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ARTICLE

Ornaments for efficient allele-specific
expression estimation with bias correction

Abhinav Adduri! and Seyoung Kim?*

Summary

Allele-specific expression plays a crucial role in unraveling various biological mechanisms, including genomic imprinting and gene
expression controlled by cis-regulatory variants. However, existing methods for quantification from RNA-sequencing (RNA-seq) reads
do not adequately and efficiently remove various allele-specific read mapping biases, such as reference bias arising from reads containing
the alternative allele that do not map to the reference transcriptome or ambiguous mapping bias caused by reads containing the refer-
ence allele that map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and
accurate estimation of allele-specific transcript expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-
specific read mapping biases. Ornaments removes reference bias by mapping reads to a personalized transcriptome and ambiguous map-
ping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension
of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias
correction in allele-specific read mapping. In experiments with simulated and human lymphoblastoid cell-line RNA-seq reads with
the genomes of the 1000 Genomes Project, we demonstrate that Ornaments improves the accuracy of WASP and kallisto, is nearly as
efficient as kallisto, and is an order of magnitude faster than WASP per sample, with the additional cost of constructing a personalized
index for multiple samples. Additionally, we show that Ornaments finds imprinted transcripts with higher sensitivity than WASP, which

detects imprinted signals only at gene level.
Introduction

Allele-specific expression has been used to characterize
various biological phenomena in diploid organisms,
including gene expression affected by cis-acting variants
in an allele-specific manner,'” allele-specific nonsense-
mediated mRNA decay,“ and monoallelic expression of
imprinted genes.>° Allele-specific expression is typically
measured as RNA sequencing (RNA-seq) read depths at het-
erozygous loci. There are two well-known biases intro-
duced in allele-specific read mapping: reference bias and
ambiguous mapping bias.”” The reference bias arises
from reads with alternative alleles that do not map to the
reference transcriptome, leading to an underestimate of
the expression of the alternative allele. The ambiguous
mapping bias arises from reads that map to a heterozygous
site but also to homozygous sites repeated in other
genomic locations, since reads with the other allele at
the same heterozygous site do not map to the same homo-
zygous sites.

Removing these biases efficiently for accurate allele-spe-
cific expression estimation has been a challenging
problem. Mapping reads to a diploid personalized tran-
scriptome'®!'! removed only reference bias but not ambig-
uous mapping bias. WASP,” a popular tool for removing
ambiguous mapping bias, was not adequate, as it simply
discarded ambiguously mapped allele-specific reads, ob-
tained allele-specific read counts only at gene level but
not at transcript level, accounted for only SNPs but not

indels, and was computationally expensive. RPVG'”
removed reference bias by mapping reads to a pantran-
scriptome constructed from a haplotype reference panel;
however, it did not fully correct for ambiguous mapping
bias and was computationally expensive. Kallisto,"* a
widely used tool for rapid transcriptome quantification,
probabilistically assigned multi-mapped reads given a
diploid transcriptome with known variant phases. Howev-
er, with kallisto, RPVG, and other related methods,'*"®
inaccurate phasing could lead to inaccurate estimates of
allele-specific signals.

Here, we introduce Ornaments, a tool for accurate and
efficient estimation of allele-specific transcript expression
at unphased heterozygous loci from RNA-seq reads. Orna-
ments removes reference bias by taking into account sam-
ple-specific variant information at SNP and indel loci and
ambiguous mapping bias by probabilistically assigning
reads to multiple transcripts and variant loci they map to.

Ornaments is a lightweight modification of kallisto'”* that
improves upon the accuracy and efficiency of WASP, as well
as the accuracy of kallisto, while leveraging the speed of kal-
listo. Ornaments modifies each of the two stages of kallisto,
the read mapping and quantification stages. During the
read mapping stage, Ornaments introduces an ornament
transcriptome de Bruijn graph (tDBG), a key data structure
that represents a personalized transcriptome within an orna-
ment index. An ornament tDBG is obtained by augmenting
the colored tDBG of kallisto with ornaments, each with two
shades corresponding to the two variant alleles (Figures 1A
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Figure 1. Ornaments overview

(A) The genome (gray) with three transcripts (blue, green, and pur-
ple), two heterozygous SNPs, one uniquely mapped allele-specific
read (top read) and one ambiguously mapped allele-specific read
(bottom read), and the repeat region (brown).

(B) The ornament tDBG constructed from the transcripts in (A).
An ornament tDBG consists of a colored tDBG over k-mer nodes
colored for transcripts and ornaments over k-mer nodes shaded
for variant alleles.

(C) The variant-aware pseudoalignment of the uniquely mapped
read. The filled k-mer nodes overlap with the read. Among the
filled nodes, the first node of each contig is marked as cy, ..., cg,
where a contig is defined as a sequence of k-mers annotated with
the same set of [color, shade] pairs. The variant-aware equivalence
class for the read is the set of [color, shade] pairs found from the
intersection of the sets of colors for contigs and the union of
shades associated with the colors in the intersection and is given
as {[green color, yellow/lime shades]}.

(D) The variant-aware equivalence class of the ambiguously map-
ped read is {[blue color, ], [green color, yellow shade]}, where &
indicates no paired shades.

and 1B). Given the ornament index, Ornaments modifies
the pseudoalignment of kallisto to variant-aware pseudoa-
lignment to find a variant-aware equivalence class for each
read, which we define as the set of transcripts and variant al-
leles that the read maps to (Figures 1C and 1D). In the quan-
tification stage, Ornaments uses a variation of the mixture
model and expectation-maximization (EM) algorithm of kal-
listo to obtain expected allele-specific read counts at hetero-
zygous SNP and indel loci for each transcript in addition to
transcript quantification. Using simulated and human lym-

phoblastoid cell-line RNA-seq reads'® with the genetic vari-

ants of the 1000 Genomes Project samples,'” we demon-
strate that per sample, Ornaments is nearly as efficient as
kallisto and an order of magnitude faster than WASP, with
the additional cost of constructing a personalized index for
each additional sample prior to read mapping. In addition,
we show that Ornaments improves upon the accuracy of
WASP by effectively removing allele-specific read mapping
biases at transcript level and the accuracy of kallisto by ac-
counting for genetic variants.

Material and methods

We introduce Ornaments in two stages for read mapping and
quantification. We begin by describing how we prepare inputs to
Ornaments, including variant information and ornament person-
alized transcriptome.

Preparing variant information

Given thereference transcriptome, transcript annotation, and sam-
ple-specific information on the genomic coordinates and alleles of
variants, we prepare variant information as follows. First, we extract
SNPs and indels in exonic regions and transform the genomic coor-
dinates of those variants into transcriptomic coordinates. Then, for
each variant, we store the information on the transcript it appears
in, transcriptomic coordinates of the variant, and allele. A variant
with a single genomic coordinate that appears in multiple alterna-
tively spliced transcripts is associated with multiple transcripts and
transcriptomic coordinates. If there are multiple overlapping indels
at the same genomic coordinate, we keep only one of the indels. In
our implementation, we keep the last one, as variants are typically
provided in the order of genomic coordinates.

Preparing ornament personalized transcriptome

From the variant information above and reference transcriptome,
we prepare an ornament personalized transcriptome, which will
be used by Ornaments to build an ornament index over k-mer se-
quences. An ornament personalized transcriptome consists of tran-
script sequences and ornament sequences. The transcript se-
quences are set to those in the reference transcriptome with a
modification to alternative allele at each alternative-allele homozy-
gous locus and retain their transcript names in the reference tran-
scriptome. Two ornament sequences are added for each pair of a
heterozygous variant and transcript containing this variant. Each
ornament sequence consists of the variant allele and the flanking
sequences of length k on each side of the variant in the transcript.
Inrare cases of n heterozygous loci within k base pairs, where almost
alwaysn =2, an ornament sequence is added for each of the 2" com-
binations of the alleles. The ornament sequences are named as a
concatenation of the name of the transcript of origin, position of
the variant within the transcript, and allele.

The construction of ornament personalized transcriptome is
efficient in both time and space. It takes only a few seconds to
construct it, and its size is not significantly larger than the size
of the reference transcriptome, since ornament sequences are sub-
stantially shorter than transcript sequences.

Constructing ornament index
Given the ornament personalized transcriptome, we construct an
ornament index, which consists of an ornament tDBG and
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ornament hash table. We augment the kallisto index, which con-
sists of a colored tDBG and hash table, to represent variants in the
ornament index.

To construct an ornament tDBG, we begin by applying the kal-
listo algorithm for constructing a colored tDBG to both transcript
and ornament sequences. This assigns colors to both transcript
and ornament sequences, creates the k-mer nodes of a tDBG
from these sequences, and annotates each k-mer node with the
set of colors corresponding to the sequences in which the k-mer
appears. In our modification, we additionally ensure that the
k-mer nodes from the ornament sequences are also annotated
with the colors of the transcripts that gave rise to the given orna-
ment sequences. Then, the kallisto algorithm proceeds to assign a
set of colors to each contig, where a contig is defined as a sequence
of k-mers annotated with the same set of colors between two junc-
tions of the tDBG. We call the resulting tDBG an ornament tDBG,
as the k-mers from the ornament sequences form decorative bub-
ble-like structures in the tDBG whose top and bottom halves are
additionally colored for the two alleles (Figures 1A and 1B). The
colors of the ornament sequences are mapped to shades using
an ornament hash table as we describe below.

Next, we construct an ornament hash table that maps a k-mer to
a set of colors for transcripts and shades for variant alleles. An
ornament hash table consists of a kallisto hash table, which
maps each k-mer to a set of colors, and an auxiliary hash table,
which further maps a color to an ornament shade if the color cor-
responds to an ornament sequence. The auxiliary hash table stores
two pieces of information for each ornament shade: the variant
allele and location in the transcript. Overall, the ornament hash
table maps a k-mer to a set of pairs [t, s] of a color t and shade s,
where s = (J, with & indicating no ornament shades, if the
k-mer is not found in any ornament sequences that originated
from the transcript t.

Variant-aware pseudoalignment

Using the ornament index, Ornaments performs variant-aware pseu-
doalignment of reads to the personalized transcriptome. Variant-
aware pseudoalignment is a modification of the pseudoalignment
of kallisto to assign a read to a variant-aware equivalence class, which
we define as the set of possible transcripts and variant alleles of origin
for the given read. To obtain the variant-aware equivalence class of a
read, we first map each k-mer of the read to colors and shades using
the ornament hash table, mapping only the first k-mer of each contig
and skipping to the first k-mer of the next contig for speed-up as in
kallisto. Then, we combine these colors and shades across all
k-mers of the read, by taking the intersection of the sets of colors
forall k-mers asin the kallisto pseudoalignment and taking the union
of the shades that are paired with the transcript colors in this intersec-
tion. A shade is included in the union, only if the read contains all
k-mers of the given shade in the tDBG, except when the k-mers
with the shade are located at either end of the read. The resulting
variant-aware equivalence class of the read is a set of pairs [¢, s] of a
color t and shade s that the read maps to (e.g., {[green color, yel-
low/lime shades]} for the uniquely mapped read in Figure 1C, and
{[blue color, ¢, [green color, yellow shade]} for the ambiguously
mapped read in Figure 1D).

Applying variant-aware pseudoalignment to all reads from a
sample results in read counts for each of the variant-aware equiv-
alence classes. These are the sufficient statistics needed for the
quantification of transcript expression and allele-specific expres-
sion at heterozygous loci.

Quantification

Given the read counts for variant-aware equivalence classes, we
modify kallisto to quantify allele-specific expression at heterozy-
gous loci in addition to transcript expression. The key idea behind
our modification is to first estimate transcript expression as in kal-
listo but in a variant-aware manner, followed by inferring expected
allele-specific read counts at heterozygous loci. Below, we slightly
re-cast the kallisto quantification method to provide the full set-
up of a mixture model, as only the objective function for parameter
estimation was explicitly stated for kallisto and the model set-up is
not immediately obvious from the objective alone. Then, we
describe our modification of Kallisto in the three components of
the statistical method: the model, estimation, and inference.

We describe the kallisto mixture model as a probability model
for a random variable E representing the equivalence class of a
read, which takes a value e Q for the set Q of all possible equiv-
alence classes. The kallisto mixture model is

nr
P(E=e)= ) PE=¢T=0PT=t), (Equation 1)
t=1
where T is a latent variable for an unobserved transcript label for
the read, taking a value from {1,...,nr} for nr transcripts. The
model above has the mixture proportion P(T = t) = 6;, where
the parameter 6;€ 6 = {01, ...,0,,} represents unknown expres-
sion quantification for the transcript t and satisfies Y ¢~ , 6, = 1,
and the mixture component model

€ .
— iftee,
PE=eT=t) =/t

0 otherwise,

(Equation 2)

where ¢; is the effective transcript length representing the possible
number of starting positions of a read on the transcript ¢, ¢, isa subset
of these starting positions on the transcript t € e that result in the

given equivalence class ¢, and Y P(E = ¢|T = t) = 1. Notice that
eec Q

a non-zero P(E = e|T = t) has an identical numerator for all ¢ for
a given ¢ and has an identical denominator for all e for a given t.
Equation 1 defines a generative model for the equivalence class of
a read, where a transcript f is selected with the probability
P(T = t) and then given the transcript ¢, an equivalence class e is
selected with the probability P(E = e|T = t). We show below that
itisnot necessary to obtain ¢, explicitly, since these quantities cancel
out and do not appear in the update equations of the EM algorithm.
The ornament mixture model has the same parameters 6 for the
mixture proportions of nr transcripts as the kallisto mixture model.
However, the ornament mixture model is aware of variants, as its
random variable E now represents the variant-aware equivalence
class of a read, taking a value from the set @ of all possible
variant-aware equivalence classes, and its mixture component
model takes into account SNPs and indels. The ornament mixture
component model extends that of kallisto in Equation 2 to

2¢,

if [t,J] e e,
€t,m+p
PE=eT=1)=q & if [t,s] € e for some s#J,
et,mﬂ)
0 otherwise.

(Equation 3)

Above, €, is the combined effective transcript length of the
maternal and paternal alleles of the transcript f, which
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corresponds to the diploid length and reduces to €., = 2¢; for
transcripts with no indels, and ¢, is defined as in Equation 2 but
for a variant-aware equivalence class. In the numerator, the
diploid length 2¢, is used, if a read pseudoaligns to both alleles
of the transcript £, with no ornament shades paired with the tran-
script in e (e.g., the pair [blue color, ¢] in the variant-aware equiv-
alence class of the read in Figure 1D). In contrast, the haploid
length ¢, is used, if a read pseudoaligns to only one of the two al-
leles of the transcript ¢, with some ornament shades paired with it
in e (e.g., [green color, yellow/lime shades] in Figure 1C and [green
color, yellow shade] in Figure 1D). Overall, although the ornament
mixture model does not model allele-specific expression directly as
parameters, it is aware of variants through the probability in Equa-
tion 3: the probability is doubled for a read mapped to both tran-
script alleles at homozygous loci compared to a read mapped to
only one allele at heterozygous loci and is adjusted based on the
transcript lengths for transcripts with indels.

To estimate the parameters @ for transcript expression, both Or-
naments and Kallisto use the EM algorithm.'®'? However, they
differ in that Ornaments is aware of variants in the EM algorithm
via the modified mixture component model in Equation 3. Let ¢;
denote the variant-aware equivalence class of a read i, where i =
1,...,ng for ng reads. Instead of directly maximizing the data log
likelihood, the EM algorithm for the ornament mixture model
maximizes the expected complete-data log likelihood:

R
E| Y log P(E = e&|T = t)P(T = 1)
i=1

nr

= le|> P(T = t|E = e)log P(E = ¢|T = t)P(T = t),

ecQ t=1
(Equation 4)
where |e| represents the number of reads with e, or the sufficient
statistics from the variant-aware pseudoalignment, and the expec-
tation is taken with respect to the probability of the unobserved
transcript labels for the reads given the observed variant-aware
equivalence classes of the reads.

In each iteration of the EM algorithm, the E step computes the
posterior probability P(T = t|E = e) in Equation 4 for the unob-
served T given the observed E, using the estimate 0 from the pre-
vious M step, and the M step maximizes Equation 4 to update 9,
using P(T = t|E = e) from the previous E step. Specifically, the E
step computes the posterior probability

26,
Dy,
P(T=tE=¢) =} 73,
Dy,
0 otherwise,

if [t,d] e e,

(Equation 5)
if [t, s] € e for some s#,

A 6’) (see supple-

illide Qlimep idis] cse g M

mental material and methods for derivation). This posterior prob-
ability can be viewed as a soft assignment of a read with the
variant-aware equivalence class e to the transcript t. It also pro-
vides insights into how the EM algorithm handles an ambigu-
ously mapped read in Ornaments, since the posterior probability
of transcripts with no associated ornament shades in e is twice
the probability of transcripts paired with ornament shades.
Computing this posterior probability amounts to inferring the

where Dy, = €t_m+p~<

values of latent variables given data, a task carried out in the E
step of the EM algorithm for latent-variable models in
general.'®!?

Given the posterior probabilities from the E step, the M step
maximizes Equation 4 and updates the estimate as

~ 1
9, = n_RzleIP(T =tE =¢e) (Equation 6)

ecQ

(see supplemental material and methods for derivation). The
M-step update in Equation 6 is again aware of variants, as it uses
the variant-aware posterior probabilities from the E step. Notice
that ¢, appears in neither the E-step update in Equation 5 nor
the M-step update in Equation 6 and thus is not needed to esti-
mate 0. Convergence is called when the relative change for each
0y is less than 0.1%.

Because allele-specific expression is not explicitly parameterized
in the ornament mixture model, it is not directly estimated by the
EM algorithm. Instead, given the estimate 8, it is inferred as the ex-
pected allele-specific read count at each heterozygous locus of each
transcript, by computing the posterior probability in Equation 5
for each read and adding it across reads mapped to the locus. Spe-
cifically, at a heterozygous locus j on a transcript t, we compute the
expected read depths d; j, for the reference allele jr and d,;, for the
alternative allele j, as

dfyfk = Z|€|P(T = tIE = E)U([t,]‘}z} € (3)

ecQ

dej, = Y _|elP(T = tIE = e)l([t,a] € e),
ee Q

where [(z) is an indicator function that outputs 1 if z = true and
0 if z = false.

Results

We benchmarked Ornaments against WASP, RPVG, and
kallisto using simulated and lymphoblastoid cell-line
RNA-seq reads'® for 165 individuals with SNP genotypes
from the 1000 Genomes Project."” These individuals
were children in trios with known parental genotypes
in the 1000 Genomes Project and thus with known hap-
lotypes. We used the variants and the transcript annota-
tion from GENCODE (version 36, Ensembl 102) to build
ornament personalized transcriptomes. Low-quality
RNA-seq reads that were too short or contained ambig-
uous nucleotides were removed using Trimmomatic
0.35.7

In all experiments, default settings were used for WASP,
RPVG, and kallisto. For WASP, we used STAR for construct-
ing an index”' and the STAR re-implementation of
WASP?? for mapping and filtering reads. During the initial
read mapping with the STAR aligner in WASP, to ensure
that reads that map to SNP loci with alternative alleles
are not dropped due to reference bias, we allowed reads
to multi-map across up to 40 loci. Since the WASP re-map-
ping pipeline drops reads that are mapped to indels, in our
comparison we did not include reads that Ornaments
maps to indels and to SNPs within average read-length
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distance or 100 bp of an indel. For RPVG, we used vg auto-
index to construct a pantranscriptome and index given
the genome, phased SNP genotypes, and transcript anno-
tations and used vg mpmap in VG (v1.53.0 Valmontone)
to produce multipath alignments. For quantification with
RPVG (v1.0), we used the transcript inference mode to es-
timate transcript expression and the haplotype-transcript
inference mode to estimate allele-specific transcript
expression as read counts for a given haplotype. For com-
parison of RPVG against WASP and Ornaments, we
divided this haplotype expression estimate from RPVG
by the haplotype length and multiplied this by the read
length to obtain expression estimates at heterozygous
loci, as suggested by the authors.

For WASP, RPVG, and kallisto, we constructed a single in-
dex to be shared across all samples for read mapping, using
the reference transcriptome for kallisto and WASP, and
additionally using the variant information and known
haplotypes for RPVG. For Ornaments, we constructed a
personalized index for each sample.

Simulation

For simulation study, we selected 10 samples among the
165 children and generated 60 million RNA-seq reads for
each sample from the phased diploid transcriptome of
the sample and ground-truth allele-specific transcript
abundances. These 10 samples spanned multiple ethnic-
ities (The 1000 Genomes Project: HG00405, HG00526,
HGO00709, and HGO00621 for East Asian ancestry;
NA12766, NA12335, and NA07029 for European ancestry;
and NA18869, NA18930, and NA19211 for African
ancestry). The ground-truth allele-specific expression
levels and background noise levels were set to the estimates
obtained by applying RSEM?** to the lymphoblastoid
cell-line reads that were aligned to the personalized tran-
scriptome using Bowtie 2.0.”* The background noise was
estimated to be 20% on average across samples. During
simulation with the RSEM-simulate-reads program, we re-
corded reads overlapping with variants from which we in-
ferred the ground-truth allele-specific read counts at each
heterozygous locus.

We first compared the number of reads dropped by
different methods, as these reads can affect accuracy
(Figure S1). WASP dropped on average three times as
many reads per sample as Ornaments, and kallisto with
reference transcriptome dropped 16.3% more reads than
Ornaments. RPVG dropped on average 11% more reads
than Ornaments, though for half of the samples RPVG
dropped fewer reads than Ornaments. Most (95.5%) of
the reads dropped by WASP were ambiguously mapped
allele-specific reads, whereas most of the reads dropped
by kallisto, Ornaments, and RPVG were not allele-specific.
Kallisto and Ornaments dropped reads mainly because
pseudoalignment requires exact k-mer matches.

We compared Ornaments, WASP, and RPVG on the accu-
racy of allele-specific expression at heterozygous SNP loci.
In our comparison of Ornaments with RPVG, transcript-

level estimates were used, but in the comparison with
WASP, gene-level estimates were used after aggregating
transcript-level estimates from Ornaments over transcripts
from the same gene. Accuracy was compared at SNP loci
with and without ambiguously mapped allele-specific
reads. A SNP was considered as involved in ambiguous
read mapping if a variant-aware equivalence class from Or-
naments that contains the [color, shade] pair for the given
transcript/SNP pair also contains other transcript colors
with no paired shades.

Ornaments outperformed WASP and RPVG in the accu-
racy of allele-specific expression, as it can correctly map
and apportion ambiguously mapped allele-specific reads.
At SNP loci with ambiguously mapped allele-specific reads,
Ornaments had significantly lower mean absolute relative
difference (MARD) for the estimated allele-specific expres-
sion and higher correlation between the true and esti-
mated allelic ratios than both WASP and RPVG
(Figures 2A and 2B). This in turn led to slightly higher ac-
curacy for Ornaments at the other SNP loci without ambig-
uously mapped reads (Figures 2C and 2D). Unlike WASP,
RPVG retained ambiguously mapped reads and used prob-
abilistic approach to quantification. However, its quantifi-
cation method had a limited capability to handle ambigu-
ously mapped reads, as it made additional assumptions
such as requiring the multiple transcripts involved in
ambiguous read mapping to originate from the same
haplotype. As a result, its accuracy was lower at loci that
involve ambiguously mapped reads.

Ornaments achieved higher accuracy than WASP and
RPVG in downstream analysis of detecting genes and tran-
scripts with differentially expressed alleles (Figure 3). In
our comparison of Ornaments with WASP, genes with
differentially expressed alleles were identified by applying
GeneiASE,” a tool that combines allele-specific signals
across multiple loci within the same gene with unknown
phases, to the gene-level estimates (p value < 0.05). In
the comparison with RPVG, allele specifically expressed
transcripts were identified by applying a negative-binomial
test to the transcript-level estimates (p value < 0.05). Since
RPVG requires known phases in the reference panel, the
known phases were used to aggregate the estimates from
Ornaments across multiple loci within the same transcript.
Based on the detected genes and transcripts and the
ground-truth allele-specific read counts, sensitivity and
specificity were computed for each method. For nearly all
samples, Ornaments had higher sensitivity and specificity
for genes and transcripts that contained ambiguously map-
ped reads (Figures 3A and 3B), while this difference in accu-
racy was less for those that did not contain ambiguously
mapped reads (Figures 3C and 3D). This suggests that high-
ly accurate allele-specific signals from Ornaments can lead
to higher accuracy in downstream analysis, compared to
WASP and RPVG.

Ornaments achieved higher accuracy of transcript
expression quantification than RPVG and variant-un-
aware Kkallisto, as Ornaments can correctly map and
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Figure 2. Comparison of Ornaments,

WASP, and RPVG on the accuracy of
allele-specific expression using simulated
reads

Gene-level estimates were used to compare
Ornaments with WASP, and transcript-
level estimates were used to compare Or-
naments with RPVG. At heterozygous
loci with ambiguously mapped allele-spe-
cific reads, (A) the accuracy of allele-spe-
cific expression, measured as mean abso-
lute relative difference (MARD) between
° the truth and estimate and (B) the accu-
racy of allelic ratios, measured as correla-
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Next, we compared the computa-
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Since  WASP, kallisto, and RPVG
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Ornaments MARD

apportion ambiguously mapped allele-specific reads
(Figure 4). Using the same simulated data above, the accu-
racy was measured as MARD on expressed transcripts (true
abundance > 0) and as mean absolute difference (MAD)
on unexpressed transcripts. MAD was used for unex-
pressed transcripts, as MARD is known to be biased by
small ground-truth values.”® The accuracy was compared
on transcripts with and without ambiguously mapped
reads as well as with and without variants. Transcripts
were considered as overlapping with ambiguously map-
ped reads, if they contained SNPs involved in ambiguous
read mapping as determined by the variant-aware equiva-
lence classes from Ornaments. Ornaments outperformed
kallisto when transcripts contained ambiguously mapped
allele-specific reads because variant-unaware Kkallisto
cannot correctly map and apportion reads across the het-
erozygous and homozygous loci in repeat regions
(Figures 4A, 4B, S2A, S2B, and S3). Ornaments had only
slightly higher accuracy than Kkallisto for transcripts
without ambiguously mapped reads even when the tran-
scripts contained variants (Figures 4A, 4B, S2C, S2D, and
S4). This is because kallisto maps reads to the same region
regardless of the allele at heterozygous loci, skipping the
mapping of the k-mer containing the SNP for efficiency
if the k-mer is located between tDBG junctions. RPVG
had lower accuracy than both kallisto and Ornaments
for all types of transcripts, especially for transcripts that
contained ambiguously mapped allele-specific reads
(Figures 4C and 4D).

Ornaments Correlation

construct a single index for all sam-
ples, whereas Ornaments constructs
a personalized index for each sample,
we evaluated the computation time
for both a single sample and multiple samples. Per sam-
ple, Ornaments was on average 11 times faster than
WASP, 104 times faster than RPVG, and nearly as fast as
kallisto (Figure 5A). Specifically, Ornaments required
9.2 min for constructing a personalized index and
8.7 min for quantification per sample, only slightly slower
than Kkallisto, which took 9.2 and 8.4 min, respectively.
WASP was significantly slower, taking 76 min for building
a STAR index and 120.7 min for read alignment and quan-
tification. RPVG took 33 h to construct a pantranscrip-
tome and index, 3.1 h to align reads, and 18.2 min to
quantify transcript haplotypes. Since kallisto, WASP, and
RPVG use the same index for all samples, the time taken
to construct the index is amortized as the sample size in-
creases. However, even with a shared index, WASP and
RPVG had a significantly higher cost of read alignment
and quantification, and thus, for 10 samples, Ornaments
was approximately 8 times faster than WASP and 20 times
faster than RPVG (Figure 5B). For a very large number of
samples, Ornaments is expected to retain its substantial
advantage in efficiency over WASP and RPVG, approxi-
mately 7 times faster than WASP and 11 times faster
than RPVG, and to require at most twice as much time
as Kkallisto, since Ornaments and kallisto spend nearly
the same amount of time on index construction and
on read mapping and quantification. All computation
times were obtained using 16 threads on a machine
with two Intel Xeon 2.1GHz 8 core processors and 64
GB memory.

0.8 0.9 1.0
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Ornaments sensitivity

Human lymphoblastoid cell-line RNA-seq reads

Using the lymphoblastoid cell-line reads and genome se-
quences for 165 children from the 1000 Genomes Project,®
we benchmarked Ornaments against WASP. We omitted
RPVG in this experiment due to its high computational
cost for processing a large number of samples. We compared
Ornaments and WASP in terms of the allele-specific expres-
sion and allelic ratios at heterozygous loci, using gene-level
summaries from Ornaments. For both expression and ratios,
the correlation between Ornaments and WASP was lower at
the heterozygous loci overlapping with ambiguously map-
ped reads than at the other heterozygous loci (Figure 6).
This result provides evidence for the superior ability of Orna-
ments to correct for ambiguous mapping bias.

To evaluate the impact of estimates from the different
methods on downstream analysis, we compared allele spe-
cifically expressed transcripts identified by Ornaments and
GeneiASE with allele specifically expressed genes identified
by WASP and GeneiASE.*® The transcripts found by Orna-
ments included the majority of the genes found by WASP
and a large number of additional genes. Specifically, Orna-
ments found 4,374 genes with differentially expressed al-
leles in at least one constituent transcript of the gene in
at least 10 samples, whereas WASP identified only 1,034
genes in at least 10 samples. Out of the 1,034 genes from
WASP, 897 genes were also found by Ornaments. This sug-
gests higher sensitivity of Ornaments in downstream anal-

Ornaments specificity

A B Figure 3. Comparison of Ornaments,
1.0 e 1.00 WASP, and RPVG on the accuracy of de-
. RPVG ’ tecting allele specifically expressed genes
0.9 - and transcripts using simulated reads
s 3:) 0.95 GeneiASE with gene-level estimates (p value
Eo.a g <0.05) were used to compare Ornaments
g 2 with  WASP, and negative-binomial tests
Q 0 . with transcript-level estimates (p value
g 07 g 090 . <0.05) along with the known haplotypes
° gl were used to compare Ornaments with
© 0.6 o ‘e RPVG. The detected genes and transcripts
@ < go.ss ¢ were compared against those obtained
=N . 2 . from the ground-truth allele-specific read
'_ ‘ : counts. For transcripts and genes with
variants that induce ambiguous allele-spe-
04 05 06 07 08 09 10 0.80 0.85 0.90 0.95 1.00 cific read mapping, (A) sensitivity and
Ornaments sensitivity Ornaments specificity (B) specificity of the methods. For tran-
scripts and genes without ambiguously
c D mapped allele-specific reads, (C) sensitivity
1.0 1.00 and (D) specificity of the methods. Each
dot represents each of 10 samples.
209 2
2 So.95
20.8 ?
g & -
© 0 ysis, as Ornaments detects allele-spe-
z0.7 z 0.90 s . . . .
2 o cific signals at transcript level with
2 2 highly accurate bias correction.
© 0.6 . ©
& S % o.s To see if these allele specifically ex-
S . = pressed transcripts from Ornaments
’ and genes from WASP can reproduce
04 05 06 07 08 09 10 080 085 080 085 100 Knownbiological results, we examined

these transcripts and genes that overlap
with previously known imprinted
genes, where one allele is exclusively
expressed over the other. We compiled a set of 157 im-
printed genes that are either known to undergo imprinting
or found to be imprinted in an independent dataset. Our set
included 141 genes in the Genelmprint database,®’ 13
genes identified from analysis of lymphoblastoid cell-line
RNA-seq data for 80 individuals with European ancestry”®
and for 63 unrelated individuals,”’ and other known im-
printed genes from the literature.’°** Ornaments had 34
genes in the overlap, whereas WASP had a smaller overlap
of 30 genes (Figure 7). For 24 out of the 29 imprinted genes
found by both methods, Ornaments called differential
expression in more samples (Table 1). Furthermore, Orna-
ments detected a subset of transcripts, on average one or
two transcripts, per gene as imprinted in a given sample (Ta-
ble 1; Figures 7, S5, and S6). In many such cases, WASP failed
to detect the imprinting signal, as the signal was lost or
weaker at the gene level. These findings provide evidence
that Ornaments, with its probabilistic approach, can accu-
rately attribute the allele-specific signals to multiple tran-
scripts of the given gene, offering advantages over WASP,
which captures signals at gene level.

Discussion

We introduced Ornaments, a computational tool for accu-
rate and efficient quantification of transcript expression

1776
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Figure 4. Comparison of Ornaments, kal-

% listo, and RPVG on the accuracy of tran-
. script quantification using simulated reads
o The accuracy of Ornaments and Kkallisto is

' compared for (A) expressed transcripts in
e 7 mean absolute relative difference (MARD)
g and (B) unexpressed transcripts in mean ab-
solute difference (MAD). The accuracy of
Ornaments and RPVG is compared for
(C) expressed transcripts in MARD and
(D) unexpressed transcripts in MAD. Each
colored dot represents each of the 10 sam-
ples for each of the four types of transcripts
(shown with colors) with and without

0.15 020 o025 ambiguously mapped reads and variants.

Ornaments MAD

A B
0.25 0.25
0.20 g 0.20
o) s a
Z0.15 F 4 <0.15
= ’o," %
g i i
= 0.10 > © 0.10
Gl
N N ¥ 1%
< [ 24
No ambiguous mapping, no variants -
0.05 e No ambiguous mapping, variants 0.05 o "
.~ ® Ambiguous mapping, no variants ”
. e Ambiguous mapping, variants ,
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10
Ornaments MARD
C D
0.35 0.8 o
0.30 o’ oo 0.7
oo
. 0.6
0.25 ..'° o .
a ot Q05
£0.20 : < g
= o o0 204 .
) ¢, Q PR
2 0.15 g
-4 0.3 .
0.10 ©
0.2 o
0.05 * s
0.1 .t‘/
¢

variant-aware pseudoalignment, we
could use either a personalized index
derived from the population index or
the population index directly. We expect
these two approaches to have a different
trade-off between accuracy and speed.
The former approach would have the
same accuracy as Ornaments but incur
the computational cost for modifying
the tDBG to remove the ornaments for

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Ornaments MARD

and allele-specific expression at unphased heterozygous
loci from RNA-seq reads. Ornaments is an adaptation of
kallisto that takes advantage of the speed of kallisto while
improving the accuracy of the existing methods by ac-
counting for variants, by correcting for allele-specific read
mapping biases, and by capturing allele-specific signals at
transcript level rather than at gene level.

One important future direction is to extend Ornaments to
construct a single population-level index from multiple sam-
ples, rather than a personalized index, to further reduce
computation time. Such a population-level index would
have a modified ornament tDBG that represents all variants
that are heterozygous in one or more samples. Then, for

00 01 0.2 03 04 05 0.6 0.7 038
Ornaments MAD

variants that are not heterozygous in
the given sample. The latter approach
could have lower accuracy for a large
population with dense polymorphicloci because in genomic
regions with densely packed variants, with more junctionsin
the population-level ornament tDBG, more k-mers would be
checked for exact sequence matches, leading to more reads
being dropped due to sequencing errors. However, this
approach could be implemented efficiently with a modified
variant-aware pseudoalignment that checks for exact k-mer
matches at the tDBG junctions around ornaments only if
the corresponding locus is heterozygous in the given sample.

Another potential future direction is to extend Orna-
ments to build an index from a haplotype reference
panel as in RPVG. This would enable Ornaments to quan-
tify allele-specific expression for a sample solely using

Figure 5. Computation time of Orna-

PR

ments and other methods

(A) Computation time for a single sample.
In RPVG, WASP, and kallisto, the indexing
cost (purple) is incurred once, as the same
index is re-used for multiple samples,
whereas in Ornaments, a personalized in-
dex is constructed repeatedly for each sam-
ple. In all methods, the cost of alignment
and quantification (pink) is incurred for
each sample and is shown as an average
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for one standard deviation.

(B) Cumulative computation time as the
sample size increases.
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Figure 6. Comparison of Ornaments and WASP on lymphoblas-
toid cell-line RNA-seq reads

Correlation between Ornaments and WASP estimates across SNP
loci with ambiguously mapped reads (x axis) and without ambig-
uously mapped reads (y axis). Each dot represents the correlation
for each of 165 samples.

RNA-seq reads without requiring genotype data. This could
be accomplished by extending the ornament tDBG such
that a haplotype with multiple variants in the reference
panel is assigned a color and is represented as a string
with multiple ornaments. Overall, Ornaments is a flexible
tool that could be extended in various ways for allele-spe-
cific expression quantification.

Data and code availability

This study did not generate datasets. The code for Orna-
ments that was generated during this study is available at
a GitHub repository https://github.com/SeyoungKimLab/
Ornaments, along with installation instructions.
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Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2024.06.014.
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Table 1. Known imprinted genes found by WASP and Ornaments in lymphoblastoid cell lines

Gene WASP Ornaments WASP and Ornaments Source

Number Number Ornaments (overlap Average number of

of samples of samples™ in samples) transcripts per sample
GNAS (MIM: 139320) 6 12 4 1.25 Genelmprint”’
MEGS8 (MIM: 613648) 0 7 0 1.00 Charlier et al.**3*
PWRNI (MIM: 611215) 1 2 1 1.00 Wawrzik et al.**3°
TP73 (MIM: 601990) 9 9 2 1.33 Genelmprint®’
NAA60 (MIM: 614246) 34 42 25 1.33 Jadhav et al.'®
L3MBTL1 (MIM: 608802) 29 21 9 1.71 Jadhav et al.'®
UBE3A (MIM: 601623) 3 5 2 1.00 Sadikovic et al.***¢
PLAGL1 (MIM: 603044) 5 10 4 1.10 Kas et al.>**”
MECP2 (MIM: 300005) 11 10 6 1.00 Nakashima et al.****
KCNQI1OT1 (MIM: 604115) 21 0 0 0.00 Cagle et al.***’
ZFP90 (MIM: 609451) 17 28 12 1.50 Genelmprint®’
ATP10A (MIM: 605855) 0 5 0 1.00 Pastinen et al.>’
CTCF (MIM: 604167) 0 1 0 1.00 Rubio et al.>**°
NLRP2 (MIM: 609364) 23 28 10 1.75 Meyer et al.*!
MEST (MIM: 601029) 4 5 3 1.20 Pastinen et al.>’
ZFAT (MIM: 610931) 8 17 4 1.12 Pilvar et al.*?
PEG3 (MIM: 601483) 0 20 0 1.00 Genelmprint*’
SLC22A18 (MIM: 602631) 7 13 3 1.08 Genelmprint®’
RHOBTB3 (MIM: 607353) 9 23 7 1.00 Genelmprint®’
IGF2R (MIM: 604893) 13 23 6 1.17 Kukuvitis et al.***3
ERAP2 (MIM: 609497) 25 29 13 1.20 GeneImprint27
SNRPN (MIM: 182279) 0 35 0 1.91 Jadhav et al.'®
RB1 (MIM: 614041) 6 10 6 1.00 Genelmprint®’
PEG10 (MIM: 609810) 2 38 1 1.16 Jadhav et al.'®
ZDBF2 (MIM: 617059) 23 2 1 1.50 Genelmprint”’
RAC1 (MIM: 602048) 1 10 1 1.00 Genelmprint”’
GNAS-AS1 (MIM: 610540) 2 1 0 1.00 Jadhav et al.'®
PXDC1 10 13 7 1.08 Genelmprint®’
ZC3HI12C (MIM: 615001) 4 14 2 1.07 Genelmprint®’
PARD6G (MIM: 608976) 4 11 3 1.00 Genelmprint®’
ZFP57 (MIM: 612192) 17 20 15 1.05 Mackay et al.****
SNURF (MIM: 182279) 2 4 1 1.00 Jadhav et al.'®
ZNF597 (MIM: 614685) 35 42 28 1.00 Jadhav et al.'®
NAPILS5 (MIM: 612203) 21 28 21 1.00 Genelmprint®’
SNHG14 (MIM: 616259) 47 82 32 2.27 Jadhav et al.'®

“Number of samples with at least one imprinted transcript for a gene.
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