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ABSTRACT

Even a relatively weak drive force is enough to push a typical nanomechanical resonator into the nonlinear regime. Consequently,
nonlinearities are widespread in nanomechanics and determine the critical characteristics of nanoelectromechanical systems’ (NEMSs)
resonators. A thorough understanding of the nonlinear dynamics of higher eigenmodes of NEMS resonators would be beneficial for progress,
given their use in applications and fundamental studies. Here, we characterize the nonlinearity and the linear dynamic range (LDR) of each
eigenmode of two nanomechanical beam resonators with different intrinsic tension values up to eigenmode n=11. We find that the modal
Duffing constant increases as n*, while the critical amplitude for the onset of nonlinearity decreases as 1/n. The LDR, determined from the
ratio of the critical amplitude to the thermal noise amplitude, increases weakly with n. Our findings are consistent with our theory treating
the beam as a string, with the nonlinearity emerging from stretching at high amplitudes. These scaling laws, observed in experiments and
validated theoretically, can be leveraged for pushing the limits of NEMS-based sensing even further.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0215566

Over the past decade, the sensitivities attainable by nanoelec- Here, fand Q are the resonance frequency and the quality factor of the
tromechanical systems (NEMS) have steadily approached funda- NEMS mode, respectively, and linear dynamic range (LDR) of the
mental limits.' © In a typical NEMS sensing application, one drives mode (in units of dB) is defined as’
the NEMS resonator at one of its resonances and looks for changes
in its resonance frequency or amplitude due to a prescribed inter-
action with the environment. The highest sensitivity is attained LDR = 20log (
when the mode is driven to the largest amplitude possible, and its
oscillations are detected by the lowest-noise motion transducer
available.” All these considerations are captured in a widely used
and intuitive formula that provides the minimum detectable fre-
quency shift (i.e., rms frequency noise) Jf for a NEMS-based reso-
nant sensor,”

0.745zc> ’ 2)

ZN

where z. is the so-called critical amplitude (rms) for the onset of non-
linearity of the mode: more precisely, the frequency-response curve for
the mode first attains infinite slope at z, as the drive force is increased;
zy is the rms noise amplitude within the measurement bandwidth.
The numerical factor quantifies the 1dB compression that occurs

92:80:00 ¥20z Joquaidas €0

5f ~ f 1075 (1) when the signal is 1 dB below the expected linear response. It is imme-
2Q diately evident from Eqs. (1) and (2) that, to maximize the signal-to-
Appl. Phys. Lett. 125, 083505 (2024); doi: 10.1063/5.0215566 125, 083505-1
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noise ratio (SNR) in linear NEMS operation, the NEMS resonator
must be driven to the cusp of nonlinearity.'”'" A formula similar to
Eq. (1) exists for amplitude detection.'”

The aforementioned discussion suggests that it is important
to understand and characterize nonlinearities in NEMS. In particu-
lar, the LDR—and, consequently, the onset of nonlinearity and the
amplitude of thermal fluctuations—of a NEMS resonator is one of
the most essential device parameters for sensing. As an NEMS res-
onator is uniformly scaled down, its spring constant tends to
become smaller, and thermal fluctuations become more promi-
nent.'” This indicates that the LDR will shrink from the bottom
end. Experiments on different structures”* '® have shown that the
amplitude for the onset of nonlinearity becomes progressively
smaller for smaller structures, suggesting that the top end of the
LDR also gets diminished. In other words, as NEMS gets miniatur-
ized, the LDR tends to keep shrinking,'”'® leading to next-
generation devices that practically have no linear regime.'”*’

The quintessential NEMS resonator, in which intrinsic nonlinear-
ities have been carefully explored, is a doubly clamped nanomechanical
beam vibrating in its fundamental mode.”'**"** The most commonly
studied intrinsic nonlinearity emerges through tension that develops as
the beam stretches at high amplitudes. Analytical description of this sys-
tem starting with the elastic beam equation leads to the Duffing equation
for the fundamental mode.”** A quadratic term may also emerge if a
broken symmetry exists in the system.'”””* The analytical theory accu-
rately predicts both the Duffing constant and the onset of nonlinearity
for the fundamental mode of NEMS beams made out of different mate-
rials” "' and with different intrinsic tension levels."*** ** This conse-
quently allows for a reasonable estimate of the LDR.”"”
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some notable exceptions,””” " there has not been much insight into the
nonlinearities and LDR of high modes. In this manuscript, we provide a
theoretical framework and experimental measurements that describe how
intrinsic nonlinearity scales with eigenmode number 7 in a NEMS resona-
tor. We also measure the thermal noise of each eigenmode and elucidate
the n dependence of the LDR. We conclude that the useful LDR increases
with increasing intrinsic tension in the device and 7, albeit slowly.

We begin with the Euler-Bernoulli beam equation with an intrin-
sic tension term. We also include a nonlinear tension term resulting
from the stretching of the beam that occurs for large amplitude oscilla-
tions. This can be expressed as™”"*’

PZ(x,t)  0*Z(x,t) EA 1(32)2
pA at2 + EI a_x4 — FT+7JO a dx

7 (x,1)

o2

3

Here, Z(x, t) is the out-of-plane flexural displacement of the beam at
axial position x and time ¢ [Fig. 1(a)]; [ X w X h are the nominal
dimensions along x, y, and z, A = wh is the cross-sectional area, and
I=wh? /12 is the area moment of inertia of the beam; the beam has
Young’s modulus E and density p. The first term in Eq. (3) is the iner-
tial term, the second term is the rigidity term, and the third term is the
tension term. The first component of the tension term in the square
brackets is the intrinsic tension Fy, and the second term corresponds
to the additional tension due to stretching. Ignoring the nonlinear
term for a moment and non-dimensionalizing Eq. (3), we obtain the
nondimensional tension parameterf‘o‘41

F
As the NEMS sensor work progresses, it has become more common = —le , (4)
to employ higher modes or multiple modes in applications.””* With 2E1/
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FIG. 1. (a) SEM image of a NEMS doubly clamped beam with thin-film gold nanoresistors around both anchors. (b) Experimental and theoretical eigenfrequencies ,/2x shown on
a semilogarithmic plot. The upper inset is a numerical simulation of the seventh eigenmode; the lower inset shows @,/ on a linear plot. (c) Experimental and theoretical spring
constants k, shown on a semilogarithmic plot. Error bars are smaller than the symbols unless explicitly shown. Inset shows the PSD of the thermal fluctuations of the seventh mode
with a Lorentzian fit to the peak. (d) Experimental quality factors Q, decrease as a function of n. Inset shows the same data on a semilogarithmic plot.
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which represents the ratio of the axial load on the beam to its rigidity.
The system approaches an Euler-Bernoulli beam for U < 1 and a
string for U > 1.

In the limit U > 1, we neglect the bending term to obtain the
(nonlinear) string equation,

PZ(x,1) EA l(az)z PZ(x,1)

with boundary conditions Z(0,¢) = Z(I,t) = 0 and eigenfunctions
$u(x) = sin("¥). Expanding the solution Z(x, #) in terms of the
orthogonal ¢, (x) and integrating over the length of the beam™*” yields
a Duffing equation for the time dependent amplitude z,(t) of the dif-
ferent modes. Including a lumped drive force of amplitude F, at fre-
quency o ~ m, as well as a small phenomenological damping term,
we arrive at”* "’

. Wy . F
Zpt—"zn + 022y + 0pz) = —-cos wt. (6)
n mt’l
This eigenfunction expansion yields the usual expression for the eigen-

frequency w, = "F 5—2; the modal spring constant (referred to an

antinode'’) and the modal mass can be found as k, = ©Fr 12 and

2
my = ky/w? :%, respectively.”* Most importantly, the modal

23
Duffing constant «,, emerges as

E 4
oy = (J”ﬂ) nt. %)

With the aforementioned choice of the eigenfunctions, z,(t) corre-
sponds to the actual (peak) displacement of the string at its antinodes.
We note that, even for large U, the string approximation is expected to
break down for large n, where bending becomes important.

Returning to Eq. (6), standard steps”*"*" ** lead to an expression
for the frequency of the peak w, , as a function of the peak amplitude
Zp,» and other modal parameters,

2
3(z
wP«,n = Wy + g <£”> O (8)

Equation (8) is parabolic in z, , and describes the backbone curve,”"*"
which follows the peak as the amplitude increases.

The critical amplitude z. , can be determined from Eq. (6) by per-
forming a multiple-scale analysis,””" which yields

/8v/3 w?
Zen = T QnOCn' (9)

Substituting for the string values of w,, and o, in Eq. (9) and realizing
that U = (%)2 (%), we arrive at”’

- 4h\/ﬁ1 (10)
Zen = m @ ;

The tension parameter U, when considered in Eq. (10), represents the
ratio of the intrinsic tension to the elasticity induced tension due to the
stretching of the beam.
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Our experimental study is based on two silicon nitride (SiN)
NEMS doubly clamped beam resonators with different intrinsic ten-
sion values. These two resonators are fabricated on two different
wafers, one with higher stress than the other. A colored scanning elec-
tron microscope (SEM) image of the high-tension NEMS beam is
shown in Fig. 1(a). Here, the beam lies along the x axis, and out-of-
plane vibrations are actuated in the z direction. The nominal dimen-
sions of the beam are I X w X h &~ 50 um X 900 nm X 100 nm. The
suspended region is shown in bright green and is clamped to the sub-
strate underneath on either side. Gold nanoresistors are patterned on
top of the beam near the clamps for electrothermal actuation.
Nanoresistors have a width of 120 nm and a thickness of 135 nm. All
dimensions of the low-tension beam are the same, except the nanore-
sistor thickness is 60 nm and / ~ 30 um. To measure linear and non-
linear parameters of each device, we apply a sinusoidal current to the
electrothermal actuators™’ and sweep the frequency from low to high
around each eigenfrequency. We detect the NEMS motion interfero-
metrically™” at the forcing frequency using a lock-in amplifier. By grad-
ually increasing the actuation current, we drive each eigenmode from
its linear to nonlinear regime. For each eigenmode, both linear and
nonlinear measurements are taken at an antinode closest to the center
of the beam. All the experiments are performed in a high vacuum
chamber.

Electrothermal actuation is based on Joule heating of the beam
around the nanoresistor by an input current."* Coupled with the pie-
zoresistance’ and the temperature-dependent resistivity of the gold
nanoresistor, Joule heating can result in mechanical forces and
responses at the harmonics of the drive frequency. The lock-in ampli-
fier filters out the higher harmonics, and the mixed down signal com-
ponents are estimated to be negligible. We have also estimated the
nonlinearity of the optical interferometer and found it to be a small
but observable source of extrinsic nonlinearity. Finally, nonlinear dissi-
pation is not appreciable in our system (see the supplementary mate-
rial for details).

We first measure the linear modal parameters of the NEMS
beams [Figs. 1(b)-1(d)], including the eigenfrequencies w,, /2, spring
constants k,,, and quality factors Q, and compute the intrinsic tensions
Fr. Figure 1(b) shows , /27 as a function of mode number 7 in a
semilogarithmic plot. Here, the red and blue symbols correspond to
the experimental values for the frequencies of the 50 and 30-um
beams, respectively, and the continuous lines correspond to the values
computed using tensioned beam theory.'****' The lower inset shows
the normalized frequencies, ®,/w;, on a linear plot and reveals a
strong string-like behavior for the 50-um beam. We find Fr by match-
ing analytical eigenfrequencies ), /2n with experiments. For material
properties of SiN, we use a Young’s modulus of E = 250 GPa,"*" a
Poisson’s ratio of v = 0.23, and a mass density of p = 3000 kg/m°.
We find Fr = 63.5 uN for the 50-um beam and Fy = 8.9 uN for the
30-um beam. The respective U values for the two beams are 4233 and
214. The upper inset in Fig. 1(b) shows the displacement profile for a
typical eigenmode, the seventh eigenmode for the 50-m beam.

Figure 1(c) shows k,, as a function of # in a semilogarithmic plot.
To find the experimental k,,, we measure the power spectral density
(PSD) of thermal fluctuations for each mode at a modal antinode clos-
est to the center of the beam. We first find the mean-squared fluctua-
tion amplitude by numerically integrating the modal PSD, we then
calculate the spring constants from the equipartition of energy.”” A
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representative PSD for the seventh eigenmode of the 50-um beam
is shown in the inset, where the continuous line is a Lorentzian fit
to the peak. The continuous lines in the main figure are found
from tensioned beam theory using mechanical properties of the
beam and Fr." " Finally, Fig. 1(d) shows the experimental quality
factors Q,,, which are determined from linear time-domain ring-
downs and frequency-domain Lorentzian fits*’ to the resonator
response (see the supplementary material for details). The inset
shows the same data on a semilogarithmic plot. Q, decreases
monotonically with increasing mode number n. The observed
decrease in Q,, as a function of # is consistent with dissipation dilu-
tion,"” ' and our overall dissipation is likely dominated by the
gold film near the anchors.*®

Next, we show how to extract the nonlinear Duffing constant o,
and the critical amplitude z., from a measurement of the NEMS
modal response as a function of frequency. Figure 2(a) shows the sixth
mode resonance of the 50-um beam for different rms drive current
levels using a logarithmic y axis. The first four response curves at the
lowest drive levels are linear. With increasing drive power, the
response exhibits nonlinear stiffening: the frequency of the peak
increases with the drive, and, at the largest drives, the response makes
a downward jump as the response is no longer a singled-valued func-
tion of frequency.”"”” We extract o, by fitting experimental z,, , values
at larger drives to Eq. (8).

Modal o, values for both beams are shown as a function of
,/2n in Fig. 2(b). The y-axis is logarithmic and has units of
MHz?/nm? to yield reasonable numerical values. The inset is a
double-logarithmic plot of a,, vs n. The slope reveals that o, < n*. The
continuous lines are from theory and are discussed later. All experi-
mentally measured «,, along with linear modal parameters is listed in
Table I.

Figure 2(c) (symbols) shows experimental critical amplitudes
z.n as a function of frequency computed from the corresponding
o, using Eq. (9). In the inset, we remove the Q,, dependence of the
data by plotting z, ,1/Q, as a function of # in a double-logarithmic
plot. The data scale as z.,/Q, x % The continuous theory lines
are also discussed later. The z., values can also be determined
from the modal response curve by finding the first point with infi-
nite slope. These values agree with the z., values found using Eq.
(9) to within ~10%.

For both beams U >> 1, and it seems reasonable to use the string
approximation, i.e., Eqs. (7) and (10), in order to determine the theo-
retical values for o, and z. ,. To calculate the theoretical curves in Figs.
2(b) and 2(c), we use the nominal dimensions of the beams, mechani-
cal properties of SiN, and experimental values for U and Q, in Egs. (7)
and (10), respectively. The use of experimentally measured Q, in Eq.
(10) results in the non-smooth theoretical curves in Fig. 2(c). The
agreement between experimental and theoretical o, in Fig. 2(b) is very
good for both beams. In Fig. 2(c), the experimental z., data deviate
from theory for the 30-m beam at some of the large # values. The rea-
son for this can be traced to the string approximation and its neglect of
bending contributions, which become increasingly important at larger
n. Equation (9) indicates that any errors in ,, will be propagated to
Zc . Indeed, Fig. 1(b), inset, shows that w,, for the 30-um beam devi-
ates from the string frequencies (continuous red curve) for high n.

Finally, we discuss the LDR of these nanomechanical resonators.
We modify Eq. (2) to redefine the LDR of mode 7 as
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FIG. 2. (a) Frequency-response curves (peak) of the sixth mode of the 50-um
beam for different drive current values (rms). The upper dashed line shows the criti-
cal amplitude z; . The lower dashed line is the rms thermal amplitude /kgT /ks.
The green-shaded area corresponds to the LDR. The Duffing constant og is
extracted from a parabolic fit to the backbone curve. (b) Duffing constants o, as a
function of eigenfrequency shown on a semilogarithmic plot. Inset shows o, as a
function of n on a double-logarithmic plot, revealing the trend o, oc n*. (c) Critical
amplitudes z, (peak) as a function of eigenfrequency plotted on linear axes. The
theoretical curves are non-smooth due to experimental Q. Inset shows z ,1/Q, as
a function of n on a double-logarithmic plot, revealing the trend 5 n/Q, o 1/n.

(11)

(rms)
0.745
LDR, = 20 log (Z“'” )

VksT ks

where the entire noise bandwidth is taken as the detection band-
width. Equation (11) gives the value of LDR, referred to an anti-
node. Returning to Fig. 2(a), the dashed line on the bottom shows
the rms thermal amplitude, \/kgT/ks. The modal critical ampli-
tude z.¢ is indicated by the upper dashed line, which corresponds
to the first displacement amplitude with infinite slope.”"”” The
green-shaded area corresponds to the LDR, with the upper end of
the LDR slightly below z.
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TABLE I. Experimental parameters for the first 11 modes of two NEMS resonators.

I X wxh=50um x 900nm x 100 nm, U=4233 I xwxh=30um x 900nm x 100 nm, U=214
W, /21 k, o, W, /21 k, o,
Mode (MHz) Q, (N/m) (MHz? /nm?) (MHz) Q, (N/m) (MHz? /nm?)
1 4.954 2.0 x 10* 9.05 5.69 x 1074 3.488 9.3 x 10° 241 3.18 x 1073
2 9.927 1.7 x 10* 30.2 5.95x 1073 7.169 7.0 x 10° 9.96 4.62 x 1072
3 14.83 1.5 x 10* 67.5 2.15 x 1072 11.32 6.1 x 10° 18.7 1.46 x 107!
4 19.74 1.3 x 10* 91.5 8.71 x 1072 15.85 4.7 x 10° 31.5 435 % 107!
5 24.83 9.8 x 10° 159 2.68 x 107! 20.66 3.5 x 10° 55.5 9.21 x 107!
6 30.08 8.5 x 10° 248 6.55 x 1071 26.01 2.9 x 10° 99.7 2.35
7 35.15 6.5 x 10° 320 1.33 32.00 2.5 x 103 196 391
8 40.22 4.0 x 10° 440 1.92 38.89 1.2 x 10° 246 7.54
9 45.52 3.2 x 10° 642 3.13 46.21 1.2 x 10° 403 2.23 x 10!
10 50.78 2.2 % 10° 739 4.90 53.92 9.1 x 10? 516 3.23 x 10!
11 56.06 2.3 x 10° 845 6.58 62.60 7.8 x 10? 719 9.91 x 10!
We compute the experimental LDR,, using experimental values Intrinsic (in vacuo) Q, tends to decrease™”*” with n, whereas fluidic
for z. , [symbols in Fig. 2(c)] and k,, [symbols in Fig. 1(c)]. For the the- Q, may increase' " with n. Comparison between different structures
oretical curves, we use the theoretical z.,, [Eq. (10)], in which U and made of different materials is also possible using our formulas and
Q, are from experiments and theoretical k, [continuous lines in requires knowledge of E in addition to nominal dimensions, U and Q,,.

Fig. 1(c)]. Figure 3(a) shows the experimental and theoretical LDR,, as
a function of n for the first 11 modes of the two NEMS resonators.
Note, again, that the theoretical curve is non-smooth due to the experi- (a) 65 . : T .

mentally measured Q,, values. Both experimental and theoretical LDR 60 @ 50pm | E
show a weak dependence on 7. © 30um

To better understand the dependence of LDR on physical param- _ 5 e
eters, we analyze the data in Fig. 3(a) based on Egs. (10) and (11). We 2B 50 . :

. . . . —_ /
notice that, for the string approximation, the data should only be a X .5 ° —]
o

. ¢ [uk, ~ 0.2h ; a
function of rRVAoR where C ~ N the same constant for both w0k ® ° | I 3
beams. This suggests that all data can be plotted as a function of 35 °
% %—k“ To determine the new x coordinate for each data point in

n 30 1 | |

1
Fig. 3(a), we compute the corresponding value of < % based on all L 2 78 9 101

the experimental values. We then plot the data point against this x (b) 65 ; ;
value. The result is plotted in Fig. 3(b). The theory curve is the smooth b

bt @5
function 20 log (% 1/ %"—) . The inset shows the same data using a loga- ® 30um /i/r
n 55 F | ! -
rithmic x axis and reveals a slope of 1. The agreement between experi- b * 0 gm0 /?
0t 60 ré—

o
mental and theoretical LDR for the 50-um beam is excellent, while the ? 5
theory .un(;erpredictﬁ exPeﬁmgntal LDR of the 30—yn} beam. The Q 45 (o) 50 o d
arrows indicate the direction of increasing # for the experimental data. F o / & o®
At a first glance, LDR in Fig. 3(a) increases with n and U. 40F-© o 0
However, k,, and Q, both depend on U and n. More insight can be E ! 30 o 00 - 7000
gained into the trends by turning to the U >> 1 limit. To this end, we 3 7 | | | | ? 1
use the string k, expressed in terms of U as k, ~ %nz to find 0 200 400 600 800 1000 1200 1400
C [Uk,
LDR, =~ 20log <O.Sh %) +201log (\/LQ—"), both referred to an n\aQ,

antinode. For a given string, LDR, increases with increasing U

because 2, grows and the thermal fluctuation amplitude decreases FIG. 3. (a) Experimental and theoretical LDR for 11 eigenmodes of two NEMS reso-

nators computed using Eq. (11). The theoretical curves are non-smooth due to
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with U—extending the LDR on both ends. In the string approxima- experimental Q,. (b) Collapsed LDR data. Inset shows the same data on a double-
tion, LDR,, does not explicitly depend upon # but only through Q,. logarithmic plot, revealing a slope of 1.
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Our aim here has been to uncover the scaling of ,, z,, and
LDR,, across eigenmodes in a nanomechanical resonator. To this end,
we have formulated our theory based on the string equation [Eq. (5)],
which yielded insightful closed-form analytical expressions. We attri-
bute the disagreements between theory and experiment for our lower
tension beam to the string approximation and will resolve this in
future work by employing the tensioned beam theory. Finally, the fre-
quency resolution and, in particular, mass sensitivity of our NEMS res-
onators should increase with n, given that LDR increases but the active
mass tends to stay unchanged with .

See the supplementary material for details of computing the
experimental values of Q, and Fr, the theoretical values for k, and w,,
as well as the error sources in the system. Error sources include inter-
modal force coupling, transduction nonlinearities, thermally induced
frequency shifts, and nonlinear damping.
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