Design Automation for Charge Recovery Logic

Yilmaz Ege Gonul', Leo Filippini', Junghoon Oh2, Ragh Kuttappa', Scott Lerner!, Mineo Kaneko?, Baris Taskin!
L Drexel University, Philadelphia, PA, USA, %Japan Advanced Institute of Science and Technology, Japan
Email: {yeg26,bt62}@drexel.edu

Abstract—This paper introduces a novel design automation
methodology for charge recovery logic (CRL). The proposed
methodology combines a novel logic compression algorithm with
automatic schematic generation to automate the design process
of CRL, enabling power and performance simulations for a large
number and variety of CRL circuits. As a measure of the effec-
tiveness of the proposed design flow, automated implementations
of CRL equivalents of the LGSynth’91 combinational benchmark
circuits are compared with their CMOS counterparts. The
results demonstrate a trade-off in power for area: Automatically
generated CRL circuits dissipate 51.3% less power on average
compared to CMOS equivalents, occupying 54.9% larger area.

Index Terms—Low-power, Charge Recovery Logic, Adiabatic
Logic, Electronic Design Automation

I. INTRODUCTION

Charge recovery logic (CRL), also known as adiabatic
logic [1], is a logic design approach primarily focused on
reducing power consumption through energy recycling. CRL
utilizes the power-clock, a periodic signal (usually a sine or
trapezoidal wave) to supply both energy and timing to the
gates. Depending on the logic family, the power-clock can
contain one or more signals, which are commonly called the
phases of the power-clock. While CRL was initially used for
low-power low-speed applications, previous studies [2] show
that CRL can be competitive in the GHz range as well.

Several custom implementations of logic circuits utilizing
CRL technology such as [3], [4] can be found in literature. Pre-
vious work was also done on the automatic generation of CRL
adders and multipliers [5], high-level synthesis for CRL [6],
and synthesis of reversible two-level adiabatic circuits [7], [8].
Another work [9] proposed building a CRL family compatible
with the traditional standard-cell methodologies, but such
approaches do not exploit distinct features of traditional CRL
families (e.g. ECRL [10] or PAL2N [11]) such as fixed-delay,
differential I/O, and the capability to support large fan-in. This
work proposes a novel design automation methodology fully
tailored to CRL circuits, leveraging the unique characteristics
of CRL.

II. ECRL AND CMOS PIPELINES

In the remainder of the paper, a four-phase CRL family
known as efficient charge recovery logic (ECRL) [10] is used.
The design methodologies presented here can be extended
to various CRL families with any number of phases. A
generic ECRL gate implementing a boolean function F' and its
complement F~! is illustrated in Figure 1(a). The operation

PGy

PC

PC m /T\ ;:’ ;m:%. %

In ——

PGy

PDN pon [

(a) (b)

Fig. 1: (a) An ECRL gate implementing a boolean function ' and
its complement F~! (b) Power clock of a 4-phase logic family.

1

of the ECRL gate is through the two cross-coupled PMOS
transistors that amplify the voltage difference between the
two complementary pull-down networks (PDNs). The pull-
up activity is through the PMOS transistors, and this allows
ECRL to accommodate larger fan-ins than static CMOS [1].
The inputs need to be stable only while the circuit is computing
the output, enabling 4-phase operability and leading to the
power-clock configuration shown in Figure 1(b). In the 4-phase
clocking scheme, consecutive phases of the power-clock have
a —90° difference. This translates to the condition where a
CRL gate powered by PC can only drive gates powered by
P(C5, and driven only by gates powered by PCjy.

Figure 2 shows two sequentially equivalent pipelines, in
CMOS and in ECRL, intentionally designed to have equal
latencies. Boolean function f in Figure 2(a) is implemented
with a combinational circuit in static CMOS, and may com-
prise hundreds of logic gates. The squares of Figure 2(b) are
single ECRL gates, each implementing a boolean function g;
where the composition of boolean functions g; through gy2 is
equivalent to the boolean function f. The data in the CMOS
pipeline of Figure 2(a) propagates in one CLK period. The data
in the ECRL pipeline in Figure 2(b) propagates through phases
PC, to PCy in one power-clock period. If the power-clock
and CLK have the same frequency, then the number of logic
stages in the ECRL pipeline must match the number of phases
of the power-clock to have the same latency of the CMOS
equivalent. Equivalent latency enables CMOS integration of
CRL implementations without affecting the system timing.

A one-to-one conversion of a CMOS circuit into CRL would
significantly increase latency. For example, consider a pipeline

mailto:yeg26,bt62}@drexel.edu
https://drexel.edu

CLK CLK

l !

INs --— DFF 74@,,4 DFF [—4—.. OUTs

(a) CMOS
PC, PO, PCy PCy
1 I 1 1
L] o5 e 07 — g8 =

PC1 PCa PCs
1 I

PCi
1

I—

gz = 43 OUTs

L. |
PC,y P, PCy 7J: PCy
1 1 1 |
= g9 e gi0 b= o1 g12 =

(hy ECRL

94 e

Fig. 2: Traditional CMOS and the equivalent ECRL pipelines.

CLK

l l

—] DFF| B & - DFF p—

(c) A CRL implementation

Fig. 3: The boolean function ABCDEF: (a) implemented with 2 input
ANDs in CMOS, (b) directly converted from CMOS, (c) a latency-
equivalent CRL implementation with a higher fan-in gate.

stage with a boolean function Y = ABCDFE as in Figure 3(a).
The direct conversion from CMOS to ECRL leads to the
circuit of Figure 3(b), which has a latency of 1.25 power-
clock periods. The circuits of Figure 3(a) and Figure 3(b) are
logically equivalent but have different latencies when CLK
and the power-clock PC have the same frequency. The circuit
of Figure 3(c) is a possible ECRL implementation of the
boolean function Y = ABCDEF that has the same latency
as the circuit in Figure 3(a), with a higher fan-in gate. This
example demonstrates the value of a CRL-specific automation
flow.

III. PROPOSED DESIGN METHODOLOGY FOR CRL

The proposed design automation methodology introduces
two stages to the design flow, utilizing features of CRL
such as large fan-in capability and differential I/O, as well

\@/ \g/ \@/ \@/ .
EofiofcaE o
ORI

) L

(a) Initial: size 14

VAVARW, Sy
@) (&) @ @
oiSe O
cBT
®

e:

(b) L1 — Lo merge: size 12 (c) L2 — Ls merge: size 13

\gf \g# \@f \@!
6y o

¥
Cutput Outpat

(d) Ly — L4 merge: size 15 (e) Ls — Ls merge: size 14

Fig. 4: Example of an AIG divided into logic depth levels. Circles
are AND operations, hexagons represent clusters, and dashed edges
indicate that the output of a node is negated.

as satisfying the choice of equal latency with CMOS. The
first stage is a novel custom-cell based mapping approach
that uses a logic compression algorithm. An and-inverter-
graph (AIG) [12] representation of a given logic is compressed
down to a target logic depth that matches the power-clock
phases and achieves the same latency as that of a CMOS
design with the same clock period. The second stage is a
schematic generation process that maps the compressed logic
inside the clusters to PDNs, creating ECRL gates.

A. Logic Compression Algorithm

The input for the proposed compression algorithm is an
AIG representation of the input logic. Logic cones in the input
logic are minimized and balanced using the logic synthesis
tool ABC [13] before the conversion to AIG. This is done
to minimize the node count of the AIG, hence the overhead.
Figure 4(a) shows an example of an AIG in which each node
represents an AND operation and has been assigned a logic
depth level. Note that nodes 6, 8 and 9 are different from
other nodes with their logic 1 inputs, which make these nodes
behave as buffers. The logic in Figure 4(a), if implemented as
an ECRL circuit using a power-clock with period T', would

0o

00

-

— o

h

h

(a) AIGof (A& B)-C (b) (A @ B) - C schematic

Fig. 5: The AIG and the ECRL gate implementing the (A & B) - C
boolean function.

Fig. 6: The experimental flow.

periments are performed using a 65 nm technology node,
for 76 combinational circuits in the LGSynth’91 benchmark
suite [14]. Both ECRL and reference CMOS implementations
are generated as Spectre netlists starting from minimized
and balanced Verilog descriptions of the benchmark circuits.
CMOS implementations are mapped using a standard cell
library containing generic logic gates. The benchmark circuits
are simulated at a frequency of 13.56 MHz, targeting the
operating frequency of an RFID tag, as such frequencies are
typical for charge recovery logic applications [15], [16]. The
transistors used to implement both the CMOS and ECRL
circuits are selected at the minimum size for consistency. The
circuits in the benchmark suite are simulated with random
input patterns with an activity factor of 10%. The performance
metrics selected in the experiments are i) power dissipation
reported from the Spectre simulations of the generated netlists
and ii) area estimates represented by the transistor count of the
generated netlists.

Power and area comparisons of the synthesized ECRL
circuits with CMOS implementations are shown in Figure 7(a)
and Figure 7(b) respectively. The figures are histograms of
the normalized (ECRL/CMOS) power consumption and area.
ECRL implementations consume an average of 51.3% less
power compared to static CMOS implementations. On the
other hand, ECRL implementations occupy 54.9% more area
on average than their CMOS counterparts. 74 of the 76
combinational circuits in the benchmark remain within the
curve with a standard deviation of ¢ = 0.504 for the area

15
u=0.487

10 o= 0213
c
g
=
L=
o 54
[s] cmé2a decod cml3Ba

o 0 Il Il

T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0
a) Normalized power consumption Peeg [Pewas

20
0 151 u=1549
¥ o= 0.504
g
5 10
L=
1"
o 5/ €499 & C1355

™y
0 "] 0=~3-0 . : : il
i) 1 2 3 4 5 [7

b) Nermalized transistor count #ECRL / #CMOS

Fig. 7: Normalized (CRL/CMOS) power consumption, at the top,
and normalized transistor count, at the bottom, for the combinational
circuits of the LGSynth’91 Benchmark suite run at 13.56 Mhz with
an activity factor o« = 0.1.

overhead. 73 of the 76 circuits in the benchmark consume
less power than the CMOS implementations.

Circuits C'499 and C'1355 are the outliers in Figure 7(b)
that have several times higher overhead compared to the rest
of the benchmark suite. The outliers in the normalized power
consumption in Figure 7(a) are circuits emd42a, decod and
ecm138a. Their power consumptions are several times higher
than the rest of the benchmark suite because the activity factor
of their internal nodes are 5.3%, 5%, and 5.2% respectively,
which are lower than the targeted 10%. Because of the power-
clock, CRL gates switch their outputs every cycle whether the
inputs change or not, giving static CMOS an advantage at
very low activity factors [1]. As mentioned in Section III-
B, for some of the circuits, a larger target logic depth is
used to relax the amount of logic inside the custom cells.
Circuits alud, 710, C3540, and C6288 are synthesized with
8 stages of logic, having double the latency of the rest of the
benchmark suite. Although these circuits become multi-cycled,
both their power consumption and area overhead remain within
the curve, showing that the advantages of ECRL are sustained.

V. CONCLUSIONS

This work proposes a novel methodology to implement
combinational logic as ECRL circuits. The proposed design
methodology is applied to the LGSynth’91 benchmark suite,
and shows power savings of 51.3% with an area overhead of
54.9% compared to static CMOS implementations on average.
Latency of CMOS to ECRL circuits is preserved, paving the
use of synthesized ECRL circuits as macro blocks in an SoC
integration with interoperable CMOS and ECRL blocks.

V1. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. 1409014, 1816857.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

REFERENCES

P. Teichmann, “Adiabatic logic - future trend and system level perspec-
tive,” Springer, vol. 7, 01 2012.

V. S. Sathe, J. Chueh, and M. C. Papaefthymiou, “Energy-efficient
ghz-class charge-recovery logic,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 1, pp. 3847, 2007.

L. Filippini and B. Taskin, “The adiabatically driven strongarm com-
parator,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 66, no. 12, pp. 1957-1961, 2019.

L. Filippini and B. Taskin, “A charge recovery logic system bus,” in
2017 ACM/IEEE International Workshop on System Level Interconnect
Prediction (SLIP), pp. 1-4, 2017.

A. Blotti and R. Saletti, “Ultralow-power adiabatic circuit semi-custom
design,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 11, pp. 1248-1253, 2004.

L. Varga, G. Hosszu, and F. Kovacs, “Two-level pipeline scheduling
of adiabatic logic,” in 2006 29th International Spring Seminar on
Electronics Technology, pp. 390-394, 2006.

A. Zulehner, M. P. Frank, and R. Wille, “Design automation for adiabatic
circuits,” 2018.

Y. Ushioda and M. Kaneko, “Hardware minimization of two-level
adiabatic logic based on weighted maximum stable set problem,” in
2022 IEEE 40th International Conference on Computer Design (ICCD),
pp. 394-397, 2022.

C. Lee, P. Hsieh, and C. Yang, “A standard-cell-design-flow compatible
energy-recycling logic with 70% energy saving,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 1, pp. 70-79, 2016.
Y. Moon and D. Jeong, “An efficient charge recovery logic circuit,” IEEE
Journal of Solid-State Circuits, vol. 31, no. 4, pp. 514-522, 1996.

F. Liu, “Pass-transistor adiabatic logic with nmos pull-down configura-
tion,” Electronics Letters, vol. 34, pp. 739-741(2), April 1998.

A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting:
a fresh look at combinational logic synthesis,” in 2006 43rd ACM/IEEE
Design Automation Conference, pp. 532-535, 2006.

B. L. Synthesis and V. Group, “Abc: A system for sequen-
tial synthesis and verification,” Mar. 2018. [Online]. Awvailable:
https://people.eecs.berkeley.edu/alanmi/abc/.

S. Y. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” 1991.

M. Avital, H. Dagan, I. Levi, O. Keren, and A. Fish, “Dpa-secured
quasi-adiabatic logic (sqal) for low-power passive rfid tags employing
s-boxes,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 62, no. 1, pp. 149-156, 2015.

S. D. Kumar, H. Thapliyal, and A. Mohammad, “Ee-spfal: A novel
energy-efficient secure positive feedback adiabatic logic for dpa resis-
tant rfid and smart card,” IEEE Transactions on Emerging Topics in
Computing, vol. 7, no. 2, pp. 281-293, 2019.

https://people.eecs.berkeley.edu/alanmi/abc
https://people.eecs.berkeley.edu/alanmi/abc

	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	Algorithm 1 Duplication cost and buffer elimination:
	cm138a:
	15:
	a Normalized power consumption PECRL PCMOS:
	undefined:
	undefined_2:
	undefined_3:
	2_2:
	3_2:
	undefined_4:
	C499 C1355:
	b Normalized transistor count ECRL CMOS:

