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Advances in mmWave-based sensing have enabled a privacy-friendly approach to pose and gesture recognition. Yet, providing 
robustness with the sparsity of reflected s ignals has been a  l ong-standing challenge t owards i ts practical deployment, 
constraining subjects to often face the radar. We present RF-HAC– a first-of-its-kind system that brings robust, automated 
and real-time human activity cataloging to practice by not only classifying exercises performed by subjects in their natural 
environments and poses, but also tracking the corresponding number of exercise repetitions. RF-HAC’s unique approach 
(i) brings the diversity of multiple radars to scalably train a novel, self-supervised, pose-agnostic transformer-based exercise
classifier directly on 3D RF point clouds with minimal manual effort and be deployed on a single radar; and (ii) leverages the
underlying doppler behavior of exercises to design a robust self-similarity based segmentation algorithm for counting the
repetitions in unstructured RF point clouds. Evaluations on a comprehensive set of challenging exercises in both seen and
unseen environments/subjects highlight RF-HAC’s robustness with high accuracy (over 90%) and readiness for real-time,
practical deployments over prior art.
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1 INTRODUCTION
Physical activity has always been an integral part of human well-being. The recent pandemic has fueled the 
growing interest in remote health monitoring solutions from sleep monitoring to rehabilitation assistance. In 
particular, the ability to monitor and catalogue exercises autonomously, as shown in Fig. 1, enables analytics 
over time. The derived insights and recommendations for tuning the activity regimen, in turn enables several 
applications of automated exercise monitoring in personal well-being, assisted/elderly care, virtual gym 
assistance/log and physical therapy assistance/log, to name a few.
There are two main aspects to exercise cataloging: exercise classification and repetition count. Numerous 

solutions address different a spects o f p hysical a ctivity m onitoring s uch a s g ait a nalysis [ 9, 4 4], vitals 
monitoring [49], sleep analysis [53], etc. Recent advances in computer vision, namely action recognition [7, 10] 
can serve as an effective modality in identifying actions and gestures, although at the expense of user privacy.
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Fig. 1. Home virtual gym assistance

In contrast, RF-sensing based approaches, especially those involving higher mmWave frequencies (owing to
higher bandwidth/resolution) are becoming popular both in academic research [50] as well as in the industry (e.g.
Amazon Halo Rise [3]). Further, they are likely to be integrated with communication in our indoor WiFi access
points in the near future. Such mmWave sensing solutions often involve an ML-driven approach to map the
complex target-reflected RF signals to appropriate application-specific features needed for classification, without
the strong implications for privacy. However, lacking in robustness for operation in everyday environments, they
are yet to see wide-spread adoption.
Delivering a practical, automated human activity catologuer (HAC) poses three technical challenges, where

RF-sensing based solutions fall short. (i) robustness: While mmWave radars provide high bandwidth and hence
the needed resolution for sensing, their sparse reflections from targets make them highly sensitive to the target’s
orientation (relative to radar). This makes them suffer in performance by as much as 50% (seen in Section 3),
when the target’s orientation varies considerably from the one the system was trained for; furthermore, use of
limited information such as 2D spectrograms (compared to 3D point clouds) also impacts the ability to accurately
discriminate exercises in different orientations. (ii) deployment overhead: A potential solution is to train the
system with data from many different target orientations. However, this incurs a significant amount of effort
both for the target and data collection, not to mention the human/manual labeling of views and the associated
additional training [48]. It still does not guarantee robustness to target orientations unseen in training. (iii)
automation: Finally, beyond activity classification, an important role of a cataloguer is to also count the number
of gestures/actions repeated by the target. However, ML-based approaches typically can classify an ‘instance’
of an exercise [42] for trained target orientations but are unable to automatically and dynamically segment a
sequence of exercise repetitions in real-time depending on the dynamic speed of the exercise. The difficulty of
this challenge is highlighted by a modest 65% accuracy achieved by a state-of-the-art ML-based segmentation
approach [16] even on 2D videos. Further, enabling an ML approach to automatically segment a series of exercise
repetitions, especially based on 3D RF data, would incur a large training overhead owing to the need for manual
segmentation of the sensor data stream for generating ground truth [27].
Towards addressing these challenges, we propose RF-HAC1, a novel mmWave-based automated, real-time

activity cataloging system that can robustly classify exercises as well as count their repetitions for targets
in real-time in everyday environments, by directly operating on 3D RF point clouds. RF-HAC’s novel design
significantly advances state-of-the-art in two important directions:

1RF-HAC stands for RF-driven Human Activity Cataloguer
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(i) a self-supervised, view-agnostic exercise classification model for RF point clouds that brings the diversity benefits
of multiple radars to robustly classify various exercises (involving both upper and lower body) in practical single
radar deployments with very little training overhead. RF-HAC avoids the large data collection overhead associated
with numerous target orientations, by allowing targets to perform the exercise in a single orientation during
training, while deploying multiple (three in our case) radars, uniformly spaced in a circle around the target, whose
aggregated 360 degree RF point clouds are flexibly rotated to later obtain diverse perspectives on the RF features.
It eliminates the need for manual labeling of data, which is complemented with a novel contrastive learning
approach that enables robust view-agnostic classification – the model is trained by pitting the different radar
views against each other through a mutual information based loss function on the easily composed contrastive
(positive - e.g. same exercise with different orientations, negative - e.g. different exercises) samples, allowing it
to learn only the exercise-differentiating features from the 3D RF point clouds without carrying any artifacts
specific to the poses. Once trained, the model is ready for operation with a single radar, where the diversity gain
of multiple radars has been embodied into the model’s robustness to varying target orientations.

(ii) a self-similarity based, scalable segmentation algorithm for unstructured RF point clouds that brings automated
repetition counting to dynamic RF point clouds. RF-HAC leverages the high correlation between proximal
(spatially) points in a target’s point cloud, to interpolate the doppler values of the unstructured point cloud
and map it to a structured grid-based point cloud. The latter is used to analyze the self-similarity features of
a 3D doppler point cloud and hence determine the appropriate segmentation of the data stream, leading to its
repetition count. To overcome the high computational complexity of generating 3D self-similarity matrices (SSM)
that stifle real-time operation, RF-HAC decomposes the problem into generation of three 2D SSMs corresponding
to each of the planes (xy, yz, xz by mean pooling the third dimension) and aggregating them. We show that the
decomposed version yields a performance very close to that of the 3D SSM, while avoiding its complexity to
enable real-time performance.
RF-HAC’s segmentation and classification modules synergistically reinforce each other to deliver a robust

solution. The incoming sensor stream is segmented accurately as it arrives and fed as individual exercise instances,
which helps further boost the classification model’s accuracy by eliminating spurious multi-count and partial
exercise segments. On the other hand, the model’s identification of the exercise is further used to adjust the
parameters of the segmentation algorithm to further increase its accuracy, especially for exercises that involve
alternating limbs and result in multiple/harmonic segmented solutions.

RF-HAC is trained with three 60 GHz commodity radars each placed 120 degrees apart. However, it is deployed
with only a single radar in real-world with practically no deployment overhead. While RF-HAC is built as an
add-on processing module that receives 3D RF point clouds from the commodity radar to enable real-time
exercise cataloging, it can easily be integrated with the radar’s processing from a deployment perspective.
Our comprehensive evaluations on a dictionary of 9 challenging exercises (Fig. 2a) that span both upper and
lower body, reveal that RF-HAC delivers an accuracy of 93% in exercise classification and 94% in repetition
counting to enable cataloging in practice. With no current repetition counting schemes, this is a gain of 13% over
state-of-the-art models leveraging radar diversity (50% sans diversity) for classification and can be as high as
25-30% on challenging exercises operating close to the ground. RF-HAC’s ability to learn pose-agnostic features
from radar diversity delivers robustness across subject orientations even for unseen environments and subjects,
while suffering the least accuracy drop in partially occluded scenarios. Our contributions in this work can be
summarized as follows:
•We propose a novel view-agnostic self-supervised model that embodies radar diversity to bring robustness to
activity classification in everyday environments.
•We propose a light-weight, resilient segmentation algorithm for unstructured 3D RF point clouds that leverages
self-similarity to enable automated repetition counting.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 117. Publication date: September 2024.



117:4 • Liu et al.

•We will open source a rich, multi-radar dataset for a dictionary of nine exercises in various environments that
will be made publicly available to facilitate further research.

We believe RF-HAC is one of the first practical RF systems to provide an accurate, robust and automated exercise
cataloging in real-time that opens the door for numerous applications in self and remote health management.
While recent works have considered mmWave-based Human Activity Recognition, they lack several features
required for practical, robust and flexible deployment. They either incur a large deployment overhead [35],
lack view-agnostic recognition [37, 38, 40, 42, 48], and/or require additional sensor modes for training [25, 31].
Additionally, to the best of our knowledge, we are one of the first works to feature a mmWave-based exercise
repetition counting system that along with recognition, is essential to deliver exercise cataloging.

2 BACKGROUND AND RELATED WORK
Human Activity Recognition has long been a problem in the field of computer vision [11, 13, 30, 32, 33]. One of
its challenging problems includes pose recognition, especially when subjects were not facing the camera. Some
recent works have approached this problem of view-agnostic pose estimation through the use of contrastive
learning [36, 45, 52] on individual images. Another problem explored recently is that of repetition counting, which
tries to find the number of times a repetition occurs given a video with repeating action using deep learning
models [16] to only modest accuracies of 65-70%, highlighting the problem’s challenging nature. However, with
the focus being on 2d images or sequences of 2d images from cameras predominantly, 3d point cloud sequences
have not been explored often.
RF sensors such as mmWave radars, which can produce 3d point cloud sequences, have become a promising

alternative to computer vision for many applications including street view detection [20], vital signs monitoring [8,
21, 43], and human activity recognition [25, 38, 40, 46, 47] among others [12, 14, 19, 28, 39, 41], not only because
of their lower cost, but also because of higher resolution and better privacy-sensitivity [50]. Most of these works
employ a single radar chip that offers sparse information, restricting analysis to 1D or 2D range-doppler signals.
Even the few working with point clouds [35, 37, 42, 48], do so with a sparse point cloud. Operating with inherently
limited information, existing works with mmWave radar approaches [38, 40, 42, 47, 48] also require users to
be facing the radar , restricting practical deployments. Some of the activity recognition works [25] incorporate
vision for training, and are able to generate a skeleton of subjects with radar signals. This choice to incorporate
vision for training RF also comes as recent works in the vision field have increasingly produced better models for
handling the limited resolution of mmWave radar. Again, these works require subjects to be facing the camera
while performing their activities. Additionally, such approaches can also require large amounts of labeling,
increasing the training overhead, while also leading to privacy implications. Regarding repetition counting, one
work utilizing a wireless modality attempts to address the problem of repetition counting with WiFi beamforming
reports delivers a modest performance at an average absolute counting error of 1.73 [24] owing to its lack of
information on the motion of users that WiFi cannot provide due to its low bandwidth. Further, none of these
RF-based works have addressed the joint repetition counting and classification problem to aid with cataloging.

Thus, existing works in RF point cloud or doppler-frame profiles [30] have not addressed robustness by learning
view-agnostic features, while those that do in CV focus on snapshot 2D images, making it hard to leverage for 3D
unstructured data. Multi-view pose agnostic sensing systems using a combination of IMU, acoustic, and cameras
have been demostrated before, but for all of these sensors will then be required during deployment [23] thus
increasing the deployment overhead. Hence, in designing a practical automated HAC system, we seek to bridge
this gap in learning view agnostic features directly from the more informative yet unstructured RF point clouds
with minimal labeling, and without assistance of additional modes of sensing, like that of vision or IMU, or
multiple devices in deployment. Additionally, we address the largely unexplored, yet highly challenging problem
of repetition counting on 3D point cloud sequences to segment point cloud videos and isolate different instances
of exercises, which forms an integral component of any HAC system, especially exercises.
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PF AUD LUD SQ LN

IDLESUTRJJPU

PF: Pectoral Fly, AUD: Arms Up/Down, LUD: Legs Up/Down, SQ: Squat, LN: Lunges
PU: Push-ups, JJ: Jumping Jacks, TR: Torso Rotation, SU: Sit-ups

(a)

Radar 2

Radar 1

Radar 3

Training
set-up

Radar

Testing/Deployment
set-up

(b)
Fig. 2. (a) 10 exercises (b) Training and deployment set up

3 NEED FOR DIVERSITY

3.1 Experimental Study
The objective of this work is to build an automated, easily deployable HAC system for exercises using RF alone.
We consider a comprehensive dictionary of 9 exercises, some more challenging than the others, while spanning
both the upper and lower body, as shown in Fig. 2a.

To understand the challenges facing existing solutions, we conduct a simple experimental study, where human
targets are made to perform various exercises in front of a single radar or 3 radars (provide 3 different perspectives)
as shown in Fig. 2b. Each commodity radar has a 12x16 aperture (details in Section 5). We employ a state-of-the-art
ML-model (P4 [18]) capable of learning 4D spatio-temporal features from 3D point clouds and train it with data
from a single radar or from all 3 radars. The results are shown in Figs. 4a and Fig. 4b, categorized either based on
the target’s facing direction (with respect to the reference radar) or the exercises. Four important observations
can be made:
(i) Compared to 2D range-doppler spectrums often employed in prior art, leveraging 3D point clouds offers the
most distinguishable information (conducive for ML models) for radars to classify different exercises as seen in
Fig. 3. As shown in Fig. 3, the primary doppler component are found in two different locations (different X values),
yet on the range doppler spectrum, the negative velocity peak appears at roughly the same range and velocity.
(ii) When trained with a single radar data (Fig. 4a), the exercise classification accuracy is only around 70% even
when the target faces the radar (0 degrees). Unlike cameras, the sparse reflections from mmWave radars, makes
it highly challenging for the model to differentiate between different exercises, which are a complex sequence
of multiple gestures. It is easy for the model to get confused between exercises, whose limited point cloud data
might appear similar, especially when the exercise dictionary is large.
(iii) The accuracy quickly drops to 50% once the target faces away from the radar, highlighting the fragility of the
models to orientation. Orienting away from the radar can compound the model’s confusion – one exercise’s side
view could appear similar to the front view of another exercise. For example, in Fig. 4b, squats in front-facing (sq
P4-1R) yields nearly 60% error due to the model miss-classifying it as lunges (ln P4-1R). Also, the errors are as
high as 80% for lunges and push-ups as they look very different when not facing the front view.
(iv) Adding multiple perspectives of the same exercise (through radar diversity) helps the model learn
discriminating features across exercises better as we see in Fig. 4a. While the accuracy improves from 70%
to 90% when the target faces the radar, the errors climb to 30% once the target changes its orientation leaving the
model still vulnerable to orientations on which it has not been trained.

Our study highlights the need to address three key technical gaps towards making an automated HAC system
practical and robust.
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3.2 Challenges
Robustness: Discriminating exercises from a single radar view is highly challenging owing to sparse mmWave
reflections and sensitivity to target orientations. While radar diversity (with multiple radars at training) can
definitely help the model, it does not provide a comprehensive perspective on all possible target orientations. This
highlights the need for the model to leverage diversity and learn discriminative features in an orientation-agnostic
manner.
Deployment Overhead: One potential solution is to collect data with targets performing the various exercises
numerous times at various different angles/orientations from the radar. Beyond the tediousness of data collection,
it also incurs a substantial labeling overhead to account for orientations, not to mention the inability to scale
to additional exercises. Hence, we need a solution that imposes minimal deployment burden, not just during
operation, but also during training (data collection and labeling) that allows it to easily scale and accommodate
new exercises
Automation: Beyond the classification of exercises, HAC systems also need to count the repetitions to deliver
utility to their end users. However, repetition counting is a notoriously hard problem even for vision systems,
where the state-of-the-art ML-driven approaches [16, 27, 51] yield accuracies of only around 65-70%. Further,
they incur a high training and labeling overhead (segmented video streams), adding to the deployment burden.
Notwithstanding its accuracy, its application to our mmWave application is further complicated by the sparsity
of RF data as well as the need for robustness to various orientations. Fig. 9a exemplifies this difficulty, where the
point cloud data corresponding to 3 repetitions of an exercise reveal no explicit patterns of periodicity, unlike
vision data.
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4 RF-HAC: DESIGN

4.1 Overview
Towards addressing the aforementioned challenges, we present RF-HAC- one of the first systems to enable
practical and robust RF-based human exercise cataloging in real-time. RF-HAC’s design incorporates two key
building blocks as shown in Fig. 5.

The first component tackles the challenge of exercise classification while not requiring users to be facing the
mmWave radar. RF-HAC leverages the diversity of multiple radars along with contrastive learning to create
a novel view-agnostic self-supervised transformer-based model that will be deployed on a single radar. Three
radars (separated by 120𝑜 around sensing region of interest) are employed during training to simultaneously
produce point clouds from different views – these are not only used to create positive (e.g. same exercise, different
views) and negative samples (e.g. different exercises) easily for contrastive learning, but also aggregated into a
holistic, dense 3D point cloud. Rotating the latter allows RF-HAC to synthetically generate numerous views of
the target (covering 360 degrees), providing additional contrastive samples from various orientations, all while
requiring users to perform the exercise in only one orientation, thereby eliminating the tedious view-specific
deployment overhead associated with other approaches. This is complemented by RF-HAC’s model that is trained
by pitting the different radar views against each other through a mutual information based loss function that
balances accuracy with robustness across views, allowing it to learn only the exercise-discriminating features
from the 3D RF point clouds without carrying any artifacts specific to the orientations.
The second component tackles the challenge of counting the number of repetitions of an exercise that a

user/target performs. Here, RF-HAC leverages a valuable pattern in the doppler values of point clouds generated
during an exercise, namely alternating positive and negative doppler values that correspond to the two halves of
an exercise repetition (e.g. sitting down and standing up in a sit-up exercise). RF-HAC starts by exploiting the high
correlation between proximal (spatially) points in a target’s point cloud, to interpolate the doppler values of the
unstructured 3D point cloud and map them to a structured grid-based 3D point cloud. The latter’s self-similarity
features are then analyzed across decomposed 2D planes (for reduced complexity) to identify any alternating
regions of positive and negative similarity (as shown in Fig. 8), and hence determine the appropriate segmentation
of the data stream, leading to its repetition count. Leveraging the underlying doppler behaviour allows RF-HAC
to adopt a non-ML based robust segmentation approach, which not only eliminates any deployment overhead
but also avoids sensitivity to target orientations and faciliates real-time operation.

Finally, RF-HAC’s segmentation and classificationmodules synergistically reinforce each other during operation.
The incoming sensor stream is segmented and fed to the classification model, which helps further boost the latter’s
accuracy by eliminating multi-count and partial exercise segments. On the other hand, the model’s identification
of the exercise (after several frames) is used to condition the segmentation algorithm, increasing its counting
accuracy for challenging exercises (e.g. involve alternating limbs), whose features reveal multiple harmonics.

4.2 Leveraging Radar Diversity
RF-HAC leverages the diversity gain from multiple radars during training. It deploys three radars, each being
angularly offset by 120 degrees from each other with 𝑑𝑛 being its distance to the center of the sensing region
from radar 𝑛 as shown in Fig. 2b.

Each point within a radar’s point cloud has five values (x, y, z, doppler, and intensity) recorded with it. However,
the x, y, and z values are from a given radar’s point of view. Hence, to aggregate point clouds, RF-HAC applies
offsets to radar data to bring the points to appropriate locations within the common frame of reference of a single
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radar. Let 𝛿𝑥, 𝛿𝑦 be the translational offset of one radar 𝑛 with respect to a reference radar (say 1) and 𝛿𝜃 be its
corresponding relative counter-clockwise azimuth offset around the center point as shown in Fig. 2b. We have,

𝛿𝑥 = 𝑑𝑛 sin(𝛿𝜃 ) (1)
𝛿𝑦 = 𝑑1 − 𝑑𝑛 cos(𝛿𝜃 ) (2)

Using 𝛿𝑥 and 𝛿𝑦, the new position (𝑥 ′, 𝑦′) of a point given its original position (𝑥,𝑦) is calculated as follows:[
𝑥 ′

𝑦′

]
=

[
cos(𝛿𝜃 ) sin(𝛿𝜃 )
− sin(𝛿𝜃 ) cos(𝛿𝜃 )

] [
𝑥

𝑦

]
+
[
𝛿𝑥

𝛿𝑦

]
(3)

By aggregating several uniformly spaced (angularly) point clouds into a 360 degree RF point cloud, RF-HAC
avails two benefits: (i) any clutter (noise and interference) are dispersed, making it easier to filter them through a
clustering algorithm such as DBSCAN [17]; (ii) a point cloud representing a 360 degree field of view of a target
can be flexibly rotated. Rotating a point cloud from a single radar is less a view of a different radar and more
just a rotated version of the radar’s field of view. Thus, the diversity benefit of having multiple radars allows
RF-HAC to generate a lot of orientation samples for a given exercise without encumbering the target to perform
the exercise in more than a single orientation, thereby keeping the overhead minimal. This also facilitates its
robust classification as we shall see shortly.
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4.3 View-agnostic Activity Recognition
A key benefit of RF-HAC is its view-agnostic recognition feature, making it easy to deploy and use – users
only need to stand within the radar’s sensing range regardless of their orientation and position. To achieve this,
RF-HAC designs a contrastive pose recognition model to use alongside a multi-headed attention transformer-based
exercise classification model.
4.3.1 Model. At a high level, to arrive at the classification output, the point cloud sequence first goes through 4D
convolution [18] and then a transformer. As the name suggests, 4D convolution learns the structure of a 3D point
cloud over time (four dimensions) by capturing the displacements of the points for a given kernel as features,
and fusing them with features corresponding to their doppler and intensity values. Into the 4D convolution, we
input a given point cloud sequence along with its input features, which in RF-HAC is the doppler and intensity
values associated with each point. To capture the structure of the point cloud, 4D convolution calculates a set of
anchor points, which become 𝑍𝑐 , and each point’s displacement from those anchor points. The displacements
are featurally fused with the input features, doppler and intensity, to obtain the output features, 𝑍 𝑓 . These two
outputs of 4D convolution (𝑍𝑐 , 𝑍 𝑓 ) are fused into one set of features, then fed into a Transformer module made
up of multiple multi-headed attention layers. With temporal features being largely learnt in the Transformer
module, the latter is integral to classification of exercises over a period of time longer than one frame.
4.3.2 Loss Functions. RF-HAC introduces and employs three different loss functions, each of which is described
below.

The first is the attention loss. The attention loss is not a loss function for the self-supervised contrastive learning,
but rather the loss function for the classifier. The attention loss, 𝐿𝑎𝑡𝑡𝑛 (𝑦,𝑦) is captured as a cross entropy loss of
the classification weights and a single target class denoting which exercise the clip is depicting. Mathematically,
𝐿𝑎𝑡𝑡𝑛 (𝑦,𝑦) can be written as:

𝐿𝑎𝑡𝑡𝑛 (𝑦,𝑦) = −𝑦 log𝑦 − (1 − 𝑦) log(1 − 𝑦) (4)

The classifier utilizes view-agnostic features generated from the second and third loss functions, related to
contrastive learning, to classify more accurately. These loss functions are view loss and anchor representation loss
respectively. The view loss estimates the mutual information between given features (𝑍 𝑓 ) and a set of positive
(𝑍+

𝑓
) and negative (𝑍 −

𝑓
) features. Since these positive/negative features are derived from a point cloud video with

a different view/exercise (positive/negative samples), this would help the classification model learn features that
are common (specific) to an exercise even when its point clouds correspond to a different view. The view loss
(𝐿𝑣𝑖𝑒𝑤 ) is computed using estimated mutual information between a given point cloud and its positive and negative
samples [52]:

𝐿𝑣𝑖𝑒𝑤 (𝑍 𝑓 , 𝑍
+
𝑓
, 𝑍−

𝑓
) = E[𝜌 (−𝑓 (𝑍 𝑓 , 𝑍

+
𝑓
) ⊙ 𝐼+)] − E[−𝜌 (𝑓 (𝑍 𝑓 , 𝑍

−
𝑓
) ⊙ 𝐼−)]

where 𝜌 (𝑥) = log(1 + 𝑒𝑥 ) is the softplus activation and 𝑓 computes the similarity between features (using an
approximated Jensen-Shannon mutual information estimator [29]). 𝐼+ and 𝐼− are positive and negative indicator
matrices computed by comparing the labels of different samples within a batch. The anchor representation
loss (𝐿𝑎𝑛𝑐ℎ𝑜𝑟 ), meanwhile, helps to fix the features from a different orientation (at the user) and features from a
different view (at the radar) to the same global frame of reference. This means that from the model’s perspective,
the user changing their orientation by 60 degrees counter-clockwise, for example, should have the exact same
effect as the radar getting rotated around the user by 60 degrees clockwise. It is computed as:

𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (𝑍𝑐 , 𝑍 𝑓 ) = E[𝜌 (−𝑓 (𝑍𝑐 , 𝑍 𝑓 ) ⊙ 𝐼+)] − E[𝜌 (−𝑓 (𝑍𝑐 , 𝑍 𝑓 ) ⊙ 𝐼−)]
where, the similarity between the fused features and the input (approximated as 𝑍𝑐 ) is captured to ensure the
learnt features are appropriately anchored to the input. Finally,

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝛼𝐿𝑣𝑖𝑒𝑤 + (1 − 𝛼)𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (5)

where 𝛼 is adjusted to balance the magnitude of the two contrastive loss functions.
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Point Cloud Sequence
Find Median

Generate Grid around 0,0

Fig. 7. Interpolation operation

4.3.3 Pipeline. The overall flow of the model is shown in Fig. 6. After sampling positive/negative clips for a
given batch, the model takes all of the clips (local, positive and negative) and applies it to a single 4D convolution
layer[18]. Then, the model would utilize the representative vectors of positive and negative feature data (𝑍 −

𝑓
, 𝑍+

𝑓
)

derived within the batch along with the target’s representative vectors 𝑍 𝑓 , 𝑍𝑐 and apply Equation 5 to calculate
the contrastive loss. Then, the model would embed 𝑍 𝑓 , 𝑍𝑐 into a single feature vector before being fed into
several transformer layers and an MLP (multi-layer perceptron) layer to get the final exercise prediction 𝑦. Finally,
the model would evaluate 𝑦 with ground truth exercise 𝑦 to obtain attention loss, indicated by Equation 4 and
aggregate the overall loss to train the model, where the overall loss is the following:

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿𝑎𝑡𝑡𝑛 + 𝜆𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (6)
where 𝜆 is applied to balance the attention and contrastive losses, and consequently the model’s accuracy and
robustness (to views). We discuss the optimal values of 𝛼 and 𝜆 in Section 6.1.4.

The novelty of RF-HAC’s model is to intelligently bring together temporal learning capabilities enabled by 4D
convolution and transformers, and pose-agnostic learning enabled by contrastive approaches on 2D images, to
enable pose-agnostic temporal learning for 3D RF point clouds.

4.4 Robust Activity Counting
Counting the number of repetitions of an exercise accurately (along with its duration) is integral to any exercise
cataloging, and is vital to post-analysis. Also, while the model accepts a stream of frames in a clip to classify the
exercise, giving it some robustness to varying exercise speeds, vastly differing speeds however can potentially
impact its accuracy. Hence, in addition to tracking repetition count, an accurate counting algorithm can lead to
better clip segmentation and hence further improve the model’s accuracy.
Some recent works have explored ways to count repeating signals, including a system that tracks heart rate

with mmWave radar by correlating with a template that is learned via deep learning [21]. However, most of these
algorithms are designed to work on 1D signals or structured 2D images [16] over time. This leaves repetition
counting of unstructured 3D point clouds as a mostly unexplored problem.
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Positive Correlating Regions (PCR)
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Fig. 8. Assorted SSMs

4.4.1 Un-structured to Structured Point Clouds. RF point cloud videos contain a sequence of unstructured 3D
point clouds that make pattern analysis difficult. Hence, RF-HAC first maps the incoming unstructured 3D point
cloud into a more structured (grid-based) 3D point cloud.

To obtain a structured 3D grid from the unstructured 3D point cloud, we first must determine where to place
this 3D grid and how large this grid should be. Since RF-HAC focuses mainly on exercise tracking for indoor
environments, we can expect users to approximately stay in the same place when performing an exercise. Thus,
the 3D grid is placed around a median point, computed as the median of all x values and all y values, with z
values remaining unchanged as shown in Fig. 7. The points on this grid are weighted using doppler values, where
the doppler value of a grid point is obtained by interpolation of doppler values of points in it’s neighborhood.
This leverages the underlying high correlation between doppler values of spatially proximal points that in turn
correspond to a part of the user’s body. RF-HAC employs Delauney Triangulation [26] for interpolation and
is illustraed in Fig. 7. The result of this interpolation is a matrix 𝑉̃ ∈ R𝑛×𝑑×𝑑×𝑑 , where each element in 𝑉̃ is a
doppler value of a point in the grid. If 𝑛 is the number of frames, 𝑑 is the size of the dimensions of the grid,
and 𝑝 is the number of points per frame, then the runtime complexity incurred by the interpolation step is
𝑂 (𝑛𝑝 log𝑝) +𝑂 (𝑛𝑑3).
4.4.2 Self-similarity matrix (SSM). After obtaining a grided point cloud 𝑉̃ weighted with doppler values, we
spatially correlate each frame to form a self-similarity matrix (SSM). However, correlating directly in 3D space
can be very computationally expensive with a complexity of𝑂 (𝑛2𝑑3). With 𝑛 and 𝑑 being comparable in size, the
processing of 3D SSM (𝑂 (𝑑5)) could end up becoming more expensive than the interpolation step (𝑂 (𝑑4)). In
contrast, RF-HAC decomposes the 3D correlation problem into three 2D correlation problems, by mean pooling a
given dimension, and correlating the resulting 2D plane, and subsequently summing the result for of all the three
planes. This process has a computational complexity of 𝑂 (𝑛𝑑3) + 𝑂 (𝑛2𝑑2), where the savings of 𝑂 (𝑑) proves
valuable in RF-HAC’s real-time capability. From Fig. 8a and Fig. 8b, it’s evident that the SSM produced by first
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mean pooling each dimension and then summing up the correlations in 2D and the SSM produced by directly
correlating in 3D are very similar. Thus, if we have interpolated grids𝐺 (𝑖 ) and𝐺 ( 𝑗 ) where 𝑖, 𝑗 are frame numbers,
we obtain the doppler correlation between the two frames (𝐷𝑖 𝑗 ) as:

𝐷𝑖 𝑗 = E[E[𝐺 (𝑖 )𝑥𝑦 ]E[𝐺
( 𝑗 )
𝑥𝑦 ]] + E[E[𝐺

(𝑖 )
𝑥𝑧 ]E[𝐺

( 𝑗 )
𝑥𝑧 ]] + E[E[𝐺

(𝑖 )
𝑦𝑧 ]E[𝐺

( 𝑗 )
𝑦𝑧 ]]

where 𝐺 (𝑖 )𝑥𝑦 are the doppler values at frame 𝑖 at grid points 𝑥 and 𝑦, which in this case, corresponds to a vertical
line of points in the 𝑧 direction.
4.4.3 Leveraging doppler behavior inherent to exercises. From Fig. 8c, it is apparent that the output of the SSM
shows alternating regions of positive and negative correlation. This is because when an exercise repetition (say, a
sit-up) is performed, it involves two parts: an exertingmotion is performed at first (e.g sitting down), followed by a
recovery motion (e.g. standing up) in roughly the same area of space. Thus, when the radar tracks this movement,
a positive doppler is detected initially and then when the subject prepares to move back to the original position
to then repeat the exercise again, a negative doppler would appear in a similar region of space. When a frame
with mostly positive doppler is correlated with a frame with mostly negative doppler in a similar region of space,
we obtain a negative correlation as seen in Fig. 8c. Thus, RF-HAC leverages this inherent doppler behavior in
exercises to detect a "count" by searching for an alternating pattern of positive and negative similarity, namely
a 2x2 correlation "checkboard" pattern as seen in Fig. 8c. Note that, with the exerting and recovery motions
following each other in a repetition, we are interested in detecting such correlation between frames that are close
to each other, i.e. the 2x2 checkboards that touch the main diagonal (diagonal points are non-negative, since
𝐷𝑖𝑖 ≥ 0). However, as with any RF system, noise can affect both the points and the doppler values as shown in
Fig. 8d. To this end, RF-HAC designs an algorithm that can effectively manage these noisy regions.

Algorithm 1 Segmentation given the SSM
Require: Self-similarity matrix 𝐷
1: 𝑖𝑛 ← indices of diag(𝐷)
2: 𝑃 ← sort 𝑖𝑛 based on value of 𝐷𝑖𝑛𝑖𝑛 in descending order
3: for 𝑝𝑖 in 𝑃 do
4: Compare 𝑝𝑖 with 𝑝 𝑗 , 𝑝𝑘 such that 𝑝 𝑗 < 𝑝𝑖 < 𝑝𝑘 and 𝑗, 𝑘 < 𝑖

5: Depending on the values of 𝑝 𝑗 , 𝑝𝑘 , include 𝑝𝑖 in a region or form a new region
6: end for
7: 𝑅 ← all of the formed regions in chronological order
8: for All possible 𝑅𝑖 , 𝑅 𝑗 pairs do
9: 𝐷 ′

𝑅𝑖𝑅 𝑗
← ∑

𝑚∈𝑅𝑖 ,𝑛∈𝑅 𝑗
𝐷 ′𝑚𝑛

10: end for
11: 𝑆𝑅𝑖𝑅 𝑗

← 𝐷 ′
𝑅𝑖𝑅𝑖
+ 𝐷 ′

𝑅 𝑗𝑅 𝑗
− 2𝐷 ′

𝑅𝑖𝑅 𝑗
for set 𝑆 and 𝑖 < 𝑗

12: return elements in 𝑆𝑅𝑖𝑅 𝑗
that give the best possible score without overlap

4.4.4 Segmentation algorithm. We use Fig. 9b to exemplify segmentation in action for sit-ups (SU) while
Algorithm 1 shows the steps of the segmentation algorithm in pseudocode. RF-HAC starts with frames having
large self-correlation. Let {𝑖𝑛} be the sequence containing the indices of these frames from largest to smallest
self-correlation. However, the self-correlation alone is not sufficient to tell us which group of high self-correlation
indices correspond to exerting motion and which correspond to recovery motion. Hence, RF-HAC looks for
negative similarity regions, based on which, it splits the frames into different groups called "positive correlating
regions" (PCRs), wherein each frame in the group has a positive similarity with other frames as seen in Fig. 9b.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 117. Publication date: September 2024.



View-agnostic Human Exercise Cataloging with Single MmWave Radar • 117:13

(a) (b)

Fig. 9. (a) No explicit patterns in 3 reps (PF) (b) Example segmentation output (SU)

Note that positive and negative correlation regions in SSM, namely the PCRs, are across the entire set of frames,
while the frames within each of these PCRs will exhibit positive correlation locally.
Step 1 (Form PCRs): To perform this split as shown in lines 2-6 in Algorithm 1 , RF-HAC takes the sequence
{𝑖𝑛} and iterates through the frames. At frame index 𝑖 𝑗 , all frames 𝑖𝑘 with index 𝑘 < 𝑗 can be called "seen" frames
(already processed). When considering whether 𝑖 𝑗 should be placed in an existing positive correlating region or
form a new positive correlating region, RF-HAC checks the similarity in 𝐷 between index 𝑖 𝑗 and neighboring
"seen" frames. This process repeats until every frame becomes seen.
Step 2 (Recursive Search): Once these PCRs are formed, RF-HAC subsequently picks and combines these
regions to segment the video as seen in lines 7-11 of Algorithm 1 . Assumeℜ = {𝑅1, 𝑅2, ..., 𝑅𝑁 } is the set of all 𝑁
regions for the given video. Since we are looking for 2x2 checkboard patterns on the main diagonal, between two
segmentation boundaries, the first PCR in the sequence of picked regions, 𝑅𝐸1 , as an exerting (E) region, and the
second PCR in the sequence 𝑅𝐶1 as a recovery (C) region. Let 𝑅𝑚 → 𝑅𝑛 operator denote that chronologically,
region 𝑅𝑛 is encountered after region 𝑅𝑚 . To establish segmentation boundaries, we want to best match an E
region with an C region, while conforming to the following constraints:
• 𝑅𝐸1 → 𝑅𝐶1 → 𝑅𝐸2 → ... is alternating for a feasible combination 𝐸1,𝐶1, 𝐸2, ....
• {𝑅𝐸1 , 𝑅𝐶1 , 𝑅𝐸2 , ...} ⊆ ℜ, indicating that not all regions are necessarily an "exerting" or "recovery" region.
To find the optimal segmentation, RF-HAC recursively searches every possible sequence of E and C regions

and scores each possible assignment. Let 𝑅𝑛 be the n-th region formed in chronological order, then 𝑅𝑛 is a set
containing the indices of all the frames within the corresponding PCR. Let 𝐷𝑅𝑚𝑅𝑛 be the sum of all correlations
between frames of regions 𝑅𝑚 and 𝑅𝑛 . Mathematically, this can be written as:

𝐷𝑅𝑚𝑅𝑛 =
∑︁
𝑗∈𝑅𝑚

∑︁
𝑘∈𝑅𝑛

𝐷 𝑗𝑘 (7)

Step 3 (Maximize Score): Then in line 12 of Algorithm 1 , to obtain the best possible segmentation with 𝑁𝑆

segments, RF-HAC maximizes:

max
𝐸1,𝐸2,...,𝐸𝑁𝑆

,𝐶1,𝐶2,...,𝐶𝑁𝑆

𝑁𝑆∑︁
𝑖=1

𝐷𝑅𝐸𝑖
𝑅𝐸𝑖
+ 𝐷𝑅𝐶𝑖

𝑅𝐶𝑖
− 2𝐷𝑅𝐸𝑖

𝑅𝐶𝑖

s.t. 0 ≤ 𝐸1 < 𝐶1 < 𝐸2 < ... < 𝐶𝑁𝑆

(8)
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where 𝐸𝑖 and 𝐶𝑖 are the chosen exerting and recovery regions for segment 𝑖 , with the score function designed
to leverage the negative correlation between 𝑅𝐸𝑖 and 𝑅𝐶𝑖

. Solving this optimization, RF-HAC obtains both the
optimal number of segments 𝑁 ∗𝑠 as well as its corresponding segments to obtain the repetition count for the
exercise (along with the exercise’s duration). With a brute-force approach to solving the optimization incurring
𝑂 (2𝑛) time complexity due to it’s recursive nature, a dynamic programming approach is adopted in RF-HAC.
Although the latter’s worst case complexity could be 𝑂 (𝑛4), it occurs only if each frame forms its own PCR,
whose probability is negligible owing to the nature of exercises. In the average case, it runs in 𝑂 (𝑛2) in practice,
making it amenable for real-time implementation.

4.5 Integrating Segmentation-Classification
While each of RF-HAC’s classification and segmentation can operate well on their own, their performance can be
further enhanced through reinforcement. While the model can fairly accurately classify exercises at a 24-frame
(1.5 secs) clip-by-clip level, it can occasionally falter for certain exercises, owing to not knowing when one exercise
repetition actually ends and another begins. Additionally, pooling clips within a segment together to make a
classification can improve the accuracy of the model. The segmentation algorithm, meanwhile, can tell us when
an exercise begins and ends, but can be confounded by certain exercises (especially involving limbs) that can
generate multiple harmonics of exerting and recovery motions within a repetition (e.g. alternate leg rises). Each
of the exercises exhibiting multiple harmonics have a unique pattern in which it exhibits multiple harmonics even
when the difference in user’s orientation is considered. For example, arms up-and-down (AUD) always exhibits
the exerting and recovery regions twice per repetition. Therefore, by providing exercise classification information
from an initial sliding window classifier to the segmentation algorithm, the segmentation algorithm can use this
exercise information to accordingly fuse segments produced by the output of the segmentation algorithm for a
more accurate segmentation. RF-HAC integrates these two components for real-time operation as shown in Fig. 5.
The classifier’s robustness is improved by pooling the clips within the segment and eliminating multi-count and
partial exercise segments. Meanwhile, the segmentation is improved by the classifier providing information on
the exercise (available after a few frames), which helps the segmentation address multiple harmonic scenarios by
adjust the segmentations accordingly.

5 RF-HAC: IMPLEMENTATION
Hardware and software. We implement RF-HAC with a commodity 77 GHz mmWave radar [6] that consists of
three TI collocated 3x4 radar chips to provide a 12x16 virtual MIMO radar with sufficient antenna gain at 77 GHz.
The radar collects real-time mmWave signals, processes them on-board to translate them into a fairly dense (1-4
thousand points per frame) 3D point cloud data (each point capturing 3D coordinate, doppler, and intensity), and
then sends them through WiFi 802.11n at the rate of 16 frames/sec to a laptop. The laptop is equipped with Intel
Core I7 with 16 cores and 16 GB memory. It is responsible for controlling the 3 radars to simultaneously collect
point clouds (Fig. 2b), aggregate them into a 360-degree view and store it for subsequent training, as well as
real-time deployment of the trained model on one of the radars. The overall system setup is shown in Fig. 10a. We
also use an Intel RealSense D455 depth camera to collect ground truth video for reference alone. It is worthwhile
to note that RF-HAC does not need the video data either for training its model or for deployment.
Data Collection: To evaluate RF-HAC’s generality, we collect data from several environments with a total

of 12 different subjects performing numerous exercises in 6 different environments. A total of 1,500 exercise
point cloud streams (called videos) were collected that span a total of about 226,000 frames in about 191,000 clips,
where clips are generated by a sliding window across frames. Leveraging RF-HAC’s ability to learn pose-agnostic
features, only the orientations corresponding to the 3 radars (0𝑜 ,120𝑜 ,240𝑜 ) are employed for training (collected
simultaneously when subject faces just one radar), which correspond to 550 videos. All the remaining videos that
span all possible orientations, are used to test RF-HAC’s robustness to unseen orientations.
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Operation CPU Time Memory GPU Time GPU Memory
Interpolation 0.2529 s

943.12 MB
- -

Correlation 0.7955 s - -
Segmentation 0.0756 s - -
Classification - - 0.0143 s 2705 MB

Overall process time
Total time 1.1383 s

Table 1. RF-HAC system profiling (second/clip)

77 GHz mmWave radar

DELL P137G003 Intel Core I7

Fig. 10. (a) System setup (b-e) Four of six environments

(i) Environments: To represent everyday settings with varied characteristics, we consider 6 different
environments with varied amount of clutter. These environments consists of labs, classrooms, apartments/homes,
and hallways, some of which are shown in Figure 10b-e.

(ii) Exercises: We consider a comprehensive set of 10 exercises (including idle) as shown in Fig. 2a. The exercises
are diverse enough to cover both upper and lower body, and involve both standing as well as sitting on the ground
to understand RF-HAC’s classification capability. They are also chosen to cover a range of speeds (paces), varying
from static (idle) to moderate (e.g. pectoral fly) to highly active (e.g. jumping jacks), to understand RF-HAC’s
counting capability.

(iii) Subjects: The subjects participating in the experiments are of various heights from around 165 cm to 185
cm. Different subjects perform exercises at their own pace, and at different distances from the radar, ranging
from 1.5 m meters to 3.5 m, as well as at 5m. In addition to the environments, we also split the 12 subjects, such
that 5 subjects’ datasets are used for training, while the remaining 7 subjects’ datasets are held out for testing.
We provide access to a portion of our dataset and our code [4, 5].
Training: RF-HAC’s model architecture is shown in Fig. 6. It is trained with a 4D convolution layer [18]

followed by a 1D convolution layer for the point cloud hidden vector and forwarded to the transformer. The
transformer is comprised of 5 attention plus feed-forward layers each followed by GeLU [22] activation function.
Lastly, there is a multilayer perceptron and GeLU before having the classification result. We use SGD [34]
optimizer for attention loss and AdaGrad [15] for contrast loss to update the model. To best utilize the capability
of contrastive learning for deployment on a single radar, we not only employ aggregated data in training, but
also contrastively learn between point clouds from each of the individual radars.
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Env 1 Env 2 Env 3
fr nfr fr nfr fr nfr

RadHAR 93.6 46.5 83.0 34.7 67.3 27.1
mTransSee 83.2 50.0 78.9 41.9 83.4 45.0
P4, 1R 88.2 56.6 89.6 43.5 63.9 38.2
P4, 3R 89.8 82.0 90.8 82.6 88.8 90.5

RF-HAC slide window 94.4 93.3 95.3 92.8 93.5 95.8
RF-HAC segments 93.4 92.2 95.3 92.9 91.6 93.5

Table 2. Classification Accuracies in 3 seen environments

5.1 Real-time Capability
We now profile RF-HAC to understand its real-time operational capability on off-the-shelf home-owned or
edge computing devices. We use Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz for CPU with 64-bit x86_64
architecture and NVIDIA GeForce RTX 3090 for GPU. However, we use Linux’s kernel feature, cgroup [2] to
restrict RF-HAC’s resource usage so as to emulate the capability of a resource-constrained edge-compute device,
similar to Intel NUC [1]. The profiling results from Table. 1 show that the overall processing time for one clip,
which spans 24 frames and 1.5s of actual exercise time, takes 1.1383 seconds for the entire pipeline of segmentation
and classification. It is clear that RF-HAC can process the incoming radar point clouds and catalog the exercises
in real-time at a processing rate of 0.75s for every second of exercise, while operating on off-the-shelf edge
computing devices that could be co-located with the radar (or integrated into a single device in the future). This
latency can be further reduced by reducing the number of grid points in the interpolation step at a potential
cost of segmentation accuracy. Note that, while RF-HAC currently requires a GPU for exercise classification,
which are available on several recent edge computing devices [1], it is also possible for its classification model
(especially 4D convolution) to be optimized for operation without a GPU in the future.
6 EVALUATION
Baselines: In evaluating RF-HAC, we also consider a version where the incoming data stream is not segmented
(RF-HAC-ns) and evaluated using purely a sliding window, and compare it to two relevant baselines: one from
vision – a state-of-the-art point cloud based pose recognizer (P4) that is trained on both single radar (P4-1R)
and aggregated 3 radar (P4-3R) data, and another recent RF work (RadHAR) [37] that employs mmWave point
clouds for activity recognition. For RadHAR, we adjust the sliding window size to 32 frames to match its 2 second
windows, as well as decimate our point cloud as needed to match the radar density used in RadHAR. We also
implement another RF baseline (mTransSee) [30] that performs classification in an environment-independent
manner using 2D doppler-frame profiles as input to their model. We curate these doppler-frame profiles by
summing up intensities in a doppler bin as specified by mTransSee.

For repetition counting, we anecdotally show a result from a different modality. Namely, a WiFi beamforming
reports based repetition counting scheme called CBR-ACE [24].
6.1 Robustness in Classification
6.1.1 Overall performance. Table 2 presents the overall exercise classification accuracy for three environments.
Three inferences can be made: (i) RadHAR, mTransSee, and P4-1R each lacks robustness and suffers considerably
in non-front facing orientations (as low as 27%, 42% and 38% respectively in Env 3) of the subjects compared to
the front-facing scenarios. Despite RadHAR’s ability to classify front-facing exercises with reasonable accuracy,
the sparse point clouds and dependence on subject orientation inherently limits its ability to accurately classify
non-front facing views. Meanwhile, mTransSee’s loss of information from abstracting away the position of the
points causes it to not be robust. Additionally, the doppler profile can change quite significantly when the user
does not face the radar resulting in the drop in classification accuracies for non-front facing scenarios. (ii) Adding
radar diversity in data collection allows P4-3R to appreciably bring down this performance gap. However, while
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Fig. 12. Classification accuracy vs exercise

the smaller validation set in Env 3 contributes to a decent accuracy of 90% (evident in Table 3 since most of
the exercises classified with "100% precision"), the much larger validation sets found in Env 1 and 2 shows that
there is still a 8% performance gap for P4-3R between front and not-front facing (iii) RF-HAC delivers a robust
performance at over 90% accuracy on all of the environments, regardless of front-facing or not front-facing.
While training on the seen environments allows the sliding window classifier to better fit the dataset and perform
slightly better than its segmented counterpart, we will see the robustness benefits of the segmented classifier
later for unseen environments.
6.1.2 Performance by view. We now dissect performance to understand the impact of subject’s orientation angle
in Figure 11. We observe the following: (i) RF-HAC delivers over 90% accuracy for all orientations. (ii) P4-3R is able
to deliver close to 90% accuracy for front facing (0𝑜 ), but drops to 86% for (120𝑜 , 240𝑜 ), directions for which it was
still trained on, and further drops to 83% for 60𝑜 under 80% for 180𝑜 and 300𝑜 . Thus, while radar diversity in data
collection helps, it is not sufficient if the model is incapable of extracting view-agnostic features, unlike RF-HAC
(iii) P4-1R, mTransSee, and RadHAR performs at a decent 88%, 83% and 93% respectively for front facing alone
but suffers significantly in other directions, owing to lack of both data diversity and robustness. mTransSee in
particular suffers in the 60𝑜 and 300𝑜 directions as the doppler profiles, when viewed as images, are a contraction
of the original. Therefore, these contracted doppler profiles can easily be confused with one another.
6.1.3 Performance by exercise. Analyzing the performance based on individual exercises in Fig. 12 helps us
understand where the models face challenges. Several interesting observations are in order: (i) RF-HAC delivers a
maximum gain of 25-30% over P4-3R for four of the exercises, namely lunges, push-ups, sit-ups and legs up-down,
all which involve a significant portion of the exercise closer to the ground. Reflections collected from the legs’
height or lower are often sparse and present the most challenging scenarios for feature extraction with existing
models, compared to upper body exercises. (ii) Push-ups is by far the most challenging exercise for the models.
While RF-HAC delivers over 90% accuracy for almost all exercises, accuracy on push-ups suffers in the two heavily
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Exercise IDLE PF AUD LUD SQ LN PU JJ TR SU

Env. 1
Precision 98.9 94.1 100.0 98.6 98.9 85.5 53.3 99.5 99.6 95.4
Recall 98.4 100.0 96.1 99.1 83.4 99.0 92.3 99.1 98.5 66.4

Env. 2
Precision 97.2 93.9 97.6 94.6 96.2 89.5 79.4 96.0 96.9 97.8
Recall 97.3 96.2 97.6 96.8 84.5 97.7 97.3 96.0 96.2 82.4

Env. 3
Precision 100.0 95.7 100.0 100.0 100.0 100.0 48.1 100.0 95.6 100.0
Recall 94.1 100.0 100.0 100.0 90.0 100.0 100.0 100.0 100.0 62.2

Table 3. Precisions and Recalls of RF-HAC

Model Env 1 (nfr) Env 2 (nfr) Env 3 (nfr)
No contrastive loss (P4-3R, 𝜆 = 0) 82.0 82.6 90.5

View loss only (𝛼 = 1) 91.5 90.3 93.9
RF-HAC slide window (𝛼 = 0.1) 93.1 92.8 96.0

Table 4. Ablation study of different 𝛼 and 𝜆
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Fig. 13. Ablation study of different 𝛼 and 𝜆

cluttered environments (Env. 1 and 3), although performs reasonably well in the other environment. This can be
attributed to the increased impact of multipath in the first environment that obscures the point clouds (even after
clustering with DBSCAN), and creates confusion between push-ups and sit-ups for the classifier. This can be
confirmed by the precision and recall for push-ups and sit-ups respectively in Table 3 for the first environment,
where RF-HAC performs well in all other exercises.

6.1.4 Ablation study. In choosing the best parameters for RF-HAC, we conduct an ablation study with three
different values of 𝜆 (0, 0.1, and 1) and 𝛼 (0.1, 0.5, 0.9, 1.0). We note that taking out contrastive learning from
RF-HAC by setting 𝜆 = 0 gives the equivalent of P4-3R. We underscore the importance of the anchor loss function
by removing its loss value from consideration through setting 𝛼 = 1. Based on the study over the three seen
environments shown in Table 4 and Fig. 13, we conclude that the values of 𝛼 = 0.1 and 𝜆 = 0.1 yields the best
results in our study, which we incorporate into RF-HAC. Though Environment 3 shows 𝜆 = 1.0 performing better
at some values of 𝛼 , Environment 3 represents a much smaller dataset compared to Environments 1 and 2, thus
this deviation is a result of impreciseness rather than evidence that 𝜆 = 1.0 might be a better choice.

6.2 Segmentation and Counting
Our datasets include point cloud videos capturing both 5, 8, and 10-repetition exercises in various environments.
There exist no solutions to automatically segment point cloud videos to generate individual repetitions accurately
and reliably. Hence, we focus on evaluating the total repetition count of the exercises. To understand the
benefit of exercise classification reinforcing the segmentation algorithm real-time in RF-HAC, we also consider
a non-reinforced version (RF-HAC-ns), that receives non-segmented input. Further, with no existing model to
count the repetitions on RF point clouds, we consider a baseline that operate at various fixed rate of segmentation
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Exercise PF AUD LUD SQ LN PU JJ TR SU Overall (Avg) Overall (Abs) CBR-ACE

5 reps
Reinforced 0.077 0.081 0.051 0.129 0.051 0.045 0.238 0.121 0.039 0.092

0.46

1.73
Not 0.077 0.85 0.749 0.115 0.051 0.066 0.238 0.121 0.055 0.258

8 reps Reinforced 0.25 0.094 0.156 0.156 0.0 0.0 0.188 0.031 0.063 0.104 0.832

10 reps
Reinforced 0.075 0.092 0.042 0.1 0.042 0.07 0.133 0.05 0.0 0.067

0.67
Not 0.075 0.783 0.892 0.083 0.042 0.067 0.133 0.05 0.0 0.158

Table 5. Counting error of segmentation
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Fig. 14. (a) Counting error (b) Segmentation performance

(corresponding to different speeds of the exercise) and also compare our results to CBR-ACE, a repetition counting
algorithm based on WiFi beamforming reports [24].
6.2.1 Overall performance. Results in Table 5 reveal (i) the reinforcement of segmentation with knowledge
of the exercise (from classifier after a few frames), helps substantially improve the counting accuracy. This is
especially useful for exercises involving limbs such as arms and legs up-down (aud, lud), that result in multiple
harmonics owing to their nature. RF-HAC’s segmentation can appropriately adapt to these harmonics, resulting in
an overall counting accuracy of over 90%. (ii) Jumping jacks (JJ), being an inherently high-speed exercise, makes it
challenging for an SSM to capture both the exerting and recovery phases of a repetition for accurate segmentation,
yielding the worst accuracy of about 77% for RF-HAC with 5 repetitions, i.e. about 1 wrong count. However, with
typical exercises spanning more repetitions (10-15), JJ’s accuracy improves to 87% with 10 repetitions, while
overall accuracy also improves to over 93% (i.e. avg. count off by <1). This substantially outperforms CBR-ACE
which produces an average absolute count error of 1.73 [24] as shown in Table 5.
6.2.2 Performance by view. With RF-HAC being view-agnostic from a classification standpoint, we also evaluate
the robustness of its segmentation algorithm to various orientations of the subject in Fig. 14a. We find only
a 6% variation between the highest and lowest accuracy orientations, indicating that RF-HAC’s segmentation
algorithm, by virtue of leveraging the inherent doppler behavior of exercises, avoids the pitfalls of conventional
ML models to deliver robustness to orientations.
6.2.3 Effect of adaptive segmentation. Fig. 14b compares RF-HAC’s segmentation with practical baselines that
consider various fixed paces (1s, 1.5s, 2s per repetition) for the exercises. With different exercises inherently
having different speeds that also vary with subjects, RF-HAC’s automated segmentation outperforms the best of
the baselines, irrespective of the exercise, while also demonstrating the impracticality of the baselines.

6.3 Practical Deployment Scenarios
To understand if RF-HAC’s robustness allows for deployment in practical everyday scenarios, we consider
performance in completely unseen environments and targets, followed by impact of NLoS and complicated
exercise patterns (mixture).
6.3.1 Unseen environments and targets. From Fig. 15, we see that (i) RF-HAC’s robustness allows it to deliver
an accuracy of 89-94% over 3 different unseen environments; and (ii) RF-HAC’ classification is reinforced by its
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Exercise PF AUD LUD SQ LN PU JJ TR SU Overall

Unseen Env. 0.133 0.048 0.135 0.169 0.017 0.1 0.296 0.077 0.071 0.116

Unseen Target 0.133 0.1 0.056 0.044 0.022 0.033 0.178 0.233 0.022 0.091

NLoS 0.125 0.35 0.2 0.175 0.225 0.225 0.3 0.15 0.175 0.214

Table 6. Mean average counting error for practical scenarios
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segmentation to improve accuracy (over RF-HAC-ns) by 4-5% for the front-facing and non-front facing scenarios
respectively.
RF-HAC’s robustness is preserved on unseen (in training) targets as well, as we see from Fig. 16a, where it

delivers accuracies similar to those of trained targets in Fig. 12.
6.3.2 Partial occlusion/NLoS. In this experiment, the radar’s (placed 107cm high) view to the subject is partially
blocked by a 82cm tall couch 1m away in front of the radar with its length perpendicular to the view of the radar.
Subjects are then asked to perform exercises behind the couch (from the radar’s point of view) facing away from
the radar or perpendicular to the radar. Fig. 16b shows that while the accuracy does suffer overall for all the
models, RF-HAC suffers the least impact, delivering a fair 70-80% accuracy even in this challenging scenario,
especially for lower-body exercises (PU, SU, LN, SQ), which P4-3R classifies at around 35% accuracy as a result of
classifying them as upper body exercises. Accuracies for P4-1R are close to random guessing. The segmentation
algorithm is impacted appreciably owing to a large number of points missing in the point cloud, but is still able
to segment at around 20% mean average error (Table 6). Though the results are substantial, some limitations
of this study include that the couch was not very reflective, thus getting filtered out by DBSCAN, and the fact
that some parts of the knees were still visible to the radar, thus enabling classification despite the missing data.
Therefore innovations in intelligent surfaces could help further increase robustness to such NLoS deployments.
6.3.3 Exercise mixture. In practice, most users would perform multiple different exercises in a single session.
Fig. 17 highlights RF-HAC’s ability to accurately segment and classify an incoming RF point cloud stream with
multiple exercises, where a subject performs 3 repetitions of lunges followed by 5 repetitions of squats.
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Fig. 17. Exercise mixture output

7 DISCUSSIONS AND CONCLUSIONS
RF-HAC is one of the first systems to bring automated and robust exercise cataloging to practice with
privacy-preserving mmWave RF signals, where subjects are allowed to exercise in their natural pose/environment.
It brings together innovations in self-supervised, pose-agnostic classification and doppler self-similarity based
segmentation on unstructured 3D RF point clouds to realize this vision.
RF-HAC’s robustness can be further enhanced in two directions: (i) exploring radar tilt angles (traditionally

perpendicular to ground) to alleviate sparsity of point clouds for challenging exercises that are performed close
to the ground (e.g. push-ups); and (ii) leveraging innovations in passive intelligent surfaces to provide additional
diversity during deployment to tackle challenging NLoS scenarios.
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