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Ornaments for efficient allele-specific
expression estimation with bias correction

Abhinav Adduri1 and Seyoung Kim2,*
Summary
Allele-specific expression plays a crucial role in unraveling various biological mechanisms, including genomic imprinting and gene

expression controlled by cis-regulatory variants. However, existing methods for quantification from RNA-sequencing (RNA-seq) reads

do not adequately and efficiently remove various allele-specific readmapping biases, such as reference bias arising from reads containing

the alternative allele that do not map to the reference transcriptome or ambiguous mapping bias caused by reads containing the refer-

ence allele that map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and

accurate estimation of allele-specific transcript expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-

specific readmapping biases. Ornaments removes reference bias bymapping reads to a personalized transcriptome and ambiguousmap-

ping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension

of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias

correction in allele-specific read mapping. In experiments with simulated and human lymphoblastoid cell-line RNA-seq reads with

the genomes of the 1000 Genomes Project, we demonstrate that Ornaments improves the accuracy of WASP and kallisto, is nearly as

efficient as kallisto, and is an order of magnitude faster than WASP per sample, with the additional cost of constructing a personalized

index for multiple samples. Additionally, we show that Ornaments finds imprinted transcripts with higher sensitivity thanWASP, which

detects imprinted signals only at gene level.
Introduction

Allele-specific expression has been used to characterize

various biological phenomena in diploid organisms,

including gene expression affected by cis-acting variants

in an allele-specific manner,1,2 allele-specific nonsense-

mediated mRNA decay,3,4 and monoallelic expression of

imprinted genes.5,6 Allele-specific expression is typically

measured as RNA sequencing (RNA-seq) read depths at het-

erozygous loci. There are two well-known biases intro-

duced in allele-specific read mapping: reference bias and

ambiguous mapping bias.7–9 The reference bias arises

from reads with alternative alleles that do not map to the

reference transcriptome, leading to an underestimate of

the expression of the alternative allele. The ambiguous

mapping bias arises from reads that map to a heterozygous

site but also to homozygous sites repeated in other

genomic locations, since reads with the other allele at

the same heterozygous site do not map to the same homo-

zygous sites.

Removing these biases efficiently for accurate allele-spe-

cific expression estimation has been a challenging

problem. Mapping reads to a diploid personalized tran-

scriptome10,11 removed only reference bias but not ambig-

uous mapping bias. WASP,7 a popular tool for removing

ambiguous mapping bias, was not adequate, as it simply

discarded ambiguously mapped allele-specific reads, ob-

tained allele-specific read counts only at gene level but

not at transcript level, accounted for only SNPs but not
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indels, and was computationally expensive. RPVG12

removed reference bias by mapping reads to a pantran-

scriptome constructed from a haplotype reference panel;

however, it did not fully correct for ambiguous mapping

bias and was computationally expensive. Kallisto,13 a

widely used tool for rapid transcriptome quantification,

probabilistically assigned multi-mapped reads given a

diploid transcriptome with known variant phases. Howev-

er, with kallisto, RPVG, and other related methods,14,15

inaccurate phasing could lead to inaccurate estimates of

allele-specific signals.

Here, we introduce Ornaments, a tool for accurate and

efficient estimation of allele-specific transcript expression

at unphased heterozygous loci from RNA-seq reads. Orna-

ments removes reference bias by taking into account sam-

ple-specific variant information at SNP and indel loci and

ambiguous mapping bias by probabilistically assigning

reads to multiple transcripts and variant loci they map to.

Ornaments is a lightweightmodification of kallisto13 that

improves upon the accuracy and efficiency ofWASP, as well

as the accuracy of kallisto, while leveraging the speed of kal-

listo. Ornaments modifies each of the two stages of kallisto,

the read mapping and quantification stages. During the

read mapping stage, Ornaments introduces an ornament

transcriptome de Bruijn graph (tDBG), a key data structure

that represents a personalized transcriptomewithin anorna-

ment index. An ornament tDBG is obtained by augmenting

the colored tDBG of kallisto with ornaments, each with two

shades corresponding to the two variant alleles (Figures 1A
, PA 15213, USA; 2Department of Epidemiology, University of Pittsburgh,
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Figure 1. Ornaments overview
(A) The genome (gray) with three transcripts (blue, green, and pur-
ple), two heterozygous SNPs, one uniquely mapped allele-specific
read (top read) and one ambiguously mapped allele-specific read
(bottom read), and the repeat region (brown).
(B) The ornament tDBG constructed from the transcripts in (A).
An ornament tDBG consists of a colored tDBG over k-mer nodes
colored for transcripts and ornaments over k-mer nodes shaded
for variant alleles.
(C) The variant-aware pseudoalignment of the uniquely mapped
read. The filled k-mer nodes overlap with the read. Among the
filled nodes, the first node of each contig is marked as c1;.; c6,
where a contig is defined as a sequence of k-mers annotated with
the same set of [color, shade] pairs. The variant-aware equivalence
class for the read is the set of [color, shade] pairs found from the
intersection of the sets of colors for contigs and the union of
shades associated with the colors in the intersection and is given
as f½green color; yellow=lime shades�g.
(D) The variant-aware equivalence class of the ambiguously map-
ped read is f½blue color; B�; ½green color;yellow shade�g, where B
indicates no paired shades.
and 1B). Given the ornament index, Ornaments modifies

the pseudoalignment of kallisto to variant-aware pseudoa-

lignment to find a variant-aware equivalence class for each

read, which we define as the set of transcripts and variant al-

leles that the readmaps to (Figures 1C and 1D). In the quan-

tification stage, Ornaments uses a variation of the mixture

model andexpectation-maximization (EM) algorithmofkal-

listo to obtain expected allele-specific read counts at hetero-

zygous SNP and indel loci for each transcript in addition to

transcript quantification. Using simulated and human lym-
The American
phoblastoid cell-line RNA-seq reads16 with the genetic vari-

ants of the 1000 Genomes Project samples,17 we demon-

strate that per sample, Ornaments is nearly as efficient as

kallisto and an order of magnitude faster than WASP, with

the additional cost of constructing a personalized index for

each additional sample prior to read mapping. In addition,

we show that Ornaments improves upon the accuracy of

WASP by effectively removing allele-specific read mapping

biases at transcript level and the accuracy of kallisto by ac-

counting for genetic variants.
Material and methods

We introduce Ornaments in two stages for read mapping and

quantification. We begin by describing how we prepare inputs to

Ornaments, including variant information and ornament person-

alized transcriptome.

Preparing variant information
Given the reference transcriptome, transcript annotation, and sam-

ple-specific information on the genomic coordinates and alleles of

variants,wepreparevariant informationas follows. First,weextract

SNPs and indels in exonic regions and transform the genomic coor-

dinates of those variants into transcriptomic coordinates. Then, for

each variant, we store the information on the transcript it appears

in, transcriptomic coordinates of the variant, and allele. A variant

with a single genomic coordinate that appears in multiple alterna-

tively spliced transcripts is associatedwithmultiple transcripts and

transcriptomic coordinates. If there aremultipleoverlapping indels

at the same genomic coordinate, we keep only one of the indels. In

our implementation, we keep the last one, as variants are typically

provided in the order of genomic coordinates.

Preparing ornament personalized transcriptome
From the variant information above and reference transcriptome,

we prepare an ornament personalized transcriptome, which will

be used by Ornaments to build an ornament index over k-mer se-

quences. Anornament personalized transcriptome consists of tran-

script sequences and ornament sequences. The transcript se-

quences are set to those in the reference transcriptome with a

modification to alternative allele at each alternative-allele homozy-

gous locus and retain their transcript names in the reference tran-

scriptome. Two ornament sequences are added for each pair of a

heterozygous variant and transcript containing this variant. Each

ornament sequence consists of the variant allele and the flanking

sequences of length k on each side of the variant in the transcript.

In rare casesofnheterozygous lociwithinkbasepairs,wherealmost

alwaysn¼2, anornament sequence is added for eachof the2n com-

binations of the alleles. The ornament sequences are named as a

concatenation of the name of the transcript of origin, position of

the variant within the transcript, and allele.

The construction of ornament personalized transcriptome is

efficient in both time and space. It takes only a few seconds to

construct it, and its size is not significantly larger than the size

of the reference transcriptome, since ornament sequences are sub-

stantially shorter than transcript sequences.

Constructing ornament index
Given the ornament personalized transcriptome, we construct an

ornament index, which consists of an ornament tDBG and
Journal of Human Genetics 111, 1770–1781, August 8, 2024 1771



ornament hash table. We augment the kallisto index, which con-

sists of a colored tDBG and hash table, to represent variants in the

ornament index.

To construct an ornament tDBG, we begin by applying the kal-

listo algorithm for constructing a colored tDBG to both transcript

and ornament sequences. This assigns colors to both transcript

and ornament sequences, creates the k-mer nodes of a tDBG

from these sequences, and annotates each k-mer node with the

set of colors corresponding to the sequences in which the k-mer

appears. In our modification, we additionally ensure that the

k-mer nodes from the ornament sequences are also annotated

with the colors of the transcripts that gave rise to the given orna-

ment sequences. Then, the kallisto algorithm proceeds to assign a

set of colors to each contig, where a contig is defined as a sequence

of k-mers annotated with the same set of colors between two junc-

tions of the tDBG. We call the resulting tDBG an ornament tDBG,

as the k-mers from the ornament sequences form decorative bub-

ble-like structures in the tDBG whose top and bottom halves are

additionally colored for the two alleles (Figures 1A and 1B). The

colors of the ornament sequences are mapped to shades using

an ornament hash table as we describe below.

Next, we construct an ornament hash table that maps a k-mer to

a set of colors for transcripts and shades for variant alleles. An

ornament hash table consists of a kallisto hash table, which

maps each k-mer to a set of colors, and an auxiliary hash table,

which further maps a color to an ornament shade if the color cor-

responds to an ornament sequence. The auxiliary hash table stores

two pieces of information for each ornament shade: the variant

allele and location in the transcript. Overall, the ornament hash

table maps a k-mer to a set of pairs [t, s] of a color t and shade s,

where s ¼ B, with B indicating no ornament shades, if the

k-mer is not found in any ornament sequences that originated

from the transcript t.
Variant-aware pseudoalignment
Using theornament index,Ornamentsperformsvariant-awarepseu-

doalignment of reads to the personalized transcriptome. Variant-

aware pseudoalignment is a modification of the pseudoalignment

of kallisto toassigna read to a variant-aware equivalence class,which

wedefine as the set of possible transcripts andvariant alleles of origin

for the given read. To obtain the variant-aware equivalence class of a

read, we first map each k-mer of the read to colors and shades using

theornamenthash table,mappingonly thefirstk-merof eachcontig

and skipping to the first k-mer of the next contig for speed-up as in

kallisto. Then, we combine these colors and shades across all

k-mers of the read, by taking the intersection of the sets of colors

forallk-mersas inthekallistopseudoalignmentandtakingtheunion

of theshades thatarepairedwiththe transcript colors inthis intersec-

tion. A shade is included in the union, only if the read contains all

k-mers of the given shade in the tDBG, except when the k-mers

with the shade are located at either end of the read. The resulting

variant-aware equivalence class of the read is a set of pairs [t, s] of a

color t and shade s that the read maps to (e.g., {[green color, yel-

low/lime shades]} for the uniquely mapped read in Figure 1C, and

{[blue color, B], [green color, yellow shade]} for the ambiguously

mapped read in Figure 1D).

Applying variant-aware pseudoalignment to all reads from a

sample results in read counts for each of the variant-aware equiv-

alence classes. These are the sufficient statistics needed for the

quantification of transcript expression and allele-specific expres-

sion at heterozygous loci.
1772 The American Journal of Human Genetics 111, 1770–1781, Aug
Quantification
Given the read counts for variant-aware equivalence classes, we

modify kallisto to quantify allele-specific expression at heterozy-

gous loci in addition to transcript expression. The key idea behind

our modification is to first estimate transcript expression as in kal-

listo but in a variant-aware manner, followed by inferring expected

allele-specific read counts at heterozygous loci. Below, we slightly

re-cast the kallisto quantification method to provide the full set-

up of amixturemodel, as only the objective function for parameter

estimation was explicitly stated for kallisto and the model set-up is

not immediately obvious from the objective alone. Then, we

describe our modification of kallisto in the three components of

the statistical method: the model, estimation, and inference.

We describe the kallisto mixture model as a probability model

for a random variable E representing the equivalence class of a

read, which takes a value e˛Q for the set Q of all possible equiv-

alence classes. The kallisto mixture model is

PðE ¼ eÞ ¼
XnT
t ¼1

PðE ¼ ejT ¼ tÞPðT ¼ tÞ; (Equation 1)

where T is a latent variable for an unobserved transcript label for

the read, taking a value from f1;.;nTg for nT transcripts. The

model above has the mixture proportion PðT ¼ tÞ ¼ qt , where

the parameter qt ˛ q ¼ fq1;.; qnT g represents unknown expres-

sion quantification for the transcript t and satisfies
PnT

t ¼1 qt ¼ 1,

and the mixture component model

PðE ¼ ejT ¼ tÞ ¼

8><>:
le
lt

if t ˛ e;

0 otherwise;

(Equation 2)

where lt is the effective transcript length representing the possible

numberof startingpositionsof a readonthe transcript t, le is a subset

of these starting positions on the transcript t ˛ e that result in the

given equivalence class e, and
P
e˛Q

PðE ¼ ejT ¼ tÞ ¼ 1. Notice that

a non-zero PðE ¼ ejT ¼ tÞ has an identical numerator for all t for

a given e and has an identical denominator for all e for a given t.

Equation 1 defines a generative model for the equivalence class of

a read, where a transcript t is selected with the probability

PðT ¼ tÞ and then given the transcript t, an equivalence class e is

selected with the probability PðE ¼ ejT ¼ tÞ. We show below that

it isnotnecessary toobtain le explicitly, since thesequantitiescancel

out and donot appear in the update equations of the EMalgorithm.

The ornament mixture model has the same parameters q for the

mixture proportions ofnT transcripts as the kallistomixturemodel.

However, the ornament mixture model is aware of variants, as its

random variable E now represents the variant-aware equivalence

class of a read, taking a value from the set Q of all possible

variant-aware equivalence classes, and its mixture component

model takes into account SNPs and indels. The ornament mixture

component model extends that of kallisto in Equation 2 to

PðE ¼ ejT ¼ tÞ ¼

8>>>>>><>>>>>>:

2le
lt;mþp

if ½t;B�˛ e;

le
lt;mþp

if ½t; s�˛ e for some ssB;

0 otherwise:

(Equation 3)

Above, lt;mþp is the combined effective transcript length of the

maternal and paternal alleles of the transcript t, which
ust 8, 2024



corresponds to the diploid length and reduces to lt;mþp ¼ 2lt for

transcripts with no indels, and le is defined as in Equation 2 but

for a variant-aware equivalence class. In the numerator, the

diploid length 2le is used, if a read pseudoaligns to both alleles

of the transcript t, with no ornament shades paired with the tran-

script in e (e.g., the pair [blue color, B] in the variant-aware equiv-

alence class of the read in Figure 1D). In contrast, the haploid

length le is used, if a read pseudoaligns to only one of the two al-

leles of the transcript t, with some ornament shades paired with it

in e (e.g., [green color, yellow/lime shades] in Figure 1C and [green

color, yellow shade] in Figure 1D). Overall, although the ornament

mixturemodel does notmodel allele-specific expression directly as

parameters, it is aware of variants through the probability in Equa-

tion 3: the probability is doubled for a read mapped to both tran-

script alleles at homozygous loci compared to a read mapped to

only one allele at heterozygous loci and is adjusted based on the

transcript lengths for transcripts with indels.

To estimate the parameters q for transcript expression, both Or-

naments and kallisto use the EM algorithm.18,19 However, they

differ in that Ornaments is aware of variants in the EM algorithm

via the modified mixture component model in Equation 3. Let ei
denote the variant-aware equivalence class of a read i, where i ¼
1;.;nR for nR reads. Instead of directly maximizing the data log

likelihood, the EM algorithm for the ornament mixture model

maximizes the expected complete-data log likelihood:

E

"XnR
i¼1

log PðE ¼ eijT ¼ tÞPðT ¼ tÞ
#

¼
X
e˛Q

jej
XnT
t ¼1

PðT ¼ tjE ¼ eÞlog PðE ¼ ejT ¼ tÞPðT ¼ tÞ;

(Equation 4)

where jej represents the number of reads with e, or the sufficient

statistics from the variant-aware pseudoalignment, and the expec-

tation is taken with respect to the probability of the unobserved

transcript labels for the reads given the observed variant-aware

equivalence classes of the reads.

In each iteration of the EM algorithm, the E step computes the

posterior probability PðT ¼ tjE ¼ eÞ in Equation 4 for the unob-

served T given the observed E, using the estimate bq from the pre-

vious M step, and the M step maximizes Equation 4 to update bq,
using PðT ¼ tjE ¼ eÞ from the previous E step. Specifically, the E

step computes the posterior probability

PðT ¼ tjE ¼ eÞ ¼

8>>>>>><>>>>>>:

2bqt
Dt;e

if ½t;B�˛ e;

bqt
Dt;e

if ½t; s�˛ e for some ssB;

0 otherwise;

(Equation 5)

where Dt;e ¼ lt;mþp$

 P
i:½i;B�˛ e

2bq i
li;mþp

þ P
i:½i;s�˛ e;ssB

bq i
li;mþp

!
(see supple-

mental material and methods for derivation). This posterior prob-

ability can be viewed as a soft assignment of a read with the

variant-aware equivalence class e to the transcript t. It also pro-

vides insights into how the EM algorithm handles an ambigu-

ously mapped read in Ornaments, since the posterior probability

of transcripts with no associated ornament shades in e is twice

the probability of transcripts paired with ornament shades.

Computing this posterior probability amounts to inferring the
The American
values of latent variables given data, a task carried out in the E

step of the EM algorithm for latent-variable models in

general.18,19

Given the posterior probabilities from the E step, the M step

maximizes Equation 4 and updates the estimate as

bqt ¼ 1

nR

X
e˛Q

jejPðT ¼ tjE ¼ eÞ (Equation 6)

(see supplemental material and methods for derivation). The

M-step update in Equation 6 is again aware of variants, as it uses

the variant-aware posterior probabilities from the E step. Notice

that le appears in neither the E-step update in Equation 5 nor

the M-step update in Equation 6 and thus is not needed to esti-

mate q. Convergence is called when the relative change for each

qt is less than 0:1%.

Because allele-specific expression is not explicitly parameterized

in the ornament mixture model, it is not directly estimated by the

EM algorithm. Instead, given the estimate bq, it is inferred as the ex-

pected allele-specific read count at each heterozygous locus of each

transcript, by computing the posterior probability in Equation 5

for each read and adding it across reads mapped to the locus. Spe-

cifically, at a heterozygous locus j on a transcript t, we compute the

expected read depths dt;jR for the reference allele jR and dt;jA for the

alternative allele jA as

dt;jR ¼
X
e˛Q

jejPðT ¼ tjE ¼ eÞIð½t; jR� ˛ eÞ

dt;jA ¼
X
e˛Q

jejPðT ¼ tjE ¼ eÞIð½t; jA� ˛ eÞ;

where IðzÞ is an indicator function that outputs 1 if z ¼ true and

0 if z ¼ false.
Results

We benchmarked Ornaments against WASP, RPVG, and

kallisto using simulated and lymphoblastoid cell-line

RNA-seq reads16 for 165 individuals with SNP genotypes

from the 1000 Genomes Project.17 These individuals

were children in trios with known parental genotypes

in the 1000 Genomes Project and thus with known hap-

lotypes. We used the variants and the transcript annota-

tion from GENCODE (version 36, Ensembl 102) to build

ornament personalized transcriptomes. Low-quality

RNA-seq reads that were too short or contained ambig-

uous nucleotides were removed using Trimmomatic

0.35.20

In all experiments, default settings were used for WASP,

RPVG, and kallisto. For WASP, we used STAR for construct-

ing an index21 and the STAR re-implementation of

WASP22 for mapping and filtering reads. During the initial

read mapping with the STAR aligner in WASP, to ensure

that reads that map to SNP loci with alternative alleles

are not dropped due to reference bias, we allowed reads

to multi-map across up to 40 loci. Since the WASP re-map-

ping pipeline drops reads that are mapped to indels, in our

comparison we did not include reads that Ornaments

maps to indels and to SNPs within average read-length
Journal of Human Genetics 111, 1770–1781, August 8, 2024 1773



distance or 100 bp of an indel. For RPVG, we used vg auto-

index to construct a pantranscriptome and index given

the genome, phased SNP genotypes, and transcript anno-

tations and used vg mpmap in VG (v1.53.0 Valmontone)

to produce multipath alignments. For quantification with

RPVG (v1.0), we used the transcript inference mode to es-

timate transcript expression and the haplotype-transcript

inference mode to estimate allele-specific transcript

expression as read counts for a given haplotype. For com-

parison of RPVG against WASP and Ornaments, we

divided this haplotype expression estimate from RPVG

by the haplotype length and multiplied this by the read

length to obtain expression estimates at heterozygous

loci, as suggested by the authors.

ForWASP, RPVG, and kallisto, we constructed a single in-

dex to be shared across all samples for read mapping, using

the reference transcriptome for kallisto and WASP, and

additionally using the variant information and known

haplotypes for RPVG. For Ornaments, we constructed a

personalized index for each sample.

Simulation

For simulation study, we selected 10 samples among the

165 children and generated 60 million RNA-seq reads for

each sample from the phased diploid transcriptome of

the sample and ground-truth allele-specific transcript

abundances. These 10 samples spanned multiple ethnic-

ities (The 1000 Genomes Project: HG00405, HG00526,

HG00709, and HG00621 for East Asian ancestry;

NA12766, NA12335, and NA07029 for European ancestry;

and NA18869, NA18930, and NA19211 for African

ancestry). The ground-truth allele-specific expression

levels and background noise levels were set to the estimates

obtained by applying RSEM23 to the lymphoblastoid

cell-line reads that were aligned to the personalized tran-

scriptome using Bowtie 2.0.24 The background noise was

estimated to be 20% on average across samples. During

simulation with the RSEM-simulate-reads program, we re-

corded reads overlapping with variants from which we in-

ferred the ground-truth allele-specific read counts at each

heterozygous locus.

We first compared the number of reads dropped by

different methods, as these reads can affect accuracy

(Figure S1). WASP dropped on average three times as

many reads per sample as Ornaments, and kallisto with

reference transcriptome dropped 16.3% more reads than

Ornaments. RPVG dropped on average 11% more reads

than Ornaments, though for half of the samples RPVG

dropped fewer reads than Ornaments. Most (95.5%) of

the reads dropped by WASP were ambiguously mapped

allele-specific reads, whereas most of the reads dropped

by kallisto, Ornaments, and RPVG were not allele-specific.

Kallisto and Ornaments dropped reads mainly because

pseudoalignment requires exact k-mer matches.

We compared Ornaments, WASP, and RPVG on the accu-

racy of allele-specific expression at heterozygous SNP loci.

In our comparison of Ornaments with RPVG, transcript-
1774 The American Journal of Human Genetics 111, 1770–1781, Aug
level estimates were used, but in the comparison with

WASP, gene-level estimates were used after aggregating

transcript-level estimates from Ornaments over transcripts

from the same gene. Accuracy was compared at SNP loci

with and without ambiguously mapped allele-specific

reads. A SNP was considered as involved in ambiguous

read mapping if a variant-aware equivalence class from Or-

naments that contains the [color, shade] pair for the given

transcript/SNP pair also contains other transcript colors

with no paired shades.

Ornaments outperformed WASP and RPVG in the accu-

racy of allele-specific expression, as it can correctly map

and apportion ambiguously mapped allele-specific reads.

At SNP loci with ambiguously mapped allele-specific reads,

Ornaments had significantly lower mean absolute relative

difference (MARD) for the estimated allele-specific expres-

sion and higher correlation between the true and esti-

mated allelic ratios than both WASP and RPVG

(Figures 2A and 2B). This in turn led to slightly higher ac-

curacy for Ornaments at the other SNP loci without ambig-

uously mapped reads (Figures 2C and 2D). Unlike WASP,

RPVG retained ambiguously mapped reads and used prob-

abilistic approach to quantification. However, its quantifi-

cation method had a limited capability to handle ambigu-

ously mapped reads, as it made additional assumptions

such as requiring the multiple transcripts involved in

ambiguous read mapping to originate from the same

haplotype. As a result, its accuracy was lower at loci that

involve ambiguously mapped reads.

Ornaments achieved higher accuracy than WASP and

RPVG in downstream analysis of detecting genes and tran-

scripts with differentially expressed alleles (Figure 3). In

our comparison of Ornaments with WASP, genes with

differentially expressed alleles were identified by applying

GeneiASE,25 a tool that combines allele-specific signals

across multiple loci within the same gene with unknown

phases, to the gene-level estimates (p value < 0.05). In

the comparison with RPVG, allele specifically expressed

transcripts were identified by applying a negative-binomial

test to the transcript-level estimates (p value < 0:05). Since

RPVG requires known phases in the reference panel, the

known phases were used to aggregate the estimates from

Ornaments across multiple loci within the same transcript.

Based on the detected genes and transcripts and the

ground-truth allele-specific read counts, sensitivity and

specificity were computed for each method. For nearly all

samples, Ornaments had higher sensitivity and specificity

for genes and transcripts that contained ambiguouslymap-

ped reads (Figures 3A and 3B), while this difference in accu-

racy was less for those that did not contain ambiguously

mapped reads (Figures 3C and 3D). This suggests that high-

ly accurate allele-specific signals from Ornaments can lead

to higher accuracy in downstream analysis, compared to

WASP and RPVG.

Ornaments achieved higher accuracy of transcript

expression quantification than RPVG and variant-un-

aware kallisto, as Ornaments can correctly map and
ust 8, 2024
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Figure 2. Comparison of Ornaments,
WASP, and RPVG on the accuracy of
allele-specific expression using simulated
reads
Gene-level estimates were used to compare
Ornaments with WASP, and transcript-
level estimates were used to compare Or-
naments with RPVG. At heterozygous
loci with ambiguously mapped allele-spe-
cific reads, (A) the accuracy of allele-spe-
cific expression, measured as mean abso-
lute relative difference (MARD) between
the truth and estimate and (B) the accu-
racy of allelic ratios, measured as correla-
tion between the true and estimated ratios
across loci. At heterozygous loci without
ambiguous allele-specific read mapping,
(C) the accuracy of allele-specific expres-
sion and (D) the accuracy of allelic ratios.
Each dot represents each of 10 samples.
Only loci with true sequencing depth
R10 reads were considered.
apportion ambiguously mapped allele-specific reads

(Figure 4). Using the same simulated data above, the accu-

racy was measured as MARD on expressed transcripts (true

abundance > 0) and as mean absolute difference (MAD)

on unexpressed transcripts. MAD was used for unex-

pressed transcripts, as MARD is known to be biased by

small ground-truth values.26 The accuracy was compared

on transcripts with and without ambiguously mapped

reads as well as with and without variants. Transcripts

were considered as overlapping with ambiguously map-

ped reads, if they contained SNPs involved in ambiguous

read mapping as determined by the variant-aware equiva-

lence classes from Ornaments. Ornaments outperformed

kallisto when transcripts contained ambiguously mapped

allele-specific reads because variant-unaware kallisto

cannot correctly map and apportion reads across the het-

erozygous and homozygous loci in repeat regions

(Figures 4A, 4B, S2A, S2B, and S3). Ornaments had only

slightly higher accuracy than kallisto for transcripts

without ambiguously mapped reads even when the tran-

scripts contained variants (Figures 4A, 4B, S2C, S2D, and

S4). This is because kallisto maps reads to the same region

regardless of the allele at heterozygous loci, skipping the

mapping of the k-mer containing the SNP for efficiency

if the k-mer is located between tDBG junctions. RPVG

had lower accuracy than both kallisto and Ornaments

for all types of transcripts, especially for transcripts that

contained ambiguously mapped allele-specific reads

(Figures 4C and 4D).
The American Journal of Human Genet
Next, we compared the computa-

tion time of the different methods.

Since WASP, kallisto, and RPVG

construct a single index for all sam-

ples, whereas Ornaments constructs

a personalized index for each sample,

we evaluated the computation time
for both a single sample and multiple samples. Per sam-

ple, Ornaments was on average 11 times faster than

WASP, 104 times faster than RPVG, and nearly as fast as

kallisto (Figure 5A). Specifically, Ornaments required

9.2 min for constructing a personalized index and

8.7 min for quantification per sample, only slightly slower

than kallisto, which took 9.2 and 8.4 min, respectively.

WASP was significantly slower, taking 76 min for building

a STAR index and 120.7 min for read alignment and quan-

tification. RPVG took 33 h to construct a pantranscrip-

tome and index, 3.1 h to align reads, and 18.2 min to

quantify transcript haplotypes. Since kallisto, WASP, and

RPVG use the same index for all samples, the time taken

to construct the index is amortized as the sample size in-

creases. However, even with a shared index, WASP and

RPVG had a significantly higher cost of read alignment

and quantification, and thus, for 10 samples, Ornaments

was approximately 8 times faster than WASP and 20 times

faster than RPVG (Figure 5B). For a very large number of

samples, Ornaments is expected to retain its substantial

advantage in efficiency over WASP and RPVG, approxi-

mately 7 times faster than WASP and 11 times faster

than RPVG, and to require at most twice as much time

as kallisto, since Ornaments and kallisto spend nearly

the same amount of time on index construction and

on read mapping and quantification. All computation

times were obtained using 16 threads on a machine

with two Intel Xeon 2.1GHz 8 core processors and 64

GB memory.
ics 111, 1770–1781, August 8, 2024 1775
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Figure 3. Comparison of Ornaments,
WASP, and RPVG on the accuracy of de-
tecting allele specifically expressed genes
and transcripts using simulated reads
GeneiASE with gene-level estimates (p value
<0.05) were used to compare Ornaments
with WASP, and negative-binomial tests
with transcript-level estimates (p value
<0.05) along with the known haplotypes
were used to compare Ornaments with
RPVG. The detected genes and transcripts
were compared against those obtained
from the ground-truth allele-specific read
counts. For transcripts and genes with
variants that induce ambiguous allele-spe-
cific read mapping, (A) sensitivity and
(B) specificity of the methods. For tran-
scripts and genes without ambiguously
mapped allele-specific reads, (C) sensitivity
and (D) specificity of the methods. Each
dot represents each of 10 samples.
Human lymphoblastoid cell-line RNA-seq reads

Using the lymphoblastoid cell-line reads and genome se-

quences for 165 children from the 1000Genomes Project,16

we benchmarked Ornaments against WASP. We omitted

RPVG in this experiment due to its high computational

cost for processing a large number of samples.We compared

Ornaments andWASP in terms of the allele-specific expres-

sion and allelic ratios at heterozygous loci, using gene-level

summaries fromOrnaments. Forboth expressionand ratios,

the correlation between Ornaments andWASP was lower at

the heterozygous loci overlapping with ambiguously map-

ped reads than at the other heterozygous loci (Figure 6).

This result provides evidence for the superior ability ofOrna-

ments to correct for ambiguous mapping bias.

To evaluate the impact of estimates from the different

methods on downstream analysis, we compared allele spe-

cifically expressed transcripts identified by Ornaments and

GeneiASE with allele specifically expressed genes identified

by WASP and GeneiASE.25 The transcripts found by Orna-

ments included the majority of the genes found by WASP

and a large number of additional genes. Specifically, Orna-

ments found 4,374 genes with differentially expressed al-

leles in at least one constituent transcript of the gene in

at least 10 samples, whereas WASP identified only 1,034

genes in at least 10 samples. Out of the 1,034 genes from

WASP, 897 genes were also found by Ornaments. This sug-

gests higher sensitivity of Ornaments in downstream anal-
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ysis, as Ornaments detects allele-spe-

cific signals at transcript level with

highly accurate bias correction.

To see if these allele specifically ex-

pressed transcripts from Ornaments

and genes from WASP can reproduce

known biological results, we examined

these transcripts and genes that overlap

with previously known imprinted

genes, where one allele is exclusively
expressed over the other. We compiled a set of 157 im-

printed genes that are either known to undergo imprinting

or found to be imprinted in an independent dataset.Our set

included 141 genes in the GeneImprint database,27 13

genes identified from analysis of lymphoblastoid cell-line

RNA-seq data for 80 individuals with European ancestry28

and for 63 unrelated individuals,29 and other known im-

printed genes from the literature.30–32 Ornaments had 34

genes in the overlap, whereas WASP had a smaller overlap

of 30 genes (Figure 7). For 24 out of the 29 imprinted genes

found by both methods, Ornaments called differential

expression in more samples (Table 1). Furthermore, Orna-

ments detected a subset of transcripts, on average one or

two transcripts, per gene as imprinted in a given sample (Ta-

ble 1; Figures 7, S5, and S6). Inmany such cases,WASP failed

to detect the imprinting signal, as the signal was lost or

weaker at the gene level. These findings provide evidence

that Ornaments, with its probabilistic approach, can accu-

rately attribute the allele-specific signals to multiple tran-

scripts of the given gene, offering advantages over WASP,

which captures signals at gene level.
Discussion

We introduced Ornaments, a computational tool for accu-

rate and efficient quantification of transcript expression
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Figure 4. Comparison of Ornaments, kal-
listo, and RPVG on the accuracy of tran-
script quantification using simulated reads
The accuracy of Ornaments and kallisto is
compared for (A) expressed transcripts in
mean absolute relative difference (MARD)
and (B) unexpressed transcripts in mean ab-
solute difference (MAD). The accuracy of
Ornaments and RPVG is compared for
(C) expressed transcripts in MARD and
(D) unexpressed transcripts in MAD. Each
colored dot represents each of the 10 sam-
ples for each of the four types of transcripts
(shown with colors) with and without
ambiguously mapped reads and variants.
and allele-specific expression at unphased heterozygous

loci from RNA-seq reads. Ornaments is an adaptation of

kallisto that takes advantage of the speed of kallisto while

improving the accuracy of the existing methods by ac-

counting for variants, by correcting for allele-specific read

mapping biases, and by capturing allele-specific signals at

transcript level rather than at gene level.

One important future direction is to extendOrnaments to

construct a singlepopulation-level index frommultiple sam-

ples, rather than a personalized index, to further reduce

computation time. Such a population-level index would

have a modified ornament tDBG that represents all variants

that are heterozygous in one or more samples. Then, for
A B
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variant-aware pseudoalignment, we

could use either a personalized index

derived from the population index or

thepopulation indexdirectly.Weexpect

these two approaches to have a different

trade-off between accuracy and speed.

The former approach would have the

same accuracy as Ornaments but incur

the computational cost for modifying

the tDBG to remove the ornaments for

variants that are not heterozygous in

the given sample. The latter approach

could have lower accuracy for a large
populationwithdensepolymorphic locibecause ingenomic

regionswithdenselypackedvariants,withmore junctions in

the population-level ornament tDBG,more k-merswould be

checked for exact sequence matches, leading to more reads

being dropped due to sequencing errors. However, this

approach could be implemented efficiently with a modified

variant-aware pseudoalignment that checks for exact k-mer

matches at the tDBG junctions around ornaments only if

the corresponding locus isheterozygous in thegiven sample.

Another potential future direction is to extend Orna-

ments to build an index from a haplotype reference

panel as in RPVG. This would enable Ornaments to quan-

tify allele-specific expression for a sample solely using
Figure 5. Computation time of Orna-
ments and other methods
(A) Computation time for a single sample.
In RPVG, WASP, and kallisto, the indexing
cost (purple) is incurred once, as the same
index is re-used for multiple samples,
whereas in Ornaments, a personalized in-
dex is constructed repeatedly for each sam-
ple. In all methods, the cost of alignment
and quantification (pink) is incurred for
each sample and is shown as an average
over 10 simulated samples with error bars
for one standard deviation.
(B) Cumulative computation time as the
sample size increases.
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Figure 7. Known imprinted genes overlapping with allele spe-
cifically expressed transcripts from Ornaments and genes from
WASP in lymphoblastoid cell line

Figure 6. Comparison of Ornaments and WASP on lymphoblas-
toid cell-line RNA-seq reads
Correlation between Ornaments and WASP estimates across SNP
loci with ambiguously mapped reads (x axis) and without ambig-
uously mapped reads (y axis). Each dot represents the correlation
for each of 165 samples.
RNA-seq reads without requiring genotype data. This could

be accomplished by extending the ornament tDBG such

that a haplotype with multiple variants in the reference

panel is assigned a color and is represented as a string

with multiple ornaments. Overall, Ornaments is a flexible

tool that could be extended in various ways for allele-spe-

cific expression quantification.
Each cell shows the number of samples in which differential
expression between two alleles was found by WASP for the given
gene or by Ornaments for the given transcript. The cells with
one or more individuals are enclosed in black lines. SNHG14
with 158 transcripts, omitted in the figure, is a known imprinted
gene that had allele specifically expressed transcripts in 82 samples
for Ornaments but only in 47 samples for WASP.
Data and code availability

This study did not generate datasets. The code for Orna-

ments that was generated during this study is available at

a GitHub repository https://github.com/SeyoungKimLab/

Ornaments, along with installation instructions.
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Supplemental information can be found online at https://doi.org/
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Table 1. Known imprinted genes found by WASP and Ornaments in lymphoblastoid cell lines

Gene WASP Ornaments WASP and Ornaments Source

Number
of samples

Number
of samplesa

Ornaments (overlap
in samples)

Average number of
transcripts per sample

GNAS (MIM: 139320) 6 12 4 1.25 GeneImprint27

MEG8 (MIM: 613648) 0 7 0 1.00 Charlier et al.33,34

PWRN1 (MIM: 611215) 1 2 1 1.00 Wawrzik et al.33,35

TP73 (MIM: 601990) 9 9 2 1.33 GeneImprint27

NAA60 (MIM: 614246) 34 42 25 1.33 Jadhav et al.16

L3MBTL1 (MIM: 608802) 29 21 9 1.71 Jadhav et al.16

UBE3A (MIM: 601623) 3 5 2 1.00 Sadikovic et al.33,36

PLAGL1 (MIM: 603044) 5 10 4 1.10 Kas et al.33,37

MECP2 (MIM: 300005) 11 10 6 1.00 Nakashima et al.33,38

KCNQ1OT1 (MIM: 604115) 21 0 0 0.00 Cagle et al.33,39

ZFP90 (MIM: 609451) 17 28 12 1.50 GeneImprint27

ATP10A (MIM: 605855) 0 5 0 1.00 Pastinen et al.29

CTCF (MIM: 604167) 0 1 0 1.00 Rubio et al.33,40

NLRP2 (MIM: 609364) 23 28 10 1.75 Meyer et al.41

MEST (MIM: 601029) 4 5 3 1.20 Pastinen et al.29

ZFAT (MIM: 610931) 8 17 4 1.12 Pilvar et al.42

PEG3 (MIM: 601483) 0 20 0 1.00 GeneImprint27

SLC22A18 (MIM: 602631) 7 13 3 1.08 GeneImprint27

RHOBTB3 (MIM: 607353) 9 23 7 1.00 GeneImprint27

IGF2R (MIM: 604893) 13 23 6 1.17 Kukuvitis et al.33,43

ERAP2 (MIM: 609497) 25 29 13 1.20 GeneImprint27

SNRPN (MIM: 182279) 0 35 0 1.91 Jadhav et al.16

RB1 (MIM: 614041) 6 10 6 1.00 GeneImprint27

PEG10 (MIM: 609810) 2 38 1 1.16 Jadhav et al.16

ZDBF2 (MIM: 617059) 23 2 1 1.50 GeneImprint27

RAC1 (MIM: 602048) 1 10 1 1.00 GeneImprint27

GNAS-AS1 (MIM: 610540) 2 1 0 1.00 Jadhav et al.16

PXDC1 10 13 7 1.08 GeneImprint27

ZC3H12C (MIM: 615001) 4 14 2 1.07 GeneImprint27

PARD6G (MIM: 608976) 4 11 3 1.00 GeneImprint27

ZFP57 (MIM: 612192) 17 20 15 1.05 Mackay et al.33,44

SNURF (MIM: 182279) 2 4 1 1.00 Jadhav et al.16

ZNF597 (MIM: 614685) 35 42 28 1.00 Jadhav et al.16

NAP1L5 (MIM: 612203) 21 28 21 1.00 GeneImprint27

SNHG14 (MIM: 616259) 47 82 32 2.27 Jadhav et al.16

aNumber of samples with at least one imprinted transcript for a gene.
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