
IEEE Communications Magazine • Accepted for Publication1 0163-6804/24/$25.00 © 2024 IEEE

Abstract
Deploying and testing cellular networks is a

complex task due to the multitude of compo-
nents involved from the core to the radio access
network (RAN) and user equipment (UE), all of
which requires integration and constant monitor-
ing. Additional challenges are posed by the nature
of the wireless channel, whose inherent random-
ness hinders the repeatability and consistency of
the testing process. Consequently, existing solutions
for both private and public cellular systems still rely
heavily on human intervention for operations such
as network reconfiguration, performance monitor-
ing, and end-to-end testing. This reliance significantly
slows the pace of innovation in cellular systems. To
address these challenges, we introduce 5G-CT, an
automation framework based on OpenShift and
the GitOps workflow, capable of deploying a soft-
warized end-to-end 5G and O-RAN-compliant sys-
tem in a matter of seconds without the need for
any human intervention. We have deployed 5G-CT
to test the integration and performance of open-
source cellular stacks, including OpenAirInterface,
and have collected months of automated over-the-
air testing results involving software-defined radios.
5G-CT brings cloud-native continuous integration
and delivery to the RAN, effectively addressing the
complexities associated with managing spectrum,
radios, heterogeneous devices, and distributed com-
ponents. Moreover, it endows cellular networks with
much needed automation and continuous testing
capabilities, providing a platform to evaluate the
robustness and resiliency of Open RAN software.

Introduction
The Open Radio Access Network (RAN) architec-
ture developed by the O-RAN Alliance, as well as
the evolution in 3GPP LTE and NR designs, are
moving cellular networks toward disaggregated,
softwarized, programmable intelligent systems [1].
RAN disaggregation and softwarization can break
the current vendor lock-in and open the cellular
ecosystem to a larger number of players, facilitat-
ing innovation in the cellular market.

However, network disaggregation and multi-ven-
dor deployments are a double-edged sword: they
provide much needed pathways to market diversity
and supply chain robustness, but they also intro-
duce interoperability, performance, and security
challenges. Interoperability testing can decrease the

risks associated with Open RAN deployments and
help to achieve feature and performance parity
with traditional, inflexible systems. Cellular deploy-
ment and testing are challenging as they are mostly
manual and require significant human intervention
to install, configure, update, monitor, and evaluate
network components.

This issue affects both public and private net-
works. Public networks become inflexible, costly,
and difficult to update or upgrade. Consequently,
they often lag behind the rapid pace of innovation
in the wireless domain and may harbor unpatched
vulnerabilities. In the case of private networks, the
complexity of end-to-end cellular systems necessi-
tates specialized skills that are not typically found
within the enterprise workforce. This makes the
deployment of high-performance, robust cellu-
lar systems more costly compared to unlicensed
technologies [2]. Therefore, it is clear that inte-
grating automation in wireless networks has to
go beyond software and needs to also span into
radio components, distributed and heterogeneous
devices, and spectrum bands.

DevOps, a portmanteau of the words software
development and infrastructure operations, can be
used to streamline the integration, deployment, and
testing of code on the compute infrastructure [3].
This paradigm, also called infrastructure as code,
provides automation and tracking to ensure reli-
able and rapid delivery of new code and function-
alities, while maintaining an authoritative source for
the system and infrastructure configuration.

In this article, we take a fundamental step toward
cloud-native automation for the deployment and
testing of open, programmable, multivendor end-
to-end cellular networks. Specifically, we design,
prototype, and evaluate 5G-CT, a set of automat-
ed pipelines, microservices, and infrastructure
that can deploy a complete end-to-end 5G and
O-RAN-compliant cellular network in a few tens
of seconds. 5G-CT leverages Red Hat OpenShift
orchestration on a compute cluster which supports
multiple core networks, edge, RAN (including the
radio frontends), and RAN Intelligent Controllers
(RICs) deployed as microservices. Additional micro-
services support the automation and the manage-
ment of radios and spectrum. GitOps [4] pipelines
— a specific class of DevOps based on git reposito-
ries — implement Continuous Integration (CI) and
Continuous Delivery (CD) mechanisms to track

Leonardo Bonati, Michele Polese, Salvatore D’Oro, Pietro Brach del Prever, Tommaso Melodia

The authors are with the Institute for the Wireless Internet of Things, Northeastern University, USA.Digital Object Identifier: 10.1109/MCOM.001.2300675

5G-CT: Automated Deployment and
Over-the-Air Testing of End-to-End

Open Radio Access Networks

NETWORK SOFTWARIZATION AND MANAGEMENT

The authors introduce 5G-CT, an
automation framework based on
OpenShift and the GitOps work-
flow, capable of deploying and
testing a softwarized end-to-end
5G and O-RAN-compliant system
in a matter of seconds without the
need for any human intervention.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2024 at 15:23:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication 2

authoritative sources for the codebase and the infra-
structure configuration, and keep the deployment
environment synchronized and updated.

5G-CT is deployed and operated over-the-air in
the Northeastern University FCC Innovation Zone.
For months, it has been collecting test results (dis-
cussed later in this article) to evaluate the per-
formance of an end-to-end cellular network that
includes the OpenAirInterface (OAI) 5G stack
[5], commercial 5G User Equipments (UEs), and
multiple core networks, that is, the open-source
Open5GS and a commercial core from A5G Net-
works. By leveraging such automation, 5G-CT can
effectively guarantee that heterogeneous, mul-
tivendor components can interoperate in a disag-
gregated and virtualized Open RAN system, and
that code updates do not introduce regressions,
while monitoring the system performance.

Related Work
DevOps techniques are widely used in the cloud
computing domain. For instance, [6] showcases
a cloud-based CI/CD workflow to build Docker
images from code on remote repositories. How-
ever, this work is neither concerned with the auto-
mated over-the-air testing of RAN components,
nor with evaluating how updated builds affect
RAN Key Performance Indicators (KPIs).

Adopting DevOps techniques in cellular sys-
tems is challenging because of the heterogeneity of
infrastructure, code, and functionalities in wireless
networks. Moreover, DevOps for cellular need to
manage spectrum resources and guarantee prede-
termined Quality of Service (QoS) levels to the end
users. So far, the literature has mostly focused on
the challenges to efficiently transition RAN work-
loads into microservices [7–10]. Even though these
solutions provide enhanced and automated network
control, they either do not consider the challenges
involving the automated instantiation of the RAN, or
the automated testing of RAN code and functional-
ities over the air, as we do in this work. Technolo-
gies to enable CI/CD and automated instantiation
of RAN components are discussed in [2], which
also provides insights on how to fine-tune the com-
pute machines where RAN functions are deployed.
Differently from our article, this work does not focus
on the actual prototyping of the described CI/CD
and is not concerned with testing automation.

The OAI project has developed and maintains
a CI framework to run integration and testing for
the RAN and core network components of the
project, including 4G and 5G versions. While this
toolchain contributes to the quality assurance pro-
cess for OAI, it is not focused on deploying an end-
to-end network on a production environment, and
the radio testing is performed within a confined
environment (i.e., a small Faraday cage) [11]. The
authors of [12] integrate OAI for a Kubernetes
(k8s)-based CD framework, which however does
not embed Continuous Testing (CT) capabilities.
Other works leverage DevOps for RAN slicing [13]
or core network management [4], but do not con-
sider the end-to-end RAN, core, and edge services
(e.g., the RIC) deployment, as we do in this article.

Automated Open RAN Pipelines
In this section, we provide an overview of pipe-
lines for Open RAN automation, and showcase
an example of pipeline for the CI, CD, and CT of
Open RAN Next Generation Node Bases (gNBs).

CI, CD, and CT pipelines automatically perform
tasks on the Open RAN infrastructure. We leverage
Tekton — a framework to create CI/CD workflows
for on-premise and cloud systems — to implement
these tasks and automate our pipelines. Similarly,
we rely on ArgoCD — that implements the GitOps
declarative philosophy in a k8s microservices cluster
— to synchronize and deploy configurations for the
host machines and for the tasks from a version-con-
trolled remote repository, ensuring accountability,
repeatability, and rollbacks. The tasks we designed
carry out operations such as building container
images and deploying them on the physical infra-
structure, matching workload resources to the
nodes best fit to them (e.g., low-latency nodes),
discovering available radio and spectrum bands,
performing automatic testing, and monitoring the
overall health of system and workloads.

A high-level diagram of a CI/CD/CT pipeline for
Open RAN is shown in Fig. 1. The tasks of this pipe-
line are divided into four main groups: test specifi-
cation parsing, repeatable RAN builds, automatic
testing of Open RAN components, and test sup-
port services. In the test specification parsing step,
the details and specifications of the tests to execute
are sent to 5G-CT. This is the only step that requires
some form of human interaction as it involves gath-

FIGURE 1. Intent-based CI/CD/CT pipeline for Open RAN.

Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2024 at 15:23:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication3

ering the test details provided as input, for exam-
ple, the Central Unit (CU)/Distributed Unit (DU)/
Radio Unit (RU) to test, the test requirements, and
the relevant technical specifications. The intent
specified in this way is then automatically parsed
and converted into services and tasks that can be
executed by the compute nodes. After this initial
setup has been carried out, the remaining steps of
5G-CT execute in a fully automated manner.

The repeatable RAN builds workflow packages
the source code of the component to test (e.g.,
the gNB) into a container image to be instantiated
and tested. First, the source code of the compo-
nent under test is pulled from a version-controlled
repository on a remote git server. Depending on
specific tests, this step can also apply new devel-
oped functionalities (e.g., new schedulers or fixes
to test) to the source code. Then, this workflow is
used to build a container image that will be stored
in an image registry and deployed as workload on
the compute nodes.

The automatic testing workflow validates the
functionalities of the built components. After being
built and stored in the image registry, the new con-
tainer image is deployed on one of the compute
nodes, depending on resource availability and
requirements. As these nodes may need to timely
interface with the radio devices (e.g., in the case of
a gNB), they have been optimized for low-latency
operations. Resources mapped to this deployment
include radio and spectrum portions — discovered
through dedicated services — as well as computa-
tional, memory, and networking resources (e.g.,
high-speed network interfaces to communicate
with the radios). After the resource mapping has
been completed, a new container is deployed on
the compute nodes, and the required resources
are allocated to it. Finally, testing support services
include services to monitor the health of the host
machines and of the deployed workloads, recover
them from potential failures or issues, analyze test
results, interface with the git repository, and host a
Docker registry for the built images.

CI, CD, and CT of Open RAN gNBs
An example of a 5G-CT pipeline to automatically
build and test the functionalities of an Open RAN
gNB is shown in Fig. 2. This pipeline — imple-
mented through Tekton and synchronized with
a version-controlled repository through ArgoCD
— consists of six main tasks, shown in the figure
with a dashed line: periodic triggers, get latest tag

to build, get registry image, build image, deploy
app, and continuous testing. The periodic triggers
task runs a cron job that starts a test, whose spec-
ification was parsed a priori (Fig. 1), and executes
the get latest tag to build job to check changes
on a git repository (Step 1 in Fig. 2). This task
receives as input the URL of the repository to be
monitored and checks the latest tag published on
it (Step 2). Then, during the get registry images
task, it queries the image registry (Step 3), part
of the test support services, for the tags built for
the Docker image of the Open RAN software to
test (Step 4). The list of tags is compared with the
latest tag available on the git rep ository (Step 5).
If no new tags have been released, the pipeline
ends; otherwise, the task to build the new image is
started (Step 6) to realize a repeatable RAN build.
The goal of steps 1-6 is to decide whether or not
a new container image needs to be built. These
steps take 11 s to execute, on average.

The image build task aims at realizing a repeat-
able RAN build from targeted source code, and
is carried out through Buildah, an open-source
CI/CD tool to build containers compliant with
the Open Container Initiative (OCI) specifica-
tions — and that can, thus, be deployed on a
variety of platforms including Docker, k8s, and
OpenShift. We set up Buildah to execute a multi-
stage build that first clones the git branch/tag to
build, optionally applies patches to the source
code (Step 7), builds application and required
dependencies, and transfers the built executable
to the final image, which is saved in the image
registry (Step 8). Since the build process tailors
the final executable to the CPU architectures of
the compute nodes, this process is executed on
the low-latency nodes where the workload will
be deployed. For instance, building a gNB image
takes 20 minutes, on average, in our setup.

The newly built image is then pulled from the
registry (Step 9), matched with the available host
machine resources (e.g., radio resources, spec-
trum availability, CPUs, RAM, physical interfaces,
etc.), and deployed as a new application container
on the low-latency nodes (Step 10, potentially
stopping an older running instance) according
to the automatic testing operations of Fig. 1. As
an example, stopping a previously deployed gNB
container, pulling the updated image from the
registry, and deploying it on our system takes
58 s, on average, 34 s of which are required to
terminate the previous gNB instance and release
the resources used by it.

As part of the automatic testing, the deployed
container is used for the continuous testing of
Open RAN functionalities (Step 11). In the case of
gNB testing, this is done by connecting commer-
cial UE devices and exchanging traffic generated
via benchmarking tools such as iPerf. We imple-
mented UEs through Sierra Wireless EM9191 5G
modems connected to Intel NUC computers, and
tested in the CBRS band. Upon completion of
the tests, relevant KPIs are stored in a database
for later analysis and visualization (Step 12) per-
formed by the test support services. Finally, it
is worth noticing that, while we showcased the
above pipeline as an end-to-end workflow, the
single tasks can also be run independently, for
example, to only build a novel container image,
or to only test its functionalities.

FIGURE 2. Example of pipeline for CI/CD/CT of Open RAN gNB.

Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2024 at 15:23:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication 4

5G-CT OpenShift-Based
Automated Infrastructure and Microservices

The pipelines described so far can be implement-
ed as part of a larger container platform, such as
k8s, OpenShift, or OKD. These orchestrators offer
a flexible virtualization environment to instantiate
and manage workloads in the form of containerized
applications — or pods —based on microservices, and
manage their lifecycle, including requirements for
networking, storage, and replication, among others.

We built 5G-CT on top of Red Hat Open-
Shift Container Platform, which abstracts the sys-
tem complexity (e.g., in terms of heterogeneous
nodes and compute capabilities, different CPUs,
Network Interface Cards (NICs), RAM) through
high-level configuration files. The architecture
of 5G-CT is depicted in Fig. 3. At a high-level, it
entails an OpenShift-based cluster with three con-
trol-plane nodes (Dell PowerEdge R740xd with
Intel Xeon CPUs with 32 logical cores and 192
GB RAM) and two worker nodes (Supermicro
AS-1023US-TR4 with AMD EPYC CPUs with 32
logical cores and 256 GB RAM), and network-
ing infrastructure. The latter includes a 100 Gb/s
Dell EMC Z9100-ON switch that connects 8
USRP X410 Software-defined Radios (SDRs) to
the low-latency nodes via their Single Root Input/
Output Virtualization (SR-IOV)-enabled NICs and
QSFP28 cables. In addition, a 10 Gb/s Dell EMC
4048-ON switch connects to 8 USRP X310 SDRs
via SFP+ cables. Finally, a link aggregation group
bounds the two switches through two 40 Gb/s
interfaces, thus allowing the low-latency nodes
to communicate with the USRP X310 SDRs as
well. Overall, these SDRs connect to antennas
deployed across a 2240 square feet indoor office
space representative of a private 5G deployment,
and they are able to operate in the sub-7.2 GHz
Radio Frequency (RF) spectrum [14].

Control-plane nodes run most of the services
required to manage the cluster, as well as gener-
ic workloads. These include O-RAN Software
Community (OSC) near-RT RIC, and core net-
works from Open5GS and A5G Networks. Work-
er nodes, instead, are dedicated to specialized
workloads that require low-latency operations,
for example, to interface with radio devices in the
case of gNBs. Because of this requirement, the
configuration of these nodes requires fine-tuning
to enable such operations.

A sample configuration for the low-latency
worker nodes is shown in Listing 1. These nodes
are optimized for minimal latency by disabling
energy consumption optimizations in favor of max-
imum performance (lines 8–10), with addition-
al kernel parameters passed in lines 11–16. Two
logical CPU cores, one for each CPU socket, are
reserved to run the OpenShift services, while the
remaining 30 cores are isolated and only used to
run user workloads (lines 17–19). Additionally, por-
tions of the physical memory of these nodes are
reserved through the use of huge pages (64 huge
pages of 1 GB each) to increase the performance
of the nodes (lines 20–24). Finally, worker nodes
leverage dedicated NVIDIA Mellanox ConnectX-6
NICs — passed to the pods through SR-IOV for
a trade-off between latency and high-availability,
for example, to share the same physical interface

among multiple pods — to connect to SDRs via
the Z9100-ON switch (Fig. 3). OpenShift also
allows clusters to integrate and manage hardware
acceleration components to perform look-aside or
inline layer 1 data acceleration. We plan to inte-
grate GPU-acceleration in 5G-CT to offload layer 1
functionalities of the cellular stack onto these units.

The functionalities of the cluster can also be
extended through custom microservices to inte-
grate non-standard hardware components. An
example of services auxiliary to the Open RAN
ecosystem implemented by the cluster includes
radio discovery functionalities that leverage Flask
Application Programming Interfaces (APIs) and
the usrp_find_devices UHD routine. Before
deploying workloads that need to interface with
the SDRs, 5G-CT pipelines make an API call to the
Flask endpoint of this service, which returns the list
of available USRP radios discovered through the
usrp_find_devices utility. As the pod where
this service runs does not need timely communica-
tion with the radio devices, it interfaces with them
through the use of MacVLAN instead of SR-IOV.

Other microservices we implemented on the
OpenShift cluster include:
•	 Services to allocate workloads on nodes that

best fit their requirements (e.g., compute,
latency, networking)

FIGURE 3. 5G-CT architecture.

LISTING 1. Configuration example for PerformanceProfile object.

1 apiVersion : performance. openshift . io /v2
2 kind : e
3 metadata:
4 name :
5 status:
6 runtimeClass : performance-network- latenc y
7 spec :
8 workloadHints :
9 highPowerConsumption: true
10 realTime : true
11 addit ionalKernelArgs :
12 - mit igation s=
13 - pci = r ealloc
14 - numa_balancin g=enabl e
15 - t ransparent_hugepage=never
16 - skew_tick =1
17 cpu:
18 reserved : 1
19 isolated : 2 -31
20 hugepages:
21 defaultHugepagesSize : "1G"
22 pages:
23 - size : "1G"
24 count : 64
25 nodeSelecto r :
26 node-role . kubernetes. io /worker-rt : " "
27 :
28 n . openshift . io /role :

worker-rt

Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2024 at 15:23:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication5

•	 An image registry to store the Docker images
that will be then instantiated as workloads

•	 A CI/CD automation for the configuration of
the cluster nodes, as well as for instantiating
RAN services.

Similarly to the described pipelines, also these
routines are configured and performed through a
CI/CD automation implemented through ArgoCD
and Tekton.

Experimental Results
In this section, we show results of 5G-CT automat-
ed tests of an OAI gNB. These tests have been run-
ning every 6 hours for approximately 9 months. At
a high-level, the automated testing involves:
•	 Instantiating the OAI gNB as an OpenShift

pod on one of the low-latency worker nodes
connected to the SDRs of the testbed

•	 Connecting as UE a commercial SierraWire-
less EM9191 5G modem managed by an
Intel NUC Mini PC

•	 Exchanging downlink UDP traffic at different
target data rates— for example, at 10, 20,
and 30 Mb/s in this example — between the
gNB and the UE

•	 Reporting the results to dedicated data col-
lectors implemented as additional pods on
OpenShift, where the results are also ana-
lyzed and stored.
To maintain the gNB up-to-date with the latest

OAI releases, 5G-CT periodically (i.e., once a week
in this example) checks for new gNB releases on
the OAI code repository. If a new release (i.e., git
tag) is found, 5G-CT builds a new container with
the up-to-date gNB code, and uses it for all sub-
sequent tests, until a new release is found. Tests
are performed leveraging the SDRs and antenna
grid of the Arena testbed [14], which allows users
to run cellular experiments (among others) in an
indoor environment representative of a private 5G
setup. The OAI gNB uses a USRP X410 SDR as
RF front-end, and connects to a commercial 5G
core provided by A5G Networks. Transmissions
happen in the CBRS band n48 (3.62 GHz), in Time
Division Duplexing (TDD) mode with 162 Physical
Resource Block (PRB) (30 MHz).

Tests are triggered through a call to the Flask
APIs that we added to the gNB pod. Once this API
call is received, the pod starts the OAI gNB, waits
for it to be running, and makes a call to the Intel
NUC connected to the Sierra Wireless 5G modem
that acts as UE. At this point, the Intel NUC turns on
the 5G modem, and waits for it to connect to the
OAI gNB and to receive an IP address from the 5G
core. Once connected, the Intel NUC defaults its

network routes toward the 5G core (via the gNB),
and starts an iPerf Docker container, which con-
nects to an iPerf server deployed as a standalone
pod on OpenShift, to start the performance tests
at the selected rates. After the iPerf tests terminate,
the results gathered by the UE are sent to a data-col-
lector service — implemented through a replica of
3 OpenShift pods for redundancy — leveraging the
same connection with the gNB used for the tests.
Results are analyzed by this service, which extracts
relevant metrics and stores them in a dedicated
Network File System (NFS) volume on OpenShift.
They are made accessible through an httpd web
dashboard implemented via a replica of 3 OpenShift
pods. Overall, this example of 5G-CT automated
tests involves a total of 35 OpenShift pods (1 for the
gNB, 1 for the iPerf server, 3 for the data-collector
service, 3 for the dashboard, and 27 for the core),
while an end-to-end cellular network can be instan-
tiated in tens of seconds, as demonstrated in [15].

Figure 4 shows the overall throughput achieved
by 5G-CT automated tests for the three configura-
tions considered. We show the day in which the
experiment was performed on the x-axis, and box
plots of the throughput averaged over the 4 daily
experiments on the y-axis for each configuration.
Some boxes are missing because of unsuccessful
tests (e.g., miscommunication between the gNB and
the SDR, issues with the iPerf server). The figure also
shows the packet loss of the 30 Mb/s configuration
(bar plot).We notice that, in general, the throughput
of the 10 and 20 Mb/s configurations (shown in
red and green in the figure, respectively) is steady
throughout all tests, with the 20 Mb/s configuration
seldom having unstable behavior. The throughput of
the 30 Mb/s configuration (shown in blue), instead,
exhibits performance instability, which is substantially
mitigated after updating the kernel configuration of
the worker nodes of the cluster (vertical line in Octo-
ber 2023). Indeed, changing the type of Linux ker-
nel and reducing the CPU performance spikes (i.e.,
passing the kernel option skew_tick=1), reduc-
es the performance instability, especially in the 30
Mb/s case. Thus, tests before updating this configu-
ration show some instability — due to a combination
of issues in the OAI code (e.g., we found that some
releases had issues in the communication among the
gNB and the USRP SDR), interference, and kernel
settings — that seems to have been resolved in tests
with the updated setup. This is consistent with the
packet loss, only shown for the 30 Mb/s tests (worst
case) in the interest of visualization clarity.

Figure 5 shows the outcome of unsuccessful and
successful tests of an OAI gNB, by comparing them
with historical test data collected through 5G-CT

FIGURE 4. Time evolution of throughput (box plots) and packet loss (bar plot) of an OAI gNB during automated tests performed over 9 months for different data
rates. The vertical line in October 2023 marks the switch from real-time to generic kernel of the host machines running the gNB.

July
2023

August
2023

September
2023

October
2023

November
2023

December
2023

January
2024

February
2024

March
2024

0

10

20

30
Real-time kernel Generic kernel

Day

Th
ro
ug

hp
ut

[M
bp

s]

Throughput: 10 Mbps 20 Mbps 30 Mbps Packet loss: 30 Mbps

0

10

20

30

Pa
ck
et

Lo
ss

(%
)

Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2024 at 15:23:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication 6

that provide reference performance levels. The
history of the throughput of previous tests (which
serves as a baseline) is shown in solid lines, with the
shaded areas representing the variance of the tests.
The latest test to compare with the result history
is shown with dashed lines. After performing the
automated tests, 5G-CT compares the performance
of the most recent test with the test history for the
same configuration. If the performance of each test
falls within the shaded areas of the test history for
the same configuration, the test is marked as suc-
cessful (e.g., test of Fig. 5, right). Otherwise, the test
is marked as unsuccessful (Fig. 5, left). By perform-
ing such comparison, 5G-CT can flag tests as passed
or failed, which will lead to automatically generated
reports in future extensions.

Conclusions
We introduced 5G-CT, an automation framework
based on Red Hat OpenShift that leverages the
GitOps paradigm to automatically deploy and test
softwarized end-to-end 5G and O-RAN-compli-
ant systems in a matter of seconds. By extending
cloud-native CI/CD pipelines to the RAN, 5G-CT
effectively addresses the increasing complexity of
operations such as spectrum and radio manage-
ment, and allocation of heterogeneous resources,
devices and distributed components, thus provid-
ing the much needed automation for the cellular
ecosystem. In this way, 5G-CT has the potential to
increase the reliability, robustness, and security of
software for Open RAN. We integrated 5G-CT with
an over-the-air SDR testbed, and demonstrated how
it can be used to test open-source protocol stacks
for cellular networks, including OAI, though auto-
mated CT experiments spanning several months.

Acknowledgment
This article is based upon work partially support-
ed by the U.S. National Science Foundation under
grants CNS-1925601, CNS-2112471, and CNS-
1923789, by the U.S. Office of Naval Research
under grant N00014-20-1-2132, by OUSD(R&E)
through Army Research Laboratory Cooperative
Agreement Number W911NF-19-2-0221, and by
the National Telecommunications and Informa-
tion Administration (NTIA)’s Public Wireless Sup-
ply Chain Innovation Fund (PWSCIF) under Award
No. 25-60-IF054. The views and conclusions con-
tained in this document are those of the authors
and should not be interpreted as representing the
official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References
[1] M. Polese et al., “Understanding O-RAN: Architecture, Inter-

faces, Algorithms, Security, and Research Challenges,” IEEE
Commun. Surveys & Tutorials, vol. 25, no. 2, Jan. 2023, pp.
1376–1411.

[2] S. Chenumolu, “Open RAN Deployments,” Open RAN: The
Definitive Guide, I. C. Wong, A. Chopra, S. Rajagopal, and
R. Jana, Eds. New York City, NY, USA: John Wiley & Sons,
Sept. 2023, ch. 10, pp. 145–71.

[3] P. Rodríguez et al., “Continuous Deployment of Software
Intensive Products and Services: A Systematic Mapping
Study,” J. Systems and Software, vol. 123, 2017, pp. 263–91.

[4] D. Scotece et al., “5G-Kube: Complex Telco Core Infrastruc-
ture Deployment Made Low- Cost,” IEEE Commun. Mag.,
vol. 61, no. 7, July 2023, pp. 26–30.

[5] F. Kaltenberger et al., “The OpenAirInterface 5G New Radio

Implementation: Current Status and Roadmap,” Proc. Int’l
ITG Wksp. Smart Antennas, Vienna, Austria, Apr. 2019.

[6] C. Singh et al., “Comparison of Different CI/CD Tools Integrat-
ed with Cloud Platform,” Proc. IEEE Int’l. Conf. Cloud Com-
puting, Data Science & Engineering, Noida, India, Jan. 2019.

[7] R. Schmidt, C.-Y. Chang, and N. Nikaein, “FlexVRAN: A Flex-
ible Controller for Virtualized RAN Over Heterogeneous
Deployments,” Proc. IEEE ICC, Shanghai, China, May 2019.

[8] S. K. Moorthy et al., “OSWireless: Enhancing Automation
for Optimizing Intent-Driven Software-Defined Wireless
Networks,” Proc. IEEE MASS, Denver, CO, USA, Oct. 2022.

[9] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN
Slicing for a Flexible and Cost-Effective Multi-Service Mobile
Network Architecture,” Proc. ACM MobiCom, Snowbird,
UT, USA, Oct. 2017.

[10] G. Garcia-Aviles et al., “Nuberu: Reliable RAN Virtualization
in Shared Platforms,” Proc. ACM MobiCom, New Orleans,
LA, USA, Oct. 2021.

[11] R. Defosseux, “OpenAirInterface Continuous Integration
Training,” 2019; available: https://tinyurl.com/oai-ci-slides.

[12] O. Arouk and N. Nikaein, “Kube5G: A Cloud-Native 5G Service
Platform,” Proc. IEEE GLOBECOM, Taipei, Taiwan, Dec. 2020.

[13] X. Li et al., “Automated Service Provisioning and Hierarchical
SLA Management in 5G Systems,” IEEE Trans. Network and
Service Management, vol. 18, no. 4, Dec. 2021, pp. 4669–84.

[14] L. Bertizzolo et al., “Arena: A 64-Antenna SDR-Based Ceil-
ing Grid Testing Platform for Sub-6 GHz 5G-and-Beyond
Radio Spectrum Research,” Computer Networks, vol. 181,
Nov. 2020, pp. 1–17.

[15] L. Bonati et al., “NeutRAN: An Open RAN Neutral Host
Architecture for Zero-Touch RAN and Spectrum Sharing,”
IEEE Trans. Mobile Computing, Aug. 2023, pp. 1–13.

Biographies
LEonardo BonatI [M’23] is an Associate Research Scientist at
the Institute for the Wireless Internet of Things, Northeastern
University, Boston. He received a Ph.D. degree in Computer
Engineering from Northeastern University in 2022. His research
focuses on softwarized approaches for the Open RAN of next
generation of cellular networks.

MIchElE PolEsE [M’20] is a Research Assistant Professor at the
Institute for the Wireless Internet of Things, Northeastern Uni-
versity, Boston. He received his Ph.D. degree from the Universi-
ty of Padova in 2020. He then joined Northeastern University as
a research scientist. His research interests are in the analysis and
development of protocols and architectures for future genera-
tions of cellular networks.

SalvatorE D’Oro [M’17] is a Research Assistant Professor at the
Institute for the Wireless Internet of Things, Northeastern Univer-
sity, Boston. He received his Ph.D. degree from the University
of Catania in 2015. His research interests include optimization,
artificial intelligence, and security applied to Open RAN systems.

PIEtro Brach dEl PrEvEr [S’23] is a Ph.D. student at the Institute
for the Wireless Internet of Things, Northeastern University,
Boston. He received his M.S. degree in Mechatronic Engineer-
ing from the Polytechnic University of Turin, Italy, in 2022. His
research interests focus on NextG wireless systems.

Tommaso MElodIa [F’18] received a Ph.D. in Electrical and Com-
puter Engineering from the Georgia Institute of Technology in
2007. He is the William Lincoln Smith Professor at Northeastern
University, the Director of the Institute for the Wireless Internet
of Things, and the Director of Research for the PAWR Project
Office. His research focuses on wireless networked systems.

FIGURE 5. Comparison between unsuccessful and successful tests of an OAI
gNB for different targeted data rates. The solid lines show the history of
previous tests, with shaded areas depicting their confidence intervals.
The dashed lines show the most recent test to compare.

0 2 4 6 8 10 12 14 16 18

10

20

30

Unsuccessful Test Successful Test

Outside
boundaries

Time [s]

Th
ro
ug

hp
ut

[M
bp

s]

10 Mbps (history) 20 Mbps (history) 30 Mbps (history)
10 Mbps (last test) 20 Mbps (last test) 30 Mbps (last test)

Authorized licensed use limited to: Northeastern University. Downloaded on October 02,2024 at 15:23:55 UTC from IEEE Xplore. Restrictions apply.

