

Oxidized sulfur species in slab fluids as a source of enriched sulfur isotope signatures in arcs

Patrick Beaudry¹ and Dimitri A. Sverjensky¹

¹Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA

Corresponding author: Patrick Beaudry (pbeaudr1@jhu.edu)

Key Points:

- We analyzed high pressure experimental solubilities of anhydrite to calibrate the properties of aqueous S species in the Deep Earth Water model.
- We provide a template for the solubility and speciation of S and other rock-forming elements in a wide hypothetical range of subduction fluids.
- It can be expected that fluids are ^{34}S -rich relative to slabs due to high concentrations of sulfate complexes in equilibrium with pyrite.

15 Abstract

16 Recycling of oxidized sulfur from subducting slabs to the mantle wedge provides simultaneous
17 explanations for the elevated oxygen fugacity ($f\text{O}_2$) in subduction zones, their high hydrothermal
18 and magmatic sulfur outputs, and the enriched sulfur isotopic signatures (i.e. $\delta^{34}\text{S} > 0\text{\textperthousand}$) of these
19 outputs. However, a quantitative understanding of the abundance and speciation of sulfur in slab
20 fluids consistent with high pressure experiments is lacking. Here we analyze published
21 experimental data for anhydrite solubility in $\text{H}_2\text{O}-\text{NaCl}$ solutions to calibrate a high-pressure
22 aqueous speciation model of sulfur within the framework of the Deep Earth Water model. We
23 characterize new species, required to account for the high experimental anhydrite solubilities. We
24 then use this framework to predict the speciation and solubility of sulfur in chemically complex
25 fluids in equilibrium with subducting mafic and ultramafic lithologies, from 2 to 3 GPa and 400 to
26 800°C at $\log f\text{O}_2$ from FMQ-2 to FMQ+4. We show that sulfate complexes of calcium and sodium
27 markedly enhance the stability of sulfate in moderately oxidized fluids in equilibrium with pyrite
28 at $f\text{O}_2$ conditions of FMQ+1 to +2, causing large sulfur isotope fractionations up to 10‰ in the
29 fluid relative to the slab. Such fluids could impart oxidized, sulfur-rich and high $\delta^{34}\text{S}$ signatures to
30 the mantle wedge that are ultimately transferred to arc magmas, without the need to invoke ^{34}S -
31 rich subducted lithologies.

32 Plain Language Summary

33 Subducting oceanic plates (or “slabs”) release aqueous fluids when subjected to high pressures and
34 temperatures, driving the magmatism that produces volcanic arcs along subduction zones. These
35 fluids carry high concentrations of solutes, and thus play an important role in the geologic cycling
36 of elements. Of particular interest are the abundance and redox state of sulfur, since the transfer of
37 sulfur-rich fluids could explain the high oxidation state of arc magmas, the observation that they
38 are often sulfur-rich, as well as their heavy sulfur isotope signatures (i.e. enriched in ^{34}S relative
39 to bulk Earth). However, there is conflicting evidence about sulfur’s oxidation potential and the
40 origin and significance of its isotopic enrichment. To address this problem, we need to understand
41 which sulfur-bearing chemical species are important at high pressures and temperatures relevant
42 to subduction zone conditions. To do this, we analyzed high-pressure experimental data, and found
43 that they could be explained by the presence of aqueous species such as CaHSO_4^+ and Na_2SO_4^0 ,
44 previously uncharacterized at high temperatures and pressures, in which sulfur is in its oxidized
45 form. We further predict that these species would be important in natural subduction zone fluids
46 and would carry enrichments in ^{34}S , which can explain the enriched sulfur isotope signatures
47 typically observed in arc volcanic rocks and gases.

48 1. Introduction

49 Aqueous fluids released by subducting slabs enable mass and chemical exchange across
50 subduction zones. Fluid-driven metasomatism of the mantle wedge is recorded in exhumed
51 metamorphic rocks (Bebout & Penniston-Dorland, 2016; Scambelluri et al., 2014; Walters et al., 2019), and
52 element recycling is deduced from the unique trace element geochemistry of arc magmas (Class
53 et al., 2000; Grove et al., 2002; Kessel et al., 2005). However, our understanding of the chemistry
54 of subduction zone fluids is still limited because these fluids are not directly accessible. Instead,
55 knowledge of their properties relies on experimental solubilities of minerals and rocks
56 incorporated into thermodynamic modelling. Such work predicts significantly increased solute
57 concentrations at the high pressures and temperatures relevant to subduction zone conditions
58 (Huang & Sverjensky, 2019; Manning, 2004). In situ spectroscopic studies of experimentally-produced

59 fluids also provide important information about fluid speciation (Colin et al., 2020; Schmidt & Seward,
60 2017).

61 There are several lines of evidence indicating that the mantle wedge above subduction
62 zones becomes oxidized (Bounce et al., 2021; Carmichael, 1991; Evans, 2012; Parkinson & Arculus, 1999), but
63 the exact mechanisms by which this occurs remain elusive. It has been suggested that oxidized
64 sulfur species are prevalent in slab fluids, hence they are among the preferred candidates for
65 oxidizing the mantle wedge (Ague et al., 2022; Bénard et al., 2018; Debret & Sverjensky, 2017; Padrón-Navarta
66 et al., 2023; Tomkins & Evans, 2015; Walters et al., 2020). The cycling of oxidized sulfur in subduction
67 zones may also be particularly important for interpreting sulfur-rich volcanic eruptions as well as
68 the emplacement of porphyry Cu-Au deposits along volcanic arcs (Richards, 2011; P.J. Wallace,
69 2001; Wilkinson, 2013). Furthermore, heavy $\delta^{34}\text{S}$ values typically occur in arc-related lavas and
70 volcanic gases, which has been interpreted to reflect the transfer of isotopically enriched sulfate
71 from the slab (Alt et al., 1993; Bénard et al., 2018; de Moor et al., 2022; Muth & Wallace, 2021; Taracsák et al.,
72 2023). However, conflicting evidence points to other possible scenarios, such as isotopic
73 fractionation during partial melting or differentiation of oxidized magmas (Li et al., 2020; Rezeau
74 et al., 2023).

75 Thermodynamic predictions suggest that oxidized sulfur species dominate the flux of slab-
76 derived sulfur from altered oceanic crust, supporting the idea that it could oxidize the mantle wedge
77 (Walters et al., 2020). However, robust constraints on the high-pressure nature of aqueous sulfate
78 species, including the effect of NaCl, are lacking from current thermodynamic databases, which
79 limits our understanding of sulfur speciation in slab fluids. Here we integrate high-pressure
80 experimental solubilities of anhydrite (Newton & Manning, 2005) into the thermodynamic framework
81 of the extended Deep Earth Water (DEW) model (Huang & Sverjensky, 2019; Sverjensky et al., 2014) to
82 establish new high-pressure sulfate and chloride speciation. As a consequence, we can predict the
83 speciation and concentration of sulfur in slab-derived fluids over a wide range of oxidation states
84 in chloride-bearing fluids. This improves our ability to evaluate the potential role of sulfur as an
85 oxidizing agent, and to interpret the sulfur isotope compositions of arc volcanic products.

86 2. Methods

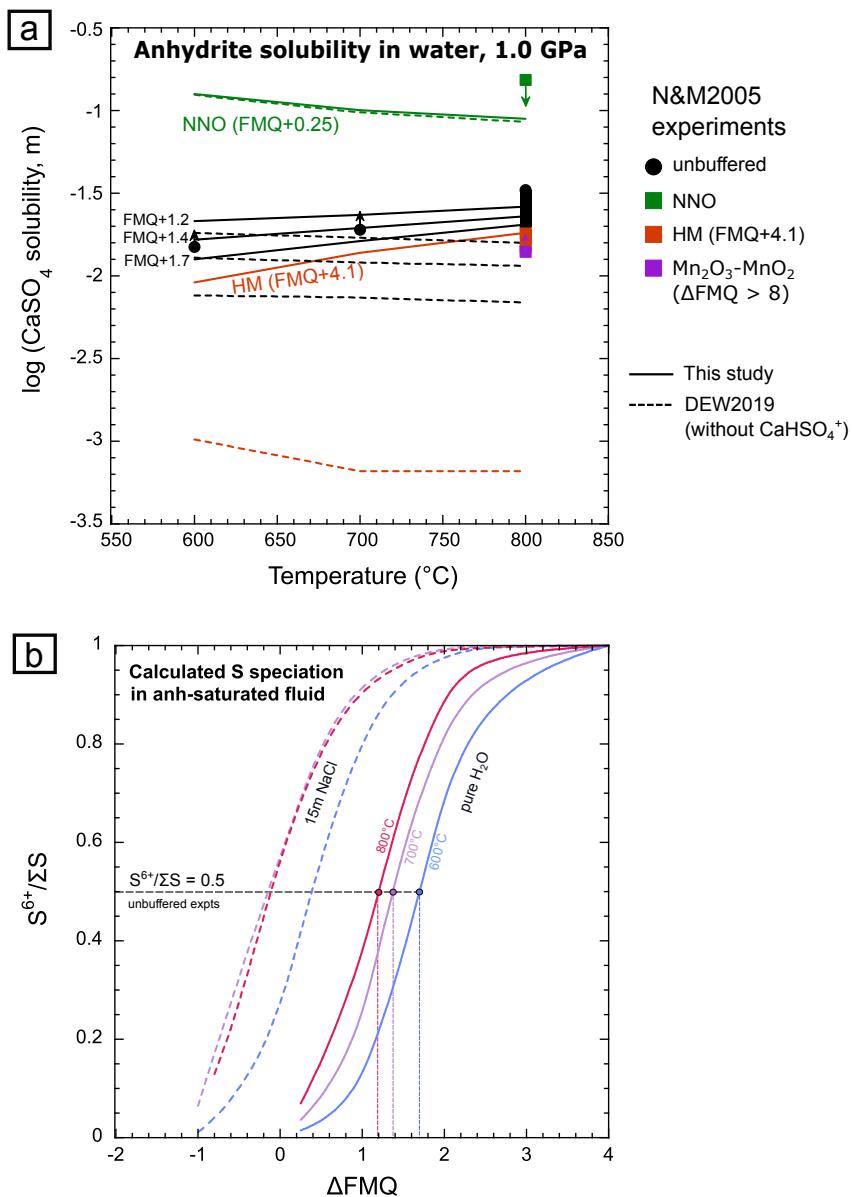
87 2.1. Regression of experimental solubility data

88 Although anhydrite is not expected in metamorphic mineral assemblages, its solubility represents
89 an upper limit for sulfate species in subduction zones. Knowledge of anhydrite solubility at
90 elevated temperatures and pressures is therefore important. Furthermore, the aqueous sulfur
91 species in equilibrium with anhydrite may also be important in fluids in equilibrium with other
92 sulfur-bearing minerals (e.g. pyrite, see below). Although the solubility in NaCl solutions has been
93 measured at elevated temperatures and pressures (Newton & Manning, 2005), these experimental data
94 have only been applied to subduction zones as stoichiometric solubilities, i.e. assuming that the
95 total dissolved calcium molality ($m_{t,ca}$) equals the sulfate molality ($m_{t,s}$), e.g. Tomkins and Evans
96 (2015). However, in subducting mineral assemblages, the molality of calcium is constrained by
97 equilibria between the fluid and silicate mineral assemblages. Under these circumstances, the
98 values of $m_{t,ca}$ and $m_{t,s}$ in a fluid also in equilibrium with anhydrite should be different from one
99 another. It is therefore crucial that the experimental solubilities of anhydrite be analysed with an
100 aqueous speciation and solubility model. The results can then be incorporated into comprehensive
101 aqueous speciation, solubility and mass transfer models of natural assemblages where $m_{t,ca}$ will
102 not in general be equal to $m_{t,s}$. It will be shown below that $m_{t,ca}$ values in model subduction zone

103 fluids can be less than $m_{t,S}$ values, resulting in solubilities of sulfate much higher than
 104 stoichiometric values of anhydrite solubility.

105 Several studies have investigated the solubility of anhydrite in $\text{H}_2\text{O}-\text{NaCl}$ solutions (e.g.
 106 see compilation by Creaser et al., 2022), but only one experimental study (Newton & Manning, 2005)
 107 reports anhydrite solubility data at high pressures >0.5 GPa applicable to subduction zone fluids.
 108 It is also important to realize that the solubility behavior changes drastically above 0.1 GPa (Blount
 109 & Dickson, 1969; Newton & Manning, 2005). Hence it is our priority to model high pressure solubility.
 110

111 2.1.1. Modelling of anhydrite solubility in water


112
 113 Here we regressed anhydrite solubility data using the aqueous speciation and solubility
 114 software EQ3 (Wolery, 1992) modified for elevated pressures and temperatures as described
 115 previously. We initially used equilibrium constants of aqueous ions and metal complexes from the
 116 Deep Earth Water (DEW) model (Huang & Sverjensky, 2019; Sverjensky et al., 2014), which has provided
 117 a new equation of state for the dielectric constant of water, enabling calculations up to 6 GPa and
 118 1000°C. Input parameters were pressure, temperature, $f\text{O}_2$ and pH. We varied the pH at given $f\text{O}_2$
 119 conditions to obtain equimolar concentrations of Ca and S in the fluid, as would occur during the
 120 experimental stoichiometric dissolution of anhydrite (CaSO_4). Sulfur-bearing species included in
 121 the DEW2019 database (Huang & Sverjensky, 2019) were H_2S , HS^- , HSO_4^- , SO_4^{2-} , CaSO_4^0 , MgSO_4^0 ,
 122 NaSO_4^- and KSO_4^- , for which equation of state parameters were previously established. We
 123 excluded aqueous sulfite species ($\text{SO}_2(aq)$, HSO_3^- and SO_3^{2-}) from our calculations, because they,
 124 and possible complexes involving them, have not been characterized at high pressures and
 125 temperatures. Nevertheless, we calculated their effect in the regression of anhydrite solubility data,
 126 using their equation of state coefficients from the DEW2019 model (Fig. S1).

127 We first analysed anhydrite solubility data in water at 1 GPa (Newton & Manning, 2005). It can
 128 be seen in **Fig. 1a** that the computed anhydrite solubilities in the simple $\text{H}_2\text{O}-\text{CaSO}_4$ system
 129 strongly underestimate much of the experimental data when only considering the sulfur species
 130 included in DEW2019 model (Huang & Sverjensky, 2019). The mismatch demonstrates that important
 131 sulfur species were missing from this model. Importantly, Fig 1 shows a pronounced mismatch at
 132 oxidizing conditions (e.g. FMQ+4), while the estimated solubility at the NNO buffer (FMQ+0.25)
 133 is close to that calculated with the original DEW model. This suggests that reduced S-species are
 134 well characterized, but that one or more oxidized species are missing. The inclusion of sulfite
 135 species does not satisfy this mismatch (Fig. S1). In our model fluids at oxidizing conditions,
 136 bisulfate was far more abundant than sulfate at elevated temperatures, suggesting the need for a
 137 Ca-bisulfate complex. We therefore included the CaHSO_4^+ complex ion, according to the reaction
 138

140 Little is known about this complex ion, apart from one estimate of its equilibrium constant at 25°C
 141 and 1 bar from the WATEQ4F software based on (Mattigod & Sposito, 1977). However, by using the
 142 experiments of Newton and Manning (2005) in the $\text{H}_2\text{O}-\text{CaSO}_4$ system, we retrieved values of its
 143 equilibrium constant at several temperatures and pressures (Table 1). This requires estimating $f\text{O}_2$
 144 for unbuffered experiments, which can be done given that we have low and high $f\text{O}_2$ constraints at
 145 800°C, and that anhydrite solubility in unbuffered experiments is intermediate. In Fig. 1a it can
 146 be seen that our model curve for the HM buffer is fixed on the experimental data at 800°C. This
 147 was achieved by adjusting values for the equilibrium constant for Eq. 1 at 800°C (Table 1). This

149

150

151

152
153
154
155
156
157
158
159
160
161
162

Figure 1: (a) Regression of experimental anhydrite (CaSO_4) solubility in pure water at 1.0 GPa from Newton and Manning (2005), showing solubility vs temperature at different $\log f\text{O}_2$ values. Symbols represent experimental data and lines represent model calculations. Arrows represent minimum or maximum estimates of experimental solubilities. The solid curves represent calibration of a CaHSO_4^+ complex and are labelled with $f\text{O}_2$ expressed in log units relative to the buffers FMQ: Fayalite–magnetite–quartz; NNO: Nickel–nickel oxide; and HM: Hematite–magnetite. Dashed curves show the calculated solubilities using the DEW2019 model, which did not include CaHSO_4^+ . In (b) we show the adopted $f\text{O}_2$ in our calculations at different temperatures in unbuffered experiments, assuming that 50% of the sulfur is in its oxidized state ($\text{S}^{6+}/\Sigma\text{S} = 0.5$); data shown in (a) suggest that both sulfide (S^{2-}) and sulfate (S^{6+}) are present.

163

164

enabled prediction of the NNO curve which is consistent with the upper limit of the experimental solubility at 800°C at NNO. The predicted curves for the unbuffered experiments at intermediate

165 oxidation states are also shown in Fig. 1a. Anhydrite solubilities in unbuffered experiments are
 166 intermediate to those at NNO and HM, hence those fluids must contain both reduced and oxidized
 167 species. Because the transition from reduced to oxidized sulfur species occurs over a relatively
 168 narrow range of $\log f_{O_2}$ values (Fig. 1b), we assumed equal proportions of reduced and oxidized
 169 sulfur (i.e. $S^{6+}/\Sigma S = 0.5$) to obtain a reasonable approximation of $\log f_{O_2}$ (Fig. 1b).

170 Good agreement can be seen in Fig. 1a for the model unbuffered curves and the
 171 experimental unbuffered data. The solubility decreases with increasing fO_2 due to a steep decrease
 172 in the concentrations of reduced species (H_2S and HS^-) and increasing anhydrite stability.
 173 Importantly, it can be seen in Fig. 1a that the solubilities in the unbuffered experiments in water at
 174 \sim FMQ+1 to FMQ+2 are low, about 0.03 to 0.02 m. We keep the conventional notation in $\log f_{O_2}$
 175 units relative to the fayalite-magnetite-quartz (FMQ) buffer, but it is important to realize that no
 176 silicate minerals were present in these experiments.

177 We also note that the new $CaHSO_4^+$ species does not change significantly the predicted
 178 anhydrite solubility along the vapor saturation curve, such that experimental data at these
 179 conditions (Blount & Dickson, 1969) can still be reproduced by our model.

180
 181 **Table 1:** Dissociation constants (log K values) of aqueous species determined from experimental anhydrite
 182 solubility data in pure water ($CaHSO_4^+$) and H_2O -NaCl solutions ($Na_2SO_4_{aq}^0$ and $CaCl_2_{aq}^0$).

T (°C)	$\log f_{O_2}$ min ^a	$\log f_{O_2}$ max ^a	$CaHSO_4^+$		$Na_2SO_4_{aq}^0$		$CaCl_2_{aq}^0$	
			$\log K_{min}$	$\log K_{max}$	$\log K_{min}$	$\log K_{max}$	$\log K_{min}$	$\log K_{max}$
600	FMQ+1.5	FMQ+2	-5.9	-5.4	-3.9	-2.9	-3.9	-3.5
700	FMQ+1.2	FMQ+1.7	-6.4	-5.9	-5.8	-4.1	-5.0	-4.6
800	FMQ	FMQ+1.5	-7.0	-6.6	-7.0	-5.0	-6.6	-5.5

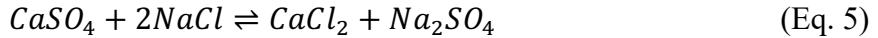
183 ^a Values of $\log f_{O_2}$ at the FMQ buffer at 1.0 GPa are -18.8 (600°C), -15.9 (700°C) and -13.6 (800°C).

184
 185 2.1.2. Modelling anhydrite solubility in NaCl solutions

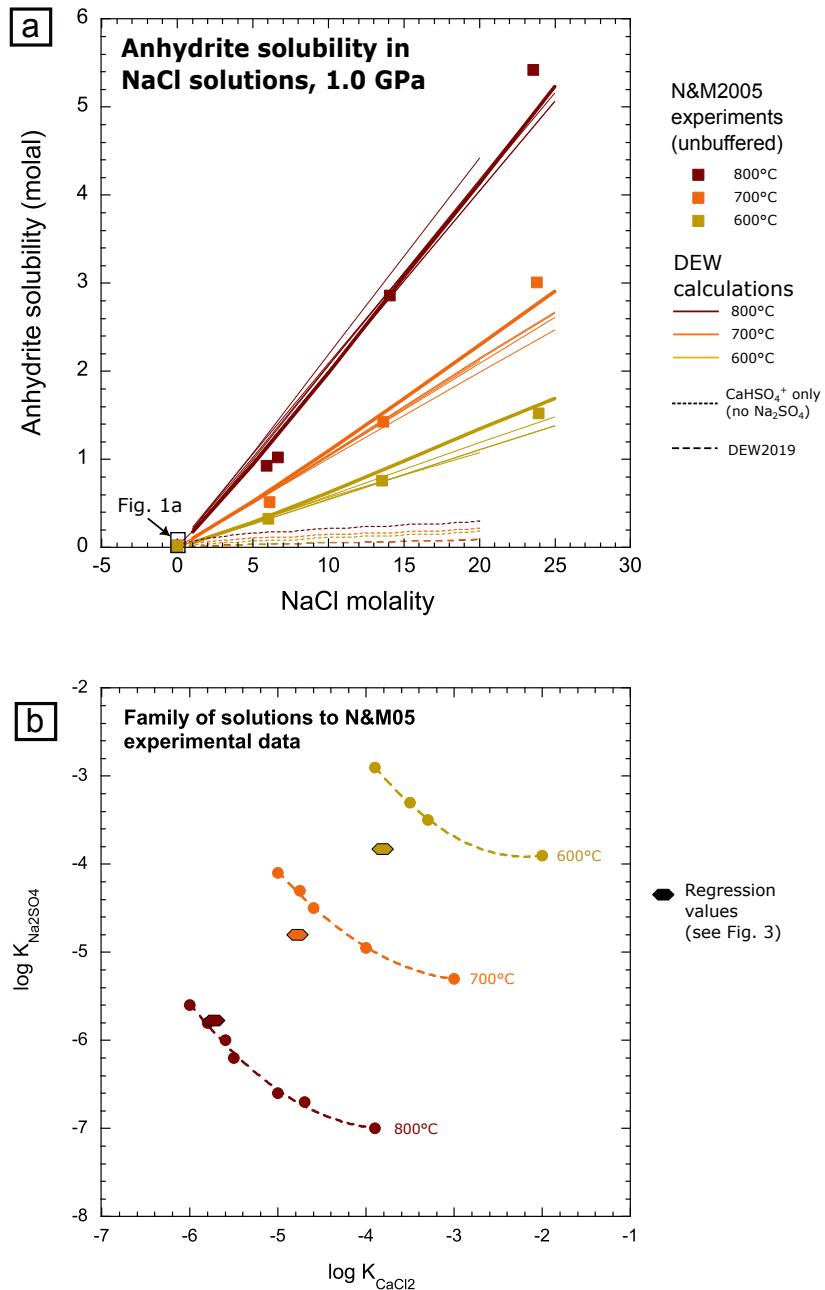
186 Our second step in analyzing anhydrite solubility involved NaCl solutions. At high salinities, it
 187 can be expected that aqueous activity coefficients and additional aqueous complexes could be
 188 important contributors to the solubility models. Our assumptions for aqueous activity coefficients
 189 are summarized here first.

190 Activity coefficients of the species added to the DEW model in this work were treated in
 191 the same manner as that described in detail by Sverjensky (2019). For ionic species (e.g. $CaHSO_4^+$,
 192 S_3^-), activity coefficients were represented by

193
 194


$$195 \log \bar{\gamma}_{P,T} = -\frac{A_\gamma Z_j^2 \bar{I}^{0.5}}{1+a_k B_\gamma \bar{I}^{0.5}} + b_{\gamma,k} \bar{I} + \Gamma_\gamma \quad (\text{Eq. 2})$$

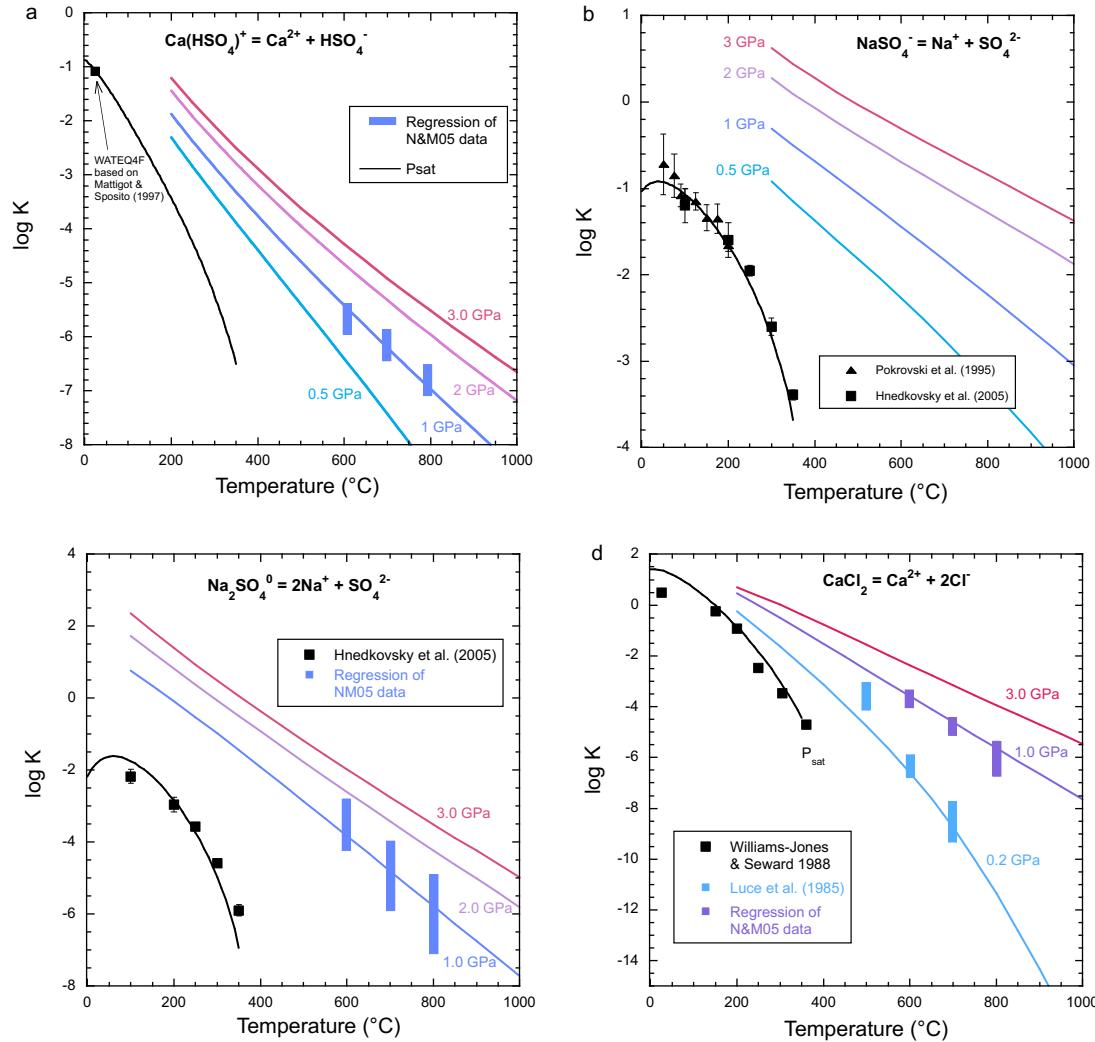
196 The first term on the right-hand side is the Debye-Hückel term, where A_γ and B_γ are functions of
 197 temperature, density and dielectric constant of water, and \bar{I} is the ionic strength of the solution.
 198 The second term is related to solvation and short-range interactions and referred to as the extended
 199 term. In the absence of reliable independent estimates, $b_{\gamma,k}$ was assumed to be 0. The last term is
 200 a conversion factor from the mole fraction to the molality concentration scale:
 202


203
$$\Gamma_\gamma = -\log (1+0.0180153m^*) \quad (\text{Eq. 3})$$

204
205 where m^* is the sum of the molalities of all aqueous species in the solution.206
207 For a neutral species n (e.g. $Na_2SO_4^0$, $CaCl_2^0$), the activity coefficient is expressed as:

208
209
$$\log \bar{\gamma}_{n;P,T} = b_{n,k} \bar{I} + \Gamma_\gamma \quad (\text{Eq. 4})$$

210
211 which is similar to the ionic case (Eq. 2) without the Debye-Hückel term. Here again, we assumed
212 the $b_{n,k}$ term to be 0. However, we retained the second term (Γ_γ) because it becomes important in
213 concentrated solutions, such as at the high NaCl molalities attained in the experiments of Newton &
214 Manning (2005). The effect of Γ_γ can be seen in Fig. 2a, where the thicker curves take into account
215 the increasing effect of activity coefficients on the activities of the neutral complexes $Na_2SO_4^0$ and
216 $CaCl_2^0$, which produces a slight curvature, as expected from the experimental data. The families
217 of thin curves shown for each temperature have a more linear profile and poorer fit to the
218 experimental data. Overall, uncertainties in assigning activity coefficients are probably minor
219 compared with the uncertainties in establishing and quantifying the equilibrium constants of the
220 principal complexes responsible for the measured solubilities of anhydrite in saline fluids (Fig. 3).221 The strong positive effect of NaCl on the solubility of anhydrite observed by Newton &
222 Manning (2005) led them to suggest that the dissolution of anhydrite in NaCl-bearing solutions was
223 governed by the reaction:226
227 Our $CaHSO_4^+$ species produces only a small increase in the calculated anhydrite solubility with
228 increasing NaCl content, way below the experimental solubility data (Fig. 2a). Accordingly, we
229 regressed the experimental solubilities to obtain revised equilibrium constants for the $CaCl_2^0$
230 complex different from those previously predicted (Huang & Sverjensky, 2019; Sverjensky et al., 1997)
231 simultaneously with those of the species $Na_2SO_4^0$ not previously used in the DEW model (Table
232 1). To remain consistent with our regression of experimental solubility in pure water (Fig. 1a), we
233 adopted the same $\log fO_2$ values as those used in unbuffered runs (Fig. 1b), because the
234 experiments using NaCl solutions were also unbuffered. It should be noted that the positions of
235 the curves in Fig. 2a are insensitive to the values of $\log fO_2$ used because the strong $Na_2SO_4^0$
236 complex stabilizes sulfate species relative to reduced sulfur species in NaCl-rich fluids (Fig. 1b).
237 The bold solid curves in Fig. 2a represent our best fit to the experimental solubilities over a very
238 wide range of NaCl concentrations and temperatures ranging from 600–800°C at 10.0 kbar.
239 Although the bold curves in Fig. 2a do not exactly reproduce the quadratic curvature of the
240 experimental data, they nevertheless reproduce the expected increase and approximate slope of the
241 data, which strongly supports our characterization of the $CaCl_2^0$ and $Na_2SO_4^0$ complexes. The
242 curves are consistent with our final equilibrium constants retrieved for $Na_2SO_4^0$ and $CaCl_2^0$ (Table
243 1) and plotted versus temperature in Fig. 3c,d.244 The solid curves in Figs. 3a-d represent regression of the equilibrium constants from Table
245 1 and the literature using the revised Helgeson-Kirkham-Flowers (HKF) equations of state (Shock
246 et al., 1989; Shock & Helgeson, 1988) including correlations between the standard partial molal
247 properties of the complexes and their equation of state coefficients developed in Shock & Helgeson


248 (1988) and Sverjensky et al. (2014) and summarized in (Sverjensky, 2019). All the parameters are
 249 documented in Table 2. Our thermodynamic properties for the $Na_2SO_4^0$ complex are based on the
 250

251
 252 **Figure 2:** Use of the Newton and Manning (2005) experimental data to characterise the $Na_2SO_4^0$
 253 and $CaCl_2^0$ complexes. The extreme solubilities of anhydrite at high NaCl molalities are only
 254 reproduced when considering the effect of the $Na_2SO_4^0$ aqueous complex, as shown by the solid
 255 curves in (a); dashed lines near 0 show the solubilities calculated with the DEW2019 models, while
 256 dotted lines reaching solubilities of ~0.1 to 0.3m shown the solubilities calculated when considering
 257 $CaHSO_4^+$ but not $Na_2SO_4^0$. Bold curves (one for each temperature) incorporate activity coefficients
 258 for neutral species. The families of curves shown for each temperature represent different
 259 combinations of log K's for $Na_2SO_4^0$ and $CaCl_2^0$, shown as individual dots in (b). Hexagonal
 260 symbols show the log K values used in the regressions in Fig. 3.

study of Hnedkovsky et al. (2005) (Fig. 3c) and the experimental data in Fig. 2a. We found that various combinations of $\log K$'s for the two species could be used to optimize the fit to Newton and Manning's experimental data as shown in Fig. 2b. To restrict this range, additional constraints were provided by predictive correlations for the standard partial molal entropies and heat capacities at 25°C and 1.0 bar from the HKF approach (Sverjensky et al., 1997; Sverjensky, 2019). In addition, standard partial molar volumes \bar{V}^0 of the complex species were estimated from the a_1 equation of state coefficients for the constituent ions. This is based on the prediction that the sum of intrinsic volume coefficients should satisfy $\sum \nu_i a_i = 0$. We integrated this approach in the regression of $\log K$ vs T relationships shown in Fig. 3.

270

271

272

273

274

275

276

277

278

Figure 3 (a-d): Regression of the temperature dependence of equilibrium constants for the aqueous ions and complexes added to the Deep Earth Water (DEW) model in this work. The adopted standard partial molal properties and equation of state coefficients are provided in Table 1.

We tested our equations of state for the Ca- and Na-complexes by predicting equilibrium constants as a function of pressure which in turn were used to predict anhydrite solubility vs pressure (Fig. S2). Despite a small difference in the slope of the predicted curve with pressure, the overall

279 agreement with the measured pressure dependence is satisfactory. It suggests that the overall
 280 uncertainties of the model are well within about ± 0.1 to 0.2 log units, consistent with previous
 281 theoretical analyses at elevated temperatures and pressures (Huang & Sverjensky, 2019; Shock &
 282 Helgeson, 1988; Sverjensky et al., 2014).

283

284
 285
 286 **Figure 3 (e-h):** Additional S species that were considered but did not play a significant role in the
 287 solubility of S in subduction fluids. (e) and (f) show our regression for the S_3^- ion, showing a
 288 weakly negative pressure dependence (negligible beyond ~ 30 kbar). We used experimental $\log K$
 289 data reported by Pokrovski & Dubessy (2015); (g) The regression for H_2SO_4^0 displays a good fit to
 290 the experimental data of Quist et al. (1965) at high temperatures relevant for our calculations; this
 291 complex was found to be in negligible concentrations at all conditions investigated (**Tables S1 and**
 292 **S2**). (h) NaHSO_4^0 was excluded from the regression of Newton and Manning's experimental data
 293 due to its poorer fit compared to that of Na_2SO_4^0 (Fig. 2a), but was included in the modelling of
 294 subduction zone fluids.

295 **Table 2.** Standard partial molal properties at 25°C and 1.0 bar and equation of state coefficients for aqueous species
 296 contributing to sulfur solubility, used, added or updated in the Deep Earth Water (DEW) model in this study. The parameters
 297 are based on experimental solubilities, regression calculations and correlations (see text and Fig. 3).

298

SPECIES	$\Delta G_f^{0\text{ a}}$	$\Delta H_f^{0\text{ a}}$	$S^0\text{ b}$	$C_P^0\text{ b}$	$V^0\text{ c}$	$a_1 \times 10^{-2}\text{ a,i}$	$a_2 \times 10^{-2}\text{ a,i}$	$a_3^{\text{e,i}}$	$a_4 \times 10^{-4}\text{ f,i}$	$c_1^{\text{b,i}}$	$c_2 \times 10^{-4}\text{ f,i}$	$\omega \times 10^{-5}\text{ a}$
$H_2S_{aq}^{\text{g}}$	-6,673	-9,001	30.0	42.8	34.9	6.51	6.77	5.96	-3.06	32.3	4.73	-0.1
HS^-^{g}	2,860	-3,850	16.3	-22.6	20.6	5.01	4.98	3.48	-2.98	3.42	-6.27	1.44
$HSO_4^-^{\text{g}}$	-180,630	-212,500	30.0	5.3	35.2	8.92 ^h	4.21	1.31	-2.95	20.10	-1.96	1.17
$SO_4^{2-}\text{g}$	-177,930	-217,400	4.5	-63.9	13.9	8.30	-1.98	-6.21	-2.70	1.64	-18.00	3.15
$CaSO_4^0_{aq}$	-312,930 ^g	-345,900 ^g	5.0 ^g	-25.0 ^g	33.0 ^h	8.07 ^h	3.40	1.98	-2.92	-5.72	-8.13	0.30
$CaHSO_4^+$	-314,200 ^j	-338,235 ^j	35.0 ^k	70.0 ^k	37.0 ^k	8.72 ^k	4.02	1.47	-2.95	47.39	11.22	0.02 ^k
$NaSO_4^-$	-241,780 ^l	-275,480 ^l	20.4 ^l	5.0 ^l	41.0 ^h	10.12 ^h	5.35	0.35	-3.00	21.25	-2.02	1.32
$Na_2SO_4^0_{aq}$	-305,500 ^m	-279,585 ^m	27.0 ^k	95.0 ^k	54.0 ^h	12.15 ^h	7.28	-1.27	-3.08	64.61	16.32	0.30 ^k
$CaCl_2^0_{aq}$	-193,000 ⁿ	-211,060 ⁿ	19.0 ^o	18.0 ^o	30.0 ^h	7.92 ^h	3.26	2.10	-2.91	27.77	0.63	1.20 ^o
S_3^-	13,160 ^p	10,840 ^p	23.0 ^q	95.0 ^q	77.0 ^q	17.24 ^q	12.13	-5.34	-3.28	76.58	16.32	1.60 ^q
$H_2SO_4^0_{aq}$	-123,800 ^r	-159,845 ^r	16.0 ^r	20.0 ^r	38.0 ^r	8.95 ^h	4.24	1.29	-2.95	18.81	1.04	0.10
$NaHSO_4^0_{aq}$	-244,000 ^m	-271,575 ^m	37.0	73.5	47.7 ^h	10.77 ^h	5.97	-0.17	-3.03	48.89	11.94	-0.04

299

^a cal.mole⁻¹. ^b cal.mole⁻¹.K⁻¹. ^c cm⁻³.mole⁻¹. ^d cal.mole⁻¹.bar⁻¹. ^e cal.K.mole⁻¹.bar⁻¹. ^f cal.K.mole⁻¹.

300 ^g Parameters taken from DEW2019 (Huang & Sverjensky, 2019)

301 ^h Estimated from $\sum v_i a_i = 0$.

302 ⁱ Calculated following Sverjensky et al. (2014).

303 ^j Calculated from logK = -1.08 at 25°C and 1 bar, which assumes the dissociation constant of divalent metal bisulfate complexes is approximately
 304 equivalent (Ball & Nordstrom, 1991; Mattigod & Sposito, 1977).

305 ^k Regression of anhydrite solubility data in Figs. 1a and 3a ($CaHSO_4^+$), 2a and 3c ($Na_2SO_4^0$).

306 ^l Pokrovski et al. (1995).

307 ^m Estimated from logK's at the vapor saturation pressure from Hnedkovsky et al. (2005).

308 ⁿ Sverjensky et al. (1997).

309 ^o Regression of AgCl solubility data from (Williams-Jones & Seward, 1989), Ca-silicate solubility data (Luce et al., 1985) and
 310 anhydrite solubility data shown in Fig. 3d.

311 ^p (Pokrovski & Dubessy, 2015)

312 ^q Regression of Raman speciation (Giggenbach, 1971; Pokrovski & Dubessy, 2015; Pokrovski & Dubrovinsky, 2011) shown in Fig.
 313 3e,f.

314 ^r Regression of logK's from electrical conductance data from Quist et al. (1965), 0-5 kbar and 100-800°C.

316 We also investigated the use of our solubility model for calculating anhydrite solubilities in
 317 NaCl solutions at low temperatures and pressures. However, our predicted solubilities did not
 318 agree with the experimental measurements of Blount & Dickson (1969). The latter measured
 319 solubilities of anhydrite in H₂O–NaCl solutions at vapor-saturated conditions, and 0.05 and 0.1
 320 GPa and 100–450°C. The experimental data show a negative temperature dependence at low
 321 pressures and temperatures, in marked contrast to the experiments of Newton and Manning (2005)
 322 which show a positive temperature dependence at 1 GPa and 600–800°C (see Figs. 1-2). Although
 323 our calculations of anhydrite solubility in pure water at vapor-saturated conditions were consistent
 324 with the experiments of Blount and Dickson (1969), our model overpredicted the solubilities at
 325 low pressures with increasing NaCl concentrations up to 6.0 m owing to high model concentrations
 326 of the complex $Na_2SO_4^0$. We note that $Na_2SO_4^0$ is thermodynamically constrained in our model
 327 along the liquid-vapor saturation curve by the results of Hnedkovsky et al. (2005)—see Fig. 3c.
 328 Consequently, there is a fundamental inconsistency between the results of Blount and Dickson
 329 (1969) and Hnedkovsky et al. (2005). The reason for this inconsistency is not clear. We note
 330 however that in the Hnedkovsky et al. (2005) conductance study, equilibrium constants of five
 331 complexes were obtained by regression, which may have led to over-fitting of the conductance
 332 data. It is evident that additional experimental speciation and solubility data are needed. We
 333 emphasize that our characterization of sulfate complexes was optimized to match the high-pressure
 334 experiments of Newton and Manning (2005) since we are interested in the solubility and speciation
 335 of sulfur in subduction zone fluids at pressures of 2 and 3 GPa.

336 As a further test of the robustness of our models we investigated the possible importance
 337 of several additional aqueous sulfur-bearing species were also investigated while fitting the
 338 experimental data in Fig. 2a. These included $H_2SO_4^0$, $NaHSO_4^0$, and the trisulfur radical ion S_3^- .
 339 First, we note that the experimental study by (Hnedkovsky et al., 2005) provided dissociation
 340 constants at vapor-saturated conditions for the $H_2SO_4^0$ and $NaHSO_4^0$ complexes according to the
 341 equilibria

342
 343 We also retrieved the thermodynamic properties and equation of state parameters of $H_2SO_4^0$ from
 344 the experimental data of, who reported equilibrium constants In addition, experimental
 345 equilibrium constants for Eqs. 6 and 7 were reported by Quist et al. (1965) based on the electrical
 346 conductances of dilute aqueous sulfuric acid solutions at temperatures of 100–800°C and 0–5 kbar
 347 (Table 2 and Fig. 3g). It is perhaps significant that our equation of state fit to the extensive dataset
 348 obtained by Quist et al. (1969) does not agree at low temperatures and pressures with all the data
 349 from Hnedkovsky et al. (2005). At high pressures relevant to the experiments of Newton & Manning
 350 (2005), we found that this species was mostly dissociated and did not have any effect on the modeled
 351 anhydrite solubilities.

352 For $NaHSO_4^0$, we used the predictive model of Sverjensky et al. (1997) to estimate the
 353 dissociation constant of (Eq. 8) at higher pressures and temperatures (Fig. 3h), but found that this
 354 complex did not reproduce the steep increase in anhydrite solubility vs NaCl shown in Fig. 2a.
 355 Although a complete thermodynamic model should include every possible species, $Na_2SO_4^0$ and
 356 $CaCl_2^0$ appeared to be the most important in this system. Preliminary models indicated that the
 357 $NaHSO_4^0$ complex was typically accounting for less than about 10% of the dissolved sulfur species.

362 Therefore we did not include this complex in the final regression analysis of the solubility data.
 363 Nevertheless, we do include preliminary predictions of its thermodynamic properties and equation
 364 of state parameters in Table 2. During application of our model to subduction zone mineral
 365 assemblages, the $NaHSO_4^0$ did appear to be important under some conditions (see below).

366 HKF equation of state parameters for the $NaSO_4^-$ complex were provided by (Pokrovski et
 367 al., 1995) based on regression of experimental data at the vapor saturation pressure. We refined
 368 these parameters using the data from Hnedkovsky et al. (2005) to remain internally consistent with
 369 our new species $Na_2SO_4^0$ and $NaHSO_4^0$ (Fig. 3b and Table 2).

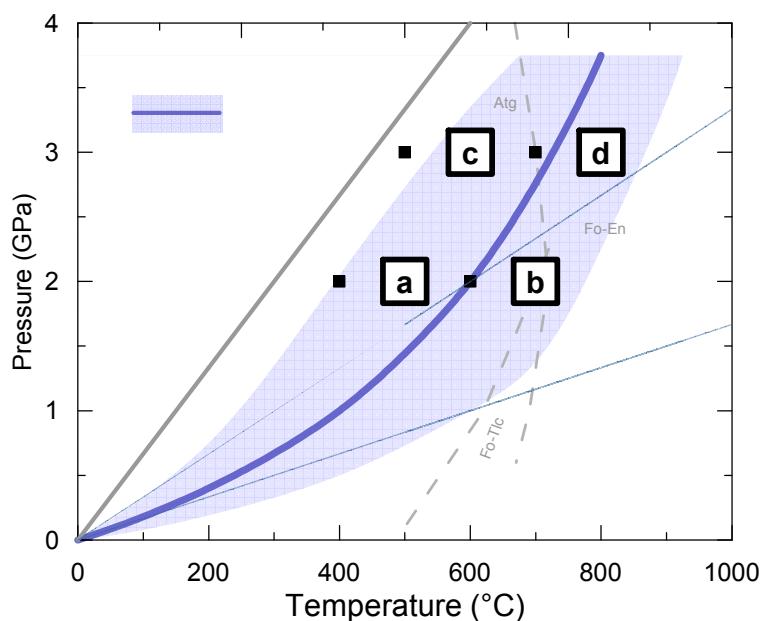
370 We also included the trisulfur radical ion S_3^- in the DEW database, since its importance in
 371 geological fluids has been demonstrated (Pokrovski & Dubessy, 2015; Pokrovski & Dubrovinsky, 2011). To
 372 constrain the thermodynamic properties of this ion, we regressed available experimental data from
 373 Giggenbach (1971), Pokrovski & Dubrovinsky (2011) and Pokrovski & Dubessy (2015), which cover the
 374 vapor-saturated pressure-temperature range, as well as 0.1 GPa and 0.5 GPa pressures between
 375 300 and 500°C (Fig. 3e,d). We provide our estimated equation of state coefficients in Table 2. We
 376 note that our thermodynamic parameters differ from those reported by Pokrovski and Dubessy
 377 (2015), resulting in a negative pressure dependence of $\log K$ instead of a positive one. Use of the
 378 originally published parameters resulted in an unphysical pressure dependence (Fig. S3); thus we
 379 regressed these data as shown in Fig. 3e,d, noting that better experimental constraints are needed
 380 at pressures > 0.1 GPa.

381

382 2.2. Predictive modelling of subduction zone fluids

383

384 We predicted the geochemistry of fluids in equilibrium with mafic and ultramafic mineral
 385 assemblages at subduction zone conditions as a function of fO_2 . Most of the fluid release in
 386 subduction zones is thought to occur via the dehydration of antigorite between 2 and 3 GPa (Schmidt
 387 & Poli, 1998; Ulmer & Trommsdorff, 1995). Hence we performed calculations at these two pressures and
 388 at 400 to 800°C to encompass both cold and hot subduction zones (Fig. 4). We varied fO_2 over 6
 389 orders of magnitude from FMQ-2 to FMQ+4. This wide range in $\log fO_2$ is intended to enable
 390 comparison with the similarly wide range reported in the literature (Ague et al., 2022; Debret &
 391 Sverjensky, 2017; Iacovino et al., 2020; Padrón-Navarta et al., 2023; Piccoli et al., 2019; Tumiati et al., 2015). We
 392 predicted the aqueous speciation and solubilities of major chemical elements Na, K, Mg, Ca, Fe,
 393 Al, Si, Cl, C, and S and the pH in equilibrium with model mafic and ultramafic mineral
 394 assemblages as a function of fO_2 (Tables S1 and S2). We assumed saturation with a S-bearing
 395 mineral to determine the maximum possible concentrations of S in the fluids. Pyrrhotite was stable
 396 at reduced conditions, while anhydrite was stable at oxidized conditions ($\sim\Delta\text{FMQ}>3$). Pyrite was
 397 stable at intermediate fO_2 around $\sim\text{FMQ}$ to $\text{FMQ}+2$ (Fig. 6). All calculations assumed a dissolved
 398 Cl⁻ content of 0.5 m, broadly consistent with fluid inclusion data (Scambelluri et al., 2004).


399

400 2.2.1. Mafic assemblages

401

402 To represent the oceanic crust, we used an eclogitic assemblage consisting of garnet +
 403 clinopyroxene + quartz/coesite \pm magnetite. At the lowest T (400°C) model runs, lawsonite, talc,
 404 chlorite, biotite and quartz were found to represent the equilibrium assemblage. We used simplified
 405 garnet and clinopyroxene solid solution compositions based on natural samples of mafic eclogites
 406 (Viate et al., 2018). For example, the garnet end-members pyrope ($Mg_3Al_2Si_3O_{12}$), almandine
 407 ($Fe_3Al_2Si_3O_{12}$) and grossular ($Ca_3Al_2Si_3O_{12}$) were used in 12:63:25 proportions to buffer fluid

408 concentrations of Mg, Fe and Ca, respectively. Clinopyroxene was simplified as a 35:20:45
 409 mixture of diopside ($\text{CaMgSi}_2\text{O}_6$), hedenbergite ($\text{CaFeSi}_2\text{O}_6$) and jadeite ($\text{NaAlSi}_2\text{O}_6$). The Cl
 410 concentration was fixed at 0.5 m, broadly consistent with measurements of serpentinite-hosted
 411 fluid inclusions associated with antigorite breakdown (Scambelluri et al., 2004). Na^+ was
 412 calculated in the model by charge balance, but also linearly varied with the concentration of
 413 Na_2SO_4 , thus being most abundant at high $f\text{O}_2$ and high T (see **Table S1**). We imposed an arbitrary
 414 K concentration of 0.1 m; this value is approximately consistent with the observation that Na/K
 415 ratios of the fluid inclusions reported by Scambelluri et al. (2004) are relatively constant around
 416 12. Most model runs had final Na concentrations between 0.3 and 0.6 m, giving lower Na/K ratios
 417 of 3 to 6, which might be expected for the mafic oceanic crust compared to serpentinite-hosted
 418 fluid inclusions. However, we note that high $f\text{O}_2$, high-T model runs had Na concentrations >1 m
 419 and up to 6 m at 800°C. The effect of K on S speciation was unimportant in all model runs,
 420 representing <0.1 % of the total S budget in all cases (**Tables S1 and S2**). Finally, we fixed the C
 421 concentration at 0.1 m, noting that it may be highly variable across different subduction zones
 422 (Plank & Manning, 2019).
 423

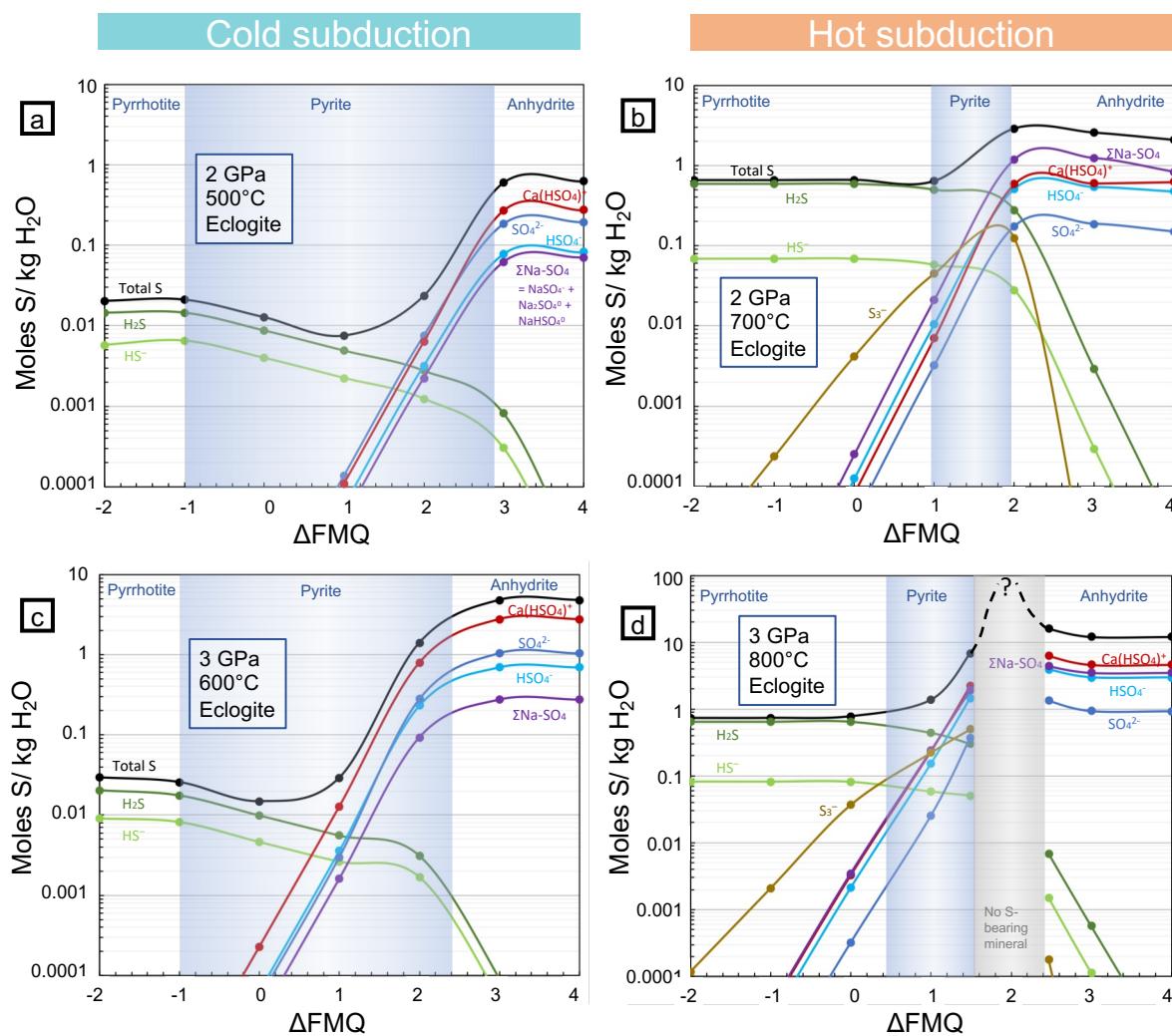
424
 425 **Figure 4:** Pressure-temperature diagram showing the range of subduction zone conditions recorded
 426 in natural subduction zone metamorphic rocks (purple region; Penniston-Dorland et al., 2015) with
 427 the “average” global subduction zone thermal profile (thick purple curve). The “Cold subduction”
 428 and “Hot subduction” scenarios depicted in Fig. 5 ([a, c] and [b, d], respectively) are shown here
 429 for reference. Additional models were calculated for four more combinations of P-T conditions
 430 (black squares), for a total of eight, which are shown in Figs. S4 and S5. Antigorite breakdown
 431 reaction from (Ulmer & Trommsdorff, 1995) shown for reference (gray dashed lines) as well as
 432 5°C/km (gray line; “Forbidden Zone”), 10°C/km and 20°C/km geotherms (pale blue lines). Atg:
 433 antigorite; Fo: forsterite; En: enstatite; Tlc: talc.
 434

435 2.2.2. Ultramafic assemblages

436
 437 The serpentинised mantle lithosphere was represented by ultramafic assemblages consisting of
 438 clinopyroxene + tremolite + magnetite \pm olivine \pm orthopyroxene \pm antigorite \pm chlorite \pm garnet

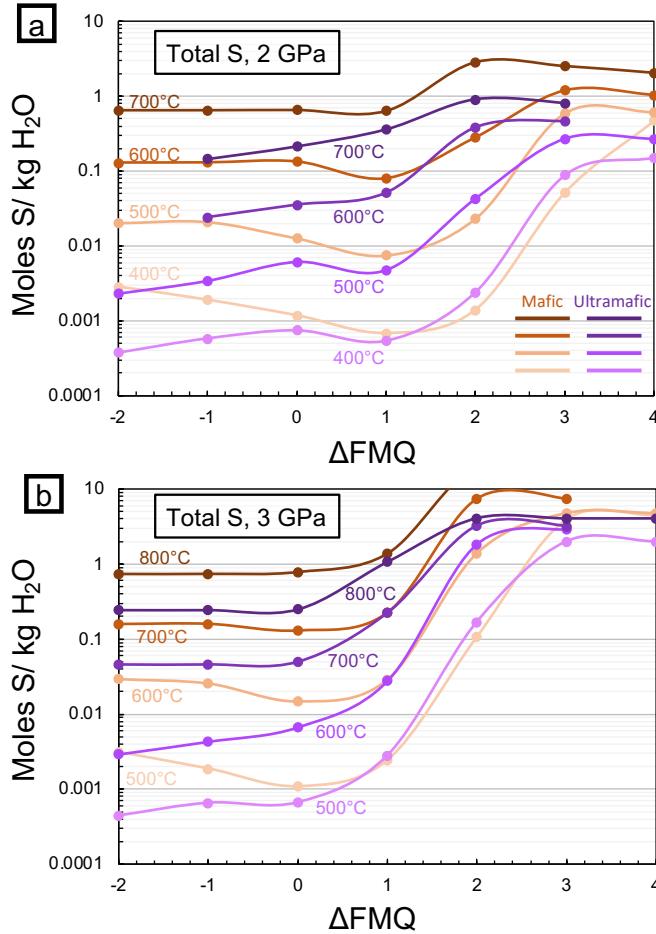
439 \pm hematite + pyrite, pyrrhotite or anhydrite, corresponding to serpentinites at lower T-P and to
 440 garnet peridotite at higher T-P. The transition from antigorite to forsterite + enstatite occurs around
 441 600-700 °C (Fig. 4), hence we changed the mineralogy accordingly to satisfy equilibrium in all
 442 model runs. No mineral phase could successfully buffer Ca concentration in our model runs due
 443 to phase rule violations. Therefore we fixed the Ca concentration at 0.05 m, to approach the
 444 average Ca/Na of 0.2 measured in serpentinite-hosted fluid inclusions by Scambelluri et al. (2004).
 445 The Cl concentration was fixed at 0.5 m, and Na was used to achieve charge balance. However,
 446 this resulted in prohibitively high Na concentrations (>100 m) in high fO_2 runs due to the
 447 dominance of Na_2SO_4 and $NaSO_4^-$. We overcame this problem by instead using Ca^{2+} to satisfy
 448 charge balance, and fixing Na concentration at 0.5 m. This led to somewhat lower total S
 449 concentrations in ultramafic fluids at high temperatures compared to mafic fluids, as seen in Fig.
 450 3 of the main text. We refer the reader to Table S2 for a summary of model runs with ultramafic
 451 assemblages.

452 We note that the compositions of olivine, pyroxenes and chlorite in the ultramafic runs are
 453 dependent on the imposed fO_2 , with Mg# increasing with increasing fO_2 , and in all cases
 454 equilibrium olivine Mg# is lower than typical mantle values of ~ 0.9 . Hypothetical olivines
 455 determined by EQ3 had Mg#’s from ~ 0.4 at QFM-2 to ~ 0.85 at QFM+3 (Table S2). This is partly
 456 due the fact that magnetite is the only Fe^{3+} -bearing phase in the model (other than hematite in runs
 457 where $\log fO_2 > 3$). In natural rocks, some Fe^{3+} is incorporated into pyroxenes, and mantle spinel
 458 is not pure magnetite, hence our thermodynamic approach has inherent limitations in dealing with
 459 Fe speciation, due to a lack of thermodynamic data. Chlorite Mg#’s similarly varied from 0.7 at
 460 QFM-2 to 0.95 at QFM+3. As a comparison, chlorite in natural chlorite harzburgites from the
 461 Cerro del Almirez complex have Mg# around 0.95 (Padrón-Navarta et al., 2011). We anticipate
 462 that these departures from natural compositions do not significantly change our results because the
 463 total concentrations of Fe and Mg in the fluids do not dramatically change with varying fO_2 , and
 464 importantly since they are lower by factors of 5-10 compared to those of Ca and Na at oxidizing
 465 conditions (Tables S1 and S2).


466 3. Results

467 The predicted total dissolved sulfur and sulfur speciation in 0.5 m chloride fluids in equilibrium
 468 with the mafic eclogite assemblages and pyrrhotite, pyrite, or anhydrite are summarized in Fig. 5.
 469 Results are shown for cold and hot subduction paths (see also Figs. S4, S5). A major difference
 470 between the two paths is that at higher temperatures the stability field for pyrite contracts
 471 significantly (Figs. 5, S4 and S5). The calculated total sulfur solubilities are ~ 2 -10 times higher
 472 than previous predictions (e.g. Walters et al., 2020).

473 It can be seen in Fig. 5 that the bulk of the dissolved sulfur at oxidizing conditions is
 474 dominated by $CaHSO_4^+$, and/or $Na-SO_4$ species, with the latter becoming dominant in the hot
 475 subduction scenario. At reducing conditions, H_2S and HS^- are dominant. The transition from
 476 reduced to oxidized sulfur species occurs over a range of about one $\log fO_2$ unit (Fig. S6). At 3
 477 GPa the transition occurs about one $\log fO_2$ unit lower than at 2 GPa. At the pressure-temperature
 478 conditions investigated, the total sulfur solubility is highest at oxidized conditions, i.e. when sulfate
 479 species are dominant. This behavior is particularly enhanced by the species $CaHSO_4^+$ and $Na_2SO_4^0$,
 480 but concentrations of HSO_4^- and SO_4^{2-} also surpass those of reduced species (Fig. 5).


481 A notable feature of Fig. 5 is that pyrite is stable at \sim FMQ+1 to +2, in the region where
 482 sulfate species become dominant. As a consequence, the total dissolved sulfur concentrations in
 483 equilibrium with pyrite reach values as high as about 3.0 m. This highlights the importance of the

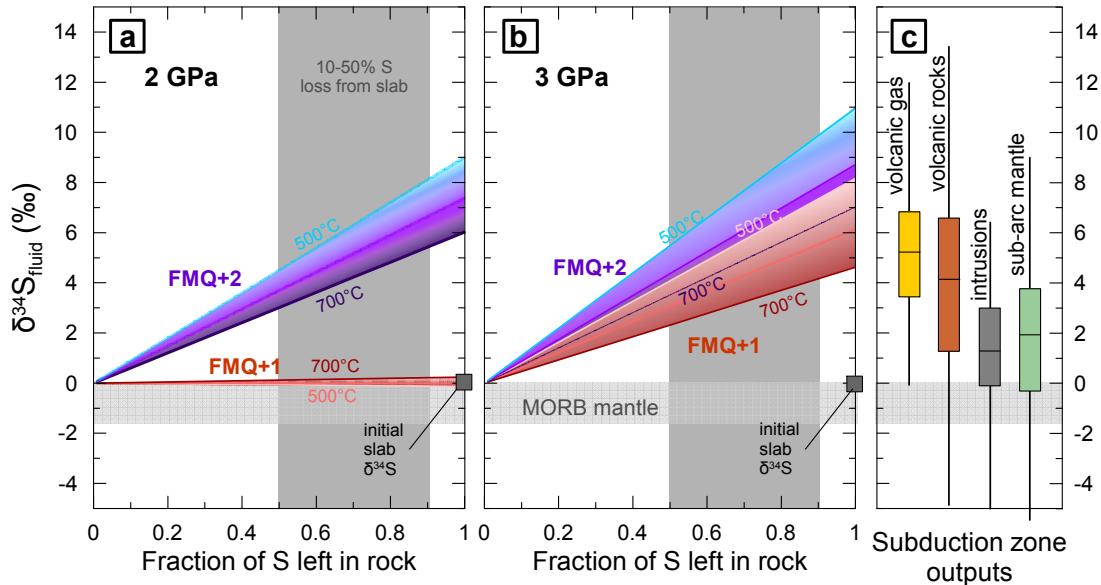
484 new complexes $CaHSO_4^+$ and $Na_2SO_4^0$ on pyrite solubility. As fO_2 is increased further, anhydrite 485 becomes stable, and the total S solubility becomes constant. At the highest pressure and 486 temperature (3 GPa and 800°C), there is also a narrow $\log fO_2$ range where no S-bearing phase 487 was found to saturate (Fig. 5d), suggesting maximum efficiency in S recycling at these conditions. 488

489
490 **Figure 5:** Predicted sulfur solubility and speciation in aqueous fluids as a function of $\log fO_2$ 491 (relative to FMQ) in equilibrium with a mafic eclogitic mineral assemblage plus a S-bearing 492 mineral. Panels (a) and (c) represent cold subduction, whereas (b) and (d) represent hot subduction 493 (see text). Note the wider pyrite stability field (blue shaded region) for cold subduction, and the 494 steep increase in sulfate species, with high anhydrite solubility at all conditions investigated. In (d), 495 there is a small ΔFMQ range in which no S-bearing phase could saturate.
496

497 In Fig. 6, we show the calculated total sulfur concentration of slab fluids in equilibrium 498 with mafic and ultramafic lithologies at different P-T- fO_2 conditions. Although rock type causes 499 subtle differences in the calculated sulfur contents, the overall behavior is similar. Fig. 6 illustrates 500 the important effect of temperature on sulfur solubility, which increases by about one order of 501 magnitude per 100°C. However, at lower temperatures there is a steeper increase in sulfur 502 solubility with increasing fO_2 . For example, at 500°C and 3 GPa, total dissolved sulfur increases 503 by >3 orders of magnitude with increasing fO_2 .

504
 505 **Figure 6:** Comparison of predicted total dissolved sulfur in fluids in equilibrium with mafic
 506 eclogite and ultramafic (serpentinite/garnet peridotite) assemblages. Isotherms are shifted to 100°C
 507 higher at 3 GPa, equivalent to a ~5°C/km geothermal gradient, consistent with the average
 508 subduction gradients derived from natural rocks (see Fig. S-5). The similar sulfur solubilities of the
 509 two mineral assemblages shows that P-T- $f\text{O}_2$ exert the primary control on sulfur solubility. Detailed
 510 S speciation shown in Figs. S-6 (mafic) and S-7 (ultramafic).

511 4. Discussion


512 Our results suggest that at FMQ+1.0 to +3.0, significant concentrations of oxidized sulfur species
 513 should be preferentially released into slab fluids as a function of temperature and pressure. These
 514 $f\text{O}_2$ conditions are comparable to findings by several authors suggesting that slab dehydration
 515 releases oxidizing fluids (Debret & Sverjensky, 2017; Iacovino et al., 2020; Walters et al., 2020). We therefore
 516 use our sulfur speciation model to evaluate the extent of sulfur isotopic fractionation between fluid
 517 and subducting slab.

518 4.1. Implications for sulfur isotopic fractionation

519 A central question surrounding the recycling of sulfur in subduction zones concerns the relative
 520 contributions from sediments and subducted oceanic lithosphere. We focus on the altered oceanic
 521 crust and serpentинised mantle lithosphere in this work because they represent a much larger

526 volume and are likely a dominant source of subducted sulfur (e.g. de Moor et al., 2022). Although
 527 subducted sedimentary sulfur has a large range of isotopic compositions from very negative $\delta^{34}\text{S}$
 528 pyrite to high positive $\delta^{34}\text{S}$ in seawater-derived sulfate (Alt et al., 1993), the sedimentary flux and
 529 its sulfur content vary widely across different subduction zones. Hence, we wish to constrain the
 530 isotopic signature of sulfur in slab fluids before any interaction with overlying sedimentary layers
 531 (cf. Ague et al., 2022; Padrón-Navarta et al., 2023), by considering fluids in equilibrium with the
 532 subducted mafic crust and mantle lithosphere.

533

534

535

536

537

538

539

540

541

542

543

544

Figure 7: Predicted sulfur isotope compositions of slab fluids relative to a subducting slab with initial $\delta^{34}\text{S}$ of 0‰ at (a) 2.0 GPa and (b) 3.0 GPa. The calculations use predicted proportions of sulfate and sulfide species to estimate isotopic fractionation between fluid and rock (see text). Calculations are shown for FMQ+1 and FMQ+2, often attributed to subduction fluids. Dark grey field shows the estimated recycling efficiency of sulfur of 10-50% (see text), and pale grey horizontal band corresponds to the estimates of the MORB mantle (see refs in Rezeau et al., 2023). The importance of sulfate-bearing species at lower $f\text{O}_2$ at 3 GPa compared to 2 GPa translates to higher $\delta^{34}\text{S}$ values. Our calculations match the range of measured $\delta^{34}\text{S}$ values in subduction zone outputs shown in (c) (Rezeau et al., 2023).

545

546

547

548

549

550

551

552

553

554

555

556

We address this question by calculating the equilibrium isotopic fractionation between released fluids and subducting slab, which relies on the proportion of oxidized sulfur in the fluid, the nature of the solid S-bearing phase, and temperature. We used the T-dependent fractionation factors $\alpha_{SO_4^{2-}-H_2S}$ from Ohmoto and Lasaga (1982), and α_{po-H_2S} and α_{py-H_2S} from Ohmoto (1979), assuming negligible isotopic fractionation between sulfur species having the same oxidation state. Pressure and $f\text{O}_2$ are not explicit variables in the calculations, but they control the sulfur speciation of the fluid and mineral stabilities (Figs. 5, 6 and S6a). Consequently, they ultimately play a crucial role in the degree of sulfur isotopic fractionation between fluid and rock (Fig. S6b). At 2 GPa, oxidized sulfur species become dominant above FMQ+1.5, whereas at 3 GPa they become dominant at FMQ+0.5 (Fig. S6a). At these conditions, pyrite is the dominant S-bearing mineral. Since the oxidized species are generally more ^{34}S -rich than their reduced counterparts (Ohmoto, 1979), slab fluids in equilibrium with pyrite at moderate $f\text{O}_2$ will be

557 isotopically enriched (Figs. 7, S6b), while pyrite will become progressively depleted as sulfur is
 558 released to the fluids.

559
 560 The resulting $\delta^{34}\text{S}$ signature of slab fluids is illustrated in Fig. 7, assuming closed-system
 561 equilibrium isotope fractionation, and an initial slab $\delta^{34}\text{S}$ signature of 0 ‰, generally consistent
 562 with subducted altered oceanic crust (e.g. Rezeau et al., 2023). It can be seen in Fig. 7 that, for a
 563 recycling efficiency of 10-50% (Li et al., 2020; Taracsák et al., 2023; Wallace, 2005; Walters et
 564 al., 2020), the magnitude of sulfur isotope fractionation expected between fluid and slab largely
 565 reproduces the global range of subduction outputs compiled by Rezeau et al. (2023). Therefore,
 566 without any external input of sulfur (e.g. sedimentary sulfides, seawater sulfate), the coexistence
 567 of sulfate-rich fluids with pyrite at the P-T- $f\text{O}_2$ conditions expected in subduction zones produces
 568 important isotope fractionation. We therefore consider it likely that the flux of oxidized sulfur from
 569 these fluids can oxidize the mantle wedge and elevate its overall $\delta^{34}\text{S}$ signature, as previously
 570 suggested (de Moor et al., 2022; Muth & Wallace, 2021; Taracsák et al., 2023; Walters et al., 2020). Nevertheless,
 571 we acknowledge that some subducting slabs may release fluids with lower $f\text{O}_2$, which would be
 572 instead dominated by reduced sulfur species with minimal isotopic fractionation (e.g. Li et al.,
 573 2020). We also recognize that isotopic fractionation in natural systems would be more complex,
 574 as the condition of isotopic equilibrium may not always be achieved and Rayleigh fractionation
 575 can occur during reprecipitation of metasomatic sulfides (Walters et al., 2019). Nonetheless, the
 576 widespread coexistence between high concentrations of aqueous sulfate species and pyrite, as
 577 suggested by our speciation model, should to a first order produce isotopically enriched slab fluids
 578 of the scale presented here.

579 We also note that while more oxidized fluids are expected to be more sulfur-rich, the higher
 580 pyrite solubility at higher temperatures suggests that this is where sulfur recycling is most efficient.
 581 However, higher temperatures are also associated with less isotopic fractionation (Fig. 7).
 582 Therefore, fluids with higher oxidizing power, e.g. rich in sulfate species, may not necessarily be
 583 the most ^{34}S -rich. Ultimately, the sulfur isotopic signatures of the mantle wedge and of subduction
 584 outputs depend on several factors, including the subduction P-T path, the relative proportions of
 585 mantle- and fluid-derived sulfur, and the initial $\delta^{34}\text{S}$ in the slab. Our results provide a basis to
 586 quantitatively assess the sulfur isotopic variability of fluid components from subducting slabs,
 587 upon which subsequent fluid-melt-rock interactions, additional sulfur sources, and magmatic
 588 processes can be superimposed. The large range of $\delta^{34}\text{S}$ values observed in subduction zone
 589 outputs in part reflects the expected variability in sulfur contents and isotopic signatures of slab
 590 fluids (Figs. 5-7).

591 592 **5. Conclusions**

593
 594 We have integrated high pressure experimental anhydrite solubility data in pure water and NaCl
 595 solutions (Newton and Manning, 2005) into an aqueous speciation and solubility model using the
 596 complexes CaHSO_4^+ , CaCl_2^0 and Na_2SO_4^0 . As a result we have provided a framework for
 597 interpreting sulfur isotopic fractionation between fluids and subducting slabs as a function of $f\text{O}_2$.
 598 At moderately oxidizing conditions of FMQ+1 to FMQ+2, predicted high pressure sulfur-bearing
 599 fluids in equilibrium with subducting mafic and ultramafic mineral assemblages and pyrite have
 600 much higher solubilities of oxidized sulfur species than previously recognised. This produces
 601 isotopic fractionation between fluids and subducting slabs, thus our results are consistent with the
 602 hypothesis that slab fluids could oxidize the mantle wedge with ^{34}S -rich sulfate species.

603 **Acknowledgements**

604

605 This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 606 Basic Energy Sciences, Geosciences program under Award Number DE-SC0019830 as well as
 607 NSF Petrology and Geochemistry Grant Number 2032039.

610 **Open Research**

611

612 All calculations in this work were performed with the software EQ3 (Wolery, 1992), with chemical
 613 species defined in the Extended Deep Earth Water model (Huang & Sverjensky, 2019) and this
 614 work (Table 2).

617 **References**

618

619 Ague, J. J., Tassara, S., Holycross, M. E., Li, J. L., Cottrell, E., Schwarzenbach, E. M., et al. (2022). Slab-derived
 620 devolatilization fluids oxidized by subducted metasedimentary rocks. *Nature Geoscience*.
 621 <https://doi.org/10.1038/s41561-022-00904-7>

622 Alt, J. C., Shanks, W. C., & Jackson, M. C. (1993). Cycling of sulfur in subduction zones: The geochemistry of
 623 sulfur in the Mariana Island Arc and back-arc trough. *Earth and Planetary Science Letters*, 119(4), 477–494.
 624 [https://doi.org/10.1016/0012-821X\(93\)90057-G](https://doi.org/10.1016/0012-821X(93)90057-G)

625 Ball, J. W., & Nordstrom, D. K. (1991). User's manual for wateq4f, with revised thermodynamic data base and test
 626 cases for calculating speciation of major, trace, and redox elements in natural waters. *US Geological Survey*.

627 Bebout, G. E., & Penniston-Dorland, S. C. (2016, January 1). Fluid and mass transfer at subduction interfaces-The
 628 field metamorphic record. *Lithos*. Elsevier. <https://doi.org/10.1016/j.lithos.2015.10.007>

629 Bénard, A., Klimm, K., Woodland, A. B., Arculus, R. J., Wilke, M., Botcharnikov, R. E., et al. (2018). Oxidising
 630 agents in sub-arc mantle melts link slab devolatilisation and arc magmas. *Nature Communications*, 9(1), 1–10.
 631 <https://doi.org/10.1038/s41467-018-05804-2>

632 Blount, C. W., & Dickson, F. W. (1969). The solubility of anhydrite (CaSO₄) in NaCl-H₂O from 100 to 450°C and
 633 1 to 1000 bars. *Geochimica et Cosmochimica Acta*, 33(2), 227–245. [https://doi.org/10.1016/0016-7037\(69\)90140-9](https://doi.org/10.1016/0016-7037(69)90140-9)

634 Brounce, M., Reagan, M. K., Kelley, K. A., Cottrell, E., Shimizu, K., & Almeev, R. (2021). Covariation of Slab
 635 Tracers, Volatiles, and Oxidation During Subduction Initiation. *Geochemistry, Geophysics, Geosystems*,
 636 22(6), 1–30. <https://doi.org/10.1029/2021GC009823>

637 Carmichael, I. S. E. (1991). The redox states of basic and silicic magmas: a reflection of their source regions?
 638 *Contributions to Mineralogy and Petrology*, 106(2), 129–141. <https://doi.org/10.1007/BF00306429>

639 Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction
 640 components in Umnak Volcanics, Aleutian Arc. *Geochemistry, Geophysics, Geosystems*, 1(6).
 641 <https://doi.org/10.1029/1999GC000010>

642 Colin, A., Schmidt, C., Pokrovski, G. S., Wilke, M., Borisova, A. Y., & Toplis, M. J. (2020). In situ determination
 643 of sulfur speciation and partitioning in aqueous fluid-silicate melt systems. *Geochemical Perspectives Letters*,
 644 31–35. <https://doi.org/10.7185/geochemlet.2020>

645 Creaser, E. C., Steele-MacInnis, M., & Tutolo, B. M. (2022). A model for the solubility of anhydrite in H₂O-NaCl
 646 fluids from 25 to 800 °C, 0.1 to 1400 MPa, and 0 to 60 wt% NaCl: Applications to hydrothermal ore-forming
 647 systems. *Chemical Geology*, 587. <https://doi.org/10.1016/j.chemgeo.2021.120609>

648 Debret, B., & Sverjensky, D. A. (2017). Highly oxidising fluids generated during serpentinite breakdown in
 649 subduction zones/704/2151/209/704/2151/431/119/118 article. *Scientific Reports*, 7(1), 1–6.
 650 <https://doi.org/10.1038/s41598-017-09626-y>

651 Evans, K. A. (2012). The redox budget of subduction zones. *Earth-Science Reviews*, 113(1–2), 11–32.
 652 <https://doi.org/10.1016/j.earscirev.2012.03.003>

653 Giggenbach, W. (1971). Blue solutions of sulfur in water at elevated temperatures. *Inorganic Chemistry*, 10(6),
 654 1306–1308. <https://doi.org/10.1021/ic50100a043>

656 Grove, T., Parman, S., Bowring, S., Price, R., & Baker, M. (2002). The role of an H₂O-rich fluid component in the
 657 generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California.
 658 *Contributions to Mineralogy and Petrology*, 142(4), 375–396. <https://doi.org/10.1007/s004100100299>

659 Hnedkovsky, L., Wood, R. H., & Balashov, V. N. (2005). Electrical conductances of aqueous Na₂SO₄, H₂SO₄, and
 660 their mixtures: Limiting equivalent ion conductances, dissociation constants, and speciation to 673 K and 28
 661 MPa. *Journal of Physical Chemistry B*, 109(18), 9034–9046. <https://doi.org/10.1021/jp045707c>

662 Huang, F., & Sverjensky, D. A. (2019). Extended Deep Earth Water Model for predicting major element mantle
 663 metasomatism. *Geochimica et Cosmochimica Acta*, 254, 192–230. <https://doi.org/10.1016/j.gca.2019.03.027>

664 Iacovino, K., Guild, M. R., & Till, C. B. (2020). Aqueous fluids are effective oxidizing agents of the mantle in
 665 subduction zones. *Contributions to Mineralogy and Petrology*, 175(4), 1–21. <https://doi.org/10.1007/s00410-020-1673-4>

666 Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids,
 667 melts and supercritical liquids at 120–180 km depth. *Nature*, 437(7059), 724–727.
 668 <https://doi.org/10.1038/nature03971>

669 Li, J. L., Schwarzenbach, E. M., John, T., Ague, J. J., Huang, F., Gao, J., et al. (2020). Uncovering and quantifying
 670 the subduction zone sulfur cycle from the slab perspective. *Nature Communications*, 11(1), 1–12.
 671 <https://doi.org/10.1038/s41467-019-14110-4>

672 Luce, R. W., Cygan, G. L., Hemley, J. J., & D'angelo, W. M. (1985). Some mineral stability relations in the system
 673 CaO□MgO□SiO₂□H₂O□HCl. *Geochimica et Cosmochimica Acta*, 49(2), 525–538.
 674 [https://doi.org/10.1016/0016-7037\(85\)90044-4](https://doi.org/10.1016/0016-7037(85)90044-4)

675 Manning, C. E. (2004). The chemistry of subduction-zone fluids. *Earth and Planetary Science Letters*, 223(1–2), 1–
 676 16. <https://doi.org/10.1016/j.epsl.2004.04.030>

677 Mattigod, S. V., & Sposito, G. (1977). Estimated Association Constants for Some Complexes of Trace Metals with
 678 Inorganic Ligands. *Soil Science Society of America Journal*, 41(6), 1092–1097.
 679 <https://doi.org/10.2136/sssaj1977.03615995004100060015x>

680 de Moor, J. M., Fischer, T. P., & Plank, T. (2022). Constraints on the sulfur subduction cycle in Central America
 681 from sulfur isotope compositions of volcanic gases. *Chemical Geology*, 588, 120627.
 682 <https://doi.org/https://doi.org/10.1016/j.chemgeo.2021.120627>

683 Muth, M. J., & Wallace, P. J. (2021). Slab-derived sulfate generates oxidized basaltic magmas in the southern
 684 Cascade arc (California, USA). *Geology*, 49(10), 1177–1181. <https://doi.org/10.1130/g48759.1>

685 Newton, R. C., & Manning, C. E. (2005). Solubility of anhydrite, CaSO₄, in NaCl-H₂O solutions at high pressures
 686 and temperatures: Applications to fluid-rock interaction. *Journal of Petrology*, 46(4), 701–716.
 687 <https://doi.org/10.1093/petrology/egh094>

688 Ohmoto, H. (1979). Isotopes of sulfur and carbon. *Geochemistry of Hydrothermal Ore Deposits*.

689 Ohmoto, H., & Lasaga, A. C. (1982). Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal
 690 systems. *Geochimica et Cosmochimica Acta*, 46(10), 1727–1745. [https://doi.org/10.1016/0016-7037\(82\)90113-2](https://doi.org/10.1016/0016-7037(82)90113-2)

691 Padrón-Navarta, J. A., Sánchez-Vizcaí, V. L., Garrido, C. J., & Gómez-Pugnaire, M. T. (2011). Metamorphic record
 692 of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del
 693 Almirez, Nevado-Filábride complex, Southern Spain). *Journal of Petrology*, 52(10), 2047–2078.
 694 <https://doi.org/10.1093/petrology/egr039>

695 Padrón-Navarta, J. A., López Sánchez-Vizcaíno, V., Menzel, M. D., Gómez-Pugnaire, M. T., & Garrido, C. J.
 696 (2023). Mantle wedge oxidation from deserpentinitization modulated by sediment-derived fluids. *Nature
 697 Geoscience*, 16(March). <https://doi.org/10.1038/s41561-023-01127-0>

698 Parkinson, I. J., & Arculus, R. J. (1999). The redox state of subduction zones: Insights from arc-peridotites.
 699 *Chemical Geology*, 160(4), 409–423. [https://doi.org/10.1016/S0009-2541\(99\)00110-2](https://doi.org/10.1016/S0009-2541(99)00110-2)

700 Penniston-Dorland, S. C., Kohn, M. J., & Manning, C. E. (2015). The global range of subduction zone thermal
 701 structures from exhumed blueschists and eclogites: Rocks are hotter than models. *Earth and Planetary Science
 702 Letters*, 428, 243–254. <https://doi.org/10.1016/j.epsl.2015.07.031>

703 Piccoli, F., Hermann, J., Pettke, T., Connolly, J. A. D., Kempf, E. D., & Vieira Duarte, J. F. (2019). Subducting
 704 serpentinites release reduced, not oxidized, aqueous fluids. *Scientific Reports*, 9(1), 1–7.
 705 <https://doi.org/10.1038/s41598-019-55944-8>

706 Plank, T., & Manning, C. E. (2019). Subducting carbon. *Nature*, 574(7778), 343–352.
 707 <https://doi.org/10.1038/s41586-019-1643-z>

708 Pokrovski, G. S., & Dubessy, J. (2015). Stability and abundance of the trisulfur radical ion S₃[–] in hydrothermal
 709 fluids. *Earth and Planetary Science Letters*, 411, 298–309. <https://doi.org/10.1016/j.epsl.2014.11.035>

712 Pokrovski, G. S., & Dubrovinsky, L. S. (2011). The S₃- ion is stable in geological fluids at elevated temperatures
713 and pressures. *Science*, 331(6020), 1052–1054. <https://doi.org/10.1126/science.1199911>

714 Pokrovski, G. S., Schott, J., & Sergeyev, A. S. (1995). Experimental determination of the stability constants of
715 NaSO₄⁻ and NaB(OH)₄ in hydrothermal solutions using a new high-temperature sodium-selective glass
716 electrode — Implications for boron isotopic fractionation. *Chemical Geology*, 124(3–4), 253–265.
717 [https://doi.org/10.1016/0009-2541\(95\)00057-S](https://doi.org/10.1016/0009-2541(95)00057-S)

718 Quist, A. S., Marshall, W. L., & Jolley, H. R. (1965). Electrical conductances of aqueous solutions at high
719 temperature and pressure. II. The conductances and ionization constants of sulfuric acid-water solutions from
720 0 to 800° and at pressures up to 4000 bars. *Journal of Physical Chemistry*, 69(8), 2726–2735.
721 <https://doi.org/10.1021/j100892a040>

722 Rezeau, H., Jagoutz, O., Beaudry, P., Izon, G., Kelemen, P., & Ono, S. (2023). The role of immiscible sulfides for
723 sulfur isotope fractionation in arc magmas: Insights from the Talkeetna island arc crustal section, south-central
724 Alaska. *Chemical Geology*, 619. <https://doi.org/10.1016/j.chemgeo.2023.121325>

725 Richards, J. P. (2011). HIGH Sr/Y ARC MAGMAS AND PORPHYRY Cu Mo Au DEPOSITS: JUST ADD
726 WATER. *Economic Geology*, 106(7), 1075–1081. <https://doi.org/10.2113/econgeo.106.7.1075>

727 Scambelluri, M., Fiebig, J., Malaspina, N., Müntener, O., & Pettke, T. (2004). Serpentinite Subduction: Implications
728 for Fluid Processes and Trace-Element Recycling. *International Geology Review*, 46(7), 595–613.
729 <https://doi.org/10.2747/0020-6814.46.7.595>

730 Scambelluri, M., Pettke, T., Rampone, E., Godard, M., & Reusser, E. (2014). Petrology and trace element budgets of
731 high-pressure peridotites indicate subduction dehydration of serpentinitized mantle (cima di Gagnone, Central
732 Alps, Switzerland). *Journal of Petrology*, 55(3), 459–498. <https://doi.org/10.1093/petrology/egt068>

733 Schmidt, C., & Seward, T. M. (2017). Raman spectroscopic quantification of sulfur species in aqueous fluids: Ratios
734 of relative molar scattering factors of Raman bands of H₂S, HS⁻, SO₂, HSO₄⁻, SO₄²⁻, S₂O₃²⁻, S₃⁻ and
735 H₂O at ambient conditions and information on changes with pressure and temperature. *Chemical Geology*,
736 467, 64–75. <https://doi.org/10.1016/j.chemgeo.2017.07.022>

737 Schmidt, M. W., & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for
738 arc magma generation. *Earth and Planetary Science Letters*, 163(1–4), 361–379.
739 [https://doi.org/10.1016/S0012-821X\(98\)00142-3](https://doi.org/10.1016/S0012-821X(98)00142-3)

740 Shock, E. L., & Helgeson, H. C. (1988). Calculation of the thermodynamic and transport properties of aqueous
741 species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state
742 predictions to 5 kb and 1000°C. *Geochimica et Cosmochimica Acta*, 52(8), 2009–2036.
743 [https://doi.org/10.1016/0016-7037\(88\)90181-0](https://doi.org/10.1016/0016-7037(88)90181-0)

744 Shock, E. L., Helgeson, H. C., & Sverjensky, D. A. (1989). Calculation of the thermodynamic and transport
745 properties of aqueous species at high pressures and temperatures: Standard partial molal properties of
746 inorganic neutral species. *Geochimica et Cosmochimica Acta*, 53(9), 2157–2183.
747 [https://doi.org/10.1016/0016-7037\(89\)90341-4](https://doi.org/10.1016/0016-7037(89)90341-4)

748 Sverjensky, D. A., Shock, E. L., & Helgeson, H. C. (1997). Prediction of the thermodynamic properties of aqueous
749 metal complexes to 1000°C and 5 kb. *Geochimica et Cosmochimica Acta*, 61(7), 1359–1412.
750 [https://doi.org/10.1016/S0016-7037\(97\)00009-4](https://doi.org/10.1016/S0016-7037(97)00009-4)

751 Sverjensky, Dimitri A. (2019). Thermodynamic modelling of fluids from surficial to mantle conditions. *Journal of
752 the Geological Society*, 176(2), 348–374. <https://doi.org/10.1144/jgs2018-105>

753 Sverjensky, Dimitri A., Harrison, B., & Azzolini, D. (2014). Water in the deep Earth: The dielectric constant and the
754 solubilities of quartz and corundum to 60 kb and 1200°C. *Geochimica et Cosmochimica Acta*, 129, 125–145.
755 <https://doi.org/10.1016/j.gca.2013.12.019>

756 Taracsák, Z., Mather, T. A., Ding, S., Plank, T., Brounce, M., Pyle, D. M., et al. (2023). Sulfur from the subducted
757 slab dominates the sulfur budget of the mantle wedge under volcanic arcs. *Earth and Planetary Science
758 Letters*, 602, 117948. <https://doi.org/10.1016/j.epsl.2022.117948>

759 Tomkins, A. G., & Evans, K. A. (2015). Separate zones of sulfate and sulfide release from subducted mafic oceanic
760 crust. *Earth and Planetary Science Letters*, 428, 73–83. <https://doi.org/10.1016/j.epsl.2015.07.028>

761 Tumiati, S., Godard, G., Martin, S., Malaspina, N., & Poli, S. (2015). Ultra-oxidized rocks in subduction mélanges?
762 Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. *Lithos*,
763 226, 116–130. <https://doi.org/10.1016/j.lithos.2014.12.008>

764 Ulmer, P., & Trommsdorff, V. (1995). Serpentine Stability to Mantle Depths and Subduction-Related Magmatism.
765 *Science*, 268(5212), 858–861. <https://doi.org/10.1126/science.268.5212.858>

766 Viete, D. R., Hacker, B. R., Allen, M. B., Seward, G. G. E., Tobin, M. J., Kelley, C. S., et al. (2018). Metamorphic
767 records of multiple seismic cycles during subduction. *Science Advances*, 4(3).
768 <https://doi.org/10.1126/sciadv.aaq0234>

769 Wallace, Paul J. (2005). Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion
770 and volcanic gas data. *Journal of Volcanology and Geothermal Research*, 140(1–3), 217–240.
771 <https://doi.org/10.1016/j.jvolgeores.2004.07.023>

772 Wallace, P.J. (2001). Volcanic SO₂ emissions and the abundance and distribution of exsolved gas in magma bodies.
773 *Journal of Volcanology and Geothermal Research*, 108(1–4), 85–106. [https://doi.org/10.1016/S0377-0273\(00\)00279-1](https://doi.org/10.1016/S0377-0273(00)00279-1)

775 Walters, J. B., Cruz-Uribe, A. M., & Marschall, H. R. (2019). Isotopic Compositions of Sulfides in Exhumed High-
776 Pressure Terranes: Implications for Sulfur Cycling in Subduction Zones. *Geochemistry, Geophysics,
777 Geosystems*, 20(7), 3347–3374. <https://doi.org/10.1029/2019GC008374>

778 Walters, J. B., Cruz-Uribe, A. M., & Marschall, H. R. (2020). Sulfur loss from subducted altered oceanic crust and
779 implications for mantle oxidation. *Geochemical Perspectives Letters*, 36–41.
780 <https://doi.org/10.7185/geochemlet.2011>

781 Wilkinson, J. J. (2013, November). Triggers for the formation of porphyry ore deposits in magmatic arcs. *Nature
782 Geoscience*. <https://doi.org/10.1038/ngeo1940>

783 Williams-Jones, A. E., & Seward, T. M. (1989). The stability of calcium chloride ion pairs in aqueous solutions at
784 temperatures between 100 and 360°C. *Geochimica et Cosmochimica Acta*, 53(2), 313–318.
785 [https://doi.org/10.1016/0016-7037\(89\)90383-9](https://doi.org/10.1016/0016-7037(89)90383-9)

786 Wolery, T. J. (1992). *EQ3/6, a software package for geochemical modeling of aqueous systems: package overview
787 and installation guide (version 7.0)*. Lawrence Livermore National Lab.
788