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ABSTRACT The phosphoregulation of proteins with multiple phosphorylation sites is governed by biochemical reaction net-

works that can exhibit multistable behavior. However, the behavior of such networks is typically studied in a single reaction vol-

ume, while cells are spatially organized into compartments that can exchange proteins. In this work, we use stochastic

simulations to study the impact of compartmentalization on a two-site phosphorylation network. We characterize steady states

and fluctuation-driven transitions between them as a function of the rate of protein exchange between two compartments. Sur-

prisingly, the average time spent in a state before stochastically switching to another depends nonmonotonically on the protein

exchange rate, with the most frequent switching occurring at intermediate exchange rates. At sufficiently small exchange rates,

the state of the system and mean switching time are controlled largely by fluctuations in the balance of enzymes in each

compartment. This leads to negatively correlated states in the compartments. For large exchange rates, the two compartments

behave as a single effective compartment. However, when the compartmental volumes are unequal, the behavior differs from a

single compartment with the same total volume. These results demonstrate that exchange of proteins between distinct compart-

ments can regulate the emergent behavior of a common signaling motif.

INTRODUCTION

Compartmentalization is a key organizational principle in

cell biology. The interiors of cells are organized in part by

membrane-enclosed organelles and their more recently

discovered membraneless counterparts (1,2). However, rela-

tively little work has explored how signaling responses are

regulated by compartmentalization and the exchange of pro-

teins between compartments.

The behavior of cell signaling networks is governed by fea-

tures including topology of the reaction network, kinetic pa-

rameters, and concentrations of proteins. Spatial organization

and spatiotemporal correlations can also regulate the emergent

behavior (3–7). However, spatial effects are generally less well

understood, as signaling networks are most commonly studied

in well-mixed settings. It is likely that compartmentalization is

a regulatory mechanism for some biochemical reaction net-

works because it connectsmesoscale organization to dynamics

of signaling networks (2,8–10).

The nucleus and cytoplasm are a classic example of

compartmentalization within the cell, with the regulated ex-

change of biomolecules between them facilitated by nuclear

pore complexes (11). Other membrane-enclosed organelles

exchange proteins by means of protein transporters or vesic-

ular transport (12), and the plasma membrane and cyto-

plasm can be considered separate compartments when the

recruitment of cytosolic proteins to the membrane is

controlled by lipid or protein binding motifs (5).
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SIGNIFICANCE Cells are organized into compartments, as exemplified by membrane-enclosed organelles and by

recent developments in the study of biomolecular condensates. However, although proteins can dynamically switch

between compartments, there is no general understanding of how protein exchange impacts signaling networks. This

study uses stochastic computer simulations to reveal the effect of compartmentalization on a protein phosphorylation

network. It reveals the importance of the protein exchange rate in regulating emergent, steady-state properties of the

network. The principles uncovered provide insight into cellular systems and may be useful when designing synthetic

condensates to control biochemical reactions.
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Implications of compartmentalization are also interesting

in light of the vast and rapidly expanding field of biomole-

cular condensates. Membraneless organelles are condensed,

liquid-like domains that can exchange biomolecules with

their surroundings (2,13,14). While much emphasis has

been placed on mechanisms of their formation, relatively lit-

tle is known about how they regulate biomolecular pro-

cesses in cells (9,10,15,16). Phase separation of liquid

phases appears to modulate membrane proximal immune-

cell signaling (10,17,18), and recent work has shown that,

even though protein levels in cells are noisy, liquid droplets

can reduce the noise in protein concentrations outside of the

droplets (15,19). In addition, Sang et al. recently engineered

synthetic condensates that can recruit kinase and substrate

proteins (9). The synthetic condensates exhibit increased ki-

nase activity, with the potential to broaden kinase specificity

when there are multiple potential substrates. It is exciting to

consider the possibility of engineering spatial control in this

and other condensed systems, with the ability to partition

biomolecular reaction networks between two phases. For

example, macromolecular crowding was used to differen-

tially organize components of cell-free protein synthesis,

impacting the output of gene expression (20,21).

The phosphoregulation of proteins is an important regula-

tory mechanism in cells. Kinases and phosphatases regulate

the phosphorylation and dephosphorylation, respectively, of

many proteins. Mitogen-activated protein kinase (MAPK)

cascades are some of the most-studied signaling pathways

in eukaryotic cells, propagating signals from the plasma

membrane to the nucleus, enabling dynamic signal process-

ing, and regulating many downstream processes (9,22–25).

Other well-studied examples include networks involved in

control of the cell cycle and in the phosphorylation of the

cytoplasmic tail of the T cell receptor complex (26).

In MAPK cascades, multisite phosphorylation provides a

mechanism to control protein activity, leading to emergent

behavior including ultrasensitivity and bistability (24,27–

30). Even a single leaflet of the MAPK cascade can exhibit

bistability when kinases and phosphatases bind in a distrib-

utive manner (i.e., they unbind after each enzymatic modi-

fication) (31). Bistability describes the ability of a network

to exist in one of two stable steady states; it is a common

feature of signaling networks that allows cells to make bi-

nary decisions (32). More generally, networks can exhibit

multistability, in which there are two or more stable steady

states. Interestingly, Harrington et al. showed that exchange

of select species between two compartments can lead to

bistability in an otherwise monostable reaction network.

They focused on the regulation of a substrate protein with

a single phosphorylation site, demonstrating that compart-

mentalization expands the emergent behavior possible (25).

In multistable systems, fluctuations associated with sto-

chastic reaction kinetics can lead to stochastic switching be-

tween steady states (33–35). Behavior in such systems is

typically characterized by long residence times in steady

states, interspersed by rapid transitions between them

(36,37). Spatial effects can shape the likelihood of stochastic

switching in bistable networks (38,39), but little is known

about the impact of compartmentalization when components

can exchange between compartments.

This paper explores the impact of compartmentalization on

a network inwhich the phosphorylation states of substrate pro-

teins are regulated by kinases and phosphatases. Wewere first

inspired, on a conceptual level, by thework of Sang et al., who

engineered synthetic condensates that could recruit kinases

and substrate proteins (9). However, we are interested in

compartmentalization in general, so we have chosen a com-

monphosphoregulationmotif and a generalmodel of the com-

partments. We systematically vary the exchange rate between

the compartments to account for a variety of possible biolog-

ical compartments and exchange mechanisms.

The signaling network is motivated by a single leaflet of

the MAPK network. It also provides insight into other net-

works involving the phosphoregulation of substrate proteins

with multiple phosphorylation sites, as described in previ-

ous studies (3,4). We use stochastic, particle-based simula-

tions to characterize steady states and stochastic switching

between them. We first characterize behavior in a single,

well-mixed compartment before systematically varying the

exchange rate of particles between two compartments,

each of which is well mixed. We then study the effects of

particle exchange between compartments of different vol-

umes. Taken together, our work emphasizes that compart-

mentalization and protein exchange can regulate the

emergent behavior of common signaling motifs.

METHODS

We use the Gillespie algorithm (40) to simulate the time evolution of a

distributive, two-site phosphorylation network in two coupled compart-

ments. The system is assumed to be well-mixed in each compartment,

and proteins exchange between compartments with rate kEX . The network

contains substrate proteins that can be phosphorylated at two sites: a kinase

(E) catalyzes the phosphorylation of an unphosphorylated residue and a

phosphatase (P) catalyzes the dephosphorylation of a phosphorylated resi-

due. Each substrate protein can have no sites (S0Þ, one site (S1), or both sites

(S2) phosphorylated. In distributive reaction networks, enzymes unbind

from the substrate they are modifying after each catalytic step (31,41).

The following reactions specify the network in compartment i (¼ A or B):

S0;i þEi #

k1

k2

S0;iEi/
k3

S1;i þ Ei

S1;i þEi #

k4

k5

S1;iEi/
k6

S2;i þ Ei

S2;i þ Pi #

k1

k2

S2;iPi/
k3

S1;i þ Pi

S1;i þ Pi #

k4

k6

S1;iPi/
k6

S0;i þ Pi
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The compartments are coupled by the exchange of particles: each protein

or protein complex in compartment A transitions to compartment B with

rate kEX , and vice versa. We use the kinetic parameters in Table 1, which

are based on previous studies (3,4). The exchange rate is systematically var-

ied from 10
� 3 to 1 s�1 to characterize the impact on steady states and the

transitions between them. This range is consistent with nuclear import and

export rates for the MAPK proteins Erk1 and Erk2, which have been esti-

mated to range from 1:4� 10
� 3 to 5:4� 10

� 1 s�1 depending on cell type

and context (42). Exchange rates for biomolecular condensates can also

vary over a wide range (43).

The system is initialized with 50 S0, 50 S2, 25 E, and 25 P in each

compartment. The volume of the compartments is varied to characterize

the effect of particle concentration. In the Gillespie simulations, which

are formulated in terms of particle numbers, second order rates (k1 and

k4) are divided by the compartmental volume to account for concentration

effects. We assume that the exchange of particles between compartments is

a first-order process that is independent of the volume of the system. Thus,

when the compartmental volumes are unequal, each compartment has the

same average number of particles but a different concentration. For diffu-

sion coefficients associated with diffusion in the cytoplasm, at the plasma

membrane, and in some biomolecular condensates (44), the characteristic

time to diffuse across domains of the size considered here is less than the

shortest characteristic time for a particle to exchange between compart-

ments. Thus, we assume that the compartments are well mixed and that ex-

change rates are not diffusion influenced.

Because of the symmetry between kinase and phosphatase reactions, the

initial conditions chosen provide an unbiased initial state. For each condi-

tion studied, we generate 1000 independent trajectories, each of which is

10,000 s in duration. The state of the system is recorded every 0.1 s, and

the first 100 s of each trajectory are excluded from calculations to allow

the system to reach steady state. We characterize the correlation coefficient

between two random variables X and Y as rXY ¼ CðX � CXDÞðY � CYDÞD=

sXsY , where angular brackets represent an average and si denotes the stan-

dard deviation.

We also consider the deterministic, mean-field behavior of the system

and numerically solve the system of ordinary differential equations

(ODEs) describing the mass-action kinetics of the reaction network. We

sample initial conditions throughout state space and use ode45 in

MATLAB to numerically integrate the ODEs until steady state is achieved.

Using this approach, we identify stable, steady-state solutions as a function

of the volume of the compartments and the exchange rate between them.

Detecting stochastic switches

When in a multistable regime, the system can stochastically switch between

steady states due to intrinsic fluctuations in the system. To identify stochas-

tic switches, we use a heuristic algorithm that analyzes time traces of the

number of S2 molecules (NS2
) in each compartment. We identify switches

by assessing when the moving average of NS2
crosses a threshold value

approximately equal to the value of the unstable steady state identified

from analysis of the deterministic equations near the critical point

(NS2
¼ 35). Specifically, we calculate a moving average with a time win-

dow of 10 s and classify a switching event in a compartment when the mov-

ing average crosses the threshold for at least 1 s. This reduces the

overclassification of short-lived fluctuations as switching events. We use

this information to determine the distribution of residence times in each

steady state and to quantify the mean switching time, t, which is the average

residence time in a state before stochastically switching to another. For an

exponentially distributed random variable, t� 1 gives the rate parameter of

the distribution.

DATA AND CODE AVAILABILITY

Simulation and analysis code used in this work is available

at https://github.com/schmidthn17/Schmidt2023Exchange.

RESULTS AND DISCUSSION

An isolated compartment exhibits bistability at

sufficiently high concentrations

We begin by analyzing the reaction network in a single, well-

mixed compartment. We fix the number of proteins (100 sub-

strate proteins, 25 kinases, and 25 phosphatases) and vary the

volume. Fig. 1 shows the number of fully phosphorylated

substrate particles (NS2
) at steady state, as determined by sto-

chastic simulations (red points) and numerical solutions of

the ODEs associated with deterministic, mass-action kinetics

(black lines). The deterministic solutions highlight a pitch-

fork bifurcation, with the system bistable at sufficiently small

volumes and monostable at larger volumes. Below a critical

volume (z0:46 mm3), there are two stable steady states (solid

lines) and one unstable steady state (dashed line) between

them. Above the critical volume, there is a single stable

steady state. For the stochastic simulations, we characterize

the distribution of the number of S2 molecules. At sufficiently

small volumes, the distribution is bimodal, and the location of

each mode (red dot) is close to a stable deterministic solution.

The distribution consists of a single mode in the monostable

regime. The mean switching times in the bistable regime are

characterized in Fig. S1.

In the bistable region, we refer to the state with more S2

particles as the active state and the state with fewer S2 par-

ticles as the inactive state. The behavior in Fig. 1 is a conse-

quence of changing concentration: The number of particles

in the system is constant, so a smaller volume results in a

larger concentration. For the two-site distributive reaction

network, bistability arises from a sequestration effect

when the number of substrate proteins exceeds the number

of enzymes (4,31). When the system is in the active state

TABLE 1 Kinetic parameters for the reaction network

Kinetic parameter Value Related reactions

k1 0:045 mm3 s�1
S0 þ E/S0E

S2 þ P/S2P

k2 1.35 s�1
S0E/S0 þ E

S2P/S2 þ P

k3 1.5 s�1
S0E/S1 þ E

S2P/S1 þ P

k4 0:093 mm3 s�1
S1 þ E/S1E

S1 þ P/S1P

k5 1.73 s�1
S1E/S1 þ E

S1P/S1 þ P

k6 15 s�1
S1E/S2 þ E

S1P/S0 þ P

kEX varied (s�1) EA4EB

PA4PB

Sx;A4Sx;B

Sx;AEA4Sx;BEB

Sx;APA4Sx;BPB

Reactions associated with rates k1 to k6 take place in compartments A and B

(subscripts are omitted for clarity).

Schmidt et al.
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(NS2
> NS0

), more phosphatases are typically bound than

kinases. When a protein is dephosphorylated, the phospha-

tase unbinds, and there are more kinases than phosphatases

available to bind to the now singly-phosphorylated protein.

Thus, it is more likely to return to the fully phosphorylated

state. An analogous argument holds for the inactive state

(NS0
> NS2

), where the kinases are sequestered and there is

an excess of phosphatases available to bind. Larger concen-

trations promote protein binding, which enhances the

sequestration effect needed for bistability.

The exchange rate controls steady states and

correlation between compartments

For the remainder of the paper, we consider a system with

two compartments (A and B). Each compartment is assumed

to be well mixed, and particles exchange between the com-

partments with rate kEX . Initially, we consider compartments

of equal volume, with VA ¼ VB ¼ 0:16, 0.24, 0.32, and
0.4 mm3. These volumes are within the bistable region iden-

tified in Fig. 1 for a single compartment. Focusing on equal

volumes allows us to examine the impact of particle ex-

change without confounding effects of different volumes.

We later explore the effect of pairing compartments with

VAsVB when, in the absence of exchange, compartment A

would be bistable and compartment Bwould be monostable.

When kEX ¼ 0, there is no particle exchange, and the

compartments evolve independently. In this limit, each

compartment is equivalent to a case considered in an iso-

lated compartment exhibits bistability at sufficiently high

concentrations.

We first characterize stable steady states of the determin-

istic, mean-field system of ODEs describing the reaction

network in two compartments. Figs. 2, A and B show the

number of S2 particles in each compartment as the exchange

rate is varied. For VA ¼ VB ¼ 0:32 mm3, there are four sta-

ble steady states at low values of kEX. Two of the steady

states are characterized by NS2;A
¼ NS2;B

. In these states,

both compartments are either in an active regime or an inac-

tive regime. The other two steady states are characterized by

NS2;A
sNS2;B

. In these states, one compartment is in an active

regime while the other is in an inactive regime. As the ex-

change rate increases, there is a transition in the number

of stable steady states, and only the two states with

NS2;A
¼ NS2;B

persist (Fig. 2 C). For compartments with

mixed volumes (VA ¼ 0:32 mm3, VB ¼ 0:8 mm3), there

are two stable steady states at low exchange rates that tran-

sition to a single stable state as the exchange rate increases

(Fig. 2 D).

Fig. 3 shows results from stochastic simulations with

VA ¼ VB ¼ 0:32 mm3. The upper panel shows the time

dependence of NS2
in compartments A and B for a portion

of a single simulation trajectory for three different exchange

rates. For each exchange rate, each compartment exhibits

two distinct states with stochastic switching between

them. At kEX ¼ 0 s�1, the compartments behave indepen-

dently of each other. When kEX ¼ 0:01 s�1, the switching

events in the two compartments appear to occur at similar

times, and the states of compartments A and B appear to

be negatively correlated: When compartment A is in an

active state, compartment B tends to be in an inactive state,

and vice versa. When kEX ¼ 1 s�1, the states of the two

compartments are highly correlated, with both compart-

ments having similar time dependence.

The lower panel in Fig. 3 shows the simultaneous distri-

bution of the number of S2 particles in compartments A

and B. With kEX ¼ 0 s�1, the compartments evolve inde-

pendently, and each undergoes independent stochastic

switches between steady states. This is reflected in the

four regions of high frequency in the two-dimensional dis-

tribution: the four states are associated with each compart-

ment being either active or inactive, independent of the

other. In contrast, the distribution for kEX ¼ 0:01 s�1 dem-

onstrates the negative correlation suggested by the sample

trajectory. The vast majority of the weight is associated

with compartment A being active while compartment B is

inactive, and vice versa. The active state is shifted to larger

numbers of S2 molecules compared with kEX ¼ 0 s�1, and

the shape of the distribution around the steady state also

changes, with a larger range of NS2
sampled. Although the

stochastic results are in qualitative agreement with the deter-

ministic steady states for this exchange rate (Fig. 2), the

deterministic results do not reveal the relative weight of

the negatively correlated states. Furthermore, they are not

in quantitative agreement, with the stochastic simulations

sampling larger values of NS2
in the active state. At the high-

est exchange rate, kEX ¼ 1 s�1, the distribution reflects the

highly correlated time traces, with most of the weight asso-

ciated with states in which both compartments are either

FIGURE 1 Number of S2 particles at steady state in a single, well-mixed

volume, as determined by deterministic (black lines) and stochastic (red cir-

cles) methods. Solid lines denote stable steady states and the dashed line

denotes an unstable steady state. Results from stochastic simulations corre-

spond to the mode(s) of the distribution of NS2
. Mean switching times be-

tween states in the bistable regime, obtained from stochastic simulations,

can be found in Fig. S1. To see this figure in color, go online.

Regulation by compartmental exchange
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active or inactive. Distributions obtained with other ex-

change rates are shown in Fig. S2 and illustrate the transi-

tion between the negatively and positively correlated

distributions. Fig. S3 shows the distribution of NS2
in a sin-

gle compartment for various exchange rates, allowing direct

comparison of the results in a single compartment.

To further characterize correlations between the states of

the compartments, Fig. 4 A shows the correlation coefficient

FIGURE 2 Stable steady states of the determin-

istic, two-compartment system. Top row: each point

represents the number of S2 particles in compart-

ments A and B at steady state. Points are color coded

by the exchange rate. (A) VA ¼ VB ¼ 0:32 mm3.

The two states with NS2;A ¼ NS2;B are stable for every

exchange rate, so the points are overlapping and

appear as a single point. (B) VA ¼ 0:32 mm3 and

VB ¼ 0:8 mm3. Bottom row: difference in the num-

ber of S2 particles in compartments A and B as a

function of the exchange rate. (C)

VA ¼ VB ¼ 0:32 mm3. Note that two steady states

give rise to NS2;A � NS2;B ¼ 0. (D) VA ¼ 0:32
mm3 and VB ¼ 0:8 mm3. To see this figure in color,

go online.

FIGURE 3 Behavior with VA ¼ VB ¼ 0:32 mm3 at various exchange rates: (A) kEX ¼ 0 s�1, (B) kEX ¼ 0:01 s�1, and (C) kEX ¼ 1 s�1. The top panel

shows the number of S2 particles in compartment A (fuchsia) and compartment B (blue) from part of a single trajectory. The bottom panel shows the dis-

tribution of S2 particles in compartments A and B sampled from 1000 independent trajectories. Horizontal and vertical black lines denote the threshold

(NS2
¼ 35) used to identify switches. To see this figure in color, go online.

Schmidt et al.
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between NS2;A
and NS2;B

. Each volume exhibits a similar

shape: At low exchange rates, the correlation coefficient

is < 0, indicating that the states of the two compartments

are negatively correlated. At the lowest exchange rates

considered, the correlation coefficient appears to approach

a plateau associated with a highly anticorrelated state. As

the exchange rate increases, the system switches from nega-

tively to positively correlated. At high exchange rates, the

correlation coefficient approaches 1, and the compartments

are almost always in the same state (Fig. S4). As the volume

increases, the transition from negative to positive correlation

between the compartments occurs at higher exchange rates.

Stochastic switching is promoted at intermediate

exchange rates

The sample trajectories shown in Fig. 3 suggest a change in

the frequency of stochastic switching as the exchange rate is

varied. In Fig. 4 B, we show the inverse mean switching time

(t� 1) as a function of the exchange rate for different vol-

umes. Note that the mean switching time is defined in terms

of switching for a single compartment. This facilitates com-

parison to the single-compartment case and to cases with

compartments of different volumes. Symmetry between ki-

nase and phosphatase reactions implies that the distribution

of switching times from inactive to active states is the same

as that from active to inactive. We confirm this by

comparing the cumulative distribution functions obtained

from simulation results, which are virtually indistinguish-

able (Fig. S5). We further use quantile-quantile plots to

compare the switching times from simulations to an expo-

nential distribution (Fig. S5). The switching times are expo-

nentially distributed for isolated compartments and for

sufficiently large exchange rates (kEX ¼ 0 and 0.04 s�1).

However, for small values of the exchange rate

(kEX ¼ 0:001 s�1), the distribution deviates modestly

from an exponential distribution. Thus, for isolated com-

partments or a large exchange rate, the inverse mean switch-

ing time can be regarded as the rate parameter of an

exponential distribution.

Fig. 4 B reveals that the inverse mean switching time is a

nonmonotonic function of the exchange rate, and that the

maximum occurs at intermediate exchange rates. At low ex-

change rates, t� 1 increases with increasing exchange rate. It

then peaks at intermediate exchange rates, before rapidly

falling to a plateau at higher exchange rates. Smaller vol-

umes exhibit less frequent stochastic switching. However,

the differences are modest at low and intermediate exchange

rates when compared with isolated compartments. With

kEX ¼ 10
� 3 s�1, the largest volume switches z3 times

more frequently than the smallest volume. In contrast,

when kEX ¼ 0 s�1, the largest volume switches z8600

times more frequently than the smallest volume (Fig. S1).

For large exchange rates, the differences in the mean

switching times between different volumes are more pro-

nounced. In this regime, no switching events were observed

for VA ¼ VB ¼ 0:16 mm3, whereas t
� 1

z0:003 s�1 for

VA ¼ VB ¼ 0:40 mm3 (Fig. S1). Physically, the two com-

partments behave like a well-mixed system with a larger

effective volume (V ¼ VA þ VB). To test this, we consider

a single compartment with total volume Vand the same total

number of particles. Fig. S6 shows that, when the exchange

rate is large, the distribution of the total number of S2 parti-

cles in both compartments is almost indistinguishable from

the distribution of the larger single compartment. Because

of the larger number of particles at the same concentration,

the impact of intrinsic fluctuations is reduced, thus suppress-

ing stochastic switching when the exchange rate is large

(Fig. S1) (33,45).

Fluctuations in the balance of enzymes influence

steady states at low and intermediate exchange

rates

Fig. 4 B shows that the rate of particle exchange influences

the mean switching time. Furthermore, Figs. 3 and S2

reveal, at low and intermediate exchange rates, a negative

correlation between the compartments, an increase in the

value of NS2
in the active state, and a broadening of the

FIGURE 4 (A) Correlation between compartments as characterized by

the correlation coefficient between NS2;A
and NS2;B

. The dashed line is

the correlation obtained for kEX ¼ 0 s�1 and VA ¼ VB ¼ 0:32 mm3. As

the exchange rate increases, the compartments transition from negatively

to positively correlated. (B) The inverse mean switching time (t� 1) as a

function of exchange rate. Each data point is obtained from 1000 trajec-

tories. Results for kEX ¼ 0 s�1 are shown in Fig. S1. To see this figure in

color, go online.

Regulation by compartmental exchange
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distribution associated with the active state. Taken together,

these results suggest a mechanism for stochastic switching

that is influenced by the balance of enzymes in the compart-

ments and the timescale of their fluctuations.

To test this, we characterize DEP, the difference in the to-

tal number of kinases and phosphatases in a compartment

(the total includes both free and bound enzymes). Fig. 5,

A and B show sample trajectories in which the time depen-

dence of DEP is plotted with NS2
in the same compartment.

With kEX ¼ 0:01 s�1, there is a strong correlation between

fluctuations of DEP and NS2
: when DEP > 0, the compart-

ment is likely to be in an active state, and when DEP < 0,

the compartment is likely to be in an inactive state. In

contrast, with kEX ¼ 1 s�1, the fluctuations of DEP occur

on shorter timescales and appear uncorrelated with the state

of the compartment.

To further explore the relationship between DEP and the

state of the compartment, we calculate the correlation coef-

ficient between DEP and NS2;A
. Fig. 5 C shows that DEP is

strongly correlated with NS2;A
, and hence the state of the

compartment, at low exchange rates. The correlation de-

creases with increasing exchange rate and becomes uncorre-

lated at higher exchange rates. Thus, at low and intermediate

exchange rates, when there are more phosphatases than

kinases in a compartment, the compartment tends to be in

the inactive state; similarly, when there are more kinases

than phosphatases, the compartment tends to be in the active

state. Changes in the balance of enzymes influence the tran-

sitions between active and inactive states. Other dynamical

variables considered do not show strong correlation with the

state of the system. For example, it is plausible that fluctu-

ations in the total number of substrate particles in a compart-

ment could bias the state of the network due to sequestration

effects. We examine the correlation coefficient between

NS2;A
and the total number of substrate particles in compart-

ment A (Fig. S7), which shows only weak correlation across

all exchange rates.

In Fig. 6, we further characterize the relation between the

balance of enzymes and the state of the compartment. Here,

we show the conditional distribution of NS2
in a compartment

given a specific value of DEP. For kEX ¼ 0 s�1, there is no

enzyme exchange and DEP ¼ 0 for the entire simulation.

This case gives the steady-state distribution of NS2
in the

absence of exchange. With kEX ¼ 0:01 s�1, the distribution

with DEP ¼ 0 is similar to the case with no exchange, with

the distribution slightly broadened about each mode. As DEP

increases, indicating more kinases than phosphatases, the

weight associated with the active state increases and the

mode shifts to larger values.WithDEP ¼ 8, there is only a sin-

gle mode, indicating that the imbalance in enzymes biases the

system to a single active state. Similarly, with DEP < 0, the

excess of phosphatases biases the system to an inactive state.

In this regime, as DEP decreases, the weight associated with

the inactive state increases and the mode shifts to smaller

values. In contrast, with fast exchange between compartments

(kEX ¼ 1 s�1), the distributions show almost no dependence

on DEP in the range considered. This is consistent with the re-

sults of Fig. 5 showing no correlation between enzyme fluctu-

ations and the state of the system.

The bias introduced by imbalances in the enzymes leads

to the negative correlation between the state of each

compartment at low and intermediate exchange rates (Fig.

4 A). Because of particle conservation, an excess of kinases

in compartment A implies an excess of phosphatases in

compartment B, thus leading to anticorrelated states. The

negative correlation is expected to persist for lower ex-

change rates. In this regime, as the exchange rate becomes

arbitrarily small, the time between exchange events becomes

arbitrarily long. Thus, between exchange events, each

compartment is effectively isolated and at a steady state

associated with a particular allocation of particles between

FIGURE 5 (A) Part of a trajectory showing NS2;A and the difference in the

number of kinases and phosphatases (DEP) in compartment A as a function

of time for kEX ¼ 1� 10
� 2 s�1 and VA ¼ VB ¼ 0:32 mm3. (B) Analogous

results with kEX ¼ 1 s�1. (C) Correlation coefficient between DEP and NS2;A

(1000 trajectories for each exchange rate). As the exchange rate between

compartments increases, the state of the system (represented by NS2;A
)

and DEP become uncorrelated. To see this figure in color, go online.
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the compartments. Rare particle exchange events would then

lead to each compartment residing in a new effective steady

state. To properly sample the full distribution of possible

states, the simulation time would need to be sufficiently

long to sample the full distribution of particle allocations.

The negative correlation will thus plateau at a level consis-

tent with an ensemble of effective steady states associated

with rare changes in the allocation of particles. Note that

kEX ¼ 0 s�1 exhibits qualitatively different behavior

because the distribution of enzymes and substrate particles

between compartments never changes. With no exchange,

the correlation coefficient between NS2;A
and NS2;B

is zero.

Fluctuations in the balance of enzymes are a primary

mechanism driving transitions between states at lower ex-

change rates. However, there is no obvious dynamical vari-

able or reaction coordinate that provides a mechanistic

understanding of transitions between states at higher ex-

change rates. Stochastic switching events arise because

spontaneous fluctuations reverse the sequestration effect,

but the reaction pathways responsible for this are uncharac-

terized even in a single reaction volume. Characterizing

such transitions using transition path theory to identify tran-

sition bottlenecks (46) would be an interesting future direc-

tion, both in isolated and compartmentalized systems.

Coupling compartments of different sizes

Our results thus far have emphasized the importance of par-

ticle exchange between compartments when the average

concentration is equal in each. In biological systems, it is

common to encounter compartments with different effective

concentrations of proteins. In this section, we consider two

compartments with the same numbers of particles as above

but with different volumes: VA ¼ 0:32 mm3 and VB ¼ 0:8
or 10 mm3. With no exchange, compartment A is in the bista-

ble regime and compartment B is in the monostable

regime (Fig. 1).

Fig. 7 shows, for VA ¼ 0:32 mm3 and VB ¼ 0:8 mm3,

sample trajectories (upper panel) and the distribution of

the number of S2 particles in compartments A and B (lower

panel) for three exchange rates. With kEX ¼ 0 s�1, the re-

sults reflect the bistable behavior in compartment A and

monostable behavior in compartment B. With kEX ¼ 0:01
s�1, there remain two steady states, as can be seen in the dis-

tribution. However, compared to the case of no exchange,

they are shifted, broadened, and negatively correlated. In

compartment A, the active state is shifted to larger values

of NS2;A and the inactive state is shifted to smaller values.

In addition, the distribution around each steady state ex-

hibits negative correlation between NS2;A and NS2;B. This

behavior is conceptually similar to that with VA ¼ VB, sug-

gesting that the balance of kinases and phosphatases is again

important in controlling the state of the system. With fast

exchange (kEX ¼ 1 s�1), the system is monostable, as indi-

cated by the single peak in the distribution. The states of

compartments A and B are highly correlated, as seen in

the trajectory and in the strong positive correlation in the

distribution. The fluctuations are large, leading to a broad

distribution of NS2
in each compartment. Distributions for

additional exchange rates are shown in Fig. S8 A.

The behavior of the system with VA ¼ 0:32 mm3 and

VB ¼ 10 mm3 is similar (Fig. S8 B), except that at low

and intermediate exchange rates, the distribution of NS2;B
is

narrower. In this regime of exchange rates, enzyme imbal-

ances remain important. However, because of the large vol-

ume of compartment B, enzymes are less likely to bind to

substrates, thus reducing the effect of fluctuations in the bal-

ance of kinases and phosphatases in the larger compartment.

We further characterize the inverse mean switching time

(t� 1) in compartment A for exchange rates at which it ex-

hibits bistable behavior. These results are shown in Fig. 8

for VA ¼ 0:32 mm3 and VB ¼ 0:32, 0.8, and 10 mm3. In

the slow-exchange regime, the behavior of the three cases

is essentially indistinguishable. At intermediate exchange

rates, coupling to larger compartments causes the peak of

t
� 1 to shift to modestly higher exchange rates, but the shape

of the response is qualitatively similar. The inverse mean

switching time starts to decrease after the peak, but the

FIGURE 6 Conditional distribution of NS2
given

specific values of DEP. Three exchange rates are

shown with VA ¼ VB ¼ 0:32 mm3. Results are ob-

tained from 1000 independent trajectories. To see

this figure in color, go online.
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system becomes monostable. These results indicate that the

switching behavior of a compartment at low exchange rates

is largely dependent on fluctuations in particle numbers due

to exchange between the compartments, and not directly on

the state of the other compartment.

For large exchange rates, the states of two compartments

are highly correlated. Particles rapidly switch between com-

partments and thus effectively sample volume V ¼ VAþ VB

over short timescales. To this end, we compare the results

with two compartments at large exchange rates (kEX ¼
1, 10, and 100 s�1) with the equivalent single-compartment

system of volume V (containing the same total number of

each protein). Figs. 9, A and B compare the distribution of

the total number S2 particles in two compartments with

the number of S2 particles in the equivalent single compart-

ment. The distributions are unimodal but markedly different

in shape. With two compartments, the distribution is

broader, indicating that the interplay between the two com-

partments is more complex than simply combining the two

volumes. These results are in contrast with Fig. S6, which

shows that fast exchange with VA ¼ VB leads to a steady

state that is nearly indistinguishable from the equivalent sin-

gle compartment.

CONCLUSION

Compartmentalization is a cornerstone of cell biology. Mem-

brane-enclosed organelles such as the nucleus exchange pro-

teins with the cytoplasm, with translocation of MAP kinases

being one prominent example (7,11). Proteins can be recruited

from the cytoplasm to the plasma membrane, creating two

effective compartments (8,47), and liquid-liquid phase separa-

tion leads to distinct,membraneless domains that can be found

in the cytoplasm, the nucleus, and the plasma membrane

(1,14,48). In all cases, proteins can dynamically exchange be-

tween different compartments and thus potentially impact

signal transduction and other cellular processes. Various bio-

physical mechanisms can facilitate protein exchange, with

rates of exchange varying over orders of magnitude.

Relatively little is known about the effects of compartmen-

talization and the exchange of proteins on the emergent

behavior of signaling networks. To gain insight, we studied

a common signaling motif describing the phosphoregulation

of substrate proteins by kinases and phosphatases. The

network and parameters were motivated by a leaflet of the

MAPK pathway, which can exhibit bistability due to the

sequestration of enzymes at sufficiently high concentrations.

Our key results are highlighted in Fig. 4, which reveals that

FIGURE 7 Behavior with VA ¼ 0:32 mm3 and VB ¼ 0:8 mm3 at various exchange rates: (A) kEX ¼ 0 s�1, (B) kEX ¼ 0:01 s�1, and (C) kEX ¼ 1 s�1. The

top panel shows the number of S2 particles in compartment A (fuchsia) and compartment B (blue) from part of a single trajectory. The bottom panel shows the

distribution of S2 particles in compartments A and B sampled from 1000 independent trajectories. To see this figure in color, go online.

FIGURE 8 The inverse mean switching time (t� 1) in compartment A as a

function of exchange rate when VA ¼ 0:32 mm3 and VB ¼ 0:32, 0.8, or

10 mm3. Results with VB ¼ 0:32 mm3 are also shown in Fig. 4. With

VB ¼ 0:8 and 10 mm3, the system is monostable for kEXT0:2 s�1, and hence

switching times are not shown in this regime. Each switching rate is obtained

from 1000 independent trajectories. To see this figure in color, go online.
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the mean switching time depends nonmonotonically on the

exchange rate of proteins between compartments. Surpris-

ingly, the most frequent stochastic switching occurs at inter-

mediate exchange rates, revealing a nontrivial impact of

protein exchange on emergent behavior of the reaction

network. More detailed analysis revealed the importance of

fluctuations in the balance of kinases and phosphatases in

the compartments, which impacted the nature of the steady

states and the stochastic switching between them.

At low exchange rates, the states of the compartmentswere

negatively correlated, and the mean switching time was only

weakly influenced by the volume, in contrast with isolated

compartments. These results are a consequence of fluctua-

tions in enzyme numbers: when one compartment has an

excess of kinases (DEP > 0), the other has an excess of phos-

phatases (DEP < 0). An excess of kinases promotes the

active state, while an excess of phosphatases promotes the

inactive state. Furthermore, increasing the exchange rate de-

creases the average time during which DEP remains positive

or negative, leading to an increase in the frequency of switch-

ing. At intermediate exchange rates, themean switching time

was far shorter than that of an isolated compartment. Howev-

er, at larger exchange rates, the two-compartment system

behaved more like a single, well-mixed volume, leading to

amarked increase in themean switching time. In this regime,

fluctuations in the balance of enzymes occur faster than the

response time of the reaction network. Interestingly, when

the two compartments had different effective concentrations

of particles, the coupled behavior was markedly different

than the behavior of a single, well-mixed volume with the

same overall concentration.

These results demonstrate that compartmentalization and

protein exchange can act as regulatory mechanisms for

signaling networks. They also highlight the importance of

fluctuations in the balance of kinases and phosphatases for

phosphoregulation networks. The fluctuations impact both

the steady states and the stochastic switching between them.

Our study focused on compartments of similar volume con-

taining similar numbers of proteins. However, the results sug-

gest that even if multiple small compartments were embedded

in a much larger compartment, the behavior of each small

domainwould be impacted byfluctuations that lead to enzyme

imbalances.

Our results highlight the importance of characterizing and

accounting for the exchange rate in compartmentalized sys-

tems. We found that changes in the rate can lead to qualita-

tive changes in behavior, such as changes in the number of

stable steady states. This also suggests that controlling the

exchange of proteins between compartments could be an

additional control mechanism used by cells or exploited in

synthetic systems to expand the range of behavior of

signaling networks. In cells, for example, the shuttling of

MAPK proteins between the nucleus and cytoplasm can

change in response to environmental conditions (25).

Recent work used synthetic condensates as scaffolds to re-

cruit signaling proteins (9), suggesting new avenues through

which compartmentalization can be rationally designed to

modulate the behavior of biochemical reaction networks.

Computational approaches will be useful for understanding

and designing responses in such systems, where the number

and size of compartments, as well as the exchange of bio-

molecules, can potentially be controlled and dynamically

modulated. It would be useful for future computational

studies to investigate a variety of signaling motifs in systems

with multiple compartments, which will help to reveal gen-

eral principles by which compartmentalization impacts

biochemical reaction networks.
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