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Abstract
Deploying and testing cellular networks is a 

complex task due to the multitude of compo-
nents involved from the core to the radio access 
network (RAN) and user equipment (UE), all of 
which requires integration and constant monitor-
ing. Additional challenges are posed by the nature 
of the wireless channel, whose inherent random-
ness hinders the repeatability and consistency of 
the testing process. Consequently, existing solutions 
for both private and public cellular systems still rely 
heavily on human intervention for operations such 
as network reconfiguration, performance monitor-
ing, and end-to-end testing. This reliance significantly 
slows the pace of innovation in cellular systems. To 
address these challenges, we introduce 5G-CT, an 
automation framework based on OpenShift and 
the GitOps workflow, capable of deploying a soft-
warized end-to-end 5G and O-RAN-compliant sys-
tem in a matter of seconds without the need for 
any human intervention. We have deployed 5G-CT 
to test the integration and performance of open-
source cellular stacks, including OpenAirInterface, 
and have collected months of automated over-the-
air testing results involving software-defined radios. 
5G-CT brings cloud-native continuous integration 
and delivery to the RAN, effectively addressing the 
complexities associated with managing spectrum, 
radios, heterogeneous devices, and distributed com-
ponents. Moreover, it endows cellular networks with 
much needed automation and continuous testing 
capabilities, providing a platform to evaluate the 
robustness and resiliency of Open RAN software.

Introduction
The Open Radio Access Network (RAN) architec-
ture developed by the O-RAN Alliance, as well as 
the evolution in 3GPP LTE and NR designs, are 
moving cellular networks toward disaggregated, 
softwarized, programmable intelligent systems [1]. 
RAN disaggregation and softwarization can break 
the current vendor lock-in and open the cellular 
ecosystem to a larger number of players, facilitat-
ing innovation in the cellular market.

However, network disaggregation and multi-ven-
dor deployments are a double-edged sword: they 
provide much needed pathways to market diversity 
and supply chain robustness, but they also intro-
duce interoperability, performance, and security 
challenges. Interoperability testing can decrease the 

risks associated with Open RAN deployments and 
help to achieve feature and performance parity 
with traditional, inflexible systems. Cellular deploy-
ment and testing are challenging as they are mostly 
manual and require significant human intervention 
to install, configure, update, monitor, and evaluate 
network components.

This issue affects both public and private net-
works. Public networks become inflexible, costly, 
and difficult to update or upgrade. Consequently, 
they often lag behind the rapid pace of innovation 
in the wireless domain and may harbor unpatched 
vulnerabilities. In the case of private networks, the 
complexity of end-to-end cellular systems necessi-
tates specialized skills that are not typically found 
within the enterprise workforce. This makes the 
deployment of high-performance, robust cellu-
lar systems more costly compared to unlicensed 
technologies [2]. Therefore, it is clear that inte-
grating automation in wireless networks has to 
go beyond software and needs to also span into 
radio components, distributed and heterogeneous 
devices, and spectrum bands.

DevOps, a portmanteau of the words software 
development and infrastructure operations, can be 
used to streamline the integration, deployment, and 
testing of code on the compute infrastructure [3]. 
This paradigm, also called infrastructure as code, 
provides automation and tracking to ensure reli-
able and rapid delivery of new code and function-
alities, while maintaining an authoritative source for 
the system and infrastructure configuration.

In this article, we take a fundamental step toward 
cloud-native automation for the deployment and 
testing of open, programmable, multivendor end-
to-end cellular networks. Specifically, we design, 
prototype, and evaluate 5G-CT, a set of automat-
ed pipelines, microservices, and infrastructure 
that can deploy a complete end-to-end 5G and 
O-RAN-compliant cellular network in a few tens 
of seconds. 5G-CT leverages Red Hat OpenShift 
orchestration on a compute cluster which supports 
multiple core networks, edge, RAN (including the 
radio frontends), and RAN Intelligent Controllers 
(RICs) deployed as microservices. Additional micro-
services support the automation and the manage-
ment of radios and spectrum. GitOps [4] pipelines 
— a specific class of DevOps based on git reposito-
ries — implement Continuous Integration (CI) and 
Continuous Delivery (CD) mechanisms to track 
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authoritative sources for the codebase and the infra-
structure configuration, and keep the deployment 
environment synchronized and updated.

5G-CT is deployed and operated over-the-air in 
the Northeastern University FCC Innovation Zone. 
For months, it has been collecting test results (dis-
cussed later in this article) to evaluate the per-
formance of an end-to-end cellular network that 
includes the OpenAirInterface (OAI) 5G stack 
[5], commercial 5G User Equipments (UEs), and 
multiple core networks, that is, the open-source 
Open5GS and a commercial core from A5G Net-
works. By leveraging such automation, 5G-CT can 
effectively guarantee that heterogeneous, mul-
tivendor components can interoperate in a disag-
gregated and virtualized Open RAN system, and 
that code updates do not introduce regressions, 
while monitoring the system performance.

Related Work
DevOps techniques are widely used in the cloud 
computing domain. For instance, [6] showcases 
a cloud-based CI/CD workflow to build Docker 
images from code on remote repositories. How-
ever, this work is neither concerned with the auto-
mated over-the-air testing of RAN components, 
nor with evaluating how updated builds affect 
RAN Key Performance Indicators (KPIs).

Adopting DevOps techniques in cellular sys-
tems is challenging because of the heterogeneity of 
infrastructure, code, and functionalities in wireless 
networks. Moreover, DevOps for cellular need to 
manage spectrum resources and guarantee prede-
termined Quality of Service (QoS) levels to the end 
users. So far, the literature has mostly focused on 
the challenges to efficiently transition RAN work-
loads into microservices [7–10]. Even though these 
solutions provide enhanced and automated network 
control, they either do not consider the challenges 
involving the automated instantiation of the RAN, or 
the automated testing of RAN code and functional-
ities over the air, as we do in this work. Technolo-
gies to enable CI/CD and automated instantiation 
of RAN components are discussed in [2], which 
also provides insights on how to fine-tune the com-
pute machines where RAN functions are deployed. 
Differently from our article, this work does not focus 
on the actual prototyping of the described CI/CD 
and is not concerned with testing automation.

The OAI project has developed and maintains 
a CI framework to run integration and testing for 
the RAN and core network components of the 
project, including 4G and 5G versions. While this 
toolchain contributes to the quality assurance pro-
cess for OAI, it is not focused on deploying an end-
to-end network on a production environment, and 
the radio testing is performed within a confined 
environment (i.e., a small Faraday cage) [11]. The 
authors of [12] integrate OAI for a Kubernetes 
(k8s)-based CD framework, which however does 
not embed Continuous Testing (CT) capabilities. 
Other works leverage DevOps for RAN slicing [13] 
or core network management [4], but do not con-
sider the end-to-end RAN, core, and edge services 
(e.g., the RIC) deployment, as we do in this article.

Automated Open RAN Pipelines
In this section, we provide an overview of pipe-
lines for Open RAN automation, and showcase 
an example of pipeline for the CI, CD, and CT of 
Open RAN Next Generation Node Bases (gNBs).

CI, CD, and CT pipelines automatically perform 
tasks on the Open RAN infrastructure. We leverage 
Tekton — a framework to create CI/CD workflows 
for on-premise and cloud systems — to implement 
these tasks and automate our pipelines. Similarly, 
we rely on ArgoCD — that implements the GitOps 
declarative philosophy in a k8s microservices cluster 
— to synchronize and deploy configurations for the 
host machines and for the tasks from a version-con-
trolled remote repository, ensuring accountability, 
repeatability, and rollbacks. The tasks we designed 
carry out operations such as building container 
images and deploying them on the physical infra-
structure, matching workload resources to the 
nodes best fit to them (e.g., low-latency nodes), 
discovering available radio and spectrum bands, 
performing automatic testing, and monitoring the 
overall health of system and workloads.

A high-level diagram of a CI/CD/CT pipeline for 
Open RAN is shown in Fig. 1. The tasks of this pipe-
line are divided into four main groups: test specifi-
cation parsing, repeatable RAN builds, automatic 
testing of Open RAN components, and test sup-
port services. In the test specification parsing step, 
the details and specifications of the tests to execute 
are sent to 5G-CT. This is the only step that requires 
some form of human interaction as it involves gath-

FIGURE 1. Intent-based CI/CD/CT pipeline for Open RAN.
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ering the test details provided as input, for exam-
ple, the Central Unit (CU)/Distributed Unit (DU)/
Radio Unit (RU) to test, the test requirements, and 
the relevant technical specifications. The intent 
specified in this way is then automatically parsed 
and converted into services and tasks that can be 
executed by the compute nodes. After this initial 
setup has been carried out, the remaining steps of 
5G-CT execute in a fully automated manner.

The repeatable RAN builds workflow packages 
the source code of the component to test (e.g., 
the gNB) into a container image to be instantiated 
and tested. First, the source code of the compo-
nent under test is pulled from a version-controlled 
repository on a remote git server. Depending on 
specific tests, this step can also apply new devel-
oped functionalities (e.g., new schedulers or fixes 
to test) to the source code. Then, this workflow is 
used to build a container image that will be stored 
in an image registry and deployed as workload on 
the compute nodes.

The automatic testing workflow validates the 
functionalities of the built components. After being 
built and stored in the image registry, the new con-
tainer image is deployed on one of the compute 
nodes, depending on resource availability and 
requirements. As these nodes may need to timely 
interface with the radio devices (e.g., in the case of 
a gNB), they have been optimized for low-latency 
operations. Resources mapped to this deployment 
include radio and spectrum portions — discovered 
through dedicated services — as well as computa-
tional, memory, and networking resources (e.g., 
high-speed network interfaces to communicate 
with the radios). After the resource mapping has 
been completed, a new container is deployed on 
the compute nodes, and the required resources 
are allocated to it. Finally, testing support services 
include services to monitor the health of the host 
machines and of the deployed workloads, recover 
them from potential failures or issues, analyze test 
results, interface with the git repository, and host a 
Docker registry for the built images.

CI, CD, and CT of Open RAN gNBs
An example of a 5G-CT pipeline to automatically 
build and test the functionalities of an Open RAN 
gNB is shown in Fig. 2. This pipeline — imple-
mented through Tekton and synchronized with 
a version-controlled repository through ArgoCD 
— consists of six main tasks, shown in the figure 
with a dashed line: periodic triggers, get latest tag 

to build, get registry image, build image, deploy 
app, and continuous testing. The periodic triggers 
task runs a cron job that starts a test, whose spec-
ification was parsed a priori (Fig. 1), and executes 
the get latest tag to build job to check changes 
on a git repository (Step 1 in Fig. 2). This task 
receives as input the URL of the repository to be 
monitored and checks the latest tag published on 
it (Step 2). Then, during the get registry images 
task, it queries the image registry (Step 3), part 
of the test support services, for the tags built for 
the Docker image of the Open RAN software to 
test (Step 4). The list of tags is compared with the 
latest tag available on the git rep ository (Step 5). 
If no new tags have been released, the pipeline 
ends; otherwise, the task to build the new image is 
started (Step 6) to realize a repeatable RAN build. 
The goal of steps 1-6 is to decide whether or not 
a new container image needs to be built. These 
steps take 11 s to execute, on average.

The image build task aims at realizing a repeat-
able RAN build from targeted source code, and 
is carried out through Buildah, an open-source 
CI/CD tool to build containers compliant with 
the Open Container Initiative (OCI) specifica-
tions — and that can, thus, be deployed on a 
variety of platforms including Docker, k8s, and 
OpenShift. We set up Buildah to execute a multi-
stage build that first clones the git branch/tag to 
build, optionally applies patches to the source 
code (Step 7), builds application and required 
dependencies, and transfers the built executable 
to the final image, which is saved in the image 
registry (Step 8). Since the build process tailors 
the final executable to the CPU architectures of 
the compute nodes, this process is executed on 
the low-latency nodes where the workload will 
be deployed. For instance, building a gNB image 
takes 20 minutes, on average, in our setup.

The newly built image is then pulled from the 
registry (Step 9), matched with the available host 
machine resources (e.g., radio resources, spec-
trum availability, CPUs, RAM, physical interfaces, 
etc.), and deployed as a new application container 
on the low-latency nodes (Step 10, potentially 
stopping an older running instance) according 
to the automatic testing operations of Fig. 1. As 
an example, stopping a previously deployed gNB 
container, pulling the updated image from the 
registry, and deploying it on our system takes  
58 s, on average, 34 s of which are required to 
terminate the previous gNB instance and release 
the resources used by it.

As part of the automatic testing, the deployed 
container is used for the continuous testing of 
Open RAN functionalities (Step 11). In the case of 
gNB testing, this is done by connecting commer-
cial UE devices and exchanging traffic generated 
via benchmarking tools such as iPerf. We imple-
mented UEs through Sierra Wireless EM9191 5G 
modems connected to Intel NUC computers, and 
tested in the CBRS band. Upon completion of 
the tests, relevant KPIs are stored in a database 
for later analysis and visualization (Step 12) per-
formed by the test support services. Finally, it 
is worth noticing that, while we showcased the 
above pipeline as an end-to-end workflow, the 
single tasks can also be run independently, for 
example, to only build a novel container image, 
or to only test its functionalities.

FIGURE 2. Example of pipeline for CI/CD/CT of Open RAN gNB.
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5G-CT OpenShift-Based  
Automated Infrastructure and Microservices

The pipelines described so far can be implement-
ed as part of a larger container platform, such as 
k8s, OpenShift, or OKD. These orchestrators offer 
a flexible virtualization environment to instantiate 
and manage workloads in the form of containerized 
applications — or pods —based on microservices, and 
manage their lifecycle, including requirements for 
networking, storage, and replication, among others.

We built 5G-CT on top of Red Hat Open-
Shift Container Platform, which abstracts the sys-
tem complexity (e.g., in terms of heterogeneous 
nodes and compute capabilities, different CPUs, 
Network Interface Cards (NICs), RAM) through 
high-level configuration files. The architecture 
of 5G-CT is depicted in Fig. 3. At a high-level, it 
entails an OpenShift-based cluster with three con-
trol-plane nodes (Dell PowerEdge R740xd with 
Intel Xeon CPUs with 32 logical cores and 192 
GB RAM) and two worker nodes (Supermicro 
AS-1023US-TR4 with AMD EPYC CPUs with 32 
logical cores and 256 GB RAM), and network-
ing infrastructure. The latter includes a 100 Gb/s 
Dell EMC Z9100-ON switch that connects 8 
USRP X410 Software-defined Radios (SDRs) to 
the low-latency nodes via their Single Root Input/
Output Virtualization (SR-IOV)-enabled NICs and 
QSFP28 cables. In addition, a 10 Gb/s Dell EMC 
4048-ON switch connects to 8 USRP X310 SDRs 
via SFP+ cables. Finally, a link aggregation group 
bounds the two switches through two 40 Gb/s 
interfaces, thus allowing the low-latency nodes 
to communicate with the USRP X310 SDRs as 
well. Overall, these SDRs connect to antennas 
deployed across a 2240 square feet indoor office 
space representative of a private 5G deployment, 
and they are able to operate in the sub-7.2 GHz 
Radio Frequency (RF) spectrum [14].

Control-plane nodes run most of the services 
required to manage the cluster, as well as gener-
ic workloads. These include O-RAN Software 
Community (OSC) near-RT RIC, and core net-
works from Open5GS and A5G Networks. Work-
er nodes, instead, are dedicated to specialized 
workloads that require low-latency operations, 
for example, to interface with radio devices in the 
case of gNBs. Because of this requirement, the 
configuration of these nodes requires fine-tuning 
to enable such operations.

A sample configuration for the low-latency 
worker nodes is shown in Listing 1. These nodes 
are optimized for minimal latency by disabling 
energy consumption optimizations in favor of max-
imum performance (lines 8–10), with addition-
al kernel parameters passed in lines 11–16. Two 
logical CPU cores, one for each CPU socket, are 
reserved to run the OpenShift services, while the 
remaining 30 cores are isolated and only used to 
run user workloads (lines 17–19). Additionally, por-
tions of the physical memory of these nodes are 
reserved through the use of huge pages (64 huge 
pages of 1 GB each) to increase the performance 
of the nodes (lines 20–24). Finally, worker nodes 
leverage dedicated NVIDIA Mellanox ConnectX-6 
NICs — passed to the pods through SR-IOV for 
a trade-off between latency and high-availability, 
for example, to share the same physical interface 

among multiple pods — to connect to SDRs via 
the Z9100-ON switch (Fig. 3). OpenShift also 
allows clusters to integrate and manage hardware 
acceleration components to perform look-aside or 
inline layer 1 data acceleration. We plan to inte-
grate GPU-acceleration in 5G-CT to offload layer 1 
functionalities of the cellular stack onto these units.

The functionalities of the cluster can also be 
extended through custom microservices to inte-
grate non-standard hardware components. An 
example of services auxiliary to the Open RAN 
ecosystem implemented by the cluster includes 
radio discovery functionalities that leverage Flask 
Application Programming Interfaces (APIs) and 
the usrp_find_devices UHD routine. Before 
deploying workloads that need to interface with 
the SDRs, 5G-CT pipelines make an API call to the 
Flask endpoint of this service, which returns the list 
of available USRP radios discovered through the 
usrp_find_devices utility. As the pod where 
this service runs does not need timely communica-
tion with the radio devices, it interfaces with them 
through the use of MacVLAN instead of SR-IOV.

Other microservices we implemented on the 
OpenShift cluster include: 
•	 Services to allocate workloads on nodes that 

best fit their requirements (e.g., compute, 
latency, networking)

FIGURE 3. 5G-CT architecture.

LISTING 1. Configuration example for PerformanceProfile object.

1 apiVersion : performance. openshift . io /v2
2 kind : e
3 metadata:
4 name :
5 status:
6 runtimeClass : performance-network- latenc y
7 spec :
8 workloadHints :
9 highPowerConsumption: true
10 realTime : true
11 addit ionalKernelArgs :
12 - mit igation s=
13 - pci = r ealloc
14 - numa_balancin g=enabl e
15 - t ransparent_hugepage=never
16 - skew_tick =1
17 cpu:
18 reserved : 1
19 isolated : 2 -31
20 hugepages:
21 defaultHugepagesSize : "1G"
22 pages:
23 - size : "1G"
24 count : 64
25 nodeSelecto r :
26 node-role . kubernetes. io /worker-rt : " "
27 :
28 n . openshift . io /role :

worker-rt
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•	 An image registry to store the Docker images 
that will be then instantiated as workloads

•	 A CI/CD automation for the configuration of 
the cluster nodes, as well as for instantiating 
RAN services. 

Similarly to the described pipelines, also these 
routines are configured and performed through a 
CI/CD automation implemented through ArgoCD 
and Tekton.

Experimental Results
In this section, we show results of 5G-CT automat-
ed tests of an OAI gNB. These tests have been run-
ning every 6 hours for approximately 9 months. At 
a high-level, the automated testing involves:
•	 Instantiating the OAI gNB as an OpenShift 

pod on one of the low-latency worker nodes 
connected to the SDRs of the testbed

•	 Connecting as UE a commercial SierraWire-
less EM9191 5G modem managed by an 
Intel NUC Mini PC

•	 Exchanging downlink UDP traffic at different 
target data rates— for example, at 10, 20, 
and 30 Mb/s in this example — between the 
gNB and the UE

•	 Reporting the results to dedicated data col-
lectors implemented as additional pods on 
OpenShift, where the results are also ana-
lyzed and stored.
To maintain the gNB up-to-date with the latest 

OAI releases, 5G-CT periodically (i.e., once a week 
in this example) checks for new gNB releases on 
the OAI code repository. If a new release (i.e., git 
tag) is found, 5G-CT builds a new container with 
the up-to-date gNB code, and uses it for all sub-
sequent tests, until a new release is found. Tests 
are performed leveraging the SDRs and antenna 
grid of the Arena testbed [14], which allows users 
to run cellular experiments (among others) in an 
indoor environment representative of a private 5G 
setup. The OAI gNB uses a USRP X410 SDR as 
RF front-end, and connects to a commercial 5G 
core provided by A5G Networks. Transmissions 
happen in the CBRS band n48 (3.62 GHz), in Time 
Division Duplexing (TDD) mode with 162 Physical 
Resource Block (PRB) (30 MHz).

Tests are triggered through a call to the Flask 
APIs that we added to the gNB pod. Once this API 
call is received, the pod starts the OAI gNB, waits 
for it to be running, and makes a call to the Intel 
NUC connected to the Sierra Wireless 5G modem 
that acts as UE. At this point, the Intel NUC turns on 
the 5G modem, and waits for it to connect to the 
OAI gNB and to receive an IP address from the 5G 
core. Once connected, the Intel NUC defaults its 

network routes toward the 5G core (via the gNB), 
and starts an iPerf Docker container, which con-
nects to an iPerf server deployed as a standalone 
pod on OpenShift, to start the performance tests 
at the selected rates. After the iPerf tests terminate, 
the results gathered by the UE are sent to a data-col-
lector service — implemented through a replica of 
3 OpenShift pods for redundancy — leveraging the 
same connection with the gNB used for the tests. 
Results are analyzed by this service, which extracts 
relevant metrics and stores them in a dedicated 
Network File System (NFS) volume on OpenShift. 
They are made accessible through an httpd web 
dashboard implemented via a replica of 3 OpenShift 
pods. Overall, this example of 5G-CT automated 
tests involves a total of 35 OpenShift pods (1 for the 
gNB, 1 for the iPerf server, 3 for the data-collector 
service, 3 for the dashboard, and 27 for the core), 
while an end-to-end cellular network can be instan-
tiated in tens of seconds, as demonstrated in [15].

Figure 4 shows the overall throughput achieved 
by 5G-CT automated tests for the three configura-
tions considered. We show the day in which the 
experiment was performed on the x-axis, and box 
plots of the throughput averaged over the 4 daily 
experiments on the y-axis for each configuration. 
Some boxes are missing because of unsuccessful 
tests (e.g., miscommunication between the gNB and 
the SDR, issues with the iPerf server). The figure also 
shows the packet loss of the 30 Mb/s configuration 
(bar plot).We notice that, in general, the throughput 
of the 10 and 20 Mb/s configurations (shown in 
red and green in the figure, respectively) is steady 
throughout all tests, with the 20 Mb/s configuration 
seldom having unstable behavior. The throughput of 
the 30 Mb/s configuration (shown in blue), instead, 
exhibits performance instability, which is substantially 
mitigated after updating the kernel configuration of 
the worker nodes of the cluster (vertical line in Octo-
ber 2023). Indeed, changing the type of Linux ker-
nel and reducing the CPU performance spikes (i.e., 
passing the kernel option skew_tick=1), reduc-
es the performance instability, especially in the 30 
Mb/s case. Thus, tests before updating this configu-
ration show some instability — due to a combination 
of issues in the OAI code (e.g., we found that some 
releases had issues in the communication among the 
gNB and the USRP SDR), interference, and kernel 
settings — that seems to have been resolved in tests 
with the updated setup. This is consistent with the 
packet loss, only shown for the 30 Mb/s tests (worst 
case) in the interest of visualization clarity.

Figure 5 shows the outcome of unsuccessful and 
successful tests of an OAI gNB, by comparing them 
with historical test data collected through 5G-CT 

FIGURE 4. Time evolution of throughput (box plots) and packet loss (bar plot) of an OAI gNB during automated tests performed over 9 months for different data 
rates. The vertical line in October 2023 marks the switch from real-time to generic kernel of the host machines running the gNB. 
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that provide reference performance levels. The 
history of the throughput of previous tests (which 
serves as a baseline) is shown in solid lines, with the 
shaded areas representing the variance of the tests. 
The latest test to compare with the result history 
is shown with dashed lines. After performing the 
automated tests, 5G-CT compares the performance 
of the most recent test with the test history for the 
same configuration. If the performance of each test 
falls within the shaded areas of the test history for 
the same configuration, the test is marked as suc-
cessful (e.g., test of Fig. 5, right). Otherwise, the test 
is marked as unsuccessful (Fig. 5, left). By perform-
ing such comparison, 5G-CT can flag tests as passed 
or failed, which will lead to automatically generated 
reports in future extensions.

Conclusions
We introduced 5G-CT, an automation framework 
based on Red Hat OpenShift that leverages the 
GitOps paradigm to automatically deploy and test 
softwarized end-to-end 5G and O-RAN-compli-
ant systems in a matter of seconds. By extending 
cloud-native CI/CD pipelines to the RAN, 5G-CT 
effectively addresses the increasing complexity of 
operations such as spectrum and radio manage-
ment, and allocation of heterogeneous resources, 
devices and distributed components, thus provid-
ing the much needed automation for the cellular 
ecosystem. In this way, 5G-CT has the potential to 
increase the reliability, robustness, and security of 
software for Open RAN. We integrated 5G-CT with 
an over-the-air SDR testbed, and demonstrated how 
it can be used to test open-source protocol stacks 
for cellular networks, including OAI, though auto-
mated CT experiments spanning several months.
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FIGURE 5. Comparison between unsuccessful and successful tests of an OAI 
gNB for different targeted data rates. The solid lines show the history of 
previous tests, with shaded areas depicting their confidence intervals. 
The dashed lines show the most recent test to compare.
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