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Abstract—Over the past ten years, many different approaches
have been proposed for different aspects of the problem of
cost-effective resources management for long running, dynamic
and diverse workloads such as processing query streams or
distributed deep learning. Particularly for applications consisting
of containerized microservices, researchers have attempted to
address problems of dynamic selection of, for example: types and
quantities of virtualized services (e.g., VMs, serverless functions,
data-storage), vertical and horizontal scaling of different mi-
croservices, assigning microservices to VMs, task scheduling, or
some combination thereof. Herein focusing on selection decisions
of on-demand VM services, we consider the problem of creat-
ing and actively maintaining a training dataset for supervised
machine-learned frameworks like deep neural networks and
more light-weight, adaptable online optimization frameworks.
For both decision frameworks, we make a case for the usefulness
of spot cores and incremental search techniques like simulated
annealing to reduce workload preemption while searching the
decision space to explore the trade-offs between service-level
objectives (SLOs) and cloud-spend. Based on user input, a
macroscopic objective that captures both performance and cost
will be used. We are particularly interested in scenarios with
complex workloads and cloud-service offerings that vary over
time.

Index Terms—Annealing, Cloud, Kubernetes, Spark, IaaS

I. INTRODUCTION AND MOTIVATION

Resource management in the public cloud typically involves
selecting available services spanning compute, storage and
networking to minimize cost (or “cloud spend” [21], [25])
subject to workload Service-Level Objectives (SLOs, i.e.,
performance requirements). The problem is particularly chal-
lenging when serving complex time-varying workloads. For a
given set of job streams, the optimal service suite may involve
a cluster composed of a variety of services. Even within
services of the same type, resource instances can vary greatly.
For example, VMs can have different amounts and types of
memory, CPU cores, hardware accelerators, cross connects
(e.g., PCle, NVLink), and networking. In some cases, users
can optionally pay to collocate VMs on the same physical
server or to provision networking resources connecting their
VMs to storage.

The focus of this paper is the problem of deciding the type
and number of on-demand VMs for a cost-effective cluster
providing adequate performance. This problem is difficult for
complex, diverse and dynamic workloads incident to the clus-
ter, (even if, e.g., a default task scheduling and container sizing
policy is used), where a typical user (cloud tenant/customer)
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may provide little more guidance than “macroscopic” service-
level objectives (SLOs) and a cost budget'.

A. Deep Learning and/or Online Optimization

Classical frameworks for systems identification and control
include “black-box” approaches like neural networks (NNs)
and simulated annealing. More recently, Deep NNs (DNN:s,
Als) have been suggested by researchers as a way to dis-
pense cluster-management advice even when the workloads
are complex and dynamic, e.g., [10], [19], [20].2 For such
problems, (supervised) deep learning requires a vast training
dataset, typically produced by an extensive depth of search”
study. Such training datasets are often manually curated.
Moreover, deep learning requires choosing among a variety of
DNN architectures and training hyperparameters. For cluster-
management advice, DNN’s input would need to include a
description of the user’s current workload and their perfor-
mance and cost constraints, i.e., their SLOs. If the advice
concerned specific cloud services and how to use them, then
the DNN may need to be refined or retrained whenever the
services change (including just the terms of their service-
level agreements (SLAs)). Moreover, DNN refinement may be
required if the user’s workload changes so that it is anomalous
with respect to those represented by the current training
dataset. (Such problems are sometimes called online “model
drift.”) Such DNN refinement (a.k.a. online reinforcement or
active learning) typically requires producing a new batch of
training samples.

In contrast, online optimization methods (e.g., [2], [5]) are
less responsive to changes than DNN inference (when those
changes are well-represented in the DNN’s current training
dataset). But online optimization methods: do not have as-
sociated training costs®, avoid the need for online workload
modeling, and respond more quickly to online model drift.

Considering how training datasets are produced by search-
ing the space of possible decisions they could make, their

INote that existing autoscaling and bin-packing services are typically based
on runtime resource-utilization statistics not application-level SLOs, e.g.,
query response times or whole-job completion times (JCTs), and associated
deadlines [11], or the costs of cloud services.

2though some public-cloud companies internally forbid the use of Al for
control of their cloud-computing infrastructure

3The cost of procuring and maintaining the training dataset of a DDN
is rarely accounted for in research articles advocating their use, and their
reproducibility problems [14] are rarely discussed.



formation is not unrelated to an online optimization pro-
cess which includes breadth of search. That is, an online
optimization method could be used to produce training
samples for deep learning. Hence, in this paper, we focus on
online optimization methods with the understanding that they
could be used “directly” to make cloud service procurement
decisions or indirectly” informing a DNN to make them,
where the DNN encodes optimal decisions for the current
cloud service suite as an explicit function of the model
parameters of previously experienced workloads.

B. Online Optimization and Spot Cores

Recently, researchers and practitioners have explored the
use of other traditional, more lightweight decision-making
methods, such as model-based adaptive control, PID control,
and Markov Decision Processes (MDPs), in which DNNs play
only a partial role at most (e.g., [22], [30]). For example,
particle-swarm optimization has been used for load balancing
[23], and genetic algorithms (GAs) have been employed to
explore service suites and react to workload and service
changes [28], [29].

Simulated annealing (or just annealing) has been widely
used for complex, non-convex optimization problems, in-
cluding practical applications, since its development in the
1980s [1], [13], [16]. Annealing is suitable for resource
management problems in dynamic environments with non-
convex objectives and indefinite time horizons. It can quickly
react to changes by adjusting its temperature parameter and
expanding its “local neighborhood” sets. Annealing can also
be hybridized with, e.g., GAs or Tabu search, to improve
search efficiency.

We recently evaluated annealing for container sizing of
microservice workloads [3]. Annealing offers the advantage
of confining incremental changes to the cluster within the
local neighborhood (see the next section), thus minimizing
the impact of change on the current workload.

The future availability of “local” spot cores [4], [27] on
the same servers as currently employed VMs could also fa-
cilitate exploration without workload interruption. Spot cores
allow VMs to temporarily acquire additional resources for
a fee, which may vary over time. With spot cores, online
cluster configuration searches can be conducted to assess
cost/performance trade-offs without interrupting the current
workload.

C. Contributions

In this paper, we study an online optimization based on an
annealing approach to provisioning an IaaS (VM) cluster for a
plurality of different streaming workloads. Annealing works to
minimize a macroscopic objective that can account for factors
like current job execution times and the cost per unit time of
the existing cluster. While it can operate both offline (e.g.,
[26]) and online (runtime), our focus is on the latter.

This paper is organized as follows. Some background on
annealing and a description of our Virtual Machine (VM)
procurement approach is given in Section II-A. A service

procurement problem is formulated and an annealing based
approach to it is described in Section II-B. In Section II-C,
the results are given of a study using the Apache Spark
[24] distributed application and CloudLab [8]. In addition to
HiBench workload case-studies, we apply an online annealing
method to select the number and sizes of VMs for a deep-
learning workload. In Section III, the results of a study
are given using hypothetical spot cores on an AWS cluster
managed by Kubernetes (K8s). The paper concludes with a
brief discussion of future work in Section IV.

II. VM PROCUREMENT BY SIMULATED ANNEALING
A. Background on Annealing

Simulated annealing was introduced in the 1980s as a
generic framework to minimize a complicated function Y :
D — R over a very large discrete bounded domain D, where
“complicated” here means that Y has plural local minima in
addition to global ones and D may be a finite discretization
of a continuous domain.

A local neighborhood function v(z) for all x € D is
defined, where = & v(x). A collection of possible transitions
between x and elements of v(x) are also defined, often taken
as all equally likely as assumed in the following (i.e., each
with uniform probability 1/|v(x)|). A key requirement of the
neighborhood function v is that it has to produce a connected
graph in D*. Typically, the neighborhood function ensures
only incremental one-step changes to the current configuration
state, but this is not a requirement.

Given Y and v, the annealing Markov chain on D at
temperature 7 > 0 has transition probabilities from x to
x' e v(z),

ﬁ o <_max{Y(:r’) ~ Y (2), 0}> |

T

We see that a possible transition from the current state x to
the next state =’ is “accepted” with positive probability even
when the objective Y is increased, i.e., when Y (z') > Y (),
and always accepted when Y (z') < Y (z) — this is the “heat
bath” rule. When the temperature parameter 7 increases, this
acceptance probability increases, i.e., there is more exploration
and less exploitation which is particularly useful when trying
to avoid poor local minima. If the temperature 7 is initially
sufficiently high and slowly (logarithmically) decreases to zero
over time, it can be shown that the (time-inhomogeneous)
Markov chain Y will converge in probability to its global
minimum on D [1]. But this limiting result is not very useful
in practice. Even early on, some authors pointed out that it
may be better not to thus “cool” the annealing chain [13],
particularly when considering a finite time-horizon. If the
temperature is fixed 7 > 0 and the neighborhoods all have
the same size (|v(x)| is a constant function of x € D) then
(time-homogeneous) Markov chain Y has (Gibbs) stationary

4That is, the Markov chain resulting from the “base” transition probabilities
associated with the neighborhood function is “irreducible”. These transition
probabilities should be chosen so that the base Markov chain is also time-
reversible [1].



distribution proportional to exp(—Y (z)/7). Note that as the
temperature 7 — 0, only transitions that reduce Y are
accepted, i.e., pure exploitation.

In the past, annealing was successfully applied to complex
optimization problems such as placement and routing of VLSI
circuits and large-scale bin-packing problems [18].

B. VM Procurement Approach

Consider a long job stream whose composition and work-
load profile may change periodically over time. This change
could be due to changes in the types of jobs and their
proportions and/or the datasets on which the jobs operate.
A goal here is to decide on the most performance-and-cost
effective TaaS cluster, including consideration of autoscaling
costs, dynamic changes to the effective capacities and prices
of services considered, or new service offerings.

First, consider a stream of the same type of job, e.g., the
jobs are described by the same DAG of component tasks, for
a fixed cluster. Let x, be the cluster configuration for the nt"
job (e.g., in particular, indicating the total number of cores
in the cluster). Starting with a random configuration for xg,
we apply annealing over the course of the job stream with
minimizing objective

Y, = t, + Acy,

where t, and c, respectively are the total execution time
and a “cost” for job m under the currently chosen service
configuration. The user specified term A > 0 weighs the cost
against the execution time.

Second, we formulate the objective to be able to consider
a blend of multiple types of jobs. The composition of the
blended workload can be described using weighted averages
of each type. For example, consider a workload that consists of
N types of jobs. The minimizing objective for this workload
can be described as

N
Y = Z D) 4 \C, (1)

i=1

where a(® > 0 is the weight for workload type i
(Zg\il a®d = 1), t® is a measure of its performance to be
minimized, and A > 0 is a parameter relatively weighing a
measure of the cost of the cluster, C. The parameters a®,
which can be interpreted as the relative priority of workload
type ¢, may change dynamically as the workloads experience
variations over time; see Section II-G. Alternatively, e.g., use
autoregressively estimated averages t.v; or 95th percentile
execution times (the latter approximated by .., plus two
estimated standard deviations). Upon arrival of a new job (or
new set of jobs) m, we run it (them) with the configuration
Zn = Tnp—1 + €, where e, represents a possible ‘“step
size” (incremental change) when exploring configurations and
xy,—1 represents the current “accepted” configuration. We set
T, = 2, (i.e., accept the configuration z,,) with probability

exp(—max{Y, — Y, 1,0}/7)

aA1302(d0

Fig. 1. Blended workload characteristic based on four types of EC2 instances:
General Purpose, Compute Optimized, Storage Optimized, and Memory
Optimized. Note that the non-convexity of the objective is a consequence
of how the categorical VM types are ordered to form "local neighborhoods”
of cluster configurations for the annealing mechanism. Note that annealing is
suitable for non-convex optimization.

where Y,, is the objective evaluated for job n, and 7 is the
temperature parameter controlling the degree of exploration
and exploitation; otherwise z,, = T,,—1.

Incremental changes e, to the existing cluster x define the
neighborhood function v(z) over specific instances of VMs
of different families and the number of each instance. For the
example where the user may want to have a homogeneous
cluster in which case e, could is defined so that x + e,
represents different numbers of VMs compared to x but of the
same type, or the same number of VMs as x but of different
types. In the latter case, the VMs could be in the same family
as those of z but smaller or larger (based on number of cores
or GPUs), or could be in a different family with say the same
number of cores but different hardware accelerators (including
lacking them). Alternatively, the user may want to consider
heterogeneous clusters in which case = + e,, could differ from
z based on only a single VM. We consider heterogeneous
clusters in the following experiments.

C. Experimental Results

We evaluate our simulated annealing approach using Cloud-
Lab [8] machines. Our set-up consists of six rs630 nodes
(a master node and 5 worker nodes). Using Apache Spark
(3.1.2v), we exploit the Spark configuration file in the master
node to set the new desired configuration when performing
annealing.

D. Modeling Cost of EC2

We reference AWS’s EC2 per core pricing for different on-
demand instance types. For each instance type, a pre-defined
memory allocated per core is assumed (e.g., m6g.medium
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Fig. 2. Blend of HiBench workload types (Wordcount, K-means and PageR-
ank) with adjustment for storage-optimized instances for better comparisons.
instances allocate 4 GB of memory per core procured). We
also consider hypothetical instances “between” those offered
by AWS with corresponding price adjustments (further details
are given in section II-D1).

1) Each job executed independently: Using a blend of
three different type of HiBench jobs [15] (we set the weight
factor A = 5, which we empirically found suitable for our
experiments), we evaluate the objective values, under different
configurations, for the blended workload as described in sec-
tion II-A. We generate a stream of independent jobs and record
their average execution times under configurations provided
by the annealing process, i.e., number of VM instances of
a certain type where each VM type is characterized by a
number of cores and memory allocated per core. Figure 1
depicts the objective values for different configurations of such
blended workload. The peaks in figure 1 evaluate the objective
values when using storage-optimized instances®. Note that
different ordering of the categorical instance types in defining
the search space may introduce local minimums that are not
global. Annealing can overcome local minima more quickly
at higher temperatures 7.

We replace the pricing of storage-optimized instances with
a hypothetical family of instances for better comparisons (i.e.,
all families of instances have similar local storage perfor-
mance) shown in figure 2. Figure 3 shows different simulations
of jobs streams while performing annealing under different
temperatures. The red dots represent different service-cluster
configurations. From figures 3 and 4, we can observe that more
exploration is performed by annealing as the temperature 7
increases. Furthermore, figure 5 shows that as the tempera-
ture increases, the annealing process more quickly finds the
configuration that minimizes the objective®, but with greater

SLatency to local storage was not a significant performance factor in our
experiments. Hence, AWS instances that use Elastic Block Store (EBS) are
also emulated using SSDs, but with their actual AWS pricing.

SIn this paper, in order to assess the annealing mechanism, we separately
identify by exhaustive search the configurations that globally minimize the
objective under consideration.

service variation due to higher service exploration.

2) Jobs executed in parallel: The annealing approach can
also be employed for workloads that consist of jobs that are
executed in parallel (i.e., when jobs compete for resources)
and a job queue may be present. The minimizing objective can
be adjusted for this case by measuring the total sojourn time of
jobs instead of just the execution times. The annealing process
performs similarly to what is described in section II-D1.

E. Deep Learning Workload

The annealing method can also be utilized in training Deep
Neural Networks (DNNs), i.e., deep learning. Figure 6 depicts
the characterization of distributed deep learning, on our Spark
cluster, using the Keras library [7] to train a Convolutional
Neural Network (CNN) to recognize handwritten digits of the
MNIST dataset [17]. Using the pricing model described in
section II-D, the goal is to find the service configuration that
minimizes the objective function as described in section II-A
(we set the weight factor A = 1). The execution time here
refers to training a model for one epoch. In our experiments,
we set the initial configuration to 1 core with 4 GB of memory.
Figure 7 shows the selected configurations that were explored
by the annealing process (shown as red dots). From figure
8, we find that our annealing approach is capable of quickly
finding the configuration that minimizes the objective.

F. Adaptation of Annealing

We evaluate the adaptation of annealing for dynamic
changes in the blended workload. Figure 9 shows the com-
puted objective values for a stream of blended HiBench jobs.
Here, we portray the change in workload as a change in the
distribution of the blend (red vertical line depicts the point
of time when the change occurs). The blue lines depict the
objective values computed before the change occurs, while the
orange lines depict after such. The oscillation in the computed
objective values is due to the exploration nature of annealing
at a positive temperature. After the change, we observe that
annealing adapts to the change by finding the new objective-
minimizing service configuration through exploration as well.

G. Discussion: Adapting T and \

For the example of cluster management based on online
optimization considered herein, two critical parameters war-
rant careful consideration: the temperature 7 of the annealing
algorithm (trading off breadth and depth of search), and
the objective Y’s parameter A (trading off its user-specified
performance (SLO) and cost component objectives). Some
approaches to adjust the temperature are:

e Continuous Logarithmic: The classical logarithmic (slow)
cooling schedule for a stationary system, e.g., [1].

e Threshold Based: Predefined thresholds for the objective
value (or its components) are established with temperature
changes at each threshold. If, e.g., Y itself crosses below a
threshold, the temperature is reduced to encourage exploita-
tion. Alternatively, if, e.g., the cost component exceeds
a certain threshold, the temperature may be increased to
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Fig. 3. Performing annealing on a blended workload of three types of jobs: Wordcount, K-means, and Pagerank
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dataset.
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Fig. 9. Annealing adapting to change in the blended Hibench workload.

encourage exploration. More specifically, temperatures can,
e.g., increase exponentially (e.g., 7 — 27) and decrease
additively (e.g., 7 — (7 — §)T for 6 > 0).

e Iteration Based: The temperature adjustment is based on the
number of iterations or the convergence behavior. E.g., if no
significant change in the cost objective is observed after a
certain number of iterations, and user-specified performance
or cost objectives are not met, then the temperature is
increased to encourage further exploration.

The A parameter is similarly adjusted. E.g., after a certain
number of iterations: If the performance (SLO) is met but
a user-specified constraint is not, then \ can exponentially
increase. Conversely, if cost budget is met but the SLO is not,
then A can decrease additively decrease. If there are plural job
types as in (1), the parameters o can be similarly adjusted.

III. USING SPOT CORES

In the future, VMs could be dynamically augmented with
local cores (or hardware accelerators like GPUs) which are
unreserved or reserved but unused, where in the latter case
they can be revoked. E.g., Google K8s Engine (GKE) [12]
provides a service wherein the user is “not charged” for
unused cores in their cluster. Such unused cores could serve
as “spot cores” for another local VM. The added cost of
using spot cores is weighed against the convenience of not
subjecting the workload to preemption or added queueing
delays when deciding whether to change one or more VMs in
a cluster.

We emulate spot cores within a K8s environment, where
a Social Media network microservice from DeathStarBench
[9] is deployed onto the cluster. The cluster configuration
comprises a master node and three K8s worker nodes (noted
as w;, ¢ € 7Z), along with an additional node dedicated to

Table 1
A comparison of the objective values across various Kubernetes cluster
configurations, both with and without spot cores. Note that it is assumed
that the cost of spot cores is greater than that of procured cores within a

VM.
Configuration Avg. Exec. | Avg. Obj. | Avg. Obj.
(cores for wi,ws, and w3) | Time (ms) (A =10) A=1
(16, 16, 16) 33 56.04 35.30
(16, 16, 32) 20 79.08 24.60
(16, 16, [16, 16 spot]) 20 102.12 2691

workload generation (using Locust [6], a HTTP benchmarking
tool). Throughout our experiments, we adopt the pricing of an
m5.4xlarge instance (and the pricing for m5.8xlarge
instance for spot cores) as a reference for cost calculation
across the entire cluster. Notably, we assume that the cost
associated with Spot Cores exceeds that of the cores procured
with the virtual machines. We use K8s default resource
management mechanisms for the deployed application. Define
the objective
Y = tavg + )\(Cv + Cs)7

where 1, is the (autoregressively estimated) average execu-
tion time of a request incident to the application and C, and
Cs respectively are the cost of VM and spot cores.

Table I shows a comparison of three different cluster
configuration of the worker nodes for the deployed application
(indicating the number of cores w; for each worker ). The
first configuration considers using m5.4xlarge as reserved
instances for the K8s workers. The second configuration con-
siders replacing the third worker node with a m5.8xlarge.
Lastly, the third configuration has the same number of cores
of the second configuration. However, we consider the pricing
of spot cores of the remaining 16 cores of the the third worker
node when evaluating the objective value (for our experiments,
we set the pricing of the spot cores to be double of the
pricing VM cores). When A = 1, the second configuration
is preferable to the first, which is not the case when user is
more price-sensitive with A = 10.

IV. CONCLUSIONS

In this paper, we advocated for an online optimization
approach, such as simulated annealing, for management of
a cluster of on-demand-VM resources based on user-specified
performance (SLOs) and cost objectives. We gave perfor-
mance results for the problem of VM service selection where
the topography of the annealing objective depends on how the
VM services are encoded for purposes of search. In particular,
we showed how breadth of search can be used to overcome
sub-optimal local minima in the search objective. We also
described how the optimization hyperparameters (annealing
temperature and objective parameters) can be set toward meet-
ing the user’s requirements on performance and cost. Finally,
we studied how “spot” cores (or hardware accelerators) could
be used in the service-selection process.
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