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ABSTRACT

Even a relatively weak drive force is enough to push a typical nanomechanical resonator into the nonlinear regime. Consequently,
nonlinearities are widespread in nanomechanics and determine the critical characteristics of nanoelectromechanical systems’ (NEMSs)
resonators. A thorough understanding of the nonlinear dynamics of higher eigenmodes of NEMS resonators would be beneficial for progress,
given their use in applications and fundamental studies. Here, we characterize the nonlinearity and the linear dynamic range (LDR) of each
eigenmode of two nanomechanical beam resonators with different intrinsic tension values up to eigenmode n¼ 11. We find that the modal
Duffing constant increases as n4, while the critical amplitude for the onset of nonlinearity decreases as 1=n. The LDR, determined from the
ratio of the critical amplitude to the thermal noise amplitude, increases weakly with n. Our findings are consistent with our theory treating
the beam as a string, with the nonlinearity emerging from stretching at high amplitudes. These scaling laws, observed in experiments and
validated theoretically, can be leveraged for pushing the limits of NEMS-based sensing even further.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0215566

Over the past decade, the sensitivities attainable by nanoelec-
tromechanical systems (NEMS) have steadily approached funda-
mental limits.1–6 In a typical NEMS sensing application, one drives
the NEMS resonator at one of its resonances and looks for changes
in its resonance frequency or amplitude due to a prescribed inter-
action with the environment. The highest sensitivity is attained
when the mode is driven to the largest amplitude possible, and its
oscillations are detected by the lowest-noise motion transducer
available.7 All these considerations are captured in a widely used
and intuitive formula that provides the minimum detectable fre-
quency shift (i.e., rms frequency noise) df for a NEMS-based reso-
nant sensor,8

df � f
2Q

10�
LDR
20 : (1)

Here, f and Q are the resonance frequency and the quality factor of the
NEMS mode, respectively, and linear dynamic range (LDR) of the
mode (in units of dB) is defined as9

LDR ¼ 20 log
0:745zc
zN

� �
; (2)

where zc is the so-called critical amplitude (rms) for the onset of non-
linearity of the mode: more precisely, the frequency-response curve for
the mode first attains infinite slope at zc as the drive force is increased;
zN is the rms noise amplitude within the measurement bandwidth.
The numerical factor quantifies the 1 dB compression that occurs
when the signal is 1 dB below the expected linear response. It is imme-
diately evident from Eqs. (1) and (2) that, to maximize the signal-to-
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noise ratio (SNR) in linear NEMS operation, the NEMS resonator
must be driven to the cusp of nonlinearity.10,11 A formula similar to
Eq. (1) exists for amplitude detection.12

The aforementioned discussion suggests that it is important
to understand and characterize nonlinearities in NEMS. In particu-
lar, the LDR—and, consequently, the onset of nonlinearity and the
amplitude of thermal fluctuations—of a NEMS resonator is one of
the most essential device parameters for sensing. As an NEMS res-
onator is uniformly scaled down, its spring constant tends to
become smaller, and thermal fluctuations become more promi-
nent.13 This indicates that the LDR will shrink from the bottom
end. Experiments on different structures9,14–16 have shown that the
amplitude for the onset of nonlinearity becomes progressively
smaller for smaller structures, suggesting that the top end of the
LDR also gets diminished. In other words, as NEMS gets miniatur-
ized, the LDR tends to keep shrinking,17,18 leading to next-
generation devices that practically have no linear regime.19,20

The quintessential NEMS resonator, in which intrinsic nonlinear-
ities have been carefully explored, is a doubly clamped nanomechanical
beam vibrating in its fundamental mode.9,18,21,22 The most commonly
studied intrinsic nonlinearity emerges through tension that develops as
the beam stretches at high amplitudes. Analytical description of this sys-
tem starting with the elastic beam equation leads to the Duffing equation
for the fundamental mode.23–26 A quadratic term may also emerge if a
broken symmetry exists in the system.17,27,28 The analytical theory accu-
rately predicts both the Duffing constant and the onset of nonlinearity
for the fundamental mode of NEMS beams made out of different mate-
rials21,29–31 and with different intrinsic tension levels.18,32–34 This conse-
quently allows for a reasonable estimate of the LDR.9,17

As the NEMS sensor work progresses, it has become more common
to employ higher modes or multiple modes in applications.35,36 With

some notable exceptions,23,37–39 there has not been much insight into the
nonlinearities and LDR of high modes. In this manuscript, we provide a
theoretical framework and experimental measurements that describe how
intrinsic nonlinearity scales with eigenmode number n in a NEMS resona-
tor. We also measure the thermal noise of each eigenmode and elucidate
the n dependence of the LDR. We conclude that the useful LDR increases
with increasing intrinsic tension in the device and n, albeit slowly.

We begin with the Euler-Bernoulli beam equation with an intrin-
sic tension term. We also include a nonlinear tension term resulting
from the stretching of the beam that occurs for large amplitude oscilla-
tions. This can be expressed as9,21,23

qA
@2Zðx; tÞ

@t2
þEI

@4Zðx; tÞ
@x4

� FT þEA
2l

ð l
0

@Z
@x

� �2

dx

" #
@2Zðx; tÞ

@x2
¼ 0:

(3)

Here, Z(x, t) is the out-of-plane flexural displacement of the beam at
axial position x and time t [Fig. 1(a)]; l � w� h are the nominal
dimensions along x, y, and z, A¼wh is the cross-sectional area, and
I ¼ wh3=12 is the area moment of inertia of the beam; the beam has
Young’s modulus E and density q. The first term in Eq. (3) is the iner-
tial term, the second term is the rigidity term, and the third term is the
tension term. The first component of the tension term in the square
brackets is the intrinsic tension FT, and the second term corresponds
to the additional tension due to stretching. Ignoring the nonlinear
term for a moment and non-dimensionalizing Eq. (3), we obtain the
nondimensional tension parameter,40,41

U ¼ FT
2EI=l2

; (4)

FIG. 1. (a) SEM image of a NEMS doubly clamped beam with thin-film gold nanoresistors around both anchors. (b) Experimental and theoretical eigenfrequencies xn=2p shown on
a semilogarithmic plot. The upper inset is a numerical simulation of the seventh eigenmode; the lower inset shows xn=x1 on a linear plot. (c) Experimental and theoretical spring
constants kn shown on a semilogarithmic plot. Error bars are smaller than the symbols unless explicitly shown. Inset shows the PSD of the thermal fluctuations of the seventh mode
with a Lorentzian fit to the peak. (d) Experimental quality factors Qn decrease as a function of n. Inset shows the same data on a semilogarithmic plot.
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which represents the ratio of the axial load on the beam to its rigidity.
The system approaches an Euler-Bernoulli beam for U � 1 and a
string for U � 1.

In the limit U � 1, we neglect the bending term to obtain the
(nonlinear) string equation,

qA
@2Zðx; tÞ

@t2
� FT þ EA

2l

ðl
0

@Z
@x

� �2

dx

" #
@2Zðx; tÞ

@x2
¼ 0; (5)

with boundary conditions Zð0; tÞ ¼ Zðl; tÞ ¼ 0 and eigenfunctions
/nðxÞ ¼ sin npx

l

� �
. Expanding the solution Z(x, t) in terms of the

orthogonal /nðxÞ and integrating over the length of the beam9,23 yields
a Duffing equation for the time dependent amplitude znðtÞ of the dif-
ferent modes. Including a lumped drive force of amplitude Fn at fre-
quency x � xn as well as a small phenomenological damping term,
we arrive at9,21,23

€zn þ xn

Qn
_zn þ x2

nzn þ anz
3
n ¼

Fn
mn

cosxt: (6)

This eigenfunction expansion yields the usual expression for the eigen-

frequency xn ¼ np
l

ffiffiffiffiffi
FT
qA

q
; the modal spring constant (referred to an

antinode13) and the modal mass can be found as kn ¼ p2FT
2l n2 and

mn ¼ kn=x2
n ¼ qlA

2 , respectively.40,42 Most importantly, the modal
Duffing constant an emerges as23

an ¼ Ep4

4ql4

� �
n4: (7)

With the aforementioned choice of the eigenfunctions, znðtÞ corre-
sponds to the actual (peak) displacement of the string at its antinodes.
We note that, even for large U, the string approximation is expected to
break down for large n, where bending becomes important.

Returning to Eq. (6), standard steps9,21,23–25 lead to an expression
for the frequency of the peak xp;n as a function of the peak amplitude
zp;n and other modal parameters,

xp;n ¼ xn þ 3
8

z2p;n
xn

 !
an: (8)

Equation (8) is parabolic in zp;n and describes the backbone curve,21,24

which follows the peak as the amplitude increases.
The critical amplitude zc;n can be determined from Eq. (6) by per-

forming a multiple-scale analysis,9,24 which yields

zc;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3

p

9
x2

n

Qnan

s
: (9)

Substituting for the string values of xn and an in Eq. (9) and realizing

that U ¼ � l
h

�2 6FT
EA

� �
, we arrive at23

zc;n ¼ 4h

35=4p

ffiffiffiffiffiffi
U
Qn

r !
1
n
: (10)

The tension parameter U, when considered in Eq. (10), represents the
ratio of the intrinsic tension to the elasticity induced tension due to the
stretching of the beam.

Our experimental study is based on two silicon nitride (SiN)
NEMS doubly clamped beam resonators with different intrinsic ten-
sion values. These two resonators are fabricated on two different
wafers, one with higher stress than the other. A colored scanning elec-
tron microscope (SEM) image of the high-tension NEMS beam is
shown in Fig. 1(a). Here, the beam lies along the x axis, and out-of-
plane vibrations are actuated in the z direction. The nominal dimen-
sions of the beam are l � w� h � 50lm� 900 nm� 100 nm. The
suspended region is shown in bright green and is clamped to the sub-
strate underneath on either side. Gold nanoresistors are patterned on
top of the beam near the clamps for electrothermal actuation.
Nanoresistors have a width of 120 nm and a thickness of 135 nm. All
dimensions of the low-tension beam are the same, except the nanore-
sistor thickness is 60 nm and l � 30lm. To measure linear and non-
linear parameters of each device, we apply a sinusoidal current to the
electrothermal actuators43 and sweep the frequency from low to high
around each eigenfrequency. We detect the NEMS motion interfero-
metrically43 at the forcing frequency using a lock-in amplifier. By grad-
ually increasing the actuation current, we drive each eigenmode from
its linear to nonlinear regime. For each eigenmode, both linear and
nonlinear measurements are taken at an antinode closest to the center
of the beam. All the experiments are performed in a high vacuum
chamber.

Electrothermal actuation is based on Joule heating of the beam
around the nanoresistor by an input current.44 Coupled with the pie-
zoresistance45 and the temperature-dependent resistivity of the gold
nanoresistor, Joule heating can result in mechanical forces and
responses at the harmonics of the drive frequency. The lock-in ampli-
fier filters out the higher harmonics, and the mixed down signal com-
ponents are estimated to be negligible. We have also estimated the
nonlinearity of the optical interferometer and found it to be a small
but observable source of extrinsic nonlinearity. Finally, nonlinear dissi-
pation is not appreciable in our system (see the supplementary mate-
rial for details).

We first measure the linear modal parameters of the NEMS
beams [Figs. 1(b)–1(d)], including the eigenfrequencies xn=2p, spring
constants kn, and quality factors Qn and compute the intrinsic tensions
FT. Figure 1(b) shows xn=2p as a function of mode number n in a
semilogarithmic plot. Here, the red and blue symbols correspond to
the experimental values for the frequencies of the 50 and 30-lm
beams, respectively, and the continuous lines correspond to the values
computed using tensioned beam theory.13,40,41 The lower inset shows
the normalized frequencies, xn=x1, on a linear plot and reveals a
strong string-like behavior for the 50-lm beam. We find FT by match-
ing analytical eigenfrequencies xn=2p with experiments. For material
properties of SiN, we use a Young’s modulus of E ¼ 250GPa,46,47 a
Poisson’s ratio of � ¼ 0:23, and a mass density of q ¼ 3000 kg=m3.
We find FT ¼ 63:5 lN for the 50-lm beam and FT ¼ 8:9 lN for the
30-lm beam. The respective U values for the two beams are 4233 and
214. The upper inset in Fig. 1(b) shows the displacement profile for a
typical eigenmode, the seventh eigenmode for the 50-lm beam.

Figure 1(c) shows kn as a function of n in a semilogarithmic plot.
To find the experimental kn, we measure the power spectral density
(PSD) of thermal fluctuations for each mode at a modal antinode clos-
est to the center of the beam. We first find the mean-squared fluctua-
tion amplitude by numerically integrating the modal PSD, we then
calculate the spring constants from the equipartition of energy.13 A
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representative PSD for the seventh eigenmode of the 50-lm beam
is shown in the inset, where the continuous line is a Lorentzian fit
to the peak. The continuous lines in the main figure are found
from tensioned beam theory using mechanical properties of the
beam and FT.

13,40 Finally, Fig. 1(d) shows the experimental quality
factors Qn, which are determined from linear time-domain ring-
downs and frequency-domain Lorentzian fits45 to the resonator
response (see the supplementary material for details). The inset
shows the same data on a semilogarithmic plot. Qn decreases
monotonically with increasing mode number n. The observed
decrease in Qn as a function of n is consistent with dissipation dilu-
tion,48–51 and our overall dissipation is likely dominated by the
gold film near the anchors.46

Next, we show how to extract the nonlinear Duffing constant an
and the critical amplitude zc;n from a measurement of the NEMS
modal response as a function of frequency. Figure 2(a) shows the sixth
mode resonance of the 50-lm beam for different rms drive current
levels using a logarithmic y axis. The first four response curves at the
lowest drive levels are linear. With increasing drive power, the
response exhibits nonlinear stiffening: the frequency of the peak
increases with the drive, and, at the largest drives, the response makes
a downward jump as the response is no longer a singled-valued func-
tion of frequency.24,25 We extract an by fitting experimental zp;n values
at larger drives to Eq. (8).

Modal an values for both beams are shown as a function of
xn=2p in Fig. 2(b). The y-axis is logarithmic and has units of
MHz2=nm2 to yield reasonable numerical values. The inset is a
double-logarithmic plot of an vs n. The slope reveals that an / n4. The
continuous lines are from theory and are discussed later. All experi-
mentally measured an along with linear modal parameters is listed in
Table I.

Figure 2(c) (symbols) shows experimental critical amplitudes
zc;n as a function of frequency computed from the corresponding
an using Eq. (9). In the inset, we remove the Qn dependence of the
data by plotting zc;n

ffiffiffiffiffiffi
Qn

p
as a function of n in a double-logarithmic

plot. The data scale as zc;n
ffiffiffiffiffiffi
Qn

p / 1
n. The continuous theory lines

are also discussed later. The zc;n values can also be determined
from the modal response curve by finding the first point with infi-
nite slope. These values agree with the zc;n values found using Eq.
(9) to within �10%.

For both beams U � 1, and it seems reasonable to use the string
approximation, i.e., Eqs. (7) and (10), in order to determine the theo-
retical values for an and zc;n. To calculate the theoretical curves in Figs.
2(b) and 2(c), we use the nominal dimensions of the beams, mechani-
cal properties of SiN, and experimental values for U and Qn in Eqs. (7)
and (10), respectively. The use of experimentally measured Qn in Eq.
(10) results in the non-smooth theoretical curves in Fig. 2(c). The
agreement between experimental and theoretical an in Fig. 2(b) is very
good for both beams. In Fig. 2(c), the experimental zc;n data deviate
from theory for the 30-lm beam at some of the large n values. The rea-
son for this can be traced to the string approximation and its neglect of
bending contributions, which become increasingly important at larger
n. Equation (9) indicates that any errors in xn will be propagated to
zc;n. Indeed, Fig. 1(b), inset, shows that xn for the 30-lm beam devi-
ates from the string frequencies (continuous red curve) for high n.

Finally, we discuss the LDR of these nanomechanical resonators.
We modify Eq. (2) to redefine the LDR of mode n as

LDRn ¼ 20 log
0:745zðrmsÞ

c;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=kn

p
 !

; (11)

where the entire noise bandwidth is taken as the detection band-
width. Equation (11) gives the value of LDRn referred to an anti-
node. Returning to Fig. 2(a), the dashed line on the bottom shows
the rms thermal amplitude,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k6

p
. The modal critical ampli-

tude zc;6 is indicated by the upper dashed line, which corresponds
to the first displacement amplitude with infinite slope.24,25 The
green-shaded area corresponds to the LDR, with the upper end of
the LDR slightly below zc;6.

FIG. 2. (a) Frequency-response curves (peak) of the sixth mode of the 50-lm
beam for different drive current values (rms). The upper dashed line shows the criti-
cal amplitude zc;6. The lower dashed line is the rms thermal amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k6

p
.

The green-shaded area corresponds to the LDR. The Duffing constant a6 is
extracted from a parabolic fit to the backbone curve. (b) Duffing constants an as a
function of eigenfrequency shown on a semilogarithmic plot. Inset shows an as a
function of n on a double-logarithmic plot, revealing the trend an / n4. (c) Critical
amplitudes zc;n (peak) as a function of eigenfrequency plotted on linear axes. The
theoretical curves are non-smooth due to experimental Qn. Inset shows zc;n

ffiffiffiffiffi
Qn

p
as

a function of n on a double-logarithmic plot, revealing the trend zc;n
ffiffiffiffiffi
Qn

p / 1=n.
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We compute the experimental LDRn using experimental values
for zc;n [symbols in Fig. 2(c)] and kn [symbols in Fig. 1(c)]. For the the-
oretical curves, we use the theoretical zc;n [Eq. (10)], in which U and
Qn are from experiments and theoretical kn [continuous lines in
Fig. 1(c)]. Figure 3(a) shows the experimental and theoretical LDRn as
a function of n for the first 11 modes of the two NEMS resonators.
Note, again, that the theoretical curve is non-smooth due to the experi-
mentally measured Qn values. Both experimental and theoretical LDR
show a weak dependence on n.

To better understand the dependence of LDR on physical param-
eters, we analyze the data in Fig. 3(a) based on Eqs. (10) and (11). We
notice that, for the string approximation, the data should only be a

function of C
n

ffiffiffiffiffiffi
Ukn
Qn

q
, where C � 0:24hffiffiffiffiffiffi

kBT
p is the same constant for both

beams. This suggests that all data can be plotted as a function of
C
n

ffiffiffiffiffiffi
Ukn
Qn

q
. To determine the new x coordinate for each data point in

Fig. 3(a), we compute the corresponding value of C
n

ffiffiffiffiffiffi
Ukn
Qn

q
based on all

the experimental values. We then plot the data point against this x
value. The result is plotted in Fig. 3(b). The theory curve is the smooth

function 20 log C
n

ffiffiffiffiffiffi
Ukn
Qn

q� �
. The inset shows the same data using a loga-

rithmic x axis and reveals a slope of 1. The agreement between experi-
mental and theoretical LDR for the 50-lm beam is excellent, while the
theory underpredicts experimental LDR of the 30-lm beam. The
arrows indicate the direction of increasing n for the experimental data.

At a first glance, LDR in Fig. 3(a) increases with n and U.
However, kn and Qn both depend on U and n. More insight can be
gained into the trends by turning to the U � 1 limit. To this end, we
use the string kn expressed in terms of U as kn � p2UEI

l3 n2 to find

LDRn � 20 log 0:8h
ffiffiffiffiffiffiffiffi
EI

l3kBT

q� �
þ 20 log Uffiffiffiffi

Qn
p
� �

, both referred to an

antinode. For a given string, LDRn increases with increasing U
because zc;n grows and the thermal fluctuation amplitude decreases
with U—extending the LDR on both ends. In the string approxima-
tion, LDRn does not explicitly depend upon n but only through Qn.

Intrinsic (in vacuo) Qn tends to decrease45,50,52 with n, whereas fluidic
Qn may increase13,53 with n. Comparison between different structures
made of different materials is also possible using our formulas and
requires knowledge of E in addition to nominal dimensions,U and Qn.

FIG. 3. (a) Experimental and theoretical LDR for 11 eigenmodes of two NEMS reso-
nators computed using Eq. (11). The theoretical curves are non-smooth due to
experimental Qn. (b) Collapsed LDR data. Inset shows the same data on a double-
logarithmic plot, revealing a slope of 1.

TABLE I. Experimental parameters for the first 11 modes of two NEMS resonators.

l � w� h ¼ 50 lm� 900 nm� 100 nm, U¼ 4233 l � w� h ¼ 30 lm� 900 nm� 100 nm, U¼ 214

xn=2p kn an xn=2p kn an
Mode ðMHzÞ Qn ðN=mÞ ðMHz2=nm2Þ ðMHzÞ Qn ðN=mÞ ðMHz2=nm2Þ
1 4.954 2:0� 104 9.05 5:69� 10�4 3.488 9:3� 103 2.41 3:18� 10�3

2 9.927 1:7� 104 30.2 5:95� 10�3 7.169 7:0� 103 9.96 4:62� 10�2

3 14.83 1:5� 104 67.5 2:15� 10�2 11.32 6:1� 103 18.7 1:46� 10�1

4 19.74 1:3� 104 91.5 8:71� 10�2 15.85 4:7� 103 31.5 4:35� 10�1

5 24.83 9:8� 103 159 2:68� 10�1 20.66 3:5� 103 55.5 9:21� 10�1

6 30.08 8:5� 103 248 6:55� 10�1 26.01 2:9� 103 99.7 2.35
7 35.15 6:5� 103 320 1.33 32.00 2:5� 103 196 3.91
8 40.22 4:0� 103 440 1.92 38.89 1:2� 103 246 7.54
9 45.52 3:2� 103 642 3.13 46.21 1:2� 103 403 2:23� 101

10 50.78 2:2� 103 739 4.90 53.92 9:1� 102 516 3:23� 101

11 56.06 2:3� 103 845 6.58 62.60 7:8� 102 719 9:91� 101
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Our aim here has been to uncover the scaling of an, zc;n, and
LDRn across eigenmodes in a nanomechanical resonator. To this end,
we have formulated our theory based on the string equation [Eq. (5)],
which yielded insightful closed-form analytical expressions. We attri-
bute the disagreements between theory and experiment for our lower
tension beam to the string approximation and will resolve this in
future work by employing the tensioned beam theory. Finally, the fre-
quency resolution and, in particular, mass sensitivity of our NEMS res-
onators should increase with n, given that LDR increases but the active
mass tends to stay unchanged with n.

See the supplementary material for details of computing the
experimental values of Qn and FT, the theoretical values for kn and xn

as well as the error sources in the system. Error sources include inter-
modal force coupling, transduction nonlinearities, thermally induced
frequency shifts, and nonlinear damping.
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