the scheduling space without compro-
mising the quality. Its dominator-based SLO distribution offers a way
to keep the algorithm scalable. Across a diverse set of real-world
serverless applications, ESG gives the highest SLO hit rates, while
significantly reducing the cost.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation (NSF) under Grants No. CNS-2312207, CNS-2107068,
and CMMI-2246671. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF.



HPDC ’24, June 3-7, 2024, Pisa, Italy

REFERENCES

(1]

[12]
[13

[14]

(15

[16

[17

(18]

[19

[20]

[21

[22

[23]

[24]

[25

[26

[27]

[28]

[29]

Apache OpenWhisk. How OpenWhisk works. https://github.com/apache/
openwhisk/blob/master/docs/about.md#how-openWhisk-works.

AWS Lambda. https://aws.amazon.com/lambda/.

Azure Functions. https://learn.microsoft.com/en-us/azure/azure-functions/
functions-overview.

DeblurGAN. https://github.com/pablodz/DeblurGAN.

DEEPLABV3. https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/.
Exponentially Weighted Moving Average. https://www.sciencedirect.com/topics/
computer-science/exponentially-weighted-moving-average.

Google Cloud Functions. https://cloud.google.com/functions.

Knative is an Open-Source Enterprise-level solution to build Serverless and Event
Driven Applications. https://knative.dev/docs/.
NVIDIA 2020, Multi-Instance GPU (MIG).
technologies/multi-instance-gpu/.

NVIDIA, Multi-Process Service (MPS). https://docs.nvidia.com/deploy/mps/index.
html.

OpenWhisk. Open Source Serverless Cloud Platform. https://openwhisk.apache.
org/.

ResNet50. https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/.
Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Gohar Irfan
Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger, and Rodrigo Fonseca.
2023. Palette load balancing: Locality hints for serverless functions. In Proceedings
of the Eighteenth European Conference on Computer Systems. 365-380.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers: Principles,
Techniques, and Tools (2nd ed.). Addison Wesley.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18). 923-935.

Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: Machine
learning inference serving on serverless platforms with adaptive batching. In
SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-15.

Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. 2018. Sprocket:
A serverless video processing framework. In Proceedings of the ACM Symposium
on Cloud Computing. 263-274.

David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan
Zhu, and Antonio Torralba. 2020. Semantic photo manipulation with a generative
image prior. arXiv preprint arXiv:2005.07727 (2020).

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2019. Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings
of the ACM Symposium on Cloud Computing. 13-24.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. 2017.
Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587 (2017).

Ruobing Chen, Haosen Shi, Yusen Li, Xiaoguang Liu, and Gang Wang. 2023.
OLPart: Online Learning based Resource Partitioning for Colocating Multiple
Latency-Critical Jobs on Commodity Computers. In Proceedings of the Eighteenth
European Conference on Computer Systems. 347-364.

Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma. 2022. Sla-
driven ml inference framework for clouds with heterogeneous accelerators. Pro-
ceedings of Machine Learning and Systems 4 (2022), 20-32.

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. 2022. Serving heterogeneous machine learning models on Multi-
GPU servers with Spatio-Temporal sharing. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). 199-216.

Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020. Gslice: con-
trolled spatial sharing of gpus for a scalable inference platform. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 492-506.

Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo
Chen. 2022. Serverless computing on heterogeneous computers. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 797-813.

Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso. 2020. Photons:
Lambdas on a diet. In Proceedings of the 11th ACM Symposium on Cloud Computing.
45-59.

Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup. 2020. A review
of serverless use cases and their characteristics. arXiv preprint arXiv:2008.11110
(2020).

Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and
Christopher J Rossbach. 2022. DGSF: Disaggregated GPUs for Serverless Func-
tions. In 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 739-750.

Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita. 2019. Deep
learning-based image recognition for autonomous driving. IATSS research 43, 4

https://www.nvidia.com/en-us/

[30

[31

[35

(36]

(37]

@
&,

[39

[40

N
e

[42

[43

[44

[45

[46

[47

(48

N
o)

[50

Hui et al.

(2019), 244-252.

Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak Chadha, and Michael Gerndt.
2023. FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing in Serverless
Computing for Deep Learning Inference. arXiv preprint arXiv:2309.00558 (2023).
Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100-107.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Sungho Hong. 2022. GPU-enabled Functional-as-a-Service. Ph. D. Dissertation.
Arizona State University.

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 152—166.

Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. 2022. Hermod:
principled and practical scheduling for serverless functions. In Proceedings of the
13th Symposium on Cloud Computing. 289-305.

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn,
Jason Mars, and Lingjia Tang. 2019. Grandslam: Guaranteeing slas for jobs in
microservices execution frameworks. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1-16.

G Ajay Kumar, Jin Hee Lee, Jongrak Hwang, Jachyeong Park, Sung Hoon Youn,
and Soon Kwon. 2020. LiDAR and camera fusion approach for object distance
estimation in self-driving vehicles. Symmetry 12, 2 (2020), 324.

Vincent Lannurien, Laurent d’Orazio, Olivier Barais, Esther Bernard, Olivier
Weppe, Laurent Beaulieu, Amine Kacete, Stéphane Paquelet, and Jalil Boukhobza.
2023. HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud—
An Application to Deepfake Detection. In 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 154-165.
Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 4681-4690.

Baolin Li, Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, Karen Gettings, and
Devesh Tiwari. 2021. Ribbon: cost-effective and qos-aware deep learning model
inference using a diverse pool of cloud computing instances. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-13.

Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. 2022. FaaSFlow: enable efficient workflow execution for function-as-
a-service. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 782-796.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware data passing for chained
serverless applications. In USENIX Annual Technical Conference (USENIX ATC).
Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, Somali
Chaterji, and Saurabh Bagchi. 2022. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). 303-320.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh
Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022. WISEFUSE: Workload
Characterization and DAG Transformation for Serverless Workflows. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 6, 2 (2022), 1-28.
Tirthak Patel and Devesh Tiwari. 2020. Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 193-206.

Nathan Pemberton, Anton Zabreyko, Zhoujie Ding, Randy Katz, and Joseph
Gonzalez. 2022. Kernel-as-a-Service: A Serverless Interface to GPUs. arXiv
preprint arXiv:2212.08146 (2022).

Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar Zaiane,
and Martin Jagersand. 2020. U2-Net: Going Deeper with Nested U-Structure for
Salient Object Detection. Pattern Recognition 106, 107404.

Haoran Qiu, Weichao Mao, Archit Patke, Chen Wang, Hubertus Franke, Zbig-
niew T Kalbarczyk, Tamer Bagsar, and Ravishankar K Iyer. 2022. SIMPPO: a
scalable and incremental online learning framework for serverless resource man-
agement. In Proceedings of the 13th Symposium on Cloud Computing. 306-322.
René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot
Cross-dataset Transfer. arXiv:1907.01341

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2021. Satori: efficient and fair
resource partitioning by sacrificing short-term benefits for long-term gains. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 292-305.


https://github.com/apache/openwhisk/blob/master/docs/about.md#how-openWhisk-works
https://github.com/apache/openwhisk/blob/master/docs/about.md#how-openWhisk-works
https://aws.amazon.com/lambda/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://github.com/pablodz/DeblurGAN
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://www.sciencedirect.com/topics/computer-science/exponentially-weighted-moving-average
https://www.sciencedirect.com/topics/computer-science/exponentially-weighted-moving-average
https://cloud.google.com/functions
https://knative.dev/docs/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
https://arxiv.org/abs/1907.01341

ESG: Pipeline-Conscious Efficient Scheduling of DNN Workflows on Serverless Platforms with Shareable GPUs

[51] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: warming
serverless functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 753-767.

[52] Justin San Juan and Bernard Wong. 2023. Reducing the Cost of GPU Cold

Starts in Serverless Deep Learning Inference Serving. In 2023 IEEE International

Conference on Pervasive Computing and Communications Workshops and other

Affiliated Events (PerCom Workshops). IEEE, 225-230.

Justin David Quitalig San Juan. 2023. Flashpoint: A Low-latency Serverless Platform

for Deep Learning Inference Serving. Master’s thesis. University of Waterloo.

[54] Mohammad Shahrad, Rodrigo Fonseca, iﬁigo Goiri, Gohar Chaudhry, Paul Ba-

tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and

Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the

serverless workload at a large cloud provider. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20). 205-218.

Won Wook Song, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, and Byung-Gon

Chun. 2023. Sponge: Fast Reactive Scaling for Stream Processing with Serverless

Frameworks. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).

301-314.

Jessica Vandebon, Jose GF Coutinho, and Wayne Luk. 2021. Scheduling Hardware-

Accelerated Cloud Functions. Journal of Signal Processing Systems 93 (2021),

1419-1431.

Hao Wang, Di Niu, and Baochun Li. 2019. Distributed machine learning with

a serverless architecture. In JEEE INFOCOM 2019-IEEE Conference on Computer

Communications. IEEE, 1288-1296.

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,

Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for low-

latency, high-throughput inference. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems. 768-781.

Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun

Li. 2017. Lavea: Latency-aware video analytics on edge computing platform. In

Proceedings of the Second ACM/IEEE Symposium on Edge Computing. 1-13.

[60] Ming Zhao, Kritshekhar Jha, and Sungho Hong. 2023. GPU-enabled Function-

as-a-Service for Machine Learning Inference. arXiv preprint arXiv:2303.05601

(2023).

Zhuangzhuang Zhou, Yangi Zhang, and Christina Delimitrou. 2023. AQUATOPE:

QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless

Workflows. In Proceedings of the 28th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, Volume 1.

1-14.

[53

[55

[56

[57

[58

[59

[61

A PROBLEM FORMAL DEFINITION

For clarity, we provide a formal definition of the scheduling problem
as follows.
Assumptions:

o One serverless function invocation uses at most one worker
node.

e All worker nodes have the same hardware resources (we
made this assumption for the explanation simplicity, our al-
gorithm still works with heterogeneous hardware resources).

o The serverless functions are in a form that can accept a single
job or a batch of jobs.

Given: A set of jobs B = {¢; | I > i > 0} with each job as an
invocation of one of the serverless functions {f; | J > j > 0};
each job in B belongs to one and only one of the applications
A={am | M = m > 0} and one application consists of one or more
jobs; each application ap, has a tolerable latency upper limit d,; a
set of workers {wy | K > k > 0} with each worker being equipped
with Rc CPU resource units and Rg GPU resource units;
Objective: Produce a set of schedule configurations C = {¢; =
(by, i, p1.q1) | L = I > 0}, where each configuration ¢; represents
that at time gy, a set of jobs b; are assigned to the worker p; to run
with r;=(uc,, ug,) resources (u. for CPU resource units, ug for GPU
resource units), such that:

o argminc Y. (auc, + fug,),1 2 a20,f=1-a.
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Constraints:

® > hmy >y, where hp, =1 if the end-to-end time of application
m, denoted as t,, , is no greater than d,, and 0 otherwise;
ta,, = X tp, where tp,_ is the end-to-end time of job b;, that
is, the time from its invocation to its completion.

. UlLbl = Uf e; (every job is scheduled)

e biNb; =0, VI >1i,j>0andi # j(each job belongs to
only one set)

o X1, 1(bpkt) < Re, VLYK 2 k > 0, where, 1(b;, k, )
is 1if b; is active at time ¢ on worker k, and 0 otherwise.
(within total CPU resource)

o X1, ug1(b,k t) <Rg, VLVK =k >0, where, 1(b;, k, 1)
is 1if b; is active at time ¢ on worker k, and 0 otherwise.
(within total GPU resource)

B ESG_1Q ALGORITHM
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Algorithm 1: ESG_1Q

Input: i « the current stage

Input: endStage «— the final stage of the function sequence

Input: w < the longest waiting time;

Input: q « the time quota, which is got by the
dominator-based-distribution method, of this
sequence

Input: The target latency (Gsp o) < (SLO - w) X q

Input: ConfigLists[j] < the profiles of function j sorted
in increasing latency

Output: configPQ={}, the final feasible configurations and

sorting by the resource cost

Data: minRSC « a sorted list to maintain K best paths,

which is used for pruning on the resource usage. (K is
the solution number we set)

Data: Paths={}, the feasible paths until now and sorting by

the resources cost.

for each config in ConfigLists[i] do

calculate tLow, rscLow, recFastest;

if tLow >= Gg1 o then

‘ break ; /* Pruning on time */
end
if rscLow >= minRSC[K-1] then

continue; /* Pruning on cost, minRSC[k-1]

is the best_full_paths_maxCost in the

main paper */

else

Remove minRSC[K-1] and insert rscFastest into
minRSC;

Add the config into Paths;

end

end
while i+1 <= endStage do
Reset minRSC = [];
while Paths is not empty do
Dequeue one path from Paths;
for each config in ConfigLists[i+1] do
newPath < Extend the path by appending the
config;
calculate tLow, rscLow, recFastest;
if tLow >= Gg1 o then
‘ break;
end
if rscLow >= minRSC[K-1] then
‘ continue;
end
if i+1 == endStage then
‘ Insert the newPath into the configPQ;

end
Remove minRSC[K-1], insert rscFastest into
minRSC;
Add newPath into Paths;
end
end
i=i+1;
end

Return configPQ;
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