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ABSTRACT The phosphoregulation of proteins with multiple phosphorylation sites is governed by biochemical reaction net-
works that can exhibit multistable behavior. However, the behavior of such networks is typically studied in a single reaction vol-
ume, while cells are spatially organized into compartments that can exchange proteins. In this work, we use stochastic
simulations to study the impact of compartmentalization on a two-site phosphorylation network. We characterize steady states
and fluctuation-driven transitions between them as a function of the rate of protein exchange between two compartments. Sur-
prisingly, the average time spent in a state before stochastically switching to another depends nonmonotonically on the protein
exchange rate, with the most frequent switching occurring at intermediate exchange rates. At sufficiently small exchange rates,
the state of the system and mean switching time are controlled largely by fluctuations in the balance of enzymes in each
compartment. This leads to negatively correlated states in the compartments. For large exchange rates, the two compartments
behave as a single effective compartment. However, when the compartmental volumes are unequal, the behavior differs from a
single compartment with the same total volume. These results demonstrate that exchange of proteins between distinct compart-
ments can regulate the emergent behavior of a common signaling motif.

SIGNIFICANCE Cells are organized into compartments, as exemplified by membrane-enclosed organelles and by
recent developments in the study of biomolecular condensates. However, although proteins can dynamically switch
between compartments, there is no general understanding of how protein exchange impacts signaling networks. This
study uses stochastic computer simulations to reveal the effect of compartmentalization on a protein phosphorylation
network. It reveals the importance of the protein exchange rate in regulating emergent, steady-state properties of the
network. The principles uncovered provide insight into cellular systems and may be useful when designing synthetic
condensates to control biochemical reactions.

INTRODUCTION and spatiotemporal correlations can also regulate the emergent
behavior (3—7). However, spatial effects are generally less well
understood, as signaling networks are most commonly studied
in well-mixed settings. It is likely that compartmentalization is
a regulatory mechanism for some biochemical reaction net-
works because it connects mesoscale organization to dynamics
of signaling networks (2,8—10).

The nucleus and cytoplasm are a classic example of
compartmentalization within the cell, with the regulated ex-
change of biomolecules between them facilitated by nuclear
pore complexes (11). Other membrane-enclosed organelles
exchange proteins by means of protein transporters or vesic-
ular transport (12), and the plasma membrane and cyto-

Compartmentalization is a key organizational principle in
cell biology. The interiors of cells are organized in part by
membrane-enclosed organelles and their more recently
discovered membraneless counterparts (1,2). However, rela-
tively little work has explored how signaling responses are
regulated by compartmentalization and the exchange of pro-
teins between compartments.

The behavior of cell signaling networks is governed by fea-
tures including topology of the reaction network, kinetic pa-
rameters, and concentrations of proteins. Spatial organization
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Implications of compartmentalization are also interesting
in light of the vast and rapidly expanding field of biomole-
cular condensates. Membraneless organelles are condensed,
liquid-like domains that can exchange biomolecules with
their surroundings (2,13,14). While much emphasis has
been placed on mechanisms of their formation, relatively lit-
tle is known about how they regulate biomolecular pro-
cesses in cells (9,10,15,16). Phase separation of liquid
phases appears to modulate membrane proximal immune-
cell signaling (10,17,18), and recent work has shown that,
even though protein levels in cells are noisy, liquid droplets
can reduce the noise in protein concentrations outside of the
droplets (15,19). In addition, Sang et al. recently engineered
synthetic condensates that can recruit kinase and substrate
proteins (9). The synthetic condensates exhibit increased ki-
nase activity, with the potential to broaden kinase specificity
when there are multiple potential substrates. It is exciting to
consider the possibility of engineering spatial control in this
and other condensed systems, with the ability to partition
biomolecular reaction networks between two phases. For
example, macromolecular crowding was used to differen-
tially organize components of cell-free protein synthesis,
impacting the output of gene expression (20,21).

The phosphoregulation of proteins is an important regula-
tory mechanism in cells. Kinases and phosphatases regulate
the phosphorylation and dephosphorylation, respectively, of
many proteins. Mitogen-activated protein kinase (MAPK)
cascades are some of the most-studied signaling pathways
in eukaryotic cells, propagating signals from the plasma
membrane to the nucleus, enabling dynamic signal process-
ing, and regulating many downstream processes (9,22-25).
Other well-studied examples include networks involved in
control of the cell cycle and in the phosphorylation of the
cytoplasmic tail of the T cell receptor complex (26).

In MAPK cascades, multisite phosphorylation provides a
mechanism to control protein activity, leading to emergent
behavior including ultrasensitivity and bistability (24,27—
30). Even a single leaflet of the MAPK cascade can exhibit
bistability when kinases and phosphatases bind in a distrib-
utive manner (i.e., they unbind after each enzymatic modi-
fication) (31). Bistability describes the ability of a network
to exist in one of two stable steady states; it is a common
feature of signaling networks that allows cells to make bi-
nary decisions (32). More generally, networks can exhibit
multistability, in which there are two or more stable steady
states. Interestingly, Harrington et al. showed that exchange
of select species between two compartments can lead to
bistability in an otherwise monostable reaction network.
They focused on the regulation of a substrate protein with
a single phosphorylation site, demonstrating that compart-
mentalization expands the emergent behavior possible (25).

In multistable systems, fluctuations associated with sto-
chastic reaction kinetics can lead to stochastic switching be-
tween steady states (33-35). Behavior in such systems is
typically characterized by long residence times in steady
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states, interspersed by rapid transitions between them
(36,37). Spatial effects can shape the likelihood of stochastic
switching in bistable networks (38,39), but little is known
about the impact of compartmentalization when components
can exchange between compartments.

This paper explores the impact of compartmentalization on
anetwork in which the phosphorylation states of substrate pro-
teins are regulated by kinases and phosphatases. We were first
inspired, on a conceptual level, by the work of Sang et al., who
engineered synthetic condensates that could recruit kinases
and substrate proteins (9). However, we are interested in
compartmentalization in general, so we have chosen a com-
mon phosphoregulation motif and a general model of the com-
partments. We systematically vary the exchange rate between
the compartments to account for a variety of possible biolog-
ical compartments and exchange mechanisms.

The signaling network is motivated by a single leaflet of
the MAPK network. It also provides insight into other net-
works involving the phosphoregulation of substrate proteins
with multiple phosphorylation sites, as described in previ-
ous studies (3,4). We use stochastic, particle-based simula-
tions to characterize steady states and stochastic switching
between them. We first characterize behavior in a single,
well-mixed compartment before systematically varying the
exchange rate of particles between two compartments,
each of which is well mixed. We then study the effects of
particle exchange between compartments of different vol-
umes. Taken together, our work emphasizes that compart-
mentalization and protein exchange can regulate the
emergent behavior of common signaling motifs.

METHODS

We use the Gillespie algorithm (40) to simulate the time evolution of a
distributive, two-site phosphorylation network in two coupled compart-
ments. The system is assumed to be well-mixed in each compartment,
and proteins exchange between compartments with rate kzx. The network
contains substrate proteins that can be phosphorylated at two sites: a kinase
(E) catalyzes the phosphorylation of an unphosphorylated residue and a
phosphatase (P) catalyzes the dephosphorylation of a phosphorylated resi-
due. Each substrate protein can have no sites (So), one site (S}), or both sites
(S2) phosphorylated. In distributive reaction networks, enzymes unbind
from the substrate they are modifying after each catalytic step (31,41).
The following reactions specify the network in compartment i (= A or B):

ky k3
So; +Ei k\_—\ So;iEi— S + E;

2

kg ke
Si;+E; k: Si;Ei—S,i +E;
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ki k3
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The compartments are coupled by the exchange of particles: each protein
or protein complex in compartment A transitions to compartment B with
rate kgy, and vice versa. We use the kinetic parameters in Table 1, which
are based on previous studies (3,4). The exchange rate is systematically var-
ied from 103 to 1 5! to characterize the impact on steady states and the
transitions between them. This range is consistent with nuclear import and
export rates for the MAPK proteins Erk1 and Erk2, which have been esti-
mated to range from 1.4 x 1073 to 5.4 x 10~ ! s~! depending on cell type
and context (42). Exchange rates for biomolecular condensates can also
vary over a wide range (43).

The system is initialized with 50 Sy, 50 S,, 25 E, and 25 P in each
compartment. The volume of the compartments is varied to characterize
the effect of particle concentration. In the Gillespie simulations, which
are formulated in terms of particle numbers, second order rates (k; and
k4) are divided by the compartmental volume to account for concentration
effects. We assume that the exchange of particles between compartments is
a first-order process that is independent of the volume of the system. Thus,
when the compartmental volumes are unequal, each compartment has the
same average number of particles but a different concentration. For diffu-
sion coefficients associated with diffusion in the cytoplasm, at the plasma
membrane, and in some biomolecular condensates (44), the characteristic
time to diffuse across domains of the size considered here is less than the
shortest characteristic time for a particle to exchange between compart-
ments. Thus, we assume that the compartments are well mixed and that ex-
change rates are not diffusion influenced.

Because of the symmetry between kinase and phosphatase reactions, the
initial conditions chosen provide an unbiased initial state. For each condi-
tion studied, we generate 1000 independent trajectories, each of which is
10,000 s in duration. The state of the system is recorded every 0.1 s, and
the first 100 s of each trajectory are excluded from calculations to allow
the system to reach steady state. We characterize the correlation coefficient
between two random variables X and Yas pyy = ((X — (X))(Y — (Y)))/
ogx0oy, where angular brackets represent an average and g; denotes the stan-
dard deviation.

We also consider the deterministic, mean-field behavior of the system
and numerically solve the system of ordinary differential equations
(ODEs) describing the mass-action kinetics of the reaction network. We
sample initial conditions throughout state space and use ode45 in
MATLAB to numerically integrate the ODEs until steady state is achieved.
Using this approach, we identify stable, steady-state solutions as a function
of the volume of the compartments and the exchange rate between them.

TABLE 1 Kinetic parameters for the reaction network
Kinetic parameter Value Related reactions
k 0.045 um? 57! So + E—SoE
S, +P—S,P
ks 1.35s7" SoE—=So +E
SzP"Sz +P
ks 1557 SoE—S| +E
SzP—>S1 +P
ks 0.093 um? 57! S +E—S\E
S +P—SP
ks 1.73 s SIE—>S| +E
S1P4>S1 +P
ke 1557 SIE—S, +E
SiP—Sy+P
kEX varied (Sil) EA HEB
PA ‘—’P};
S,\’A HS,\'.B
ScaEs o S, pEp

SvaPa < S, pPp

Reactions associated with rates & to k¢ take place in compartments A and B
(subscripts are omitted for clarity).
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Detecting stochastic switches

When in a multistable regime, the system can stochastically switch between
steady states due to intrinsic fluctuations in the system. To identify stochas-
tic switches, we use a heuristic algorithm that analyzes time traces of the
number of S, molecules (Ns,) in each compartment. We identify switches
by assessing when the moving average of N, crosses a threshold value
approximately equal to the value of the unstable steady state identified
from analysis of the deterministic equations near the critical point
(Ns, = 35). Specifically, we calculate a moving average with a time win-
dow of 10 s and classify a switching event in a compartment when the mov-
ing average crosses the threshold for at least 1 s. This reduces the
overclassification of short-lived fluctuations as switching events. We use
this information to determine the distribution of residence times in each
steady state and to quantify the mean switching time, 7, which is the average
residence time in a state before stochastically switching to another. For an
exponentially distributed random variable, 7~ gives the rate parameter of
the distribution.

DATA AND CODE AVAILABILITY

Simulation and analysis code used in this work is available
at https://github.com/schmidthn17/Schmidt2023Exchange.

RESULTS AND DISCUSSION

An isolated compartment exhibits bistability at
sufficiently high concentrations

We begin by analyzing the reaction network in a single, well-
mixed compartment. We fix the number of proteins (100 sub-
strate proteins, 25 kinases, and 25 phosphatases) and vary the
volume. Fig. 1 shows the number of fully phosphorylated
substrate particles (Ng,) at steady state, as determined by sto-
chastic simulations (red points) and numerical solutions of
the ODEs associated with deterministic, mass-action kinetics
(black lines). The deterministic solutions highlight a pitch-
fork bifurcation, with the system bistable at sufficiently small
volumes and monostable at larger volumes. Below a critical
volume (=0.46 ,um3), there are two stable steady states (solid
lines) and one unstable steady state (dashed line) between
them. Above the critical volume, there is a single stable
steady state. For the stochastic simulations, we characterize
the distribution of the number of S, molecules. At sufficiently
small volumes, the distribution is bimodal, and the location of
each mode (red dot) is close to a stable deterministic solution.
The distribution consists of a single mode in the monostable
regime. The mean switching times in the bistable regime are
characterized in Fig. S1.

In the bistable region, we refer to the state with more S,
particles as the active state and the state with fewer S, par-
ticles as the inactive state. The behavior in Fig. | is a conse-
quence of changing concentration: The number of particles
in the system is constant, so a smaller volume results in a
larger concentration. For the two-site distributive reaction
network, bistability arises from a sequestration effect
when the number of substrate proteins exceeds the number
of enzymes (4,31). When the system is in the active state
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FIGURE 1 Number of S, particles at steady state in a single, well-mixed
volume, as determined by deterministic (black lines) and stochastic (red cir-
cles) methods. Solid lines denote stable steady states and the dashed line
denotes an unstable steady state. Results from stochastic simulations corre-
spond to the mode(s) of the distribution of Ng,. Mean switching times be-
tween states in the bistable regime, obtained from stochastic simulations,
can be found in Fig. S1. To see this figure in color, go online.

(Ns, > Ng,), more phosphatases are typically bound than
kinases. When a protein is dephosphorylated, the phospha-
tase unbinds, and there are more kinases than phosphatases
available to bind to the now singly-phosphorylated protein.
Thus, it is more likely to return to the fully phosphorylated
state. An analogous argument holds for the inactive state
(Ns, > Ng,), where the kinases are sequestered and there is
an excess of phosphatases available to bind. Larger concen-
trations promote protein binding, which enhances the
sequestration effect needed for bistability.

The exchange rate controls steady states and
correlation between compartments

For the remainder of the paper, we consider a system with
two compartments (A and B). Each compartment is assumed
to be well mixed, and particles exchange between the com-
partments with rate kgy. Initially, we consider compartments
of equal volume, with V4 = Vg = 0.16, 0.24, 0.32, and
0.4 um®. These volumes are within the bistable region iden-
tified in Fig. | for a single compartment. Focusing on equal
volumes allows us to examine the impact of particle ex-
change without confounding effects of different volumes.
We later explore the effect of pairing compartments with
V4 # Vg when, in the absence of exchange, compartment A
would be bistable and compartment B would be monostable.
When kgx = 0, there is no particle exchange, and the
compartments evolve independently. In this limit, each
compartment is equivalent to a case considered in an iso-
lated compartment exhibits bistability at sufficiently high
concentrations.

We first characterize stable steady states of the determin-
istic, mean-field system of ODEs describing the reaction
network in two compartments. Figs. 2, A and B show the
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number of S, particles in each compartment as the exchange
rate is varied. For V4, = Vp = 0.32 ,um3, there are four sta-
ble steady states at low values of kgx. Two of the steady
states are characterized by Ns,, = Ny, ,. In these states,
both compartments are either in an active regime or an inac-
tive regime. The other two steady states are characterized by
Ng, , #Ns, .. In these states, one compartment is in an active
regime while the other is in an inactive regime. As the ex-
change rate increases, there is a transition in the number
of stable steady states, and only the two states with
Ns,, = Ns,, persist (Fig. 2 C). For compartments with
mixed volumes (V4 = 0.32 ,um3, Vg = 0.8 um3), there
are two stable steady states at low exchange rates that tran-
sition to a single stable state as the exchange rate increases
(Fig. 2 D).

Fig. 3 shows results from stochastic simulations with
V4 = Vz = 0.32 um>. The upper panel shows the time
dependence of Ng, in compartments A and B for a portion
of a single simulation trajectory for three different exchange
rates. For each exchange rate, each compartment exhibits
two distinct states with stochastic switching between
them. At kgy = 0 s ', the compartments behave indepen-
dently of each other. When kzx = 0.01 sfl, the switching
events in the two compartments appear to occur at similar
times, and the states of compartments A and B appear to
be negatively correlated: When compartment A is in an
active state, compartment B tends to be in an inactive state,
and vice versa. When kgy = 1 sfl, the states of the two
compartments are highly correlated, with both compart-
ments having similar time dependence.

The lower panel in Fig. 3 shows the simultaneous distri-
bution of the number of S, particles in compartments A
and B. With kgy = 0 s™!, the compartments evolve inde-
pendently, and each undergoes independent stochastic
switches between steady states. This is reflected in the
four regions of high frequency in the two-dimensional dis-
tribution: the four states are associated with each compart-
ment being either active or inactive, independent of the
other. In contrast, the distribution for kgx = 0.01 s~ ! dem-
onstrates the negative correlation suggested by the sample
trajectory. The vast majority of the weight is associated
with compartment A being active while compartment B is
inactive, and vice versa. The active state is shifted to larger
numbers of S, molecules compared with kgy = 0 sfl, and
the shape of the distribution around the steady state also
changes, with a larger range of Ng, sampled. Although the
stochastic results are in qualitative agreement with the deter-
ministic steady states for this exchange rate (Fig. 2), the
deterministic results do not reveal the relative weight of
the negatively correlated states. Furthermore, they are not
in quantitative agreement, with the stochastic simulations
sampling larger values of Ng, in the active state. At the high-
est exchange rate, kgxy = 1 s_l, the distribution reflects the
highly correlated time traces, with most of the weight asso-
ciated with states in which both compartments are either
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active or inactive. Distributions obtained with other ex-
change rates are shown in Fig. S2 and illustrate the transi-
tion between the negatively and positively correlated
distributions. Fig. S3 shows the distribution of N, in a sin-
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FIGURE 2 Stable steady states of the determin-
istic, two-compartment system. Top row: each point
represents the number of S, particles in compart-
ments A and B at steady state. Points are color coded
by the exchange rate. (A) V4 = Vi = 0.32 ,u,m3,
The two states with Ns,, = N, , are stable for every
exchange rate, so the points are overlapping and
appear as a single point. (B) V4, = 0.32 um® and
Vg = 0.8 um®. Bottom row: difference in the num-
ber of S, particles in compartments A and B as a
function of  the exchange rate. (@)
Vi =Vg =032 ,um3. Note that two steady states
give rise to Ng,, — Ns,, = 0. (D) Va = 0.32
um? and Vg = 0.8 um>. To see this figure in color,
go online.

gle compartment for various exchange rates, allowing direct
comparison of the results in a single compartment.

To further characterize correlations between the states of
the compartments, Fig. 4 A shows the correlation coefficient
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FIGURE 3 Behavior with V4, = Vp = 0.32 p.m3 at various exchange rates: (A) kgx = 0 st
shows the number of S, particles in compartment A (fuchsia) and compartment B (blue) from part of a single trajectory. The bottom panel shows the dis-
tribution of S, particles in compartments A and B sampled from 1000 independent trajectories. Horizontal and vertical black lines denote the threshold
(Ns, = 35) used to identify switches. To see this figure in color, go online.

602 Biophysical Journal 123, 598-609, March 5, 2024

L(B) kgx = 0.01s™ !, and (C) kgx = 15!

20 40 60 80
SzA

. The top panel



A ﬁ 1 T —
= 0.16 um3 0.24 pm? y
Sosk 032um3 0.40pm? A 3 1
© ;. g
< &
-l ;| R e -/‘/7‘«-' ----------
© P ’ - /dl
c s .
S.0.5} ot . .
] e T gt
S 1 , ,
O 4¢3 102 107" 10°
B o0.015 T T T 11T T T T TTTTT] T T T TTTIT
0.16 um3 0.24 pm? .
032 um3 040 pum® ,-Ial
A
L R
\\‘ % \‘\\ e
Of__“:— | L IIIIII 1 1 L IIIIII s L\;_:I;LL!J_'
1078 1072 107 10°

Exchange rate (s™1)

FIGURE 4 (A) Correlation between compartments as characterized by
the correlation coefficient between Ns,, and Ng,,. The dashed line is
the correlation obtained for kgy = 05~ ' and V4 = Vg = 0.32 um®. As
the exchange rate increases, the compartments transition from negatively
to positively correlated. (B) The inverse mean switching time (7~ ') as a
function of exchange rate. Each data point is obtained from 1000 trajec-
tories. Results for kgy = 0 s~ are shown in Fig. S1. To see this figure in
color, go online.

between Ng,, and Ng,,. Each volume exhibits a similar
shape: At low exchange rates, the correlation coefficient
is < 0, indicating that the states of the two compartments
are negatively correlated. At the lowest exchange rates
considered, the correlation coefficient appears to approach
a plateau associated with a highly anticorrelated state. As
the exchange rate increases, the system switches from nega-
tively to positively correlated. At high exchange rates, the
correlation coefficient approaches 1, and the compartments
are almost always in the same state (Fig. S4). As the volume
increases, the transition from negative to positive correlation
between the compartments occurs at higher exchange rates.

Stochastic switching is promoted at intermediate
exchange rates

The sample trajectories shown in Fig. 3 suggest a change in
the frequency of stochastic switching as the exchange rate is
varied. In Fig. 4 B, we show the inverse mean switching time
(7~ 1) as a function of the exchange rate for different vol-
umes. Note that the mean switching time is defined in terms
of switching for a single compartment. This facilitates com-
parison to the single-compartment case and to cases with
compartments of different volumes. Symmetry between ki-
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nase and phosphatase reactions implies that the distribution
of switching times from inactive to active states is the same
as that from active to inactive. We confirm this by
comparing the cumulative distribution functions obtained
from simulation results, which are virtually indistinguish-
able (Fig. S5). We further use quantile-quantile plots to
compare the switching times from simulations to an expo-
nential distribution (Fig. S5). The switching times are expo-
nentially distributed for isolated compartments and for
sufficiently large exchange rates (kzxy = 0 and 0.04 s~ ).
However, for small values of the exchange rate
(kex = 0.001 sfl), the distribution deviates modestly
from an exponential distribution. Thus, for isolated com-
partments or a large exchange rate, the inverse mean switch-
ing time can be regarded as the rate parameter of an
exponential distribution.

Fig. 4 B reveals that the inverse mean switching time is a
nonmonotonic function of the exchange rate, and that the
maximum occurs at intermediate exchange rates. At low ex-
change rates, 7~ ! increases with increasing exchange rate. It
then peaks at intermediate exchange rates, before rapidly
falling to a plateau at higher exchange rates. Smaller vol-
umes exhibit less frequent stochastic switching. However,
the differences are modest at low and intermediate exchange
rates when compared with isolated compartments. With
kpy = 1073 s71 the largest volume switches =3 times
more frequently than the smallest volume. In contrast,
when kgy = 0 s, the largest volume switches =~ 8600
times more frequently than the smallest volume (Fig. S1).

For large exchange rates, the differences in the mean
switching times between different volumes are more pro-
nounced. In this regime, no switching events were observed
for V4, = Vp = 0.16 ,um3, whereas 77! =0.003 s~' for
V4 = Vg = 0.40 um’ (Fig. S1). Physically, the two com-
partments behave like a well-mixed system with a larger
effective volume (V' = V4 4 Vp). To test this, we consider
a single compartment with total volume Vand the same total
number of particles. Fig. S6 shows that, when the exchange
rate is large, the distribution of the total number of S, parti-
cles in both compartments is almost indistinguishable from
the distribution of the larger single compartment. Because
of the larger number of particles at the same concentration,
the impact of intrinsic fluctuations is reduced, thus suppress-
ing stochastic switching when the exchange rate is large
(Fig. S1) (33,45).

Fluctuations in the balance of enzymes influence
steady states at low and intermediate exchange
rates

Fig. 4 B shows that the rate of particle exchange influences
the mean switching time. Furthermore, Figs. 3 and S2
reveal, at low and intermediate exchange rates, a negative
correlation between the compartments, an increase in the
value of Ng, in the active state, and a broadening of the
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distribution associated with the active state. Taken together,
these results suggest a mechanism for stochastic switching
that is influenced by the balance of enzymes in the compart-
ments and the timescale of their fluctuations.

To test this, we characterize Agp, the difference in the to-
tal number of kinases and phosphatases in a compartment
(the total includes both free and bound enzymes). Fig. 5,
A and B show sample trajectories in which the time depen-
dence of Agp is plotted with N, in the same compartment.
With kgx = 0.01 s7!, there is a strong correlation between
fluctuations of Agp and Ng,: when Agp > 0, the compart-
ment is likely to be in an active state, and when Agp < O,
the compartment is likely to be in an inactive state. In
contrast, with kgxy = 1 s~!, the fluctuations of Agp occur
on shorter timescales and appear uncorrelated with the state
of the compartment.

To further explore the relationship between Agp and the
state of the compartment, we calculate the correlation coef-
ficient between Agp and Ny, ,. Fig. 5 C shows that Agp is
strongly correlated with Ng,,, and hence the state of the
compartment, at low exchange rates. The correlation de-
creases with increasing exchange rate and becomes uncorre-
lated at higher exchange rates. Thus, at low and intermediate
exchange rates, when there are more phosphatases than
kinases in a compartment, the compartment tends to be in
the inactive state; similarly, when there are more kinases
than phosphatases, the compartment tends to be in the active
state. Changes in the balance of enzymes influence the tran-
sitions between active and inactive states. Other dynamical
variables considered do not show strong correlation with the
state of the system. For example, it is plausible that fluctu-
ations in the total number of substrate particles in a compart-
ment could bias the state of the network due to sequestration
effects. We examine the correlation coefficient between
Ng, , and the total number of substrate particles in compart-
ment A (Fig. S7), which shows only weak correlation across
all exchange rates.

In Fig. 6, we further characterize the relation between the
balance of enzymes and the state of the compartment. Here,
we show the conditional distribution of Ng, in a compartment
given a specific value of Agp. For kgy = 0 s~ !, there is no
enzyme exchange and Agp = 0 for the entire simulation.
This case gives the steady-state distribution of Ng, in the
absence of exchange. With kgx = 0.01 sfl, the distribution
with Agp = 0 is similar to the case with no exchange, with
the distribution slightly broadened about each mode. As Agp
increases, indicating more kinases than phosphatases, the
weight associated with the active state increases and the
mode shifts to larger values. With Agp = 8, thereisonly asin-
gle mode, indicating that the imbalance in enzymes biases the
system to a single active state. Similarly, with Agp < 0, the
excess of phosphatases biases the system to an inactive state.
In this regime, as Agp decreases, the weight associated with
the inactive state increases and the mode shifts to smaller
values. In contrast, with fast exchange between compartments
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FIGURE 5 (A) Part of a trajectory showing N, , and the difference in the
number of kinases and phosphatases (Agp) in compartment A as a function
oftime forkgy = 1 x 107 2s 'andV, = V5 = 0.32 ,um3. (B) Analogous
results with kgy = 1s~'. (C) Correlation coefficient between Agp and N. Soa
(1000 trajectories for each exchange rate). As the exchange rate between
compartments increases, the state of the system (represented by Ny, ,)
and Agp become uncorrelated. To see this figure in color, go online.

(kex = 17", the distributions show almost no dependence
on Agp in the range considered. This is consistent with the re-
sults of Fig. 5 showing no correlation between enzyme fluctu-
ations and the state of the system.

The bias introduced by imbalances in the enzymes leads
to the negative correlation between the state of each
compartment at low and intermediate exchange rates (Fig.
4 A). Because of particle conservation, an excess of kinases
in compartment A implies an excess of phosphatases in
compartment B, thus leading to anticorrelated states. The
negative correlation is expected to persist for lower ex-
change rates. In this regime, as the exchange rate becomes
arbitrarily small, the time between exchange events becomes
arbitrarily long. Thus, between exchange events, each
compartment is effectively isolated and at a steady state
associated with a particular allocation of particles between
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the compartments. Rare particle exchange events would then
lead to each compartment residing in a new effective steady
state. To properly sample the full distribution of possible
states, the simulation time would need to be sufficiently
long to sample the full distribution of particle allocations.
The negative correlation will thus plateau at a level consis-
tent with an ensemble of effective steady states associated
with rare changes in the allocation of particles. Note that
kex = 0 s~' exhibits qualitatively different behavior
because the distribution of enzymes and substrate particles
between compartments never changes. With no exchange,
the correlation coefficient between Ng,, and Ng, , is zero.

Fluctuations in the balance of enzymes are a primary
mechanism driving transitions between states at lower ex-
change rates. However, there is no obvious dynamical vari-
able or reaction coordinate that provides a mechanistic
understanding of transitions between states at higher ex-
change rates. Stochastic switching events arise because
spontaneous fluctuations reverse the sequestration effect,
but the reaction pathways responsible for this are uncharac-
terized even in a single reaction volume. Characterizing
such transitions using transition path theory to identify tran-
sition bottlenecks (46) would be an interesting future direc-
tion, both in isolated and compartmentalized systems.

Coupling compartments of different sizes

Our results thus far have emphasized the importance of par-
ticle exchange between compartments when the average
concentration is equal in each. In biological systems, it is
common to encounter compartments with different effective
concentrations of proteins. In this section, we consider two
compartments with the same numbers of particles as above
but with different volumes: V, = 0.32 ,um3 and Vg = 0.8
or 10 um?. With no exchange, compartment A is in the bista-
ble regime and compartment B is in the monostable
regime (Fig. 1).

Fig. 7 shows, for V4 = 0.32 ,um3 and Vp = 0.8 ,um3,
sample trajectories (upper panel) and the distribution of

the number of S, particles in compartments A and B (lower
panel) for three exchange rates. With kgy = 0 sfl, the re-
sults reflect the bistable behavior in compartment A and
monostable behavior in compartment B. With kgx = 0.01
s_l, there remain two steady states, as can be seen in the dis-
tribution. However, compared to the case of no exchange,
they are shifted, broadened, and negatively correlated. In
compartment A, the active state is shifted to larger values
of Ng, 4 and the inactive state is shifted to smaller values.
In addition, the distribution around each steady state ex-
hibits negative correlation between Ng, 4 and Ng, p. This
behavior is conceptually similar to that with V4, = Vp, sug-
gesting that the balance of kinases and phosphatases is again
important in controlling the state of the system. With fast
exchange (kgxy = 1 s_l), the system is monostable, as indi-
cated by the single peak in the distribution. The states of
compartments A and B are highly correlated, as seen in
the trajectory and in the strong positive correlation in the
distribution. The fluctuations are large, leading to a broad
distribution of Ng, in each compartment. Distributions for
additional exchange rates are shown in Fig. S8 A.

The behavior of the system with V4 = 0.32 um’ and
Vg = 10 um® is similar (Fig. S8 B), except that at low
and intermediate exchange rates, the distribution of Ny, , is
narrower. In this regime of exchange rates, enzyme imbal-
ances remain important. However, because of the large vol-
ume of compartment B, enzymes are less likely to bind to
substrates, thus reducing the effect of fluctuations in the bal-
ance of kinases and phosphatases in the larger compartment.

We further characterize the inverse mean switching time
(7~ ') in compartment A for exchange rates at which it ex-
hibits bistable behavior. These results are shown in Fig. 8
for V4 = 0.32 um® and V5 = 0.32, 0.8, and 10 um°’. In
the slow-exchange regime, the behavior of the three cases
is essentially indistinguishable. At intermediate exchange
rates, coupling to larger compartments causes the peak of
7~ ! to shift to modestly higher exchange rates, but the shape
of the response is qualitatively similar. The inverse mean
switching time starts to decrease after the peak, but the
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FIGURE 7 Behavior withV, = 0.32 ,um3 andVz = 0.8 ,um3 at various exchange rates: (A) kgx = 0 sTL(B) kgxy = 0.01s7 !, and (C) kgxy = 15~ L. The
top panel shows the number of S, particles in compartment A (fuchsia) and compartment B (blue) from part of a single trajectory. The bottom panel shows the
distribution of S, particles in compartments A and B sampled from 1000 independent trajectories. To see this figure in color, go online.

system becomes monostable. These results indicate that the
switching behavior of a compartment at low exchange rates
is largely dependent on fluctuations in particle numbers due
to exchange between the compartments, and not directly on
the state of the other compartment.

For large exchange rates, the states of two compartments

are highly correlated. Particles rapidly switch between com-
partments and thus effectively sample volume V' = V 4+ V3
over short timescales. To this end, we compare the results
with two compartments at large exchange rates (kgpxy =
1, 10, and 100 s~ ') with the equivalent single-compartment
system of volume V (containing the same total number of
each protein). Figs. 9, A and B compare the distribution of
the total number S, particles in two compartments with
the number of S, particles in the equivalent single compart-
ment. The distributions are unimodal but markedly different
in shape. With two compartments, the distribution is
broader, indicating that the interplay between the two com-
partments is more complex than simply combining the two
volumes. These results are in contrast with Fig. S6, which
shows that fast exchange with V4 = Vj leads to a steady
state that is nearly indistinguishable from the equivalent sin-
gle compartment.

CONCLUSION

Compartmentalization is a cornerstone of cell biology. Mem-
brane-enclosed organelles such as the nucleus exchange pro-
teins with the cytoplasm, with translocation of MAP kinases
being one prominent example (7,11). Proteins can be recruited
from the cytoplasm to the plasma membrane, creating two
effective compartments (8,47), and liquid-liquid phase separa-
tion leads to distinct, membraneless domains that can be found
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in the cytoplasm, the nucleus, and the plasma membrane
(1,14,48). In all cases, proteins can dynamically exchange be-
tween different compartments and thus potentially impact
signal transduction and other cellular processes. Various bio-
physical mechanisms can facilitate protein exchange, with
rates of exchange varying over orders of magnitude.
Relatively little is known about the effects of compartmen-
talization and the exchange of proteins on the emergent
behavior of signaling networks. To gain insight, we studied
a common signaling motif describing the phosphoregulation
of substrate proteins by kinases and phosphatases. The
network and parameters were motivated by a leaflet of the
MAPK pathway, which can exhibit bistability due to the
sequestration of enzymes at sufficiently high concentrations.
Our key results are highlighted in Fig. 4, which reveals that
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FIGURE 8 The inverse mean switching time (7~ ') in compartment A as a
function of exchange rate when V4 = 0.32 p,m3 and V3 = 0.32, 0.8, or
10 um>. Results with V5 = 0.32 um® are also shown in Fig. 4. With
Vg = 0.8and 10 ,um3, the system is monostable for kgx >0.2 s~ ! and hence
switching times are not shown in this regime. Each switching rate is obtained
from 1000 independent trajectories. To see this figure in color, go online.
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the mean switching time depends nonmonotonically on the
exchange rate of proteins between compartments. Surpris-
ingly, the most frequent stochastic switching occurs at inter-
mediate exchange rates, revealing a nontrivial impact of
protein exchange on emergent behavior of the reaction
network. More detailed analysis revealed the importance of
fluctuations in the balance of kinases and phosphatases in
the compartments, which impacted the nature of the steady
states and the stochastic switching between them.

Atlow exchange rates, the states of the compartments were
negatively correlated, and the mean switching time was only
weakly influenced by the volume, in contrast with isolated
compartments. These results are a consequence of fluctua-
tions in enzyme numbers: when one compartment has an
excess of kinases (Agp > 0), the other has an excess of phos-
phatases (Agp < 0). An excess of kinases promotes the
active state, while an excess of phosphatases promotes the
inactive state. Furthermore, increasing the exchange rate de-
creases the average time during which Agp remains positive
or negative, leading to an increase in the frequency of switch-
ing. Atintermediate exchange rates, the mean switching time
was far shorter than that of an isolated compartment. Howev-
er, at larger exchange rates, the two-compartment system

Regulation by compartmental exchange

behaved more like a single, well-mixed volume, leading to
amarked increase in the mean switching time. In this regime,
fluctuations in the balance of enzymes occur faster than the
response time of the reaction network. Interestingly, when
the two compartments had different effective concentrations
of particles, the coupled behavior was markedly different
than the behavior of a single, well-mixed volume with the
same overall concentration.

These results demonstrate that compartmentalization and
protein exchange can act as regulatory mechanisms for
signaling networks. They also highlight the importance of
fluctuations in the balance of kinases and phosphatases for
phosphoregulation networks. The fluctuations impact both
the steady states and the stochastic switching between them.
Our study focused on compartments of similar volume con-
taining similar numbers of proteins. However, the results sug-
gest that even if multiple small compartments were embedded
in a much larger compartment, the behavior of each small
domain would be impacted by fluctuations that lead to enzyme
imbalances.

Our results highlight the importance of characterizing and
accounting for the exchange rate in compartmentalized sys-
tems. We found that changes in the rate can lead to qualita-
tive changes in behavior, such as changes in the number of
stable steady states. This also suggests that controlling the
exchange of proteins between compartments could be an
additional control mechanism used by cells or exploited in
synthetic systems to expand the range of behavior of
signaling networks. In cells, for example, the shuttling of
MAPK proteins between the nucleus and cytoplasm can
change in response to environmental conditions (25).
Recent work used synthetic condensates as scaffolds to re-
cruit signaling proteins (9), suggesting new avenues through
which compartmentalization can be rationally designed to
modulate the behavior of biochemical reaction networks.
Computational approaches will be useful for understanding
and designing responses in such systems, where the number
and size of compartments, as well as the exchange of bio-
molecules, can potentially be controlled and dynamically
modulated. It would be useful for future computational
studies to investigate a variety of signaling motifs in systems
with multiple compartments, which will help to reveal gen-
eral principles by which compartmentalization impacts
biochemical reaction networks.
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